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Bayesian Quantile Regression Based
on the Empirical Likelihood with Spike

and Slab Priors

Ruibin Xi∗, Yunxiao Li†, and Yiming Hu‡

Abstract. In this paper, we consider nonparametric Bayesian variable selection
in quantile regression. The Bayesian model is based on the empirical likelihood,
and the prior is chosen as the “spike-and-slab” prior–a mixture of a point mass
at zero and a normal distribution. We show that the posterior distribution of
the zero coefficients converges to a point mass at zero and that of the nonzero
coefficients converges to a normal distribution. To further address the problem of
low statistical efficiency in extreme quantile regression, we extend the Bayesian
model such that it can integrate information at multiple quantiles to provide more
accurate inference of extreme quantiles for homogenous error models. Simulation
studies demonstrate that the proposed methods outperform or perform equally
well compared with existing methods. We apply this Bayesian method to study
the role of microRNAs on regulating gene expression and find that the regulation
of microRNA may have a positive effect on the gene expression variation.

Keywords: model selection, Gibbs sampler, oracle property, empirical process,
consistency.

1 Introduction

Quantile regression (Koenker, 2005) provides a systematic and robust way of examining
the dependence of the response variable on covariates. Unlike mean-based regression,
quantile regression examines how covariates influence the conditional quantiles rather
than the conditional mean of the response variable. For example, median regression
considers the relationship between the median of the response and the covariates and
is usually more robust than traditional mean-based regression. Quantile regression also
provides a more comprehensive description of the relationship between the response
variable and the covariates. In many applications (Okada and Samreth, 2012; Buchinsky,
1994; Fenske et al., 2011; Machado and Mata, 2005; Hulmán et al., 2015), covariates
can have different effects on higher or lower quantiles of the response variable than the
mean, which can be readily discovered by quantile regression but would be missed by
mean regression. For example, Hulmán et al. (2015) showed that the gestational weight
gain (GWG) had very heterogenous effects on birth weight. At the 0.05th quantile,
a 1-kg difference in GWG corresponded to a 14.2 kg birth weight increase, but to a
29.0 g birth weight increase at the 0.95th quantile.

∗School of Mathematical Sciences and Center for Statistical Sciences, Peking University,
ruibinxi@math.pku.edu.cn

†Department of Biostatistics and Bioinformatics, Emory University
‡Department of Biostatistics, Yale University

c© 2016 International Society for Bayesian Analysis DOI: 10.1214/15-BA975

http://bayesian.org
mailto:ruibinxi@math.pku.edu.cn
http://dx.doi.org/10.1214/15-BA975


822 Nonparametric Bayesian Variable Selection in Quantile Regression

Given a sample (y1,x1), . . . , (yn,xn), denote Y = (y1, . . . , yn)
T ∈ R

n and X =
(x1, . . . ,xn)

T ∈ R
n×p. The τth linear quantile regression is given by

yi = xT
i β0 + ui,

where β0 ∈ R
p is an unknown parameter and ui’s are independent random variables with

their τth quantiles being 0. If qyi(τ |xi) denotes the τth quantile of yi, we would have
qyi(τ |xi) = xT

i β0. It can be shown that the coefficient β0 can be estimated consistently
by minimizing

min
β

n∑
i=1

ρτ (yi − xT
i β), (1)

where ρτ (t) = t(τ − I(t < 0)) is the check loss function.

In this paper, we consider Bayesian variable selection in quantile regression. Quantile
regression is robust in that the distributions of the random errors ui are not required
to be parametric or to be the same distribution and that they can also be dependent
on the covariates. Among many of their advantages, Bayesian methods can handle very
complex problems via MCMC, they can easily combine different sources of information
(including prior information), statistical inference of Bayesian methods can be naturally
performed using the posteriors and sequential analysis is much easier in the Bayesian
setting. Bayesian analysis of quantile regression would presumably inherit the merits of
both quantile regression and Bayesian methods. However, Bayesian inference of quan-
tile regression is difficult since it is not associated with a parametric error distribution.
Recently, there have been active researches on Bayesian inference of quantile regres-
sion. If we assume that the errors ui follow a skewed Laplace distribution, maximizing
the likelihood is equivalent to minimizing the objective function of quantile regression.
This strategy was first proposed by Yu and Moyeed (2001) and further investigated by
many other researchers. Simulation studies show that this strategy can give reasonable
results at various scenarios, but this version of Bayesian quantile regression loses its
nonparametric merit, and some researches show that its predicted conditional quantiles
can be far away from the true quantiles (Lin and Chang, 2012). Another approach for
Bayesian inference of quantile regression is by using the Dirichelet Process (DP) (Kottas
and Gelfand, 2001; Taddy and Kottas, 2010). The DP-based methods are very flexible
in modeling error distributions, but they are computationally very demanding and lack
theoretical result that can guarantee the performance of these methods.

We propose a nonparametric Bayesian variable selection method in quantile regres-
sion based on the empirical likelihood (Owen, 1988, 1991). Compared with the Bayesian
methods of quantile regression based on the skewed-Laplace distribution, the EL-based
Bayesian quantile regression does not assume a parametric distribution of the random
errors and statistical inference would be more accurate for data whose distribution is far
away from the skewed-Laplace distribution. The empirical likelihood (EL), though not a
true likelihood, is known to behave like a true likelihood and has many good asymptotic
properties. The EL for quantiles was first studied by Chen and Hall (1993) and further
studied in Chen and Wong (2009). Bayesian inference based on the EL has been used
previously in the literature. For example, Lazar (2003) proposed the Bayesian EL and
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discussed its validity; Schennach (2005) considered Bayesian exponentially tilted EL;
Kim and Yang (2011) studied Bayesian quantile regression with random effects based
on the EL; Yang and He (2012) used Bayesian EL in quantile regression for parameter
estimation. Note that the priors in Yang and He (2012) are assumed to have contin-
uous density functions and hence their asymptotic results are not applicable to the
model in this paper. Tang and Leng (2010) considered performing variable selection by
minimizing the penalized log EL,

log(L(θ))− n

p∑
j=1

pλ(|θj |), (2)

where L(θ) is the EL and pλ(·) is a penalty function with tuning parameter λ. The
penalty can be LASSO (Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005) or SCAD
(Fan and Li, 2001) type of penalties. Though Tang and Leng (2010) showed that esti-
mates by maximizing the penalized EL enjoys good asymptotic properties, it is compu-
tationally very expensive to minimize (2) for a given λ. In practice, cross-validation is
often used to select the best λ, and one often needs to solve the minimization problem
(2) multiple times, which makes it computationally even more expensive. In addition,
the EL for quantile regression is not a differentiable function. Newton-type algorithms
would generally not work for such a non-differentiable function, and to our best knowl-
edge, there is no available efficient algorithm to solve the penalized EL of quantile
regression.

To perform Bayesian variable selection, we put the spike-and-slab prior (Mitchell and
Beauchamp, 1988; George and McCulloch, 1993) on the coefficient parameters in quan-
tile regression and propose a hierarchical Bayesian model. The spike-and-slab prior was
first proposed for performing Bayesian variable selection by Mitchell and Beauchamp
(1988), where the prior consists of two components–the spike component and the slab
component. The spike component is a point mass at 0 and the slab component is a
uniform distribution on a finite interval. George and McCulloch (1993) instead used the
spike-and-slab prior as a mixture of a small variance normal distribution and a large
variance normal distribution. Similar spike-and-slab prior was also studied by Ishwaran
and Rao (2005) and Ishwaran and Rao (2011). More recently, Narisetty and He (2014)
developed a new Bayesian model with Gaussian-like spike-and-slab prior and showed
that their method can guarantee model selection consistency even for normal models.
In this paper, similar to Mitchell and Beauchamp (1988), we use the spike-and-lab prior
with the spike as the point mass at 0 and the slab as a normal distribution. Such a choice
of the spike-and-slab prior gives nonzero posterior probability of βi = 0, and models
can be directly compared based on their posterior probabilities. We show that under
certain regularity conditions, the estimators given by this method have the property
similar to the oracle property. More specifically, we show that the posterior distribution
of zero parameters converges to the point mass at zero and the posterior distribution of
the nonzero parameters converges to a normal distribution. The technique used in the
proof may also be useful for proving asymptotic properties of Bayesian methods with
the spike-and-slab prior as used in this paper. To avoid the daunting task of maximizing
the posterior distribution, we develop a Gibbs sampler for parameter estimation. In each
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iteration of the Gibbs sampler, we only need to calculate an EL for a given parameter
β and thus we totally avoid the expensive step of maximizing the EL.

In quantile regression, the asymptotic variance of the parameter estimate is gener-
ally inversely proportional to the density of the error distribution at the quantile point.
More specifically, if the error distributions have a density function f and a cumulative
distribution function F , the asymptotic distribution of the parameter estimate β̂τ in
quantile regression is largely N(β0, n

−1τ(1−τ)f−2(ξτ )H), where H is a matrix depend-
ing on the covariates and ξτ = F−1(τ). For extreme quantiles (τ being close to 0 or 1),

the density function f at ξτ is usually small and the asymptotic variance of β̂τ would
be large when n is relatively small. In Bayesian quantile regression, this means that
the variance of the posterior would be large for extreme quantiles when n is relatively
small, making the Bayesian estimates less accurate. Under the homogeneous error as-
sumption (the random errors follow a common distribution), the regression coefficients
other than the intercept will be invariant at different quantiles. Thus, these parameters
may be estimated at many different quantile points and the estimates given at differ-
ent quantile points can have significantly different statistical efficiency. For example,
consider the model Yi = μ1 + xiβ + ui, where ui are i.i.d. random variables. The pa-
rameter β can be estimated by quantile regression at any quantiles since the random
errors follows the same distribution. For bell shaped distributions, median regression
would generally give estimates with smaller posterior variance than extreme quantile
regression, although both estimates are estimators of β. If we can take full advantage of
the information implied in multiple quantile points, we may derive a better estimator
for the extreme quantiles. Based on this observation, we further develop a new EL-based
Bayesian method that can accurately perform variable selection for extreme quantile re-
gression under the homogeneous error assumption. This new Bayesian method is based
on a new loss function that is a weighted sum of check loss functions at multiple quan-
tiles. Simulation studies demonstrate that this method can give superior estimates for
extreme quantiles than other methods under the homogeneous error assumption. We
also prove an asymptotic result analogue to the single quantile regression scenario.

This paper is organized as follows. In Section 2, we introduce the Bayesian EL-based
quantile regression model with the spike-and-slab prior, present its asymptotic proper-
ties and describe an efficient Gibbs sampler for estimating the parameters. Section 3
discusses the Bayesian method for accurate statistical inference of extreme quantile re-
gression and its asymptotic properties. Simulation studies are performed in Section 4.
In Section 5, we apply the method developed here to study the role of microRNA on
regulating gene expression. We conclude the paper in Section 6. The proofs are all given
in Appendix.

2 Bayesian hierarchical model for quantile regression

2.1 Bayesian hierarchical model based on the EL

EL was first introduced by Owen in his seminal work (Owen, 1988) for constructing
confidence intervals for the mean, and later was extended to linear models (Owen,
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1991) or general estimating equations (Qin and Lawless, 1994). A more comprehensive
review of the EL can be found in Owen (2001) and Chen and Van Keilegom (2009). In
general, given an estimating equation

n∑
i=1

g(zi,β) = 0, (3)

the EL is defined as

L(β) = sup{
n∏

i=1

pi |
n∑

i=1

pi = 1,

n∑
i=1

pig(zi,β) = 0, and 0 ≤ pi ≤ 1}. (4)

Parameter estimates in quantile regression are defined by minimizing the objective func-
tion (1). However, if we take directional derivatives about β, the estimates may also be
defined as the solution to the following equation

n∑
i=1

φτ (yi − xT
i β)xi ≈ 0,

where φτ (t) = τ − I[t<0]. Thus, we may define the EL for quantile regression as

L(β|X,Y ) = sup{
n∏

i=1

pi|
n∑

i=1

piφτ (yi − xT
i β)xi = 0,

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1}. (5)

We put a spike-and-slab prior π(βi|θi, σ2) on the regression coefficient βi, where θi
and σ2 are parameters in the prior. Denote η = σ−2. The hyper priors π(θi) and
π(η) = π(σ−2) for θi and and η are chosen as the uniform distribution and the Gamma
distribution, respectively. More specifically, we assume the following Bayesian hierar-
chical model

Y |X,β ∼ L(β|X,Y )

= sup{
n∏

i=1

pi |
n∑

i=1

piφτ (yi − xT
i β)xi = 0,

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1},

βi|θi, σ2 ∼ θiI{βi=0} + (1− θi)I{βi �=0}N(0, σ2), i = 1, . . . , p, (6)

θi ∼ U(0, 1), i = 1, . . . , p,

η = σ−2 ∼ Γ(a, b), a > 0, b > 0.

