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Optimal Bayesian Experimental Design for
Models with Intractable Likelihoods Using
Indirect Inference Applied to Biological

Process Models

Caitŕıona M. Ryan∗, Christopher C. Drovandi†,‡, and Anthony N. Pettitt§,¶

Abstract. This paper addresses the problem of determining optimal designs for
biological process models with intractable likelihoods, with the goal of parameter
inference. The Bayesian approach is to choose a design that maximises the mean
of a utility, and the utility is a function of the posterior distribution. Therefore,
its estimation requires likelihood evaluations. However, many problems in experi-
mental design involve models with intractable likelihoods, that is, likelihoods that
are neither analytic nor can be computed in a reasonable amount of time. We
propose a novel solution using indirect inference (II), a well established method in
the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller
et al. (2004). Indirect inference employs an auxiliary model with a tractable like-
lihood in conjunction with the generative model, the assumed true model of in-
terest, which has an intractable likelihood. Our approach is to estimate a map
between the parameters of the generative and auxiliary models, using simulations
from the generative model. An II posterior distribution is formed to expedite
utility estimation. We also present a modification to the utility that allows the
Müller algorithm to sample from a substantially sharpened utility surface, with
little computational effort. Unlike competing methods, the II approach can handle
complex design problems for models with intractable likelihoods on a continuous
design space, with possible extension to many observations. The methodology is
demonstrated using two stochastic models; a simple tractable death process used
to validate the approach, and a motivating stochastic model for the population
evolution of macroparasites.

Keywords: approximate Bayesian computation, auxiliary model, Bayesian
experimental design, indirect inference, Markov chain Monte Carlo, Markov
processes.

1 Introduction

Experimental design is fundamental to a wide range of research activities. Optimal ex-
perimental design allows statistical inference with the least experimental cost. A utility
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function is specified reflecting the purpose of the experiment, for example, parameter in-
ference, prediction, or model choice. The choice of optimal design is a decision problem to
select a design by maximising the expected utility. Bayesian experimental design (Raiffa
and Schlaifer, 1961; Lindley, 1972; Chaloner and Larntz, 1989; Chaloner and Verdinelli,
1995; Bernardo and Smith, 2000; Clyde, 2001) is a flexible framework incorporating
prior knowledge. This paper develops Bayesian experimental design methodology for
stochastic models with intractable likelihoods. In our examples, the experimental design
problem is what values of controllable covariates to use in order to optimally estimate
the model parameters.

Much of the experimental design literature requires a tractable likelihood as the
utility is a functional of the posterior. In many problems, the likelihood is intractable.
An approximation to the likelihood for stochastic process models has been proposed to
address this problem (Cook et al., 2008), but this approach is inadequate in the case of
our motivating stochastic model for the population evolution of macroparasites (Riley
et al., 2003). An approximate Bayesian computation (ABC) approach has been applied,
specifying the utility as a functional of the simulation based ABC posterior (Drovandi
and Pettitt, 2013). However, this approach is restricted to a discrete design space, to
designing for a small number of observations and to available computer memory (see
the discussion in Section 5 for more details). Our approach using indirect inference (II)
is free of these restrictions.

II is a simulation-based method where a tractable auxiliary model is used in con-
junction with the intractable generative model to make inferences about the generative
model, the assumed true model of interest. The method assumes that a useful auxiliary
model can be found easily. It may be known from the literature or found using statistical
methods of data analysis. This and other assumptions are clarified in Section 3. II is
strongly established as an inferential approach in the frequentist literature (Gourieroux
et al., 1993; Smith, 1993; Gallant and Tauchen, 1996; Heggland and Frigessi, 2004) and
more recently in the Bayesian literature (see Drovandi et al. (2015) for a review). The
use of II in this paper is similar to the Bayesian approach of Gallant and McCulloch
(2009) and Reeves and Pettitt (2005), where the auxiliary model likelihood is used
as a replacement for the intractable generative model likelihood. In our problem, this
replacement expedites utility estimation for models with intractable likelihoods.

Our approach is as follows. Having found a suitable auxiliary model, the relationship
between the auxiliary model parameters and the generative model parameters is esti-
mated using simulations from the generative model and maximum likelihood estimation.
This results in precomputed auxiliary parameter values and corresponding generative
model parameter draws from the prior. Using importance sampling, an II posterior is
formed. The utility is a function of this auxiliary posterior. We note that this approxi-
mation of the utility can be used within any search algorithm to determine an optimal
design. For illustrative purposes, we use the Metropolis–Hastings algorithm of Müller
et al. (2004) (Müller algorithm hereafter).

In this paper, we demonstrate that the use of Bayesian II and the Müller algo-
rithm can provide useful optimal designs for models with intractable likelihoods. It is
a novel approach and, unlike existing techniques, can be carried out on a continuous
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design space. Moreover, it can be extended to complex design problems as the storage
requirements of the precomputation scale well with an increase in the dimension of
the experimental design and the number of observations to design for. We demonstrate
its effectiveness in choosing optimal Bayesian designs for precise parameter estimation
in biological process models. The motivating example for this work is designing for a
stochastic model for the population evolution of macroparasites (Michael et al., 1998;
Riley et al., 2003). Macroparasites are transmitted by mosquitoes, causing lymphatic
filariasis, a painful disfiguring disease in an estimated 120 million people worldwide
(Ottesen, 2006). This model results in an intractable likelihood and therefore an in-
tractable utility function. A simple tractable death model (Renshaw, 1991) validates
the approach and algorithm settings.

The paper describes the Bayesian approach to optimal experimental design in Sec-
tion 2. Section 3 explains our novel II approach to Bayesian optimal design. Section 4
illustrates the methodology using the simple tractable death process and the moti-
vating stochastic model, which has an intractable likelihood. The paper concludes in
Section 5 with a discussion of the novelty and advantages of our approach and related
open questions in Bayesian design, involving complex designs and a substantial number
of observations, where our approach should be useful.

2 Bayesian experimental design

2.1 Introduction

To address experimental design in the Bayesian paradigm, a utility function u(d,y,θ)
is specified to reflect the goals of the experiment, where y are the data that may be
observed when experimental design d is used and where θ is the vector of model pa-
rameters. The prior distribution p(θ), can be elicited from experts or based on previous
experiments. The optimal design d∗ in the design space D corresponds to the maximum
expected utility,

d∗ = argmax
d∈D

u(d), (1)

where u(d) is the expected utility function over the data y and the model parameters θ,

u(d) = Eθ,y[u(d,y,θ)] =

∫
y

∫
θ
u(d,y,θ)p(y|θ, d)p(θ)dθdy, (2)

where p(y|θ, d) is the likelihood of the generative model, the assumed true model of
interest. Integration across all possible values of the data y that are yet to be observed
and model parameters θ can be carried out using Monte Carlo simulation. However,
in Bayesian experimental design, the utility u(d,y) is a functional of the posterior
distribution (thus θ is integrated out of the general utility u(d,y,θ)) and is therefore
intractable for models with intractable likelihoods. Section 3 demonstrates how the
utility is approximated using II, avoiding generative model likelihood evaluations.

