
Bayesian Analysis (2016) 11, Number 2, pp. 573–597

Importance Sampling Schemes for Evidence
Approximation in Mixture Models

Jeong Eun Lee∗ and Christian P. Robert†

Abstract. The marginal likelihood is a central tool for drawing Bayesian infer-
ence about the number of components in mixture models. It is often approximated
since the exact form is unavailable. A bias in the approximation may be due to
an incomplete exploration by a simulated Markov chain (e.g. a Gibbs sequence)
of the collection of posterior modes, a phenomenon also known as lack of la-
bel switching, as all possible label permutations must be simulated by a chain
in order to converge and hence overcome the bias. In an importance sampling
approach, imposing label switching to the importance function results in an ex-
ponential increase of the computational cost with the number of components. In
this paper, two importance sampling schemes are proposed through choices for the
importance function: a maximum likelihood estimate (MLE) proposal and a Rao–
Blackwellised importance function. The second scheme is called dual importance
sampling. We demonstrate that this dual importance sampling is a valid estimator
of the evidence. To reduce the induced high demand in computation, the original
importance function is approximated, but a suitable approximation can produce
an estimate with the same precision and with less computational workload.

Keywords: model evidence, importance sampling, mixture models, marginal
likelihood.

1 Introduction

Consider an observed sample x = (x1, . . . , xnx) that is a realisation of a random sample
(univariate or multivariate) from a finite mixture of k distributions

Xj |θ i.i.d.∼ fk(x|θ) =
k∑

i=1

λif(x|ξi) , j = 1, . . . , nx

where the component weights λ = (λ1, . . . , λk) are non-negative and sum to 1. The
collection of the component-specific parameters is denoted by ξ = (ξ1, . . . , ξk) and the
collection of all parameters by θ = (λ, ξ). Following a now standard representation
(Frühwirth-Schnatter, 2001; Marin et al., 2005), each observation xj from the sample
can be assumed to originate from a specific unobserved component of fk, denoted zi,
and the mixture inference problem can then be analysed as a missing data model, with
discrete missing data z = (z1, . . . , znx), such that

Xj |z, ξ ∼ f(xj |ξzj ) , independently for j = 1, . . . , nx .
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The conditional distribution of Zj ∈ {1, . . . , k} is then given by

Zj |x,θ ∼ M
(

λ1f(xj |ξ1)∑k
i=1 λif(xj |ξi)

, . . . ,
λkf(xj |ξk)∑k
i=1 λif(xj |ξi)

)
.

This interpretation of the mixture model leads to a natural clustering of the obser-
vations according to their labels and the cluster associated with the mixture component
i provides information about λi and ξi. In particular, when the full conditional dis-
tribution of the parameter θ is available in closed form, conditional simulation from
π(ξ,λ|x, z) becomes straightforward as exhibited by Diebolt and Robert (1994).

In a Bayesian mixture modelling setup, the goal is to perform inference on the pa-
rameter θ, and the posterior distribution πk(θ|x) is usually approximated via MCMC
methods. The likelihood function pk(x|θ) is both available and invariant under permuta-
tions of the component indices. If an exchangeable prior is chosen on (λ, ξ), the posterior
density reproduces the likelihood invariance and component labels are not identifiable.
This phenomenon is called label switching and is well-studied in the literature (Celeux
et al., 2000; Stephens, 2000b; Jasra et al., 2005). From a simulation perspective, label
switching induces multimodality in the target and while it is desirable that a simulated
Markov chain targeting the posterior explores all of the k! symmetric modes of the pos-
terior distribution, most samplers fail to switch between modes (Celeux et al., 2000).
For instance, when using a data augmentation scheme, which is a form of Gibbs sam-
pler adapted to missing data problems (Robert and Casella, 2004), the Markov chain
moves very slowly if ever switches between the symmetric modes. Therefore, since the
chain only explores a particular region of the support of the multimodal posterior, es-
timates based on the simulation output are necessarily biased. When label switching is
missing from the MCMC output, it can be simulated by modifying the MCMC sam-
ple (see Frühwirth-Schnatter (2001); Papastamoulis and Roberts (2008); Papastamoulis
and Iliopoulos (2010)).

A different perspective on the label switching phenomenon is inferential. Indeed,
point estimates of the component-wise parameters are harder to produce when the
Markov chain moves freely between modes. To achieve component-specific inference
and give a meaning to each component, relabelling methods have been proposed in the
literature (see Richardson and Green (1997); Celeux et al. (2000); Stephens (2000b);
Jasra et al. (2005); Marin and Robert (2007); Geweke (2012); Rodriguez and Walker
(2014) and others). An R-package, label.switching (Papastamoulis, 2013), incorpo-
rates some of those label switching removal methods.