Thus, we get the quasi-posterior

f(β,θ, η|X,Y ;α, η) ∝ L(β|X,Y )

p∏
i=1

π(βi|θi, η)I(0,1)(θi)Γ(η; a, b), (7)

where Γ(η; a, b) is the density of Γ(a, b) evaluated at η. In simulation and real-data anal-
ysis, we always set a = 0.1 and b = 0.0005, which gives roughly equal probabilities for
η < 1 and η > 1. Note that as a and b tend to zero, the prior Γ(a, b) will approximate
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the noninformative prior π(η) ∝ η−1. However, we cannot directly use the noninforma-
tive prior π(η) ∝ η−1 since it will lead to an improper posterior. This is viewed as an
unattractive characteristic by some statisticians including Berger (2006). However, our
theoretical results (Section 2.2) guarantee that the proper prior Γ(a, b) (a, b > 0) can
give consistent estimates of βi’s and our simulation studies also show the effectiveness of
this prior. Therefore, we think this is a reasonable prior. Further arguments supporting
that Γ(a, b) is a reasonable prior can be found in Appendix.

2.2 Asymptotic property

We denote the estimating function as m(x, y,β),x,β ∈ R
p, where

m(x, y,β) = φτ (y − xTβ)x.

Let β̄ = argmax L(β) be the MELE. The estimating function m(x, y,β) are not smooth
in β, but the expectations of m(x, y,β) and the EL function are sufficiently smooth
under the following assumptions:

(Assumption 1) There exists a neighborhood Θ of β0 such that P (L(β) > 0) → 1 for
any β ∈ Θ, as n → ∞.

(Assumption 2) The distribution function of the p covariates, GX has a bounded
support X .

(Assumption 3) The conditional distribution FX(t) of Y given X is twice continuously
differentiable in t for all X ∈ X .

(Assumption 4) At any X ∈ X , the conditional density function F ′
X(t) = fX(t) > 0

for t in a neighborhood of F−1
X (τ).

(Assumption 5) E{m(X,Y,β0)m(X,Y,β0)
T } is positive definite.

We first introduce some notations before stating the main theorem. Given κ ∈
{0, 1}p and β = (β1, . . . , βp)

T ∈ R
p, we denote βκ and βκ̄ to be the sub-vector of

β corresponding to nonzero and zero elements of κ, respectively. More specifically, if
i1 < i2 < · · · < il are the indices of nonzero elements of κ and j1 < j2 < · · · < jm
are the indices of zero elements of κ (l + m = p), we define βκ = (βi1 , . . . , βil)

T and
βκ̄ = (βj1 , . . . , βjm)T . Given a p× p matrix A, Aκκ is denoted as the submatrix (l × l)
of A such that its (s, t)th element Aκκ(s, t) = A(is, it). We can also define similar
notations Aκκ̄, Aκ̄κ and Aκ̄κ̄.

Theorem 1. Assume β0 = (β01, . . . , β0q, 0, . . . , 0)
T (q ≤ p), where β0j 	= 0 for j =

1, . . . , q, and κ1 = (1, . . . , 1, 0, . . . , 0)T ∈ R
p with its first q elements being 1. Let Ω =

V T
12V

−1
11 V12 with V11 = τ(1− τ)E(XXT ) and V12 = −∂E{m(X,Y,β)}/∂β|β=β0 . Under

Assumptions 1–5, for any fixed a > 0, b > 0, if β follows the posterior distribution (7),
we have that the posterior probability P (βκ̄1 = 0| Y ,X) → 1 in probability as n → ∞.
Furthermore, for any t ∈ R

q, P (
√
n(βκ1 − β̄κ1) ≤ t| Y ,X) = FΩ−1

κ1κ1
(t) + op(1), where
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FΩ−1
κ1κ1

is the cumulative distribution function of the normal distribution N (0,Ω−1
κ1κ1

)

and β̄ is the MELE.

The proof of this theorem will be given in Appendix. Roughly speaking, Theorem 1
says that the variables selected by the Bayesian hierarchical model (6) are asymptotically
correct and the posterior distribution for the nonzero parameters is approximately a
normal distribution. Note that the asymptotic variance of the posteriors of the nonzero
β is Ω−1

κ1κ1
. If we know which βs are nonzero in priori, the asymptotic variance of these

βs is also Ω−1
κ1κ1

. Therefore, Theorem 1 is similar to the Oracle property. Analogous
results for simultaneously estimating coefficients corresponding to a variety of τ ’s (e.g.,
the scenario considered in Yang and He (2012)) can be proved using similar techniques.
Using Theorem 1, we have

Corollary 1. Under the assumptions in Theorem 1, we have that the posterior prob-
ability of the true model M0 = {βκ1 	= 0,βκ̄1 = 0} converges to 1 in probability as
n → ∞.

2.3 Gibbs sampler

Potentially, we may integrate (7) about η and θi to get the marginal posterior of β
and get an estimate of β by maximizing this marginal posterior. However, it is com-
putationally very expensive to maximize the posterior distribution, we instead use a
Gibbs sampler to perform statistical inference based on the Bayesian model. The full
conditional distribution of η = σ−2 is

f(η|β,θ,X,Y ) ∝ π(η)

p∏
j=1

π(βj |θj , η)

∝ (η)a−1 exp(−bη)

p∏
j=1

[
θjI{βj=0}

+(1− θj)I{βj �=0}
1√

2πη−1
exp(−

β2
j

2
η)

]

∝ (η)a+h/2−1 exp(−(b+
1

2

∑
j∈H

β2
j )η),

where H = {j : βj 	= 0} and h = #H. Thus, the full conditional distribution of η is
Γ(a+h/2, b+ 1

2

∑
j∈H β2

j ). Denote θ−j and β−j the sub-vectors of θ and β by removing
their jth element, respectively. The full conditional distribution of θj is

f(θj |β,θ−j , η,X,Y ) ∝ π(βj |θj , η)π(θj)

∝
[
θjI{βj=0} + (1− θj)I{βj �=0}

1√
2πη−1

exp(−
β2
j

2
η)
]
I(0,1)(θj).

Thus, the full conditional distribution of θj is Beta(1+ I(βj = 0), 1+ I(βj 	= 0)), where
I(·) is the indicator function. The full conditional distribution of βj is

f(βj |X,Y ,θ, η,β−j) ∝ L(β|X,Y )π(βj |θj , η).



828 Nonparametric Bayesian Variable Selection in Quantile Regression

Clearly, f(βj |X,Y ,θ, η,β−j) is also a mixture of a continuous distribution and a point
mass distribution at 0, but we cannot directly sample from this conditional distribution
since L(β|X,Y ) has no explicit form. To avoid this difficulty, we employ a Metropolis–
Hastings (M–H) step in the Gibbs sampler for sampling from f(βj |X,Y ,θ, η,β−j). The
choice of the proposal distribution in the M–H step has an important impact on the
efficiency of the Gibbs sampler.

Kim and Yang (2011) proposed to choose a pre-specified normal distribution such
that the acceptance rates in the range of 0.1 ∼ 0.4 as the proposal distribution in
their Gibbs sampler. In our setting, we may similarly use a pre-specified distribution–
a mixture of a point mass distribution at zero and a continuous distribution–as the
proposal distribution. However, we find that it is generally very hard to select a good
pre-specified distribution and a poor selection of the proposal distribution can make
the Gibbs sampler converge slowly (see Xi et al. (2015) Supplementary Figure S1).
Another common practice for choosing the proposal distribution is to use the random

walk Metropolis-algorithm (Tierney, 1994; Roberts et al., 1997). Specifically, given β
(t)
i

at the tth step, the proposal distribution can be set as q(β − β
(t)
i ) with q being a

simple symmetric random walk. For example, q may be taken as N(0, s2), where s2 is
usually chosen such that the acceptance rate is optimal (Roberts et al., 1997; Roberts
and Rosenthal, 2001). However, the target distribution here is a mixture of a discrete
distribution and a continuous distribution, the “random walk” in this scenario should
have nonzero probability jumping back to zero. A reasonable choice would be a mixture
of the point mass at zero and a true random walk such as pI(β = 0) + (1 − p)I(β 	=
0)N(β

(t)
i , s2), but we have to tune two parameters to make acceptance rate optimal,

which is quite difficult, in general.

If the EL L(β) were smooth enough, given β−j , the Laplace approximation of the
likelihood function l(βj) = log(L(βj ,β−j)) would be

l(βj) ≈ l(β̄j) +
1

2
l′′(β̄j)(βj − β̄j)

2

where l(·) is maximized at β̄j . Since the likelihood function is usually concave, we have
v−2
j = −l′′(β̄j) > 0. Then, largely we would have

f(βj |X,Y ,θ, η,β−j) ∝ exp{−1

2
v−2
j (βj − β̄j)

2}π(βj |θj , η).

Thus, the posterior distribution f(βj |X,Y ,θ, η,β−j) is also a mixture of the point mass
at 0 and a normal distribution. Unfortunately, the likelihood L(β) is not differentiable,
and we cannot have the Laplace approximation by differentiating the likelihood, but this
inspired us to choose the proposal distribution in the M–H step as φ(βj |β̄j , v

2
j )π(βj |θj , η)

with a proper β̄j and v2j , where φ(βj |β̄j , v
2
j ) is the density of a normal distribution with

mean β̄j and variance v2j . Given β−j , let ỹi = yi −
∑

l �=j xilβl. The best estimate of βj

given β−j should minimize

n∑
i=1

ρτ (ỹi − xijβj). (8)
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In this paper, we propose to use β̄j as the value that minimizes (8) and use v2j as the

variance estimate σ̃2 of β̄j by bootstrapping (ỹi, xij). Note that if we consider the EL

Lj1(βj) = sup{
n∏

i=1

pi|
n∑

i=1

piφτ (ỹi − xijβj)xij = 0,

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1},

then, β̄j maximizes Lj1(βj). If β−j = β0,−j , we have Lj1(βj) ∝ exp{−1
2υ

−2
1 (βj −

β̄j)
2 + op(1)} for some υ2

1 > 0, according to Theorem 3.2 in Yang and He (2012).
Thus, our proposal distribution can be largely viewed as sampling from the distribu-
tion Lj1(βj)π(βj |θj , η). Clearly, Lj1(βj) is different from the likelihood L(βj ,β−j |X,Y )
(here, we write L(β|X,Y ) = L(βj ,β−j |X,Y ) to emphasize that β−j is given). How-
ever, if β−j = β0,−j , β̄j should also largely maximize L(βj ,β−j |X,Y ) since both β̄j

and the maximizer of L(βj ,β−j |X,Y ) are consistent estimators of β0j (Molanes Lopez
et al., 2009). According to Lemma 6 of Molanes Lopez et al. (2009), we approximately
have L(βj ,β−j |X,Y ) = exp{−1

2υ
−2(βj − β̄j)

2 + op(1)} for some υ2 > 0. Thus, when
n is large enough, both Lj1(βj) and L(βj ,β−j |X,Y ) can be approximated by normal
distributions with the same means. Our proposal distribution can be made to have
similar shape as the full conditional distribution f(βj |X,Y ,θ, η,β−j) by replacing the
bootstrapped variance σ̃2 with sσ̃2, where s > 0 is a fixed constant. In the simulation
and the real data study below, we always use s = 1.