A pragmatic approach taken by Müller et al. (2004) is to sample from an augmented
joint probability distribution

h(d,θ,y) ∝ u(d,y,θ)p(y|θ, d)p(θ). (3)
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Note that the normalising constant required for this distribution for fixed d is the
expected utility u(d) of (2). Thus the margin over y and θ of the target distribution
h(d,θ,y) is proportional to u(d) and shares the same mode, that is, the optimal design.
Müller et al. (2004) borrow ideas from simulated annealing (Van Laarhoven and Aarts,
1987), tempering the distribution by a single temperature J . This exaggerates the peaks
of the distribution and enables an easier search for the mode. The tempered target
distribution is

hJ(d,θ1:J ,y1:J) ∝
J∏

j=1

u(d,yj ,θj)p(yj |d,θj)p(θj), (4)

where θ1:J and y1:J are J independent draws from the prior predictive distribution con-
ditional on d. Increasing the value of J tightens the distribution further at its mode, but
incurs a computational cost. An alternative approach is provided below in Section 2.2
that exaggerates the peaks of the expected utility surface with little computational cost.
To use the Müller algorithm, the utility function must be bounded below by 0.

In order to sample from the augmented target in (4), Müller et al. (2004) em-
ploy a Metropolis–Hastings algorithm that requires the specification of a joint proposal
distribution, q(d∗,θ∗

1:J ,y
∗
1:J |d,θ1:J ,y1:J), that defines how new values in the Markov

chain are proposed, where (d∗,θ∗
1:J ,y

∗
1:J) denotes the jointly proposed values. Here

we use q(d∗,θ∗
1:J ,y

∗
1:J |d,θ1:J ,y1:J) =

∏J
j=1 p(y

∗
j |d∗,θ∗

j )p(θ
∗
j )q(d

∗|d), where q(d∗|d) is

user-specified (we provide more details on specific examples later) while (θ∗
1:J ,y

∗
1:J) are

generated from the prior predictive distribution conditional on d∗. Note that the choice
to draw y∗

1:J from the likelihood is necessary since it ensures that all intractable likeli-
hood components cancel in the Metropolis–Hastings ratio. With this choice of proposal,
the Metropolis–Hastings acceptance probability, α, becomes

α = min

(
1,

q(d|d∗)
∏J

j=1 u(d
∗,y∗

j ,θ
∗
j )

q(d∗|d)
∏J

j=1 u(d,yj ,θj)

)
.

Driven by the goal of parameter inference, we use the Bayesian D-posterior precision
utility (Drovandi et al., 2013), which is the inverse of the determinant of the posterior
covariance matrix of the model parameters θ,

u(d,y) = 1/det(Var(θ|y, d)), (5)

which does not depend on θ. The utility can also be defined for a subset of θ.

2.2 Sharpening the utility surface

In order to sharpen the utility surface, a large value of J , greater than 100, can be
used in the Müller algorithm. This is highly computationally intensive. Instead, we take
advantage of an assumption of our method (see Assumption (2), Section 3) that an
informative prior is available. We consider a gain in utility from the data over and
above the utility found from the informative prior,

ũ(d,y) = max{(u(d,y)− sup), 0}, (6)
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where up is the utility calculated from the prior distribution,

up = 1/det(Var(θ)), (7)

and where s ≤ 1 is a user-defined scaling factor on up.

Using this modified utility, we found that the utility surface was substantially sharp-
ened in our examples using J = 10 in the Müller algorithm. The idea is demonstrated in
Figure 1(a) for one observation of the macroparasite model, for which details are given
in Section 4.2. The estimated expected utility is plotted for various observation times.
In the left hand plot, û(d) is plotted and the dashed line is the prior utility, up. In the

right hand plot, ˆ̃u(d) is plotted. This curve has much greater curvature near the mode
than the left hand plot. The curvature of the normalised ũ(d) is increased by a factor
of about 5 compared with the normalised u(d). We surmise that this is equivalent to
increasing J by a factor of 5.

In our examples, s ≈ (0.7, 0.8) in (6) ensured ũ(d,y)−sup was usually greater than 0.
This approach is effective as the Müller algorithm treats the target ũ(d,y)p(y|θ, d)p(θ)
as a normalised density with respect to (d,y,θ). The normalised target marginal den-
sity ũ(d)/ũ, where ũ is the normalising constant for ũ(d) with respect to d, has greater
curvature near the mode than the normalised density u(d)/u, where u is the normalising
constant for u(d) with respect to d. So draws of d using ũ(d,y) are more concentrated
about the mode of u(d) than draws using u(d,y). As currently defined, if the prior
is uninformative, then up could be 0. However, in the general case, any approximate
lower bound for u(d,y) will sharpen the utility surface. The mode of ũ(d,y) and corre-
spondingly the optimal design, is not changed from that of u(d,y) by the choice of s.
The maximum is introduced to ensure that when u(d,y) is estimated, ũ(d,y) remains
non-negative and the Müller algorithm can be used.

3 Bayesian experimental design using indirect inference

II employs an auxiliary model with a tractable likelihood in conjunction with the gen-
erative model, the assumed true model of interest, to aid inference about the generative
model. For a full review of the recent advances in the Bayesian II literature see Drovandi
et al. (2015). Our II methodology is similar to Reeves and Pettitt (2005) and Gallant
and McCulloch (2009), that is, a simulation based method, where an auxiliary model
likelihood is used as a replacement for the intractable generative model likelihood. This
is useful when a generative model for the observed data is derived from underlying
scientific theory and when the following assumptions hold (see Gallant and McCulloch
(2009)): (i) the likelihood is not available; (ii) an informative prior is available; (iii) the
model can be simulated from; and (iv) an adequate auxiliary statistical model for the
data is available. The auxiliary model may be known from the literature or chosen from
a generally flexible and richly parameterised set of models. Statistical methods of data
analysis are used, for example, building a well fitted regression model. Assumption (iv)
can be verified by assessing goodness-of-fit for observed and simulated data. Assump-
tion (iv) is important and it may not be possible or straightforward to find a suitable
auxiliary model.
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Figure 1: Plot (a) displays the mean utility of (12) for 1 observation of the macroparasite
population evolution model, calculated using 1, 000 simulations over a fixed grid of
designs. In the left hand plot, the expected utility estimate is û(d) and the dashed
line is the prior utility up of (7). The right hand plot is of the modified expected

utility estimate ˆ̃u(d). Plot (b) displays the prior distribution for θ, the generative model
parameter of the death model. Plot (c) displays the prior predictive median (solid line)
and 95% prior prediction intervals (dashed lines) of 100, 000 simulated counts of infected
individuals from the death model. Plot (d) displays the marginal relationship between

the auxiliary parameter θ̂a and the generative model parameter θ for the death model,
where the curve is a lowess smooth.

Given assumption (iv), we can construct g, a map or binding function θ → φ, from

the parameters of the generative model to those of the auxiliary model such that the

generative model likelihood is approximated, up to proportionality, by the auxiliary
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model likelihood. To facilitate this, the number of parameters of the auxiliary model
should be at least that of the generative model.

The fundamental assumption of the Bayesian II approach that we use is that there
exists an auxiliary model with a fully tractable likelihood pa(y|φ, d), so that approxi-
mately

p(y|θ, d) ∝ pa(y|φ = g(θ), d), (8)

where the subscript a denotes the auxiliary model. If g(θ) were known, the problem
becomes tractable up to the approximation. For intractable problems, g(θ) must be
estimated by ĝ(θ) such that

p(y|θ, d) ∝̇ pa(y|φ = ĝ(θ), d). (9)

The posterior distribution p(θ|y, d) of the generative model is approximated by the II
posterior,

pa(θ|y, d) ∝ pa(y|φ = ĝ(θ), d)p(θ). (10)

An estimate of the auxiliary parameter φ is found by

φ̂ = ĝ(θ) = argmax
φ∈Φ

pa(x|φ, dT ), x ∼ p(x|θ, dT ), (11)

for auxiliary parameter space Φ, θ ∼ p(θ) and training design dT . The training design
could be of the same structure as in previous experiments, but the user is free to choose
this design (more information is provided in the discussion in Section 5). Drovandi et al.
(2015) demonstrate that if the auxiliary model likelihood acts as a good approximation
to the generative model likelihood for regions of the parameter space of non-negligible
posterior density, then a useful posterior approximation can be obtained. They demon-
strate this for a number of examples including the macroparasite population evolution
model that motivates this work. Such an approximation may be appropriate for design
purposes since an important process in Bayesian experimental design is ranking the
utilities of the designs and accurate posterior estimation is less important.