Evaluating the number of components k is a special case of model comparison,
which can be conducted by comparing the posterior probabilities of the models. Those
probabilities are in turn computed via the marginal likelihoods E(k), also known as
model evidences (Richardson and Green, 1997)

E(k) =

∫
S

pk(x|θ)πk(θ) dθ ,

where πk(θ) is the selected prior for the k-component mixture. (In this paper, we as-
sume that it is exchangeable with respect to its components.) Recall that the ratio of
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evidences is a Bayes factor and is properly scaled to be compared with 1 (Jeffreys, 1939).
When a large collection of values of k is considered for model comparison, sophisticated
MCMC methods have been developed to bypass computing evidences (Richardson and
Green, 1997; Stephens, 2000a), even though those are estimated as a byproduct of the
said methods. Alternatively, estimating the number of components can proceed from a
Bayesian non-parametric (BNP) modelling, which assumes an infinite number of com-
ponents and then evaluates the non-empty components implicitly through partitioning
data, using, for instance, the Chinese restaurant process (Antoniak, 1974; Escobar and
West, 1995; Rasmussen, 2000). This, however, requires a modification of the prior mod-
elling, and we will not cover it in this paper, which reassesses Monte Carlo ways of
approximating the evidence.

The difficulty with approaches using E(k) is that the quantity often cannot directly
and reliably be derived from simulations from the posterior distribution πk(θ|x) (see the
harmonic mean proposal of Newton and Raftery, 1994). The quantity has been approx-
imated using dedicated methods such harmonic means (Satagopan et al., 2000; Raftery
et al., 2006), importance sampling (Rubin, 1987, 1988; Gelman and Meng, 1998), bridge
sampling (Meng and Wong, 1996; Meng and Schilling, 2002), Laplace approximation
(Tierney and Kadane, 1986; DiCiccio et al., 1997), stochastic substitution (Gelfand and
Smith, 1990; Chib, 1995, 1996), nested sampling (Chopin and Robert, 2010), Savage–
Dickey representations (Verdinelli and Wasserman, 1995; Marin and Robert, 2010b) and
erroneous implementations of the Carlin and Chib algorithm (Carlin and Chib, 1995;
Scott, 2002; Congdon, 2006; Robert and Marin, 2008). Comparative studies of those
methods are found in Marin and Robert (2010a) and Ardia et al. (2012).

In the specific case of mixtures, the invariance of the posterior density under an
arbitrary relabelling of the mixture components must be exhibited by simulations and
approximations to achieve a valid estimate of E(k) as discussed in Neal (1999); Berkhof
et al. (2003); Marin and Robert (2008). This often leads to computationally intensive
steps in approximation methods, especially when k is large, and it is the purpose of this
paper to provide a partial answer to this specific issue.

We consider in this paper two estimators of E(k), both based on importance sampling
(IS). One is a version of Chib’s estimator and the second one a novel representation called
dual importance sampling. Our importance construction aims to better approximate the
posterior distribution both around a specific local mode and at the corresponding (k!−1)
symmetric modes of the posterior distribution. A particular mode is first approximated
based on (i) a point estimate and (ii) Rao–Blackwellisation from a Gibbs sequence.
Then, the corresponding local density approximate is permuted to reach all modes.
We demonstrate in this paper that dual importance sampling is comparable to our
benchmark method, Chib’s approach. Taking advantage of the symmetry in the posterior
distribution, we show how to reduce computational demands by approximating our
importance function.

Our paper starts by recalling the approximation techniques of Chib’s method and
bridge sampling in Section 2. In Section 3, importance sampling is considered, including
our choices of importance functions. Our importance function approximate approach is
introduced in Section 4. Experiments using both simulated and benchmark datasets,
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namely the galaxy and fishery datasets used in Richardson and Green (1997), are re-
ported in Section 5, and the paper concludes with a short discussion in Section 6.

2 Standard evidence estimators

2.1 Chib’s estimator and corrections

In this paper, the reference estimator of evidence is Chib’s (1995) method. It is derived
from rewriting Bayes’ theorem

Ê(k) = mk(x) =
πk(θ

o)pk(x|θo)

πk(θ
o|x) (1)

where θo is any plug-in value for θ. When πk(θ
o|x) is not available in closed form,

the Gibbs sampling decomposition allows for a Rao–Blackwellised approximation of the
above (Gelfand and Smith, 1990; Robert and Casella, 2004)

π̂k(θ
o|x) = 1

T

T∑
t=1

πk(θ
o|x, zt) ,

where (Zt)Tt=1 is a Markov chain with stationary distribution πk(z|x). The appeal of
this estimator, when available, is that it constitutes a non-parametric density estimator
converging at a regular parametric rate.