In each step of the Gibbs sampler, we have to solve the minimization problem (8)
B + 1 times, where B is the number of bootstrap resamplings. Thus, it could be com-
putational expensive if minimizing (8) is slow. Fortunately, we can use the following
procedure to efficiently minimize (8). Let bi = ỹi/xij (if xij = 0, we can just drop
this observation). Assume that b1 ≤ · · · ≤ bn and let i0 = max{j :

∑n
i=j |xij | ≥

−(τ − 1
2 )

∑
xij +

1
2

∑n
i=1 |xij |}. Then, we have that β̄j = bi0 minimizes (8). Therefore,

the computational complexity of minimizing (8) is O(Bn log(n)). After sampling from
the proposal distribution, we need to calculate the EL (5) to determine the acceptance
probability. It is known that there may not be any {pi | i = 1, . . . , n} satisfying the con-
straints. In the R-package we developed for this method, we instead use the adjusted
EL as proposed in Chen et al. (2008) to avoid this problem.

2.4 Comparison with linear regression

The median regression can be viewed as a more robust alternative to the mean-based
regression. For mean-based linear regression, we may also construct a similar Bayesian
hierarchical model based on the EL to perform Bayesian variable selection. It would thus
be interesting to compare the asymptotic variances of the EL-based Bayesian estimates
for the linear regression and for the quantile regression. We first introduce the EL-based
Bayesian hierarchical model for general estimating equations and present an asymptotic
result for such hierarchical models. Considering the estimating equation (3) and the EL
(4), we can have the following Bayesian hierarchical model

Z|β ∼ L(β|Z) = sup{
n∏

i=1

pi |
n∑

i=1

pig(zi,β)zi = 0,
n∑

i=1

pi = 1, 0 ≤ pi ≤ 1},
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βi|θi, σ2 ∼ θiI{βi=0} + (1− θi)I{βi �=0}N(0, σ2), i = 1, . . . , p, (9)

θi ∼ U(0, 1), i = 1, . . . , p,

η = σ−2 ∼ Γ(a, b), a > 0, b > 0.

Analogously to the quantile regression, we have the following asymptotic result for the
Bayesian hierarchical model (9).

Theorem 2. Assume the true β0 = (β01, . . . , β0q, 0, . . . , 0)
T (q ≤ p), where β0j 	= 0 for

j = 1, . . . , q, and κ1 = (1, . . . , 1, 0, . . . , 0)T ∈ R
p with its first q elements being 1. Suppose

that E[g(Z,β0)g
T (Z,β0)] is positive definite, ∂g(z,β)/∂β and ∂2g(x,β)/∂β∂βT are

continuous in a neighborhood of β0, ‖∂g(z,β)/∂β‖, ‖∂2g(z,β)/∂β∂βT ‖ and ‖g(z,β)‖3
are bounded by some integrable function G(z) in this neighborhood, and the rank of
E[∂g(Z,β)/∂β|β=β0 ] is p. Let V11 = E[g(Z,β0)g

T (Z,β0)], V12 = E[∂g(Z,β)/∂β|β=β0 ]
and Ω = V T

12V
−1
11 V12. Then, for any fixed a > 0, b > 0, if β follows the posterior

distribution of the hierarchical model (9), we have the posterior probability P (βκ̄1 =
0| Z) → 1 in probability as n → ∞. Furthermore, for any t ∈ R

q, P (
√
n(βκ1 − β̄κ1) ≤

t| Z) = FΩ−1
κ1κ1

(t) + op(1), where FΩ−1
κ1κ1

is the cumulative distribution function of the

normal distribution N (0,Ω−1
κ1κ1

) and β̄ is the MELE that maximizes the EL (4).

We now can compare the asymptotic variance of the EL-based Bayesian estimates
of the quantile regression and the linear regression. For linear regression, we have Z =
(Y,X) and g(zi,β) = (yi − xT

i β)xi. Suppose that the random error ei = yi − xT
i β

has a density function f(·) and a variance σ2
e > 0. Assuming that X has a compact

support, E(XXT ) is positive definite. Also suppose that f is such that conditions in
Theorem 1 or Theorem 2 are satisfied. For linear regression, asymptotically, the variance
of the posterior distribution of the nonzero βis is σ2

e [E(XκX
T
κ )]

−1. For the quantile
regression, the asymptotic variance of the posterior distribution of the nonzero βis is
τ(1 − τ)[E(XκX

T
κ )]

−1f−2(0). Particularly, for the median regression, the asymptotic
variance is f−2(0)[E(XκX

T
κ )]

−1/4. If f is N(0, σ2
e), we have f−2(0)/4 = πσ2

e/2 and
hence the mean-based linear regression has a smaller variance. If f is a t-distribution
tν (ν > 3), σ2

e = ν/(ν − 2) and f−2(0)/4 = πνΓ2(ν/2)Γ−2((ν + 1)/2)/4. When ν is
large, σ2

e = ν/(ν − 2) would be smaller, but when μ is close to 3, f−2(0)/4 would be
smaller. For example, when ν = 4, σ2

e = 2 and f−2(0)/4  1.78, implying that median
regression has a smaller asymptotic variance. Note that when ν ≤ 3, the conditions
in Theorem 2 do not hold, and we cannot guarantee the convergence of the EL-based
Bayesian estimate of the linear regression; However, the conditions in Theorem 1 still
hold, and we still have the asymptotic results for quantile regression. Similarly, if f is
a Cauchy distribution, the conclusion in Theorem 2 does not hold but the conclusion
in Theorem 1 is still valid. In this respect, the EL-based Bayesian quantile regression is
more robust than the EL-based Bayesian linear regression.

3 Baeysian weighted mutiple-quantile regression

In this section, we focus on the model that satisfies

qyi(τk|xi) = μk + xT
i β0, i = 1, . . . , n, (10)
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for k = 1, . . . ,m (i.e., the parameter β0 is constant across different τk). Here, the
notation xi denotes the explanatory variables excluding the intercept term. Note that
(10) holds for any τ if the errors ui are homogeneous. Theorem 1 shows that the posterior
distribution of the nonzero coefficients are approximately normally distributed. Consider
the model Yi = μ1 + xiβ + ui (0 	= β ∈ R), where ui are assumed to be i.i.d. random
variables with their τ1th quantile ξτ1 being zero. Assume that the distribution F of ui

has a Lebesgue p.d.f. f . The asymptotic variance v2τ1 of the posterior distribution of β
is inversely proportional to f(ξτ1) (ξτ1 = F−1(τ1)). Thus, if f(ξτ1) is small, v2τ1 would
be large, making the estimate of β and the τ1th quantile inaccurate when the sample
size is small. Suppose that f(ξτ2) > f(ξτ1) for the τ2th quantile ξτ2 = F−1(τ2). Since
ui are i.i.d., we may consider the model Yi = μ2 + xT

i β +wi, where μ2 = μ1 + ξτ2 − ξτ1
and wi = ui − (ξτ2 − ξτ1). This model can also give consistent estimate for β, but the
asymptotic variance v2τ2 of this posterior distribution is inversely proportional to f(ξτ2)
and hence smaller than v2τ1 . The latter model can thus give a better estimate of β, but it
cannot give estimate of the τ1th quantile, which can be particularly interesting in certain
applications. However, we can get estimates of the τ1th and τ2th quantile by minimizing∑n

i=1[ρτ1(yi − μ1 − xiβ) + ρτ2(yi − μ2 − xiβ)]. Since this new objective function uses
information from both quantile points, the resulting estimate of β and the τ1th quantile
should be at least not worse than that given by minimizing

∑n
i=1 ρτ1(yi − μ1 − xiβ).

In general, suppose that (yi,xi) (i = 1, . . . , n) are n independent observations. As-
sume that the conditional τkth quantile qyi(τk|xi) of yi given xi satisfy qyi(τk|xi) =
μ0k +xT

i β0, where τk ∈ (0, 1) (k = 1, . . . ,m). The weighted quantile objective function
at τk (k = 1, . . . ,m) is

m∑
k=1

ak

n∑
i=1

ρτk(yi − μk − xT
i β), (11)

where ak ∈ (0, 1) are the fixed weights for the τkth quantile. Similar to the usual quantile
regression, we can define the corresponding EL as

L(β,μ) = sup{
n∏

i=1

pi|
m∑

k=1

ak

n∑
i=1

piφτk(yi − μk − xT
i β)xi = 0,

n∑
i=1

piφτk(yi − μk − xT
i β) = 0, ∀1 ≤ k ≤ m,

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1}. (12)

We have the following Bayesian hierarchal model:

Y |X,β ∼ L(β,μ|X,Y ),

μk ∼ N(0, σ2), k = 1, . . . ,m,

βi|θi, σ2 ∼ θiI{βi=0} + (1− θi)I{βi �=0}N(0, σ2), i = 1, . . . , p, (13)

θi ∼ U(0, 1), i = 1, . . . , p,

η = σ−2 ∼ Γ(a, b), a > 0, b > 0.

For the Bayesian model (13), we can also have the asymptotic result similar to Theo-
rem 1. We introduce some notations before stating the theorem. Let ζ = (βT ,μT )T ,
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μ0 = (μ01, . . . , μ0m) and ζ0 = (βT
0 ,μ

T
0 )

T . Denote Qβ(x, y, ζ) =
∑m

k=1 akφτk(y − μk −
xTβ)x, Qμ(x, y, ζ) = (φτ1(y − μ1 − xTβ), . . . , φτm(y − μm − xTβ))T and Q(x, y, ζ) =
(Qβ(x, y, ζ)

T , Qμ(x, y, ζ)
T )T . Thus, EQ(X, Y, ζ0) = 0. We need the following regular-

ity conditions for the asymptotic result:

(Assumption 1′) There exists a neighborhood Θ of ζ0 such that equation
EQ(X, Y, ζ) = 0 has a unique solution and P (L(β,μ) > 0) → 1 for any ζ =
(β,μ) ∈ Θ, as n → ∞.

(Assumption 4′) At any X ∈ X , the conditional density function F ′
X(t) = fX(t) > 0

for t in a neighborhood of F−1
X (τk) (k = 1, . . . ,m).

(Assumption 5′) E{Q(X, Y, ζ0)Q(X, Y, ζ0)
T } is positive definite.

Theorem 3. Assume β0 = (β01, . . . , β0q, 0, . . . , 0)
T (q ≤ p), where β0j 	= 0 for j =

1, . . . , q, and κ1 = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1)T ∈ R
p+m with its first q and last m ele-

ments being 1. Let Ω = V T
12V

−1
11 V12 with V11 = E{Q(X, Y, ζ0)Q(X, Y, ζ0)

T } and V12 =
−∂E{Q(X,Y, ζ)}/∂ζ|ζ=ζ0 . Under Assumptions 1′,2, 3,4′, 5′, for any fixed a > 0, b > 0,
if ζ = (βT ,μT )T follows the posterior distribution of the Bayesian model (13), we have
the posterior probability P (ζκ̄1 = 0| Y ,X) → 1 in probability as n → ∞. Further-
more, for any t ∈ R

q+m, P (
√
n(ζκ1 − ζ̄κ1) ≤ t| Y ,X) = FΩ−1

κ1κ1
(t) + op(1), where

FΩ−1
κ1κ1

is the cumulative distribution function of the normal distribution N (0,Ω−1
κ1κ1

)

and ζ̄ = (β̄T , μ̄T ) is the MELE of (12).

Similarly, we can also have the following corollary

Corollary 2. Under the assumptions in Theorem 3, we have that the posterior prob-
ability of the true model M0 = {ζκ1 	= 0, ζκ̄1 = 0} converges to 1 in probability as
n → ∞.

4 Simulation study

In this section, we use Monte Carlo simulations to study the performance of the EL-
based Bayesian quantile regression with the spike-and-slab prior (BEQR) and the EL-
based Bayesian weighted multiple-quantile regression (BEQR.W). We also compared our
method with existing methods including linear regression with the lasso penalty (Lasso)
(Tibshirani, 1996), quantile regression with the lasso penalty (qrLasso) (Li and Zhu,
2008) and Bayesian regularized quantile regression with the lasso penalty (bqrLasso)
(Li et al., 2010). The data in the simulation studies are generated by

yi = xT
i β0 + ui, i = 1, . . . , n,

where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0) and ui’s τth quantile is equal to 0. We set the number
of observations n as 200 and 500 in the following simulations.
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4.1 Independent and identically distributed random errors

In this section, we consider the random errors ui to be independently and identically
distributed. The rows ofX are generated independently fromN(0,Σ), where the (i, j)th
element of Σ is 0.5|i−j|. Within each simulation study, we consider five different choices
for the distribution of ui’s.