Algorithm 1 is employed to establish a noisy estimate ĝ(θ) of g(θ). For θi, the
ith value of θ generated from the prior, a dataset x is simulated from the generative
model based on the training design dT . The auxiliary parameters are estimated using
(11). Repeating this process for a collection of n parameter values drawn from the prior

produces the noisy mapping {θi, φ̂i}ni=1. The idea of precomputing a mapping function
in II has been considered by Moores et al. (2015).

In an attempt to reduce the variability of ĝ(θ), one can simulate m independent

replicates of the data, denoted x1:m = (x1, . . . ,xm) to estimate φ̂. This is implemented
as lines 3 and 4 of Algorithm 1. Under the assumption that the auxiliary estimator
ĝ(θ) is consistent, the true mapping g(θ), for a particular value of θ, can be recovered
as m → ∞. Cox (1961) gives some theory concerning maximum likelihood estimation
under the wrong model, which is relevant to II and estimation of the map. In our
notation, it is assumed that ĝ(θ) based on m replications converges in probability to
g(θ) as m tends to ∞. For example, (25) of Cox (1961) gives the definition of g(θ). In
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Algorithm 1: Estimation of g(θ).

INPUT: Training design dT , number of prior simulations n, number of
replicates m;

1 for i = 1, . . . , n do

2 Draw θi ∼ p(θ);

3 Simulate xj
iid∼ p(y|θi, dT ), j = 1, . . . ,m;

4 Find φ̂i = argmax
φ∈Φ

∏m
j=1 pa(xj |φ, dT );

5 end

OUTPUT: Parameter values {θi, φ̂i}ni=1;

Section 9, Cox (1961) considers, in our terms, the generative model to be exponential
with one parameter while the auxiliary model is log normal with two parameters and
gives results about the asymptotic distribution of ĝ(θ).

The choice ofm and n in Algorithm 1 is discussed in Section 4. Increasing n allows the
mapping to be approximated for more points across the prior space. For the purposes of
auxiliary parameter estimation we recommend maximum likelihood estimation in line 4,
Algorithm 1, since it generally leads to more statistically efficient estimators compared
with other techniques. We note that other methods could be used such as the method of
moments or estimating equations (Heggland and Frigessi, 2004). An important aspect
of Algorithm 1 is that storage of the simulated data x1:m is not required. It is only

necessary to store the values {θi, φ̂i}ni=1, whose size does not necessarily grow with an
increase in the number of experimental observations and the number of design variables.
In the macroparsite example in Section 4.2, we demonstrate how an extra design variable
can be accommodated.

Having established a noisy mapping ĝ(θ) using Algorithm 1, the resulting values

{θi, φ̂i}ni=1 are used to estimate the utility function, which is required in the Müller
algorithm to sample from the tempered target distribution in (4). The utility function
is estimated by forming the II posterior, pa(θ|y, d), given in (10). The Bayesian D-
posterior precision utility in (5) is respecified as a function of the II posterior and is
defined by

u(d,y) = 1/det(V̂ara(θ|y, d)), (12)

where Vara(θ|y, d) is the covariance matrix of θ under the auxiliary posterior pa(θ|y, d).
The process for calculating this utility is shown in Algorithm 2. The II posterior for θ is
formed using importance sampling, where the prior p(θ) is the importance distribution

and the ith importance weight, W i, is proportional to pa(y|φ̂i, d) for i = 1, . . . , n.
Then {W i,θi}ni=1 forms an importance sampling approximation of the II posterior.
This weighted sample is then used to estimate the utility u(d,y). The Monte Carlo
error of the estimated utility is associated with the effective sample size (ESS) of the
importance sampling approximation, which can be estimated by 1/

∑n
i=1(W

i)2. The
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value of n needs to be set large enough so that the ESS is reasonably large (e.g. above
100) throughout the optimal design search algorithm. We provide more discussion on
the importance sampling approximation in Section 5. We refer to the general approach
of using the II posterior to estimate the utility as II design.

Algorithm 2: Calculation of the utility u(d,y) using an importance sampling
approximation of the II posterior distribution.

INPUT: Simulated data y, precomputed values {θi, φ̂i}ni=1, design d;

1 Calculate importance weights W i ∝ pa(y|φ̂i, d) for i = 1, . . . , n,
∑n

i=1 W
i = 1;

2 Estimate Vara(θ|y, d) using the importance sampling approximation {W i,θi}ni=1

of the II posterior distribution;

3 Set u(d,y) = 1/det(V̂ara(θ|y, d));
OUTPUT: Utility u(d,y);

The utility calculation in line 3, Algorithm 2, is deterministic given the values

{θi, φ̂i}ni=1 that are precomputed in Algorithm 1. The same set of values {θi, φ̂i}ni=1 is
used for different values of d. This ensures fully reversible Metropolis–Hastings moves
in the Müller algorithm, satisfying detailed balance.

The II design approach is illustrated in Section 4 using the simple tractable death
process and the motivating macroparasite evolution model, which has an intractable
likelihood.

4 Results

II design is demonstrated using two examples. The first is the death model (Renshaw,
1991), which is used as an illustrative problem since the likelihood for the model is easy
to compute. For this model, comparisons can be made between the Müller algorithm
using II, using the exact likelihood and using the likelihood approximation approach
(Cook et al., 2008). We seek times when to observe the stochastic death process in order
to optimally estimate the model parameters.

The second example motivates the work of this paper and concerns the population
evolution of macroparasites in host cats (Michael et al., 1998; Riley et al., 2003). We
seek the set of optimal times to sacrifice each cat and the optimal initial injection of
juveniles to use for each new cat, whose observation is assumed to be drawn from a
stochastic process. This stochastic process model is of scientific interest and satisfies
the four assumptions of the II methodology given in Section 3: (i) the likelihood is com-
putationally intractable; (ii) an informative prior is available from a previous experiment
based on 212 observations; (iii) it is straightforward to simulate from this model using
the algorithm of Gillespie (1977); and (iv) a useful auxiliary model is known from the
literature (Drovandi et al., 2015).

Our approach is to use Nelder–Mead optimisation (Nelder and Mead, 1965) in line 4
of Algorithm 1, which is robust and works well for our examples. The target distribution
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was tempered using J = 10, which sufficiently sharpened the utility surface for our ex-
amples using the modified utility of (6) with s ≈ (0.7, 0.8). Increasing J exaggerates the
peaks of the marginal densities of the designs, but does not change their locations. Using
a value of s above 0 allows us not to need a large value of J , which saves substantially
on computation. For example, in the case of designing for one observation, the use of
s = 0, requires J = 40 to achieve similar results in the same number of iterations of the
Müller algorithm as the use of s = 0.7 with J = 10. As discussed in Section 2.2, these
results can be explained as the Müller algorithm treats the target ũ(d,y)p(y|θ, d)p(θ)
as a normalised density in (d,y,θ) and the curvature about its mode is larger than the
mode of the target using u(d,y) rather than ũ(d,y).