It is now a well-recognised fact that label switching is necessary for the above Rao–
Blackwellised π̂k(θ

o|x) to converge to the correct value. When (z1, . . . , zT ) only explores
part of the modes of the posterior, this estimator is biased, generally missing the target
quantity log(mk(x)) by a factor of order O(log k!), with no simple correction factor
(Neal, 1999). Berkhof et al. (2003) suggested a generic correction by averaging π̂k(θ

o|x)
over all possible permutations of the labels, hence forcing “perfect” label switching. The
resulting approximation is expressed as

π̃k(θ
o|x) = 1

Tk!

∑
σ∈Sk

T∑
t=1

πk(θ
o|x, σ(zt)) ,

where Sk denotes the set of the k! permutations of (1, . . . , k) and σ is one of those
permutations. Note that the above correction can also be rewritten as

π̃k(θ
o|x) = 1

Tk!

∑
σ∈Sk

T∑
t=1

πk(σ(θ
o)|x, zt) , (2)

where the notational shortcut σ(θo) means that the components of θo are switched
according to the permutation σ, i.e. σ(θo1, . . . , θ

o
k) = (θoσ(1), . . . , θ

o
σ(k)).

While Chib’s representation has often been advocated as a highly stable solution for
computing the evidence in mixture models, which is why we selected it as our reference,
alternative solutions abound within the literature, including nested sampling (Skilling,
2007; Chopin and Robert, 2010), reversible jump MCMC (Green, 1995; Richardson and
Green, 1997), and particle filtering (Chopin, 2002).
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2.2 Bridge sampling

Meng and Wong (1996) proposed a sample-based method to compute a ratio of nor-
malising constants of two densities with common support. The method is well-suited to
estimate the marginal likelihood (Frühwirth-Schnatter, 2001, 2004) and used as a point
posterior estimate for Chib’s method (Mira and Nicholls, 2004). Considering a nor-
malised density q and the unnormalised posterior distribution π∗

k(θ|x) = πk(θ)pk(x|θ),
the bridge sampling identity is given by

Ê(k) =
Eq(θ)[α(θ)π

∗
k(θ|x)]

Eπk(θ|x)[α(θ)q(θ)]
,

for an arbitrary function α (provided all expectations are well-defined, Chen et al.,
2000). The (formally) optimal choice for α (Meng and Wong, 1996) leads to the following
iterative estimator:

Ê(t)(k) = Ê(t−1)(k)

M−1
1

M1∑
l=1

π̂t−1(θ̃
l
|x)/

{
M1q(θ̃

l
) +M2π̂t−1(θ̃

l
|x)

}
M−1

2

M2∑
m=1

q(θ̂
m
)/

{
M1q(θ̂

m
) +M2π̂t−1(θ̂

m
|x)

} (3)

where π̂t−1(θ|x) = π∗
k(θ|x)/Ê(t−1)(k). Here, (θ̃

1
, . . . , θ̃

M1

) and (θ̂
1
, . . . , θ̂

M2

) are sam-
ples from q(θ) and πk(θ|x), respectively.

The convergence of bridge sampling (with the above optimal α) is trivial when
π∗
k(θ|x) and q(θ) share a sufficiently large portion of their supports. If the support

intersection is too small, the resulting bridge sampling estimator may end up with an
infinite variance (Voter, 1985; Servidea, 2002). Improvements of the algorithm, like path
sampling (Gelman and Meng, 1998), a simple location shift of the proposal distribu-
tion (Voter, 1985), and a warp bridge sampling (Meng and Schilling, 2002), have been
proposed.

In the specific case of the mixture posterior distribution, the parameter θ can
be split in λ and k further blocks ξ1, . . . , ξk in the Gibbs sampling steps. The out-
put samples from the Gibbs sampler are denoted by (θ(j), z(j))J1

j=1, where the z(j)’s
are the component allocation vectors associated with the observations x. For bridge
sampling, Frühwirth-Schnatter (2004) suggested using a Rao–Blackwellised function
q(θ) = q(λ, ξ) of the form

q(θ) =
1

J1

J1∑
j=1

πk(θ|θ(j), z(j),x)

=
1

J1

J1∑
j=1

p(λ|z(j))
k∏

i=1

p(ξi|ξ(j), z(j),x) (4)

assuming {θ(j), z(j)}J1
j=1 is well-mixed, followed by switching the labels of the simula-

tions from the posterior distribution (Frühwirth-Schnatter, 2001). Frühwirth-Schnatter
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(2004) demonstrated that the iterative bridge sampling estimator (3), using (4) as q(·),
converges relatively quickly, in about t = 10 iterations, even with different starting val-
ues. A related MATLAB package, bayesf, by Frühwirth-Schnatter (2008) aggregates a
bridge sampling estimator and an importance sampling estimator using the above q.