• The first choice is a normal distribution N (μ, σ2), with μ = 0, σ2 = 9.

• The second choice is a Laplace distribution Laplace(μ, b), with μ = 0, b = 3.

• The third choice is a mixture of two normal distributions, 0.6N (μ1 − a, σ2) +
0.4N (μ2−a, σ2) where μ1 = 2, μ2 = −2, σ2 = 9, and a = 0.4 is such that its mean
equal to 0.

• The forth choice is a mixture of two Laplace distributions, 0.6Laplace(μ1−a, b)+
0.4Laplace(μ2 − a, b) with μ1, μ2 and a are chosen as above.

• The fifth choice is a Cauchy distribution with the scale parameter being 1/5.

While performing the regression analysis, an intercept term is always added to the
model. For each choice of the error distribution, we run 100 simulations. Priors for the
Bayesian methods are taken to be almost noninformative. The quantiles for BEQR.W
are (0.1, 0.5, 0.9) and the weights are all set as 1. In the following, we use two criterions
to evaluate the performance of each algorithm. The first criterion is the mean distance
between the estimated conditional quantile and the true conditional quantile. Specifi-
cally, for the τth quantile, suppose that μ̂τ and β̂τ are the estimates of the intercept
and the coefficient β by one of quantile methods, the mean of mean absolute deviation
(MMAD) is defined as mean(1/n

∑n
i=1 |μ̂τ + xT

i β̂τ − qτ − xT
i β|), where qτ is the τth

quantile of the random errors ui and the mean is taken over the 100 simulations. In
terms of Lasso, suppose that μ̂0 and β̂ are the estimates of intercept and the coefficient
β, and σ̂2 is the sample variance of the residuals, the estimated conditional quantile is
taken as μ̂0+xT

i β̂+ q̂τ , where q̂τ is the τth quantile of the normal distribution N (0, σ̂2).
The MMAD for Lasso can then be similarly defined. The second criterion is the mean
of true positives (TP) and False positives (FP) selected by each algorithm.

Table 1 shows the MMAD of each algorithm for simulations with homogeneous
errors. BEQR and BEQR.W outperforms other methods in most cases. Especially,
BEQR.W often has much smaller MMADs than other methods in estimating extreme
quantiles. This is expected because BEQR.W fully utilizes the assumption that errors
are unrelated with the covariates (which is true in this simulation). The asymptotic
variance of the other quantile-based methods is inversely proportional to the density
of the errors at the quantile point. When n is small, the corresponding asymptotic
variance would be large and hence the estimates would be less accurate. On the other
hand, since BEWQ.W borrows information from the quantiles with larger density, its
asymptotic variance would be generally smaller for extreme quantiles and hence would
give more accurate estimates. Table 2 shows the true positive rates and false positive
rates for different algorithms. Note that the results for Lasso and BEQR.W are all the
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n quantile Method Error Distribution

normal Laplace normal mixture Laplace mixture Cauchy

200 τ = 0.9 Lasso 0.43 (0.13) 0.79 (0.27) 0.61 (0.13) 0.80 (0.24) 12.78 (27.84)
QR 0.84 (0.21) 1.46 (0.35) 0.35 (0.08) 0.52 (0.14) 0.31(0.15)

qrLasso 0.72 (0.14) 1.16 (0.42) 0.29 (0.10) 0.44 (0.13) 0.30(0.18)
bqrLasso 0.73 (0.17) 1.21 (0.36) 0.29 (0.07) 0.44 (0.13) 0.34(0.26)
BEQR 0.53 (0.24) 1.17 (0.50) 0.20 (0.08) 0.35 (0.21) 0.62 (0.80)

BEQR.W 0.41 (0.19) 0.65 (0.31) 0.25 (0.10) 0.29 (0.11) 0.17(0.14)

τ = 0.5 Lasso 0.40 (0.17) 0.57 (0.21) 0.80 (0.04) 0.85 (0.04) 0.87(1.00)
QR 0.60 (0.16) 0.58 (0.15) 0.47 (0.14) 0.50 (0.16) 0.06(0.02)

qrLasso 0.53 (0.17) 0.54 (0.17) 0.41 (0.14) 0.46 (0.17) 0.19(0.16)
bqrLasso 0.51 (0.14) 0.51 (0.14) 0.44 (0.11) 0.48 (0.14) 0.06(0.02)
BEQR 0.37 (0.15) 0.37 (0.19) 0.65 (0.26) 0.67 (0.24) 0.03(0.02)

BEQR.W 0.39 (0.17) 0.42 (0.17) 0.29 ( 0.12) 0.33 (0.17) 0.06(0.02)

τ = 0.1 Lasso 0.43 (0.13) 0.78 (0.28) 0.66 (0.12) 0.45 (0.15) 12.75(27.71)
QR 0.85 (0.19) 1.44 (0.39) 0.85 (0.21) 1.04 (0.25) 0.31(0.15)

qrLasso 0.71 (0.24) 1.14 (0.32) 0.66 (0.24) 0.80 (0.30) 0.28(0.13)
bqrLasso 0.73 (0.19) 1.18 (0.27) 0.71 (0.20) 0.84 (0.25) 0.34(0.22)
BEQR 0.56 (0.23) 1.03 (0.50) 0.63 (0.25) 0.63 (0.43) 0.79(0.90)

BEQR.W 0.41 (0.18) 0.56 (0.26) 0.36 (0.18) 0.41 (0.19) 0.17(0.12)

500 τ = 0.9 Lasso 0.28 (0.09) 0.65 (0.22) 0.56 (0.09) 0.80 (0.17) 12.37(18.24)
QR 0.53 (0.13) 0.90 (0.21) 0.22 (0.05) 0.33 (0.08) 0.19(0.06)

qrLasso 0.44 (0.14) 0.79 (0.23) 0.18 (0.05) 0.27 (0.08) 0.20(0.12)
bqrLasso 0.48 (0.12) 0.83 (0.22) 0.18 (0.04) 0.29 (0.08) 0.18(0.09)
BEQR 0.33 (0.12) 0.72 (0.32) 0.13 (0.05) 0.21 (0.08) 0.21(0.15)

BEQR.W 0.26 (0.11) 0.42 (0.24) 0.15 (0.06) 0.18 (0.08) 0.08(0.06)

τ = 0.5 Lasso 0.26 (0.09) 0.36 (0.12) 0.77 (0.01) 0.84 (0.01) 0.73(0.74)
QR 0.40 (0.08) 0.34 (0.08) 0.28 (0.08) 0.32 (0.09) 0.04(0.01)

qrLasso 0.33 (0.10) 0.31 (0.11) 0.25 (0.09) 0.33 (0.11) 0.20(0.18)
bqrLasso 0.36 (0.08) 0.31 (0.08) 0.26 (0.07) 0.31 (0.10) 0.03(0.01)
BEQR 0.21 (0.09) 0.20 (0.08) 0.21 (0.12) 0.30 (0.19) 0.02(0.01)

BEQR.W 0.23 (0.08) 0.25 (0.09) 0.15 (0.07) 0.20 (0.09) 0.03(0.01)

τ = 0.1 Lasso 0.28 (0.09) 0.65 (0.23) 0.62 (0.09) 0.32 (0.09) 12.38(18.24)
QR 0.54 (0.12) 0.91 (0.21) 0.49 (0.13) 0.60 (0.14) 0.21(0.06)

qrLasso 0.45 (0.13) 0.72 (0.23) 0.42 (0.13) 0.50 (0.14) 0.21(0.12)
bqrLasso 0.51 (0.12) 0.81 (0.19) 0.45 (0.12) 0.54 (0.13) 0.20(0.07)
BEQR 0.34 (0.13) 0.66 (0.28) 0.32 (0.11) 0.38 (0.13) 0.22(0.18)

BEQR.W 0.26 (0.12) 0.34 (0.16) 0.22 (0.10) 0.24 (0.11) 0.08(0.06)

Table 1: The MMAD of Lasso, qrLasso, bqrLasso and BEQR, BEQR.W for simulations
with homogeneous errors. The numbers in the parentheses are the standard errors of
the 100 MMADs in the corresponding scenarios.

same for different τ . So we only list these results once in Table 2. Here, a predictor
is said to be selected by QR/bqrLasso if its 95% confidence/credible interval given by
QR/bqrLasso does not cover 0; otherwise, it is unselected. We again see that generally
BEQR.W performs the best in all cases.
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n τ/mean Method Error Distribution

normal Laplace normal mixture Laplace mixture Cauchy
TP/FP TP/FP TP/FP TP/FP TP/FP

200 mean Lasso 3.00/2.30 3.00/2.16 3.00/2.20 3.00/2.12 2.65/2.41

τ = (0.9, 0.5, 0.1) BEQR.W 3.00/0.18 2.99/0.10 3.00/0.13 3.00/0.10 3.00/0.03

τ = 0.9 QR 2.82/0.22 2.17/0.23 3.00/0.15 2.98/0.16 2.99/0.10
qrLasso 3.00/2.78 2.94/2.83 3.00/2.66 3.00/2.74 3.00/2.16
bqrLasso 3.00/0.86 2.80/0.68 3.00/0.42 3.00/0.42 2.98/0.28
BEQR 2.96/0.19 2.63/0.15 3.00/0.08 2.99/0.12 2.95/0.22

τ = 0.5 QR 2.98/0.16 2.98/0.13 3.00/0.16 3.00/0.13 3.00/0.10
qrLasso 3.00/2.01 3.00/1.80 3.00/1.64 3.00/1.57 3.00/0.44
bqrLasso 3.00/0.20 3.00/0.06 3.00/0.19 3.00/0.21 3.00/0.02
BEQR 2.98/0.12 2.99/0.08 3.00/0.16 3.00/0.11 3.00/0.01

τ = 0.1 QR 2.77/0.15 2.05/0.24 2.78/0.23 2.52/0.18 3.00/0.10
qrLasso 3.00/2.78 2.92/2.83 3.00/2.66 2.99/2.74 3.00/2.15
bqrLasso 2.99/0.86 2.80/0.68 3.00/0.42 2.98/0.42 3.00/0.23
BEQR 2.97/0.19 2.68/0.15 2.97/0.08 2.95/0.12 3.00/0.21

500 mean Lasso 3.00/2.37 3.00/2.43 3.00/2.21 3.00/2.28 2.86/2.41

τ = (0.9, 0.5, 0.1) BEQR.W 3.00/0.07 3.00/0.08 3.00/0.04 3.00/0.06 3.00/0.00

τ = 0.9 QR 3.00/0.26 2.77/0.21 3.00/0.22 3.00/0.21 3.00/0.11
qrLasso 3.00/2.56 2.99/2.62 3.00/2.42 3.00/2.89 3.00/1.93
bqrLasso 3.00/0.86 2.98/0.85 3.00/0.46 3.00/0.71 3.00/0.13
BEQR 3.00/0.03 2.86/0.15 3.00/0.01 3.00/0.05 3.00/0.02

τ = 0.5 QR 3.00/0.20 3.00/0.17 3.00/0.22 3.00/0.17 3.00/0.14
qrLasso 3.00/2.03 3.00/1.73 3.00/1.55 3.00/1.48 3.00/0.21
bqrLasso 3.00/0.31 3.00/0.11 3.00/0.17 3.00/0.28 3.00/0.00
BEQR 3.00/0.04 3.00/0.03 3.00/0.04 3.00/0.07 3.00/0.00

τ = 0.1 QR 2.99/0.31 2.80/0.16 2.99/0.11 2.97/0.14 3.00/0.29
qrLasso 3.00/2.72 3.00/2.73 3.00/2.36 3.00/2.59 3.00/2.01
bqrLasso 3.00/0.90 2.98/1.03 3.00/0.73 3.00/0.74 3.00/0.30
BEQR 3.00/0.04 2.89/0.17 3.00/0.06 3.00/0.06 3.00/0.04

Table 2: Mean True positives (TP) and False positives (FP) given by Lasso, qrLasso,
bqrLasso, BEQR and BEQR.W for simulations with homogeneous error.