4.1 Death model example

Generative model

The simple death process is used to illustrate the methodology and to validate the
algorithm settings. At time t, with S(t) = i susceptibles, the probability that an infection
occurs in the next infinitesimal time period Δt is given by

p (S(t+Δt) = i− 1|S(t) = i) = θiΔt+ o(Δt),

where θ is the per-capita infection rate, the generative model parameter of interest.
The observable data are susceptible, time pairs (t1, S(t1)), . . . (tT , S(tT )), where S(tj)
follows a conditional binomial distribution,

S(tj)|S(tj−1) ∼ binomial
(
S(tj−1), e

−θ(tj−tj−1)
)
, j = 1, . . . , T. (13)

The process is initialised with one infected and the number of susceptibles at time
t0 is S(t0). The prior distribution for θ follows Cook et al. (2008), where log θ ∼
normal(−0.005, 0.01) and is displayed in Figure 1(b). The initial number of suscep-
tibles is 50. Figure 1(c) displays the prior predictive median (solid line) and 95% prior
prediction intervals (dashed lines) of 100, 000 data simulations from the death model.

Auxiliary model

To demonstrate the methodology, a normal distribution is used as an auxiliary model,

S(tj)|S(tj−1)

∼ normal
(
S(tj−1)e

−θa(t
γ
j −tγj−1), σ2S(tj−1)e

−θa(t
γ
j −tγj−1)

(
1− e−θa(t

γ
j −tγj−1)

))
. (14)

This allows a more flexible variance and time scale than the standard normal approxi-
mation to the binomial distribution, which helps to illustrate our methodology including
the possibility of redundant parameters. The auxiliary model is over parameterised but
our approach accommodates this. Equation (14) is a poor approximation for S(tj−1)
close to 0, giving support to negative values of S(tj). Nevertheless, it is useful for il-
lustrative purposes and performs well for the design problem. For this example, the
auxiliary parameters are φ = (θa, γ, σ

2).
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Optimal observation times

For the II approach to Bayesian experimental design, Algorithm 1 is used to estimate

the map g(θ) resulting in precomputed values {θi, φ̂i}ni=1 that can be used to estimate
the utility. For this example, the prior predictive distribution of Figure 1(b) shows that
the process is most likely complete by 10 days so we take the training design dT as 20
equispaced single observations across 10 days. The choice of dT is itself a design problem,
which requires further investigation. The resulting values of σ̂2 and γ̂ were centred close
to 1, which was expected since the normal approximation to the binomial distribution
for large S(tj) is (14), where σ2 = γ = 1. This demonstrates that the auxiliary model

can include redundant parameters. A strong relationship between θ̂a and θ can be seen
in Figure 1(d), where the curve is a lowess smooth.

The Müller algorithm was carried out for 100, 000 iterations of each of one to four ob-
servation times. Designs d of interest are continuous observation times between dmin = 0
days and dmax = 10 days. The algorithm cycles through each design point in turn, given
the current value of all other design points. Observation times are ordered such that
d1 < d2 < · · · < dk, for k = 1, . . . , 4. At iteration t, the proposed value of dti is generated
from a truncated normal random walk with variance 1, truncated at dti−1 below and dt−1

i+1

above for i = 1, . . . , k (where the notation assumes that dt0 = dmin and dt−1
k+1 = dmax).

Figure 2 displays the resulting marginal densities of d1, . . . , dk for k = 1, . . . , 4 ob-
servations (continuous lines). The truncated normal random walk mixes well for our
examples with k ≤ 4. Other proposals could be used if mixing was problematic, such as
an independence sampler with uniform order statistics or block updates.

The likelihood of the death model is tractable, and the approach was also carried out
using the exact likelihood in place of the auxiliary likelihood in the utility calculation of
Algorithm 2. The resulting marginal densities for d are plotted in Figure 2 (dashed lines).
The marginal densities inferred using II are similar, demonstrating the effectiveness of
the proposed approach with the settings of m = 3, n = 10, 000 in Algorithm 1 and
J = 10 in the Müller algorithm.

We follow Drovandi and Pettitt (2013) and use a density estimation approach to
determine the optimal design, that is, the mode estimated from the MCMC samples.
For more than one observation time, it is necessary to find the multivariate mode since
the designs are time ordered. For example, consider the case of two ordered observations
at 0 < d1 < d2 < dmax drawn from the uniform density on the simplex, 0 < d1 <
d2 < dmax. The marginal modes of d1, d2 would appear at the endpoints 0 and dmax.
Therefore, we use a Gaussian smoothing kernel to determine the multivariate mode,
finding the design that has the most other designs in its vicinity. Further details of the
mode finding approach can be found in Appendix A of Drovandi and Pettitt (2013).

The expected utility is calculated at the modal designs using simulations yj from
the generative model, where

u(d) ≈
106∑
j=1

u(d,yj), (15)
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Figure 2: Marginal density estimates of the designs for 1 to 4 observations of the death
model (plots (a) to (d), respectively) for 100, 000 iterations of the Müller algorithm using
II. The dashed lines are based on 100, 000 iterations of the Müller algorithm using the
exact binomial likelihood in place of the auxiliary likelihood in the utility calculation of
Algorithm 2.

and where u(d,yj) is calculated using the exact binomial likelihood in place of the auxil-
iary likelihood to calculate the importance weights in line 1, Algorithm 2. The resulting
optimal designs are displayed in Table 1 and are similar to the optimal designs found
by Cook et al. (2008) using the likelihood approximation approach and the optimal
designs found using the exact likelihood. All designs for k ≥ 2 are generally well spaced
in the interval (0.5, 5.3) rather than clustered about some time. This demonstrates that
II design finds designs that are close to those that are found using the exact likelihood.
Expected utility values in Table 1 are estimated with a standard error of less than
0.07. For k = 3 observations, the design found using the exact likelihood produces a
lower estimate of the expected utility than the II approach and the approach of Cook
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et al. (2008). This demonstrates the difficulty of estimating the mode of a multivariate
MCMC estimated density.

k II design u(d) Cook et al. (2008) u(d) Exact u(d)
1 1.8 133.54 1.7 133.61 1.7 133.68
2 (1.2, 3.3) 142.30 (0.9, 2.4) 142.69 (1.1, 2.9) 142.70
3 (0.8, 2.2, 4.2) 146.06 (0.7, 1.5, 2.9) 146.34 (1.0, 2.2, 4.4) 145.93
4 (0.6, 0.9, 2.0, 3.6) 147.77 (0.8, 1.7, 3.1, 5.3) 148.01 (0.5, 1.2, 2.6, 4.1) 148.10

Table 1: Optimal designs for k = 1, . . . , 4 observations of the death model using II design,
the exact likelihood and the likelihood approximation (results from Cook et al. (2008)).
Expected utilities (see (15)) are calculated by importance sampling at the optimal design
inferred by each approach using the exact likelihood to compute importance weights.
Expected utility values are estimated with a standard error of less than 0.07.

4.2 Macroparasite model example

The motivating example for this work is a study of the population evolution of L3 Brugia
pahangi larvae in cats (Denham et al., 1972). The experiment involved the injection of
approximately 100 or 200 larvae in 212 host cats. The cats are assumed independent
and had never previously been exposed to the parasite. At various times between 24 and
1,193 days the cats were sacrificed (killed), and the number of live mature parasites in
each cat was recorded. The data from the study (Denham et al., 1972) informs the prior
distribution p(θ) for future experiments. A stochastic Markov model was developed
(Michael et al., 1998; Riley et al., 2003) to explain the population evolution of Brugia
pahangi. As with many real world problems, this model is of scientific interest but has
an intractable likelihood and therefore an intractable utility for optimal design.