4.2 Heterogenous random errors

Now we consider simulations with heterogenous random errors. The data are generated
from the model

yi = β10xi1 +

8∑
j=2

βj0xij + xi1εi (i = 1, . . . , n)



836 Nonparametric Bayesian Variable Selection in Quantile Regression

n quantile Method Error Distribution

normal Laplace normal mixture Laplace mixture Cauchy

200 τ = 0.90 Lasso 2.11 (0.24) 2.83 (0.30) 1.56 (0.14) 1.80 (0.20) 12.30 (51.51)
QR 1.85 (0.35) 2.30 (0.48) 1.26 (0.12) 1.34 (0.17) 0.40 (0.11)

qrLasso 1.08 (0.31) 1.57 (0.44) 0.48 (0.16) 0.64 (0.16) 0.30(0.12)
bqrLasso 0.65 (0.21) 1.08 (0.29) 0.25 (0.09) 0.38 (0.13) 0.30(0.18)

BEQR 0.49 (0.33) 1.16 (0.92) 0.16 (0.10) 0.33 (0.18) 0.40(0.42)

τ = 0.50 Lasso 0.65 (0.28) 0.92 (0.39) 1.05 (0.36) 1.17 (0.47) 0.87(0.90)
QR 0.46 (0.18) 0.42 (0.16) 0.52 (0.14) 0.53 (0.13) 0.05(0.02)

qrLasso 0.52 (0.24) 0.51 (0.22) 0.62 (0.25) 0.73 (0.28) 0.17(0.13)
bqrLasso 0.44 (0.14) 0.41 (0.14) 0.32 (0.14) 0.39 (0.20) 0.05(0.04)

BEQR 0.33 (0.16) 0.33 (0.15) 0.31 (0.23) 0.42 (0.33) 0.03(0.01)

τ = 0.10 Lasso 1.99 (0.20) 2.81 (0.41) 1.84 (0.20) 1.94 (0.25) 13.15(52.2)
QR 1.80 (0.27) 2.40 (0.51) 1.77 (0.25) 1.82 (0.29) 0.43(0.15)

qrLasso 0.65 (0.16) 1.25 (0.24) 0.61 (0.18) 0.70 (0.22) 0.26(0.18)
bqrLasso 0.57 (0.19) 1.01 (0.28) 0.55 (0.20) 0.65 (0.26) 0.37(0.40)

BEQR 0.62 (0.21) 1.12 (0.49) 0.61 (0.22) 0.69 (0.24) 0.60(0.50)

500 τ = 0.90 Lasso 2.05 (0.13) 2.70 (0.15) 1.53 (0.07) 1.81 (0.11) 22.47(90.65)
QR 1.82 (0.18) 2.32 (0.29) 1.26 (0.08) 1.37 (0.11) 0.35(0.08)

qrLasso 0.95 (0.22) 1.32 (0.32) 0.45 (0.10) 0.54 (0.13) 0.24(0.09)
bqrLasso 0.37 (0.13) 0.62 (0.26) 0.15 (0.05) 0.24 (0.08) 0.18(0.10)

BEQR 0.28 (0.15) 0.46 (0.29) 0.10 (0.06) 0.16 (0.10) 0.14(0.11)

τ = 0.50 Lasso 0.41 (0.18) 0.55 (0.23) 0.94 (0.22) 1.04 (0.30) 0.89(0.82)
QR 0.28 (0.11) 0.22 (0.07) 0.42 (0.07) 0.48 (0.09) 0.03(0.01)

qrLasso 0.31 (0.14) 0.32 (0.15) 0.58 (0.14) 0.67 (0.19) 0.18(0.13)
bqrLasso 0.26 (0.09) 0.23 (0.10) 0.18 (0.07) 0.23 (0.10) 0.03(0.03)

BEQR 0.20 (0.11) 0.16 (0.10) 0.14 (0.09) 0.19 (0.14) 0.01(0.01)

τ = 0.10 Lasso 1.95 (0.10) 2.65 (0.15) 1.83 (0.12) 1.92 (0.11) 23.32(91.29)
QR 1.84 (0.16) 2.27 (0.27) 1.78 (0.16) 1.85 (0.20) 0.37(0.08)

qrLasso 0.55 (0.08) 1.03 (0.17) 0.50 (0.09) 0.54 (0.10) 0.20(0.16)
bqrLasso 0.35 (0.13) 0.62 (0.22) 0.32 (0.11) 0.40 (0.15) 0.23(0.30)

BEQR 0.35 (0.18) 0.64 (0.34) 0.30 (0.18) 0.40 (0.23) 0.21(0.15)

Table 3: The MMAD of Lasso, qrLasso, bqrLasso and BEQR for simulations with het-
erogeneous errors.

where εi are generated as in the i.i.d. random error case. The covariates xi1 are generated
from uniform distribution on the interval (0, 2) and xi = (xi2, . . . , xi8) are generated
from N(0,Σ) with the (i, j)th element of Σ is 0.5|i−j|.

Clearly, the BEQR.W is not suitable for models with heterogenous errors, and so
we did not include BEQR.W in this simulation study. Table 3 shows the MMAD of
each algorithm under different simulation setups. The two Bayesian methods bqrLasso
and BEQR generally perform better than the non-Bayesian methods. For example, for
τ = 0.9 and the normal mixture error model, the MMADs of Lasso, QR and qrLasso are
1.56, 1.26 and 0.48 which are all significantly larger than the MMAD of BEQR (0.16).
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5 Real data analysis

In this section, we apply our BEQR method to study the role of microRNA (miRNA)
regulation on the gene expression variation within a population. miRNAs are a class of
small noncoding RNA that usually bind to the 3′ untranslated region (UTR) of their
target messenger RNA (mRNA) transcripts to post-transcriptionally repress protein
translation. In the literature, there have been contradicting opinions about the role of
miRNA regulation on the gene expression variation. Earlier studies suggested that the
miRNAs may have canalization effect on the gene expression, meaning that they can
reduce the gene expression variance around a preset mean (Hornstein and Shomron,
2006; Wu et al., 2009). Recent study instead showed that genes targeted by miRNAs
unexpectedly had increased expression variation compared with non-target genes (Lu
and Clark, 2012). A natural measure for gene expression variation is the standard de-
viation of the gene expression in a population. However, the standard deviation of the
gene expression is highly correlated with the mean gene expression; Genes with large
gene expression mean often have large gene expression variance (Figure 1). Therefore, to
account for this dependence, researchers often use the coefficient of variance – the ratio
between the standard deviation and the mean of the gene expression – as a measure
for the gene expression variance. Here, we instead use quantile regression to study this
problem.

We obtained gene expression data from Lu and Clark (2012). This data set contains
expression data of 22834 genes measured from 70 individuals. The genes with low expres-
sion level (mean expression less than 0.1) were removed since these genes are probably
not expressed and the expression mean and variance of these genes largely only reflect
the background noise. This filtering step gives us 14966 genes. The response variable
of the regression is the standard deviation of gene expression in 70 individuals. The
covariates include the mean gene expression (GeneExp), the gene length (GeneLen),
the length of the 3′-UTR (Len3UTR), the number of miRNA targets in the 3′-UTR
(Target) as predicted by TargetScan (Lewis et al., 2005), the mean target score of the
miRNA targets (TargetScore), the number of common Single Nucleotide Polymorphism
(SNP) in 3′-UTRs (NSNP) and the mean of minor allele frequencies of common SNPs in
3′-UTRs (MAF). We downloaded the miRNA targets sites and their associated target
score from the UCSC genome browser (http://genome.ucsc.edu/). Common SNPs
and their minor allele frequencies were also obtained from the UCSC genome browser.
We included the SNPs in 3′-UTRs into the model because these SNPs may influence
miRNA binding at 3′-UTRs and eventually affect the gene expression variance. Supple-
mentary Table S1 shows the pairwise Spearman’s correlation between these variables.

We first compare the conditional quantile predictions of the 5 methods, QR, Lasso,
qrLasso, bqrLasso and BEQR. All variables are standardized so that they have mean
0 and standard deviation 1. We randomly partition the entire data sets into 5 subsets
of roughly equal sizes. Each time, we use one subset as the testing set and the other
4 subsets as the training set. The penalty parameters for Lasso and qrLasso were esti-
mated by cross-validation only based on the training data set. The hyper-parameters for
bqrLasso and BEQR were chosen as before. After training, we calculate the mean check
loss of the observations in the testing data. Table 5 shows the mean of the mean testing

http://genome.ucsc.edu/
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Figure 1: The smoothed scatter plot of the gene expression standard deviation versus
the gene expression mean. The lines correspond to median regression or mean regression
lines given by the methods discussed in the text. Note that the regression lines are very
close to each other except Lasso and qrLasso.

errors of the 5 testing data sets. We can clearly see that the two Bayesian methods
and the quantile regression perform very similarly and their testing errors are always
smaller (often essentially smaller) than the two non-Bayesian regularization methods
(Lasso and qrLasso). We also observe that the performance of qrLasso for this data set
is not good even compared with the Lasso, but when we only use a subset of the observa-
tions (1000 observations), its performance is improved significantly. Therefore, to make
the comparison fair, we also calculate the testing error of qrLasso trained on subsets of
the training data set (qrLasso.S). More specifically, we randomly partition the training
data set into 10 subsets and estimate the parameters by qrLasso (the tuning parameter
λ is chosen by cross-validation in each subset). The parameter estimate of qrLasso.S is
taken as the mean of the estimates based on each subset. With this modification, the
performance of qrLasso is improved significantly and is similar to that of QR, bqrLasso
and BEQR (Table 5 and Figure 1).

In the following, we will focus on the results of the median regression since we
are most interested in the general role of miRNAs on the gene expression. If miRNAs
have a canalization effect, we would expect the coefficient estimates of Target and/or
TargetScore to be negative; If, instead, the regularization of miRNAs tends to increase
the variation of gene expression, one of these two estimates would be positive. Figure 2
shows the parameter estimates and their 95% confidence/credible intervals (if any) of
the 6 methods considered above based on the entire data set. The confidence interval
of QR is given by the R-package quantreg with the rank option under the non-i.i.d.
assumption. The parameter estimates given by Lasso and qrLasso generally lie far away
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n quantile Method Error Distribution

normal Laplace normal mixture Laplace mixture Cauchy
TP/FP TP/FP TP/FP TP/FP TP/FP

200 mean Lasso 3.00/2.31 3.00/2.37 3.00/2.33 3.00/2.44 2.79/2.46

τ = 0.90 QR 2.98/0.07 2.64/0.08 3.00/0.05 3.00/0.04 3.00/0.08
qrLasso 3.00/1.42 2.89/1.48 3.00/1.05 3.00/1.41 3.00/1.82
bqrLasso 3.00/0.45 2.95/0.46 3.00/0.19 3.00/0.22 3.00/0.16
BEQR 2.99/0.15 2.71/0.21 3.00/0.06 2.98/0.05 3.00/0.12

τ = 0.50 QR 3.00/0.10 3.00/0.06 3.00/0.07 3.00/0.06 3.00/0.08
qrLasso 3.00/1.79 3.00/1.37 3.00/0.88 3.00/0.95 3.00/0.46
bqrLasso 3.00/0.13 3.00/0.06 3.00/0.06 3.00/0.02 3.00/0.00
BEQR 3.00/0.11 3.00/0.11 3.00/0.05 3.00/0.06 3.00/0.01

τ = 0.10 QR 2.04/0.15 1.87/0.03 2.07/0.11 1.95/0.13 2.99/0.07
qrLasso 2.38/2.01 2.50/2.24 2.50/2.14 2.46/2.51 3.00/0.49
bqrLasso 2.29/0.26 2.42/0.33 2.28/0.27 2.20/0.29 2.93/0.10
BEQR 2.38/0.20 2.41/0.40 2.38/0.27 2.33/0.42 3.00/0.10

500 Mean Lasso 3.00/2.35 3.00/2.50 3.00/2.35 3.00/2.45 2.79/2.63

τ = 0.90 QR 3.00/0.11 3.00/0.08 3.00/0.05 3.00/0.06 3.00/0.15
qrLasso 3.00/0.80 3.00/1.04 3.00/0.66 3.00/0.94 3.00/1.23
bqrLasso 3.00/0.41 3.00/0.60 3.00/0.19 3.00/0.25 3.00/0.14
BEQR 3.00/0.05 2.99/0.04 3.00/0.02 3.00/0.00 3.00/0.00

τ = 0.50 QR 3.00/0.10 3.00/0.04 3.00/0.11 3.00/0.08 3.00/0.17
qrLasso 3.00/1.63 3.00/1.40 3.00/0.33 3.00/0.45 3.00/0.20
bqrLasso 3.00/0.07 3.00/0.04 3.00/0.06 3.00/0.06 3.00/0.00
BEQR 3.00/0.07 3.00/0.06 3.00/0.03 3.00/0.03 3.00/0.00

τ = 0.10 QR 2.32/0.06 2.65/0.03 2.34/0.10 2.31/0.04 3.00/0.22
qrLasso 2.51/1.34 2.77/1.26 2.47/1.19 2.58/1.46 3.00/2.64
bqrLasso 2.71/0.26 2.87/0.39 2.72/0.25 2.63/0.33 2.97/0.16
BEQR 2.77/0.11 2.84/0.15 2.82/0.08 2.70/0.12 3.00/0.04

Table 4: Mean True positives (TP) and False positives (FP) given by Lasso, qrLasso,
bqrLasso and BEQR for simulations with hetrogeneous errors.

from the estimates given by the other 4 methods. This is consistent with the above
observation that Lasso and qrLasso do not provide good prediction and we will not
discuss these results in the following.

The most significant factor influencing the variation of the gene expression is the
mean expression. All methods give very significant (and similar) estimates (the BEQR
estimate is 0.79012). The parameter estimates of Target given by Lasso.S, QR, bqr-
Lasso and BEQR are all positive and their associated confidence/credible intervals (if
any) do not contain zero. In fact, BEQR estimates that the posterior probability of
Target being 0 is around 1.44%. These imply that the regularization of miRNAs may
increase the gene expression variation, consistent with the analysis of Lu and Clark
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Method Error Distribution

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9
Lasso 0.08109 0.12607 0.13156 0.16285 0.11509
qrLasso 0.03792 0.12233 0.20715 0.22757 0.13412
qrLasso.S 0.03750 0.09058 0.12150 0.13073 0.10171

QR 0.03749 0.09056 0.12144 0.12743 0.09053
bqrLasso 0.03750 0.09057 0.12143 0.12742 0.09053
BEQR 0.03750 0.09059 0.12146 0.12743 0.09062

Table 5: Mean testing errors as measured by the check loss function on the gene expres-
sion variance data.

(2012). However, the parameter estimate of Target is small in magnitude (the BEQR
estimate is only 0.005231 and similar for the other methods). We must be cautious
while interpreting these results. There are many possible reasons that can lead to this
small magnitude effect. For example, it is possible that unknown sources of biases in
measuring the RNA expression can lead to such a small magnitude estimate. Another
possible reason is that the expression of miRNAs may vary significantly in the human
population. Even though the effect of miRNAs is to stabilize the expression level of
the genes that they regulate, the marginal gene expression variance can still appear
to be increasing with more miRNA regularization. Clarification of this problem re-
quires incorporating more data (e.g., miRNA expression) and precise biological experi-
ments. For the effect of TargetScore, BEQR’s estimate is 0 and its posterior probability
of being zero is 99.7%; the confidence/credible intervals given by QR and bqrLasso
cover 0; The qrLasso.S estimate is very close to 0 (4 of the 10 subsets gave 0 esti-
mate).

Lu and Clark (2012) observed that genes with mutations in 3′-UTRs tend to have
increased gene expression variation, which implies that mutations in 3′-UTRs might lead
to greater gene expression variation. We also observe that number of SNPs in 3′-UTRs
and the mean MAF of these SNPs positively correlate with the gene expression variation
(Supplementary Table S1). However, in the median regression model, BEQR estimates
the effects of NSNP and MAF to be 0 and the confidence/credible intervals given by
bqrLasso and QR cover 0. This means that there is not enough evidence supporting the
claim that mutations in 3′-UTRs have a direct effect on gene expression variation. In
fact, the variables NSNP and MAF have a relatively strong correlation with the variable
GeneLen (Supplementary Table S1) and GeneLen has a significant effect on the gene
expression variation (Figure 2). Thus, marginally, we can observe positive correlation
between NSNP/MAF and the gene expression variation, but this correlation disappears
after we control for GeneLen.

6 Conclusion and discussion

In this paper, we propose a nonparametric Bayesian variable selection model in quan-
tile regression based on the EL. The prior of the Bayesian model is chosen as the
spike-and-slab prior. We theoretically show that the posterior distribution of the regres-
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Figure 2: The parameter estimates of the gene expression variation data given by the
6 methods. The 95% confidence intervals (if any) are also shown. Note that for BEQR,
the confidence interval may only contain 1 point (zero). In such cases, no confidence bar
is shown in the plots.The dashed lines in the plots correspond to βi = 0.

sion coefficients has an asymptotic property similar to the oracle property. An efficient
MCMC algorithm is developed for the Bayesian quantile regression model. The most
difficult part in the MCMC algorithm is to sample from the full conditional distribu-
tion of the regression coefficient βi. Inspired by the idea of the Laplace approximation,
we propose to apply an M–H step and use a mixture of a normal distribution and
the point mass at zero as the proposal distribution in the M–H step to overcome this
sampling difficulty. Simulation and real data analyses show that this method works
equally well or better than current available methods. In addition, when the random
errors ui are homogenous, we propose a Bayesian weighted multiple-quantile regression
method to improve the statistical efficiency for extreme quantile regression. Simula-
tion studies show that this method generally outperforms the Bayesian quantile regres-
sion model at a single quantile point, especially for the extreme quantile points. We
also prove an Oracle property for this Bayesian weighted multiple-quantile regression
model.

When the number of parameters is greater than the number of observations (p ≥ n),
the EL (4) is generally not well-defined (or there is only one set of {pi | i = 1, . . . , n} that
satisfies the constraints). Hence, the current method would not work for the case p ≥ n.
Recently, Lahiri et al. (2012) proposed a new penalized EL (PEL) for testing population
means. Their PEL allows p greater than n and has good asymptotic properties. This
PEL can be extended in regression contexts. We may develop a corresponding Bayesian
quantile regression model based on the PEL, but its asymptotic property is still not
clear. Another way of circumventing the problem is to first screen for the important
factors using correlation measures such as the distance correlation (Székely et al., 2007;
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Li et al., 2012) and then use the method developed in this paper for more precise
inference.

We have developed an accurate method for statistical inference for extreme quantile
regression for homogeneous error models and further proved its asymptotic property.
The loss function (11) takes similar form as the one proposed in Zou and Yuan (2008).
However, we restrict the non-intercept coefficients to be the same at multiple quantiles
and thus significantly improve the inference accuracy for extreme quantiles for homoge-
neous error models. In addition, Zou and Yuan (2008) did not provide any asymptotic
theory about their method. The homogenous error assumption is less restrictive than
it seems, because under a monotonically increasing transformation, the quantile of the
transformed data is the same as the transformed quantile of the data. The method
developed here can be easily extended to the model Y = g(XTβ) + u, where u is the
error with its τth quantile being zero and g is a known function. If the data does not
satisfy the homogeneous error assumption, we may first apply a monotonically increas-
ing transformation to the response to make the homogeneous error assumption largely
hold. After performing the extreme quantile regression on the transformed data, we can
make the inverse transformation to get back to the original data. Note that this type
of transformation is often performed in ordinary linear regression, but if such transfor-
mation is hard to find, one can always use the method developed in Section 3 to give
estimate of extreme quantiles.

Appendix

Proof of the asymptotic results

The proof of Theorem 1 is based on the following lemma.

Lemma 1. Assume that β0 and κ1 are as in Theorem 1, and β̄ is an estimate of β0

with
√
n(β̄ − β0) →d N (0,Σ1). Consider the hierarchical model (6) with the likelihood

L(β|X,Y ) replaced by L̃(β) = exp{−n
2 (β − β̄)TΣ−1(β − β̄)}, where Σ = Ω−1 is a

positive definite matrix. Suppose that β follows the posterior distribution of this model.
Then, we have P (βκ̄1 = 0) →p 1 and P (

√
n(βκ1 − β̄κ1) ≤ t) = FΩ−1

κ1κ1
(t) + op(1).

Proof. With the likelihood L̃, we have the conditional distribution f̃(β|θ, η) is

f̃(β|θ, η) ∝ L̃(β)

p∏
j=1

π(βj |θj , η)

= exp{−n

2
(β − β̄)TΣ−1(β − β̄)}

p∏
j=1

[
θjI{βj=0} + (1− θj)I{βj �=0}

1√
2πη−1

exp{−
β2
j

2
η}

]

∝ 1

(2nπ)p/2 det(Σ)1/2
exp{−n

2
(β − β̄)TΣ−1(β − β̄)}
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p∏
j=1

[
θjI{βj=0} + (1− θj)I{βj �=0}

1√
2πη−1

exp{−
β2
j

2
η}

]

∝ φ(β| β̄, n−1Σ)

p∏
j=1

[
θjI{βj=0} + (1− θj)I{βj �=0}

1√
2πη−1

exp{−
β2
j

2
η}

]
,

where φ(β| β̄, n−1Σ) is the density of the normal distribution N (β̄, n−1Σ). Denote
κj = I(βj 	= 0) (j = 1, . . . , p), κ = (κ1, . . . , κp)

T and Λκ = diag{κ1, . . . , κp}. Using the
convention 00 = 1, the prior

∏p
i=1 π(βi| θi, η) may be written as

p∏
j=1

[
θjI{βj=0} + (1− θj)I{βj �=0}

1√
2πη−1

exp{−
β2
j

2
η}

]

=
∑

κ1,...,κp∈{0,1}

p∏
j=1

(
(1− θj)I{βj �=0}

1√
2πη−1

exp{−
β2
j

2
η}

)κj
(
θjI{βj=0}

)1−κj

=
∑

κ∈{0,1}p

[ p∏
j=1

(
θjI{βj=0}

)1−κj
(
(1− θj)I{βj �=0}

)κj

]

×(2πη−1)−
∑p

j=1 κj/2 exp{−1

2
η

p∑
j=1

κjβ
2
j }

=
∑

κ∈{0,1}p

[ p∏
j=1

(
θjI{βj=0}

)1−κj
(
(1− θj)I{βj �=0}

)κj

]

×(2πη−1)−tr(Λκ)/2 exp{−1

2
ηβTΛκβ

T }

=
∑

κ∈{0,1}p

ω(β,θ,κ)g(β,θ,κ, η),

where

w(β,θ,κ) =

p∏
j=1

(
θjI{βj=0}

)1−κj
(
(1− θj)I{βj �=0}

)κj

and

g(β,θ,κ, η) = (2πη−1)−tr(Λκ)/2 exp{−1

2
ηβTΛκβ

T }.

Given κ, after a proper permutation, we have βT = (βT
κ ,β

T
κ̄ ) and the matrix Ω = Σ−1

is

Ω =

(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)
.