The aim of the experimental design in this example is to choose values of the con-
trollable covariates (observation times and initial injections of larvae) for independent
replications of the stochastic process, which is optimal for precise parameter estima-
tion. That is, the set of optimal covariate values to use for each additional cat. Precise
estimation of a subset of the model parameters is considered.

Generative model

The following stochastic model was developed to explain the within-host population
dynamics of lymphatic filariasis (Michael et al., 1998; Riley et al., 2003). At time t,
a host cat is described by the following random variables; the mature parasite count
M(t), the larvae count L(t) and a discrete measure of the host’s immunity I(t). The host
cats have never previously been exposed to the parasite and thus have no experience of
infection, no immunity and no mature parasites. This gives initial conditions of I(0) = 0,
M(0) = 0 and L(0) = li, since the initial number of larvae li for cat i is injected at
time 0. The values of the states at time t are M(t) = i, L(t) = j and I(t) = k. The
larvae mature to adult parasites, die due to the natural death of the larvae, or die due
to the immune response of the host. Note that the number of larvae is unobservable at
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the time of sacrifice, as is the level of immunity. Only mature live parasites are counted.
The mature parasites die at a rate μM per larva per day. Larvae mature at a rate γ
per larva per day. Larvae die at a rate μL + βI(t) per day, where μL corresponds to
the natural death rate of the larvae and β is the additional death rate due to the host’s
immune response. The host’s immune response, I(t), is assumed to increase at a rate ν
per larva per day and decrease at a rate μI per unit of immunity. The immune response
is assumed to affect larvae only and not the mature parasites. Thus for a small time
interval Δt such that at most one event can occur, the transition probabilities at time
t+Δt are given by

p(i+ 1, j − 1, k) = γjΔt + o(Δt),

p(i, j − 1, k) = (μL + βk)jΔt + o(Δt),

p(i− 1, j, k) = μM iΔt + o(Δt),

p(i, j, k + 1) = νjΔt + o(Δt),

p(i, j, k − 1) = μIkΔt + o(Δt). (16)

The generative model parameters are θ = (ν, μL), with (μI , μM , γ, β) held fixed.
Unfortunately, only the number of mature parasites can be counted at sacrifice time,
which has been demonstrated to provide little information about the parameters β
and μI (Drovandi and Pettitt, 2011). Thus we assume fixed values of β = 1.1 and
μI = 0.31 (Riley et al., 2003). Alternative experiments could be designed to provide
information about these parameters and about μM and γ, which we assume known
at estimates found in previous studies; γ = 0.04 (Suswillo, Denham, and McGreevy,
1982) and μM = 0.0015 (Michael et al., 1998). The aim of this experimental design is
the precise estimation of the parameters (ν, μL) for which the mature parasite count
provides information. It would be possible to consider different fixed values for γ and μM

to assess the robustness of the optimal design to these parameters. Further, to obtain a
robust design, one could place prior distributions on these parameters, but not update
them with the data. Either of these options will simply result in a different mapping
function, which can be fed into the same design optimisation algorithm. Since our main
aim here is to demonstrate the II design methodology, we do not pursue these options.

The prior distribution for (ν, μL) is displayed in Figure 3(a) and is the posterior
taken from a previously published study (Drovandi et al., 2011), where (

√
ν,

√
μL) is

approximated by a bivariate normal distribution with mean (0.0361, 0.0854) and stan-
dard deviations (0.0045, 0.0342) with a correlation of −0.6974. Figure 3(b) displays the
prior predictive median (solid line) of 100, 000 data simulations from the model together
with 95% prior prediction intervals (dashed lines).

Auxiliary model

An auxiliary beta-binomial distribution based on the observed sample of N = 212 data
points has been demonstrated to fit the data well (Drovandi et al., 2011), where the
probability function for the ith host is given by

p(M(ti) = mi|ai, bi, li) =
(

li
mi

)
B(mi + ai, li −mi + bi)

B(ai, bi)
, (17)
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Figure 3: Plot (a) displays the bivariate normal prior distribution for (
√
ν,

√
μL). Plot

(b) displays the prior predictive median (solid line) and 95% prior prediction intervals
(dashed lines) of 100, 000 simulated counts of mature parasites from the macropara-
site model, where li = 100 initial larvae were injected in each host. Plots (c) and (d)

display the marginal relationship between the auxiliary parameter estimate β̂0 and the
generative model parameters θ = (ν, μL), respectively, for the macroparasite example.
The smooth curves in plots (c) and (d) are polynomial regression fits, which indicate a
reasonably strong relationship between these generative and auxiliary parameters.

where the observed data is the initial larvae count li and the mature parasite count mi

at sacrifice time ti for hosts i = 1, . . . , N and where B(· , · ) denotes the beta function.
This is re-parameterised in terms of a proportion pi = ai/(ai + bi) and overdispersion
ξi = 1/(ai + bi). Initially we attempt to determine the optimal sacrifice times when the
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initial number of larvae is fixed at 100 for each host. Further, we only consider sacrifice
times in the range (30, 300) days. For this purpose, we consider the following auxiliary
model that is similar to the one used in Drovandi et al. (2011):

logit(pi) = fp(ti, li) = β0 + β1(log(ti)− κ) + β2(log(ti)− κ)2,

log(ξi) = η,

where κ = log(165) is introduced to weaken the dependence between the auxiliary
parameter estimates of (β0, β1, β2). Given the above re-parameterisation, the auxiliary
parameters are φ = (β0, β1, β2, η).

Later, we consider optimising both the observation times (again between (30, 300)
days) and the initial number of larvae (any integer between 100 and 200 inclusive). For
this purpose we extend the auxiliary model:

logit(pi) = fp(ti, li) = β0 + β1(log(ti)− κ) + β2(log(ti)− κ)2,

log(ξi) = fξ(ti, li) = η0 + η1li,

where the auxiliary parameters are now given by φ = (β0, β1, β2, η0, η1).

Optimal observation times

For the training design we consider 1000 randomly selected sacrifice times in (30, 300)
days where the initial number of larvae is set to 100 for every host in the training design.
The precomputation step, Algorithm 1, was carried out form = 1 and n = 10, 000. Since
the number of observations induced by the training design is quite large, we use m = 1.
Figures 3(c) and 3(d) display the marginal relationship between θ = (ν, μL) and β̂0

as an example of the relationship between the generative model parameters θ and the
auxiliary parameters φ. There appears to be a reasonably strong relationship between
these generative and auxiliary parameters. To assess that the beta–binomial auxiliary
model provides a good description of data generated from the macroparasite population
evolution model, a goodness-of-fit test of the auxiliary model for 10, 000 simulations from
the generative model was performed using a generalised Pearson test statistic. Details
can be found in Appendix C of Drovandi et al. (2015).

The utility function for this problem was defined in (12) as the inverse of the deter-
minant of the variance of the II posterior distributions for θ = (ν, μL). Other choices of
utility functions could be used such as the inverse of the trace of the posterior covariance
matrix (Bayesian A-posterior precision) or the marginal posterior precision of μL or ν.