We have βTΩβ = βT
κΩκκβκ + 2βT

κΩκκ̄βκ̄ + βT
κ̄Ωκ̄κ̄βκ̄ and βTΩβ̄ = βT

κΩκκβ̄κ +
βT
κΩκκ̄β̄κ̄ + βT

κ̄Ωκ̄κβ̄κ + βT
κ̄Ωκ̄κ̄β̄κ̄. Thus,
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φ(β| β̄, n−1Σ)g(β,θ,κ, η)

= Cn,κ exp{−n

2
(β − β̄)TΣ−1(β − β̄)} exp{−1

2
ηβTΛκβ}

= Cn,κ exp

{
− 1

2

[
nβTΣ−1β + ηβTΛκβ

T − 2nβTΣ−1β̄ + nβ̄TΣ−1β̄

]}

= Cn,κ exp

{
− 1

2

[
n
(
βT
κΩκκβκ + 2βT

κΩκκ̄βκ̄ + βT
κ̄Ωκ̄κ̄βκ̄

)
+ ηβT

κβκ

−2n
(
βT
κΩκκβ̄κ + βT

κΩκκ̄β̄κ̄ + βT
κ̄Ωκ̄κβ̄κ + βT

κ̄Ωκ̄κ̄β̄κ̄

)
+ nβ̄TΩβ̄

]}

where Cn,κ = 1√
(2π)p−1 det(n−1Σ)

(2πη−1)−tr(Λκ)/2. Define Cn,κ(θ) =

Cn,κ

∏
κi=0 θi

∏
κi �=0(1−θi), Ω̃n,κ(η) = Ωκκ+n−1ηIκ, b = Ωβ̄ and β̃n,κ(η) = Ω̃−1

n,κ(η)bκ.
Then, almost surely we have

φ(β| β̄, n−1Σ)w(β,θ,κ)g(β,θ,κ, η)

= Cn,κ(θ) exp

{
− 1

2

[
n
(
βT
κΩκκβκ

)
+ ηβT

κβκ

−2n
(
βT
κΩκκβ̄κ + βT

κΩκκ̄β̄κ̄

)
+ nβ̄TΩβ̄

]}
I(βκ̄ = 0)

= Cn,κ(θ) exp

{
− 1

2

[
βT
κ

(
nΩκκ + ηIκ

)
βκ − 2nβT

κbκ + nβ̄TΩβ̄

]}
I(βκ̄ = 0)

= Cn,κ(θ) exp

{
− 1

2
n

[(
βκ − β̃n,κ(η)

)T
Ω̃n,κ(η)

(
βκ − β̃n,κ(η)

)

−β̃n,κ(η)
T Ω̃n,κ(η)β̃n,κ(η) + β̄TΩβ̄

]}
I(βκ̄ = 0)

= Cn,κ(θ, η) exp

{
−1

2
n
(
bTΩ−1b− bTκΩ̃

−1
n,κ(η)bκ

)}

×φ(βκ| β̃n,κ(η), n
−1Ω̃−1

n,κ(η))I(βκ̄ = 0)

= C̃n,κ(θ, η)φ(βκ| β̃n,κ(η), n
−1Ω̃−1

n,κ(η))I(βκ̄ = 0)

where C̃n,κ(θ, η) = Cn,κ(θ)
√

(2π)tr(Λκ) det(n−1Ω̃−1
n,κ(η)) exp{−1

2n(b
TΩ−1b −

bTκΩ̃
−1
n,κ(η)bκ)} and Cn,κ(θ, η) = Cn,κ(θ)

√
(2π)tr(Λκ) det(n−1Ω̃−1

n,κ(η)). From this, we

get that the posterior likelihood f̃(β|θ, η) is a mixture of normal distributions on the
planes βκ̄ = 0, i.e.,

f̃(β|θ, η) =
∑

κ∈{0,1}p

πnκ(θ, η)φ(βκ| β̃n,κ(η), n
−1Ω̃−1

n,κ(η))I(βκ̄ = 0),

where πnκ(θ, η) = C̃n,κ(θ, η)/
∑

κ∈{0,1}p C̃n,κ(θ, η). Denote Ωκ,L be a p × p matrix,

with Ωκ,L(i, j) = 0 if either κi = 0 or κj = 0 and Ωκ,L(i, j) = Ω(i, j) for κi = 1 and
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κj = 1. Let Ω−
κ,L be the Moore–Penrose pseudoinverse matrix of Ωκ,L. Then, up to a

permutation, we have

Ωκ,L =

(
Ωκκ 0
0 0

)
and Ω−

κ,L =

(
Ω−1

κκ 0
0 0

)
.

Denote Σκ,D = Ω−1 − Ω−
κ,L and Kκ̄κ̄ = Ωκ̄κ̄ − Ωκ̄κΩ

−1
κκΩκκ̄. We have

ΩΣκ,DΩ = Ω− ΩΩ−
κ,LΩ

=

(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)
−

(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)(
Ω−1

κκ 0
0 0

)(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)

=

(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)
−

(
Iκ 0

Ωκ̄κΩ
−1
κκ 0

)(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)

=

(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κ̄

)
−

(
Ωκκ Ωκκ̄

Ωκ̄κ Ωκ̄κΩ
−1
κκΩκκ̄

)

=

(
0 0
0 Kκ̄κ̄

)
.

Therefore,

Sκ(η) = exp

{
−1

2
n
(
bTΩ−1b− bTκΩ̃

−1
n,κ(η)bκ

)}

= exp

{
−1

2
n
(
bTΩ−1b− bTΩ−

κ,Lb+ bTκΩ
−1
κκbκ − bTκΩ̃

−1
n,κ(η)bκ

)}

= exp

{
−1

2
n
(
bTΣκ,Db+ n−1ηbTκΩ

−2
κκbκ +O(n−2)

)}

= exp

{
−1

2
n
(
β̄TΩΣκ,DΩβ̄ + n−1ηbTκΩ

−2
κκbκ +O(n−2)

)}

= exp

{
−1

2
n
(
β̄T
κ̄Kκ̄κ̄β̄κ̄ + n−1ηbTκΩ

−2
κκbκ +O(n−2)

)}
.

Since Kκ̄κ̄ is positive definite, if β0κ̄ = 0, we have β̄T
κ̄Kκ̄κ̄β̄κ̄ = Op(n

−1) and Sκ(η) =
exp{−1

2ηb
T
κΩ

−2
κκbκ +Op(1)}; otherwise, Sκ(η) = exp{−1

2nβ̄
T
κ̄Kκ̄κ̄β̄κ̄ +O(1)}.

Take any κ ∈ {0, 1}p and κ 	= κ1. If β0κ̄ = 0, we must have tr(Λκ1) < tr(Λκ)

and hence
C̃n,κ(θ,η)

C̃n,κ1 (θ,η)
= Op(n

(tr(Λκ1 )−tr(Λκ))/2) = op(1). On the other hand, if β0κ̄ 	= 0,

we have
C̃n,κ(θ,η)

C̃n,κ1 (θ,η)
= Op(n

(tr(Λκ1 )−tr(Λκ))/2 exp{−1
2nβ̄

T
κ̄Kκ̄κ̄β̄κ̄}) = op(1). Thus, we

have πnκ1(θ, η) →p 1 as n → ∞ and πnκ(θ, η) →p 0 for κ 	= κ1. This implies that
P (βκ̄1 = 0|θ, η) →p 1 and hence P (βκ̄1 = 0) →p 1. The other conclusion can be easily

proved by using the fact that Ω̃−1
n,κ1

(η) = Ω−1
κ1κ1

+ o(1).

We can now give the proof of Theorem 1.
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Proof of Theorem 1. According to Lemma A.4 in Yang and He (2012), under assump-
tions of Theorem 1, we have

L(β|X,Y ) = exp{−n

2
(β − β̄)TV T

12V
−1
11 V12(β − β̄) +Op(n

−1/2)}.

Let Σ−1 = Ω = V T
12V

−1
11 V12 and L̃(β) = exp{−n

2 (β − β̄)TΣ−1(β − β̄)}. Suppose that

f(β|X,Y ) and f̃(β) are the posterior distributions corresponding to the likelihood
L(β|X,Y ) and L̃(β), respectively. Thus, we have

f(β|X,Y ) = Cn

∫
L(β|X,Y )π(β| θ, η)π(θ)π(η)dθdη,

where Cn is such that Cn

∫
L(β|X,Y )π(β| θ, η)π(θ)π(η)dθdηdβ = 1. Similar equation

holds for f̃(β) and L̃(β) with constant C̃n. Suppose that β follows the distribution
f(β|X,Y ), we have

P (βκ̄1 	= 0| X,Y ) =

∫
βκ̄1

�=0

f(β|X,Y )dβ

= Cn

∫
βκ̄1

�=0

[∫
L(β|X,Y )π(β| θ, η)π(θ)π(η)dθdη

]
dβ

≤p Cn

∫
βκ̄1

�=0

[∫
2L̃(β)π(β| θ, η)π(θ)π(η)dθdη

]
dβ

=
2Cn

C̃n

P̃ (βκ̄1 	= 0),

where P̃ (βκ̄1 	= 0) represents the probability of β not on the plane βκ1 with β following
the distribution f̃(β|X,Y ) and the inequality is in probability. Since Cn/C̃n → 1 in
probability and P̃ (βκ1 	= 0) →p 0 by Lemma 1, we have P (βκ1 	= 0| X,Y ) = op(1)
and hence P (βκ1 = 0| X,Y ) →p 1. For any measurable set A ⊂ R

q, we have

P (βκ1 ∈ A|X,Y )

=

∫
A

[∫
f(β|X,Y )dβκ̄1

]
dβκ1

= Cn

∫
A

[∫
L(β|X,Y )π(β| θ, η)π(θ)π(η)dθdηdβκ̄1

]
dβκ1

= Cn

∫
A

[∫
L̃(β) exp(Op(n

−1/2))π(β| θ, η)π(θ)π(η)dθdηdβκ̄1

]
dβκ1

= Cn

∫
A

[∫
L̃(β)(1 +Op(n

−1/2))π(β| θ, η)π(θ)π(η)dθdηdβκ̄1

]
dβκ1

=
Cn

C̃n

∫
A

[∫
C̃nL̃(β)π(β| θ, η)π(θ)π(η)dθdηdβκ̄1

]
dβκ1 +

Cn

C̃n

Op(n
−1/2)

=
Cn

C̃n

P̃ (βκ1 ∈ A) + op(1)

= P̃ (βκ1 ∈ A) + op(1).

Thus, from Lemma A1 we have
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P (
√
n(βκ1 − β̄κ1) ≤ t|X,Y ) = P̃ (

√
n(βκ1 − β̄κ1) ≤ t) + op(1)

= FΩ−1
κ1κ1

(t) + op(1).

Proof of Theorem 2. By using Lemma 1 and Theorem 4 in Qin and Lawless (1994),
Theorem 2 can be proved similarly as Theorem 1.

In order to prove Theorem 3, we first need to prove the following lemma.

Lemma 2. Under Assumptions 2 and 3, we have

(S1) E{Q(X, Y, ζ)} and E{Q(X, Y, ζ)QT (X, Y, ζ)} are twice continuously differen-
tiable with respect to β and μ, where ζ = c(βT ,μT )T .

(S2) There exist compact neighborhoods Cξ around 0 and Cβ, Cμ such that
E{Q(X, Y, ζ)/(1+ξTQ(X, Y, ζ))} has continuous partial derivatives with respect
to ξ, β and μ, and E{Q(X, Y, ζ)Q(X, Y, ζ)T /(1 + ξTQ(X, Y, ζ))} is uniformly
continuous with respect to ξ, β and μ.

Proof. We first prove (S1). Let Qj(X, Y, ζ) be the jth element of Q(X, Y, ζ). Then, for
j = 1, 2, . . . , p,

E{Qj(X, Y, ζ)} = E{
m∑

k=1

ak(τk − I{Y≤XTβ+μk})xj}

= EX{
m∑

k=1

akEY |X(τk − I{Y≤XTβ+μk})xj}

= EX{
m∑

k=1

ak(τk − FX(XTβ + μk))xj}.

For j = p+ 1, p+ 2, . . . , p+m, we have

E{Qj(X, Y, ζ)} = E{τj−p − I{Y≤XTβ+μj−p}}
= EX{EY |X(τj−p − I{Y≤XTβ+μj−p})}
= EX{τj−p − FX(XTβ + μj−p)}.

Under Assumptions 2 and 3, we have that E{Q(X, Y, ζ)} is twice continuously differ-
entiable with respect to β and μ. Similarly, for 1 ≤ j1 ≤ j2 ≤ p,

E{Qj1(X, Y ζ)Qj2(X, Y, ζ)}
= EX{EY |X(

∑
k

ak(τk − I{Y≤XT+β+μk}))
2xj1xj2}

= EX{EY |X(
∑
k1

∑
k2

ak1ak2(τk1 − I{Y≤XTβ+μk1
})(τk2 − I{Y≤XTβ+μk2

}))xj1xj2}

= EX{EY |X(
∑
k1

∑
k2

ak1ak2(τk1τk2 − τk1I{Y≤XTβ+μk2
}
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− τk2I{Y≤XT+β+μk1
} + I{Y≤XTβ+μk1∧k2

})xj1xj2)}

= EX{
∑
k1

∑
k2

ak1ak2(τk1τk2 − τk1FX(XTβ + μk2)

− τk2FX(XTβ + μk1) + FX(XTβ + μk1∧k2))xj1xj2}.

For 1 ≤ j1 ≤ p and p+ 1 ≤ j2 ≤ p+m,

E{Qj1(X, Y, ζ)Qj2(X, Y, ζ)}
= EX{EY |X(

∑
k

ak(τk − I{Y≤XTβ+μk}))(τj2−p − I{Y≤XTβ+μj2−p})xj1}

= EX{EY |X(
∑
k

ak(τkτj2−p − τkI{Y≤XTβ+μj2−p} − τj2−pI{Y≤XTβ+μk}

+ I{Y≤XTβ+μk∧(j2−p)}))xj1}

= EX{
∑
k

ak(τkτj2−p − τkFX(XTβ + μj2−p)− τj2−pFX(XTβ + μk)

+FX(XTβ + μk∧(j2−p)))xj1}.

For p+ 1 ≤ j1 ≤ j2 ≤ p+m,

E{Qj1(X, Y ζ)Qj2(X, Y, ζ)}
= EX{EY |X(τj1−p − I{Y≤XTβ+μj1−p})(τj2−p − I{Y≤XTβ+μj2−p})}
= EX{τj1−pτj2−p − τj1−pFX(XTβ + μj2−p)− τj2−pFX(XTβ + μj1−p)

+FX(XTβ + μ(j1∧j2)−p)}.

To prove (S2), we first choose a neighborhood Cμ of μ0 sufficiently small such that
μ = (μ1, . . . , μm) ∈ Cμ implies μ1 < μ2 < · · · < μm (since μ0 has a similar property).
Let μ0 = −∞ and μm+1 = ∞. Then, FX(XTβ + μ0) = 0, FX(XTβ + μm+1) = 1.

Define Q
(k)
j = Qj(X, Y,β,μ)I{XTβ+μk<Y≤XTβ+μk+1}. For j ∈ {1, 2, . . . , p}, let q(k)j =∑k

s=1 asτsxj +
∑m

s=k+1 as(τs − 1)xj , and for j ∈ {p + 1, p + 2, . . . , p + m}, let q
(k)
j =

τj−p − I{j−p>k}. Then, EY |X(Q
(k)
j ) = FX(XTβ + μk+1) − FX(XTβ + μk)). Define

q(k) = (q
(k)
1 , . . . , q

(k)
p+m). By the conditional expectation, for each j ∈ {1, 2, . . . , p +m},

we have

E
Qj(X, Y, ζ)

1 + ξTQ(X, Y,β,μ)
= EX

[ ∑
0≤k≤m

q
(k)
j

1 + ξT q(k)
(FX(XTβ+μk+1)−FX(XTβ+μk))

]
,

and for j1, j2 ∈ {1, 2, . . . , p+m}

E
Qj1(X, Y, ζ)Qj2(X, Y, ζ)

1 + ξTQ(X, Y,β,μ)
= EX [

∑
0≤k≤m

q
(k)
j1

q
(k)
j2

1 + ξT q(k)
(FX(XTβ+μk+1)−FX(XTβ+μk))].

Hence, when ξ is sufficiently close to 0, E{Q(X, Y, ζ)/(1+ξTQ(X, Y, ζ))} has continu-
ous partial derivative and E{Q(X, Y, ζ)Q(X, Y, ζ)T /(1 + ξTQ(X, Y, ζ))} is uniformly
continuous with respect to β and μ.
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Define

Γn(ζ) = −n−1
n∑

i=1

log{1 + λn(ζ)
TQ(xi, yi, ζ)} (14)

where λn(ζ) satisfies

n∑
i=1

Q(xi, yi, ζ)

1 + λn(ζ)TQ(xi, yi, ζ)
= 0. (15)

Recall that the MELE ζ̂ that maximizes the EL (12) satisfies ζ̂ = argmax{Γn(ζ)}. By
Lemma A2 and Lemma 3 in Yang and He (2012), we can prove the following consistency
result. Its proof is almost exactly the same as the proof of Theorem 3.1 in Yang and He
(2012) and we omit it.

Lemma 3. Let ζ̂ = (β̂T , μ̂T )T be the estimator that maximizes the EL (12). The

maximum EL estimator (MELE) ζ̂ is a consistent estimator of ζ0 = (β0,μ
T
0 )

T under
Assumptions 1′, 2, 3, 4′ and 5′.

We also need the following lemma for proving Theorem 2.

Lemma 4. Under Assumptions 1′, 2, 3, 4′ and 5′, we have

Γn(ζ) = −1

2
(ζ − ζ0)

tV t
12V11V12(ζ − ζ0) + n−1/2(ζ − ζ0)

tV t
12V

−1
11 Mn

− 1

2
n−1M t

nV
−1
11 Mn + op(n

−1) (16)

uniformly in ζ, for ζ − ζ0 = O(n−1/2) and

ζ̂ − ζ0 = n−1/2(V t
12V11V12)

−1V t
12V

−1
11 Mn + op(n

−1/2), (17)

where Mn = n−1/2
∑n

i=1 Q(xi, yi, ζ0), V11 = E(Q(X, Y, ζ0)Q
T (X, Y, ζ0)) and V12 =

− ∂
∂ζE(Q(X, Y, ζ))|ζ=ζ0 .

Proof. We will use Lemma 6 in Molanes Lopez et al. (2009) to prove Lemma 4. Clearly,
Conditions (C0), (C1), (C2), and (C3) are satisfied from the assumptions of Lemma 4
and the previous lemmas. We only need to check the following conditions as in
Molanes Lopez et al. (2009):

(C4) ‖
∑n

i=1[Q(Xi, Yi, ζ)−E{Q(Xi, Yi, ζ)}]‖ = Op(n
1/2), uniformly in (β,μ) in a o(1)-

neighborhood of ζ0.

(C5) ‖
∑n

i=1[Q(Xi, Yi, ζ)Q(Xi, Yi, ζ)
T − E{Q(Xi, Yi, ζ)Q(Xi, Yi, ζ)

T }]‖ = op(n), uni-
formly in ζ in a o(1)-neighborhood of ζ0.

(C6) ‖
∑n

i=1[Q(Xi, Yi, ζ)−E{Q(X,Y, ζ)}−Q(Xi, Yi, ζ0)+E{Q(X,Y, ζ0)}]‖ = op(n
1/2),

uniformly in ζ in a Op(n
−1/2) neighborhood of ζ0.
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By the definition of P-Glivenko–Cantelli (P-GC) and P-Donsker class, a sufficient con-
dition for (C4) is that F0 = {Qj(X, Y, ζ) : ζ ∈ R

p+m, j = 1, 2, . . . , p + m, } is
P-Donsker, and for (C5) is that F1 = {Qj1(X, Y, ζ)Qj2(X, Y, ζ) : ζ ∈ R

p+m, j1, j2 =
1, 2, . . . , p+m,β ∈ R

p,μ ∈ R
m} is a P-GC class.

From Lemma 9.12 and Lemma 9.8 of Korosok (2008), we know that the class of
indicator functions G1k = {1{Y≤XTβ+μk} − τk : β ∈ R

p, μk ∈ R} is a VC-class, and
therefore it is a P-Donsker class (Theorem 9.3 and Theorem 8.19 of Korosok 2008).
Similarly, we can show that G2kj = {(1{Y≤XTβ+μk} − τk)Xj : β ∈ R

p, μk ∈ R} is
a VC-class (Lemma 9.9 of Korosok 2008) and thus is P-Donsker. By Corollary 9.31
and Theorem 9.29 of Korosok (2008), we get that F0 is P-Donsker. By Theorem 8.14
of Korosok (2008), G1k and G2kj are also P-GC, and therefore, by Corollary 9.26 of
Korosok (2008), F1 is P-GC. Finally, (C6) can be obtained by applying lemma 4.1 of
He and Shao (1996) to Q(X,Y, ζ).

Based on these results, Theorem 3 can be proved using the same technique as in the
proof of Theorem 1.

On the hyper-prior Γ(a, b)

Berger (2006) argued that it is problematic to use the vague prior π(τ2) ∝ τ−2(ε+1) ×
exp(−ε′/τ2) for the “higher level” variance τ2 in normal hierarchical models, where ε and
ε′ are small. Here, the parameter τ2 corresponds to the parameter σ2 in our paper since
both of them are higher level variances, i.e., the variances of the prior for the regression
coefficients βi. Simple calculation shows that the prior π(τ2) ∝ τ−2(ε+1) exp(−ε′/τ2) on
τ2 is just the inverse Gamma distribution Inv-Γ(ε, ε′) distribution, which is equivalent
to putting a Gamma prior Γ(ε, ε′) on τ−2. The prior we used for σ−2 is also a Gamma
distribution Γ(a, b). Berger (2006) states that as ε → 0 “the posterior for τ2 will pile
up its mass near 0, so that the answer can be ridiculous if ε is too small”. If this is the
case, we should be able to see that the τ2 parameter would have a lot of points near
0 in the MCMC chain. Therefore, we performed a simulation study with the following
normal hierarchical model:

yi = β1xi1 + β2xi2 + εi (i = 1, . . . , n),

εi ∼ N (0, σ2),

(β1, β2)
T ∼ N (0, τ2I2),

σ2 ∼ Inv-Γ(a1, b1),

τ2 ∼ Inv-Γ(ε, ε′),

where I2 is the 2 × 2 identity matrix (note that the priors are on σ2 and τ2). In this
simulation, we set (β1, β2) = (1, 2), σ2 = 1 and generated 100 (n = 100) data points
from the linear model. In the Gibbs sampler, we always used a1 = 10−5, b1 = 10−5 and
ε′ = 10−5. Figure 3(a,b) shows the sampling chains of τ2 with ε = 10−5 and ε = 105,
respectively. On the contrary to Berger (2006), τ2 does not pile up its mass near 0 for
ε = 10−5 (ε small) but does so for ε = 105 (ε large). This is, in fact, expected because
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Figure 3: (a,b) The sampling chain of τ2 for the Bayesian linear hierarchical model
with ε = 10−5 and ε = 105; (c,d) The sampling chain of σ2 for the Bayesian empirical
likelihood quantile regression. The y-axis is in log 10 scale.

when ε is small, the prior Inv-Γ(ε, ε′) puts most of its mass on relatively large values,
but when ε is large it puts most of its mass near 0. For comparison, we also applied
our Bayesian empirical quantile regression method to this simulation data (b is always
10−5), we also got similar results (Figure 3(c,d)). The posterior of σ2 piles up its mass
near zero for a = 105 (corresponding to ε in the above linear normal model) but not for
a = 10−5.

In addition, the inverse gamma distribution Inv-Γ(ε, ε′) satisfies Condition 2 in
Berger and Strawderman (1996). According to Theorem 3 in Berger and Strawderman
(1996), the inverse Gamma prior gives admissible Bayesian estimators for all ε, ε′ > 0
for the above normal hierarchical model. Although Theorem 3 in Berger and Straw-
derman (1996) cannot be applied to the linear quantile regression models considered
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in this paper, it can shed light on the validity of the gamma prior on σ−2 (or equiva-
lently, the inverse gamma prior on σ2). Finally, Berger (2006) suggested that the prior
π(τ2) ∝ τ−(ε+1) exp(−ε′/τ2) is a good proper prior for τ2. However, this prior is not
integrable on (0,∞) when ε > 0 is less than 1, and thus is not a proper prior. Based on
the above observation, we conclude that the prior Γ(a, b) is a reasonable prior.

Supplementary Material

Supplement to: Bayesian quantile regression based on the empirical likelihood with spike
and slab priors (DOI: 10.1214/15-BA975SUPP; .zip).
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