Results for 100, 000 iterations of the Müller algorithm are displayed in Figure 4 for
the macroparasite example. To make comparisons with the ABC approach of Drovandi
and Pettitt (2013), designs are restricted to earlier than dmax = 300 days and later than
dmin = 30 days, with the number of initial larvae fixed at 100 throughout the Müller
algorithm. Here we attempt to update each observation time one-at-a-time and propose
an observation time uniformly between adjacent observation times (and restricted to
the interval mentioned earlier). Table 2 shows the optimal designs obtained from II
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design and also those from ABC design in Drovandi and Pettitt (2013). As in the death
model example, density estimation was used to find the optimal designs. The table also
shows the estimated expected utility values when using the II utility and the ABC
utility of Drovandi and Pettitt (2013). It is evident from the table that there seems to
be some difference between the optimal designs obtained from both methods. However,
from the estimated utility values, it appears there are a wide range of designs that are
efficient. The designs obtained from the II method have generally higher utility than
the ABC designs when using the II utility function, as expected. The II designs are also
very competitive under the ABC utility, and perhaps slightly better for 3 and 4 design
points. Since the approach of Drovandi and Pettitt (2013) does not use the adjusted
utility in (6), it may have more difficulty identifying the mode.

method design (days) II utility ×1011 ABC utility ×1011

(std err ×109) (std err ×109)
II design 77.4 5.00 (0.86) 5.95 (5.8)

ABC design 99 4.97 (0.84) 6.08 (6.2)
II design (69.7, 97.5) 5.38 (1.2) 7.20 (6.6)

ABC design (71, 127) 5.35 (1.2) 7.18 (6.7)
II design (56.5, 82.8, 120.3) 5.73 (1.5) 7.39 (5.3)

ABC design (95, 105, 231) 5.54 (1.4) 7.28 (5.3)
II design (50.5, 75.2, 98.2, 143.8) 6.10 (1.8) 7.28 (4.3)

ABC design (79, 121, 231, 273) 5.61 (1.5) 7.07 (4.1)

Table 2: Optimal designs for the macroparasite model for k = 1, . . . , 4 observations,
using the Müller algorithm with II design and using ABC (results from Drovandi and
Pettitt (2013)). Both approaches use a Gaussian smoothing kernel to find the modal
values. Expected utilities (see (15)), are calculated using II and ABC (Drovandi and
Pettitt, 2013) at the optimal design inferred by each approach.

We ran II design also with m = 10. We found that the marginal distribution of the
second and third auxiliary parameter estimates had higher precision, demonstrating an
improved estimate of the mapping function. However, we obtained very similar marginal
distributions of the design parameters as with m = 1. Thus it appears that m = 1 is
suitable for this application.

Optimal observations times and initial larvae counts

We now use our II approach to perform optimal design across two dimensions; both the
observation times and initial larvae counts for hosts. We consider one or two hosts. There
are 1000 hosts in the training design, where the sacrifice times are sampled randomly in
(30, 300) days and the initial larvae counts are randomly taken from the set of integers
between 100 and 200 inclusive. The precomputation step, Algorithm 1, was carried out
for m = 1 and n = 10, 000.

In the Müller algorithm, we propose observation times using the same process as
the previous section. Proposed initial larvae counts are drawn uniformly over the allow-
able values (100–200). We attempt to update each design parameter one-at-a-time. We
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Figure 4: Marginal density estimates of the designs for 1 to 4 observations of the
macroparasite model (plots (a) to (d), respectively) for 100, 000 iterations of the Müller
algorithm using II design.

run the Müller algorithm for 100,000 iterations. Marginal density plots for the design
parameters for 1 and 2 hosts are shown in Figure 5. The multivariate mode for each
design scenario is estimated using the procedure described earlier. For one host, the
optimal observation time is 69.7 days with an initial larvae count of 111. For two hosts,
the first host has an optimal observation time of 60.9 days with an initial larvae count
of 108 while the corresponding optimal design for the second host is 135.3 days and
105. The estimated expected utilities (with estimated standard errors in parentheses)
at these designs are 4.74 × 1011 (8.1 × 108) and 5.13 × 1011 (1.1 × 109). The optimal
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Figure 5: Marginal density estimates of the observation times and initial larvae counts
designs for 1 (top row) and 2 (bottom row) observations of the macroparasite model for
100, 000 iterations of the Müller algorithm using II design. The left column shows the
marginal density estimates for the observation times and the right column shows the
marginal density estimates for the initial larvae counts.

larvae counts might be 100 due to the difficulties associated with edge effects and kernel
density estimation.

The fact that the optimal initial larvae counts are close to 100 might seem counter-
intuitive. The expected information obtained from a binomial experiment increases with
the number of trials. In an attempt to validate our optimal designs, we estimated the
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expected utilities of designs for one host given by those with an optimal observation time
of 70 days and different initial larvae counts (100, 150, 200) using the ABC rejection
approach of Drovandi and Pettitt (2013). We perform enough simulations from the prior
predictive distribution so that 200 draws are sampled from (almost) the true posteriors.
These 200 samples are then used the estimate the utility. The process is repeated for
many possible future datasets to estimate the expected utility. The expected utilities for
100, 150 and 200 initial larvae are roughly 6.05×1011 (6.2×109), 5.32×1011 (4.3×109)
and 4.93 ×1011 (2.0 × 109). It is clear that taking 100 initial larvae is the preferred
design.

5 Discussion

A novel approach to Bayesian experimental design has been presented for models with
intractable likelihoods. The major advantages of our method are that a tractable ana-
lytic auxiliary likelihood is used to calculate the utility and optimal designs are found
on a continuous design space. Furthermore, the precomputation needs to be carried out
once only and its storage requirements are not necessarily dependent on the complexity
of the designs. These advantages enable the methodology to be extended to complex
designs such as designs with a large number of design points, high dimensional de-
signs and designs with a large number of observations at each design point. A further
advantage of our methodology is that our simple modification to the utility (see (6))
substantially sharpened the utility surface without requiring a large value of J . Com-
putation times were substantially reduced compared with using our methodology with
large tempering values J in the tempered target distribution in the Müller algorithm.
This idea is not specific to the II design approach but is generally applicable to the
Müller algorithm and perhaps other design optimisation approaches. The methodology
was demonstrated using two examples and compared to published results from exist-
ing methods. The death model served to validate the approach and algorithm settings.
Results obtained were similar to the optimal designs inferred using the model’s exact
tractable likelihood. The motivating example was a stochastic model for the popula-
tion evolution of macroparasites, which has an intractable likelihood and therefore an
intractable utility function.

In the macroparasite example, there are obvious costs with keeping a host animal
alive longer that could be incorporated into the utility function if this real monetary
cost could be calibrated in terms of the utility used here. Additionally, although not the
case here, one could have costs associated with the initial conditions, here the number
of larvae injected into the host. Again these costs could be incorporated into the utility.

It is important to note that our II approach for estimating the utility function
can be used within any optimal design search algorithm. Another option for the low-
dimensional designs considered in this paper is to estimate the expected utility by Monte
Carlo integration at several design points, fit a smooth surface and optimise the surface
directly (see, for example, Kuo et al. (1999)).

The II approach that we use to estimate the posterior distribution has similarities
with the use of emulation (e.g. Gaussian processes) within the computer experiment lit-
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erature (see Bayarri et al. (2007) for a review). However, the emulator within computer
experiments is used to avoid expensive model simulations at new parameter values,
whereas we use II to avoid expensive likelihood calculations for different datasets en-
countered during the design search algorithm.

5.1 Design challenges

There are a number of open design challenges for models with tractable and intractable
likelihoods to which our methodology can contribute. We outline three such challenges
below.

(a) Increase in the number of design points

One general difficulty with the Müller approach to Bayesian experimental design is
that, to find an optimal design for k ≥ 2 design points, one must find a multivariate
mode. This becomes more difficult as the number of design points increases. This is
particularly challenging in the problem of choosing optimal observation times considered
in this paper since for more than one observation time of the stochastic process, the
times are ordered. We used density estimation to determine the multivariate modes of
the observation times. However, this approach becomes more difficult as the number
of observations k increases. As an example, we can consider the macroparasite model
analysed in Section 4.2. We design for the set of optimal times of sacrifice of up to 4
times to observe independent replications of the stochastic process. That is, the set of
optimal times of sacrifice of 4 additional cats, for additional observations to the 212
already observed. However, it may be of interest to design for a larger set of observation
times, for example, the set of 10 optimal times of sacrifice of each additional cat.

Further, as noted by Ryan et al. (2015) in the context of Bayesian static design, im-
portance sampling for approximating the posterior becomes inefficient when there is an
increase in the number of design points. Ryan et al. (2015) considered a Laplace approx-
imation which helps to overcome the issues associated with importance sampling. For
future research we plan on exploring the possibility of forming a Laplace approximation
based on the II posterior.

(b) Increase in the number of design variables

In this paper we were able to accommodate two design variables through our II design
approach. In order to handle the extra variable (initial larvae count), an additional
parameter was required in the auxiliary model. Bayesian design with several design
variables remains a challenging problem.

(c) Increase in the size of the data set observed at each design point

In our examples, the number of observations k was equal to the number of time points.
However, many problems concern a much larger number of observations k, but with a
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small number of times when to observe. One such design is a weighted design, where
each factor level (time point in our case), is given a weight or proportion of units to
be observed at that level. This design was considered in a recent article (Weaver et al.,
2015) for an accelerated life test model, where the design variable was temperature and
where the design was k = 165 observations weighted over 2 distinct temperatures. In
designing for the macroparasite model, the size of the dataset observed at each time
point could be increased to ≥ 5 say, 10 host animals at 4 times (40 cats in total). Or,
as a combination of design challenges (2) and (3), a design could be optimised for 10
host animals at each of 10 time points (100 host animals in total).

5.2 Advantages of our indirect inference approach to Bayesian
experimental design

Using II design, it is possible to address the three key challenges outlined above. This
would be difficult for competing approaches as currently presented. General Bayesian
design methodology based on ABC is presented in Drovandi and Pettitt (2013) and
Hainy et al. (2013). Both use the Müller algorithm but Drovandi and Pettitt (2013)
precompute simulated data at a number of fixed discrete design points while Hainy
et al. (2013) propose computing an ABC approximate posterior at a randomly proposed
continuous design point as part of the MCMC step of the Müller algorithm. The former
method is applied to the same examples as considered here while the latter method
is applied to a different problem. We see the former method as a competitor for the
approach presented here. Both ABC approaches suffer from deficiencies of all ABC
methods such as large storage requirements and computational times, and the necessity
to choose a tolerance level for matching simulated data to observed data. The ABC
approach of Drovandi and Pettitt (2013), is restricted to a discretised design space,
unlike our II approach, which is carried out over a continuous design space. Searching
over a continuous design space using the Müller algorithm is much more efficient than
discretising the design space. This is relevant to the three design challenges above. As
(i) the number of design points, (ii) the number of design variables or (iii) the size of
the dataset increase, the ABC approach will become computationally infeasible as the
design space will need to be discretised.

A principled approach to tackle (i), an increase in the number of design points,
is to re-parameterise a large number of experimental observation times over a lower
dimensional space as in Ryan et al. (2014), where the Müller algorithm is operated over
the lower dimensional parameterisation using the quantiles of a beta distribution. This
is a flexible approach requiring the optimisation of only two parameters of the beta
distribution. Using this methodology, II design could be extended to optimise a large
number of experimental observations, for example, 10 or more. This is due to the fact

that the set of values {θi, φ̂i}ni=1 is precomputed once only and storage of simulated

data in this precomputation step is not required. Moreover, the size of {θi, φ̂i}ni=1 does
not necessarily grow substantially with an increase in the number of design points. For
the same reasons, our methodology can be extended to (ii), an increase in the number of
design variables since the size of the precomputation storage does not necessarily scale
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poorly with the number of design variables. In our paper, only one additional auxiliary
parameter was required to handle the initial larvae counts.

In contrast, it would be difficult to tackle problems (i) and (ii) using the ABC
approach as currently presented. This is due to the discrete nature of the design search
and the necessity in the ABC approach to store all the simulated data, the size of
which grows exponentially with the number of design variables. Furthermore, as (i), the
number of observations to design for grows, the ABC tolerance will increase. This can
be mitigated by increasing the number of prior simulations but this again increases the
storage requirements. This might be where a summary statistic approach could be used.
This is an area of further research.

Unlike the ABC approach, II design can also address (iii), an increase in the size of
the dataset observed at each factor level or time point. Since the auxiliary likelihood is
analytic, the auxiliary posterior can be approximated reasonably efficiently for a large
design dataset. Secondly, the same arguments hold as above since the estimation and

size of the set of precomputed values {θi, φ̂i}ni=1 are not necessarily dependent on the
size of the dataset observed at each factor level. A more complex auxiliary model may
be required for more complex design problems. However, our II methodology will scale
more readily than the competing ABC approach.

5.3 Other areas for further research

A critical assumption of II design is that an adequate auxiliary statistical model for
the data is available (Assumption (iv), Section 3). However, it may not be possible or
straightforward to find a suitable auxiliary model. One solution is to use a summary
statistic approach, for example a Bayesian version of the synthetic likelihood (Wood,
2010). In this approach the auxiliary likelihood is a multivariate normal distribution
fitted to a set of summary statistics rather than the full simulated data. This is a
simple auxiliary model, where the mean and variance of the normal distribution are
the auxiliary parameters. Our method could be extended for problems which violate
Assumption (iv) using the synthetic likelihood approach. One issue is the choice of
suitable summary statistics.

In the current setup, a training design dT is used in line 3, Algorithm 1, to estimate
the relationship between the generative model and the auxiliary model through a noisy
mapping φ = ĝ(θ). The choice of design dT is itself a design problem and requires
further research. For simplicity, in the macroparasite example, we used a simple random
training design but it may be possible to improve estimation by relaxing this restriction.
For the death model, we found that 20 observations with m = 3 replicates in line 3,
Algorithm 1, was sufficiently informative for estimation of g(θ). Alternatively, with the
same computational budget, one could use the 60 observations withm = 1 replicate or 10
observations with m = 6 replicates. A general guideline is to choose the training design
dT that produces the least variable estimate of g(θ) within the available precomputation
time.

Reducing the noise in the map estimation is another area of further research. As-
suming that the auxiliary estimator is consistent, as m → ∞, ĝ(θ) → g(θ), reducing the
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noise in the auxiliary parameter estimates. However, as the noise or error decreases at a
rate 1/

√
m, very large values of m would be required to have a substantial effect. This

substantial increase in computational complexity may be unnecessary in the context of
optimal experimental design, since high accuracy is not required. However, one could
avoid the computational cost of increasing m and simultaneously (perhaps) improve the
optimal design results, by using for example, a local multivariate smoother such as a
spline, a kernel smoother or a Gaussian process, to recover a smoother estimate of g(θ),
based on the noisy mapping ĝ(θ).

References
Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J.,
Lin, C.-H., and Tu, J. (2007). “A framework for validation of computer models.”
Technometrics, 49(2): 138–154. MR2380530. doi: http://dx.doi.org/10.1198/

004017007000000092. 877

Bernardo, J. M. and Smith, A. F. (2000). Bayesian theory. John Wiley & Sons.
MR1274699. doi: http://dx.doi.org/10.1002/9780470316870. 858

Chaloner, K. and Larntz, K. (1989). “Optimal Bayesian design applied to logistic re-
gression experiments.” Journal of Statistical Planning and Inference, 21(2): 191–208.
MR0985457. doi: http://dx.doi.org/10.1016/0378-3758(89)90004-9. 858

Chaloner, K. and Verdinelli, I. (1995). “Bayesian experimental design: A review.” Sta-
tistical Science, 10(3): 273–304. MR1390519. 858

Clyde, M. A. (2001). “Experimental design: A Bayesian perspective.” International
Encyclopedia of the Social and Behavioral Sciences, 8: 5075–5081. 858

Cook, A. R., Gibson, G. J., and Gilligan, C. A. (2008). “Optimal observation times
in experimental epidemic processes.” Biometrics, 64(3): 860–868. MR2526637.
doi: http://dx.doi.org/10.1111/j.1541-0420.2007.00931.x. 858, 865, 866,
868, 869

Cox, D. R. (1961). “Tests of separate families of hypotheses.” In: Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
105–123. MR0131927. 863, 864

Denham, D. A., Ponnudurai, T., Nelson, G. S., Guy, F., and Rogers, R. (1972). “Studies
with Brugia pahangi.” – I. Parasitological observations on primary infections of cats
(Felis catus). International Journal for Parasitology, 2(2): 239–247. 869

Drovandi, C. C., McGree, J. M., and Pettitt, A. N. (2013). “Sequential Monte Carlo
for Bayesian sequentially designed experiments for discrete data.” Computational
Statistics & Data Analysis, 57(1): 320–335. MR2981091. doi: http://dx.doi.org/
10.1016/j.csda.2012.05.014. 860

Drovandi, C. C. and Pettitt, A. N. (2011). “Estimation of parameters for macropar-
asite population evolution using approximate Bayesian computation.” Biomet-
rics, 67(1): 225–233. MR2898834. doi: http://dx.doi.org/10.1111/j.1541-0420.
2010.01410.x. 870

http://www.ams.org/mathscinet-getitem?mr=2380530
http://dx.doi.org/10.1198/004017007000000092
http://dx.doi.org/10.1198/004017007000000092
http://www.ams.org/mathscinet-getitem?mr=1274699
http://dx.doi.org/10.1002/9780470316870
http://www.ams.org/mathscinet-getitem?mr=0985457
http://dx.doi.org/10.1016/0378-3758(89)90004-9
http://www.ams.org/mathscinet-getitem?mr=1390519
http://www.ams.org/mathscinet-getitem?mr=2526637
http://dx.doi.org/10.1111/j.1541-0420.2007.00931.x
http://www.ams.org/mathscinet-getitem?mr=0131927
http://www.ams.org/mathscinet-getitem?mr=2981091
http://dx.doi.org/10.1016/j.csda.2012.05.014
http://dx.doi.org/10.1016/j.csda.2012.05.014
http://www.ams.org/mathscinet-getitem?mr=2898834
http://dx.doi.org/10.1111/j.1541-0420.2010.01410.x
http://dx.doi.org/10.1111/j.1541-0420.2010.01410.x


C. M. Ryan, C. C. Drovandi, and A. N. Pettitt 881

Drovandi, C. C. and Pettitt, A. N. (2013). “Bayesian experimental design for
models with intractable likelihoods.” Biometrics, 69(4): 937–948. MR3146789.
doi: http://dx.doi.org/10.1111/biom.12081. 858, 867, 872, 873, 876, 878

Drovandi, C. C., Pettitt, A. N., and Faddy, M. J. (2011). “Approximate Bayesian
computation using indirect inference.” Journal of the Royal Statistical Society: Se-
ries C (Applied Statistics), 60(3): 317–337. MR2767849. doi: http://dx.doi.org/
10.1111/j.1467-9876.2010.00747.x. 870, 872

Drovandi, C. C., Pettitt, A. N., and Lee, A. (2015). “Bayesian indirect inference us-
ing a parametric auxiliary model.” Statistical Science, 30(1): 72–95. MR3317755.
doi: http://dx.doi.org/10.1214/14-STS498. 858, 861, 863, 865, 872

Gallant, A. R. and McCulloch, R. E. (2009). “On the determination of general sci-
entific models with application to asset pricing.” Journal of the American Statisti-
cal Association, 104(485): 117–131. MR2663037. doi: http://dx.doi.org/10.1198/
jasa.2009.0008. 858, 861

Gallant, A. R. and Tauchen, G. (1996). “Which moments to match?” Economet-
ric Theory, 12(04): 657–681. MR1422547. doi: http://dx.doi.org/10.1017/

S0266466600006976. 858

Gillespie, D. T. (1977). “Exact stochastic simulation of coupled chemical reactions.”
The Journal of Physical Chemistry, 81(25): 2340–2361. 865

Gourieroux, C., Monfort, A., and Renault, E. (1993). “Indirect inference.” Journal of
Applied Econometrics, 8(S1): S85–S118. 858

Hainy, M., Müller, W. G., and Wagner, H. (2013). Likelihood-free simulation-based op-
timal design. Technical report, Johannes Kepler University of Linz. 878

Heggland, K. and Frigessi, A. (2004). “Estimating functions in indirect inference.” Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2): 447–462.
MR2062387. doi: http://dx.doi.org/10.1111/j.1369-7412.2003.05341.x. 858,
864

Kuo, L., Soyer, R., and Wang, F. (1999). “Optimal design for quantal bioassay via
Monte Carlo methods.” Bayesian Statistics VI, 795–802. 876

Lindley, D. V. (1972). Bayesian Statistics, a Review. Capital City Press, Montepelier,
Vermont. 858

Michael, E., Grenfell, B. T., Isham, V. S., Denham, D. A., and Bundy, D. A. P. (1998).
“Modelling variability in lymphatic filariasis: Macrofilarial dynamics in the Brugia
pahangi–cat model.” In: Proceedings of the Royal Society of London. Series B: Bio-
logical Sciences, 265(1391): 155–165. 859, 865, 869, 870

Moores, M. T., Drovandi, C. C., Mengersen, K. L., and Robert, C. P. (2015). “Pre-
processing for approximate Bayesian computation in image analysis.” Statistics
and Computing, 25(1): 23–33. MR3304900. doi: http://dx.doi.org/10.1007/

s11222-014-9525-6. 863

http://www.ams.org/mathscinet-getitem?mr=3146789
http://dx.doi.org/10.1111/biom.12081
http://www.ams.org/mathscinet-getitem?mr=2767849
http://dx.doi.org/10.1111/j.1467-9876.2010.00747.x
http://dx.doi.org/10.1111/j.1467-9876.2010.00747.x
http://www.ams.org/mathscinet-getitem?mr=3317755
http://dx.doi.org/10.1214/14-STS498
http://www.ams.org/mathscinet-getitem?mr=2663037
http://dx.doi.org/10.1198/jasa.2009.0008
http://dx.doi.org/10.1198/jasa.2009.0008
http://www.ams.org/mathscinet-getitem?mr=1422547
http://dx.doi.org/10.1017/S0266466600006976
http://dx.doi.org/10.1017/S0266466600006976
http://www.ams.org/mathscinet-getitem?mr=2062387
http://dx.doi.org/10.1111/j.1369-7412.2003.05341.x
http://www.ams.org/mathscinet-getitem?mr=3304900
http://dx.doi.org/10.1007/s11222-014-9525-6
http://dx.doi.org/10.1007/s11222-014-9525-6


882 Indirect Inference Design
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