3 Novel importance sampling estimators

If q(θ) is an importance function with the support Sq, generating a sample θ =

(θ(1), . . . ,θ(T )) from q(θ) leads to the evidence approximation

Ê(k) =
1

T

T∑
t=1

πk(θ
(t))pk(x|θ(t))

q(θ(t))

def
=

1

T

T∑
t=1

ω(θ(t)) . (5)

To provide a good approximation, the support of q(θ) must overlap with the support
of the posterior distribution, which is both symmetric under permutations and mul-
timodal. In this sense, a Rao–Blackwellised estimate like (4) is a natural solution for
the choice of q, despite the drawback that J1 increases “factorially” fast with k due
to the number of permutations involved in (θ(j), z(j))J1

j=1 (Frühwirth-Schnatter, 2004;
Frühwirth-Schnatter, 2006).

In the following sections, the parameter θ is decomposed into (k + 1) blocks θ =
(λ, ξ1, . . . , ξk). Note that ξi is a component-wise block, most often a vector. Two types
of importance functions, based on the product of marginal posterior distributions, will
be considered. The usefulness and details of the product of block marginal posterior
distributions are well summarised in Perrakis et al. (2014).

3.1 A plug-in proposal

Using a very simple Rao–Blackwell argument inspired from Chib’s representation, a
natural importance function is

q(θ) = πk(θ|zo,θo,x).

Samples are generated from the posterior distribution conditional on a given completion
vector zo, which is usually taken equal to the MAP (maximum a posteriori) or to the
marginal MAP estimate of z both derived from MCMC simulations. Taking the full
permutation of component labels of zo and θo (inspired by Berkhof et al. (2003) and
Marin and Robert (2008)), we thus propose a symmetrised version of a MAP proposal

q(θ) =
1

k!

∑
σ∈Sk

πk(θ|σ(θo), σ(zo),x)

=
1

k!

∑
σ∈Sk

p(λ|σ(zo))
k∏

i=1

p(ξi|σ(ξo), σ(zo),x) . (6)

This proposal is equivalent to generating θ from πk(θ|θo, zo,x) and then operating a
random permutation on the components of θ. The computational cost of producing
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ω(θ) in (5), hence Ê(k), is thus multiplied by k! under the provision that the support
of (6) is sufficiently wide. If the tails of the density (6) are deemed to be too narrow,
as signalled by the effective sample size, additional selected (and thinned) simulations
z1, . . . , zt taken from the Gibbs output can be included to make the proposal more
robust.

While this estimator is theoretically valid, indeed providing an unbiased estimator
of Ê(k), it may face difficulties in practice by missing wide regions of the parameter
space when simulating from πk(θ|x, zo). This is indeed the practical version of simu-
lating from an importance function with a support that is smaller than the support of
the integrand and getting an erroneous approximation of the corresponding integral. In
the current situation, since πk(θ|x, zo) is everywhere positive, this is not a theoretical
issue. However, in practice, the conditional density is numerically equal to zero around
the alternative modes.

3.2 Dual importance sampling

A dual exploitation of the above Rao–Blackwellisation argument produces an alterna-
tive importance sampling proposal, based on MCMC draws {θ(j), z(j)}Jj=1 from the
unconstrained posterior distribution. The new importance function is expressed as

q(θ) =
1

Jk!

J∑
j=1

∑
σ∈Sk

πk(θ|σ(θ(j), z(j)),x)

=
1

Jk!

J∑
j=1

∑
σ∈Sk

p(λ|σ(z(j)))
k∏

i=1

p(ξi|σ(ξ(j)), σ(z(j)),x) . (7)

Here, πk(θ|σ(θ(j), z(j)),x) is a product of full conditional densities on each parameter in

a Gibbs sampler representation and {θ(j), z(j)}Jj=1 is the original albeit not necessarily
well-mixed simulation outcome. Label switching is imposed upon those J conditional
densities through all k! permutations, and conversely the average of J well-selected
conditional densities should approximate the posterior around any of the k! symmetric
modes of this posterior.

We treat (θ(j), z(j))Jj=1 as parameters of q and denote them as {ϕ(j)}Jj=1. The density
(7) then satisfies

q(θ) =
1

Jk!

J∑
j=1

k!∑
i=1

πk(θ|σi(ϕ
(j)),x)

def
=

1

k!

k!∑
i=1

hσi(θ) (8)

where hσi(θ) =
1
J

∑J
j=1 πk(θ|σi(ϕ

(j)),x). Each of the densities hσ1 , . . . , hσk!
has a sup-

port (i.e. a domain where it takes non-negligible values) denoted by Sσ1 , . . . , Sσk!
, re-
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spectively, and Sq =
⋃k!

i=1 Sσi . Note that an estimator using (8) is equivalent to an
estimator using (7).

From a computational perspective, an artificial label switching step is necessary in
computing q(θ) but not in generating a proposal θ from q. For arbitrary permutation
representations σm, σc, σi ∈ Sk = {σ1, . . . , σk!} acting on both θ and ϕ, the following
holds for (7)

πk(σc(θ)|σi(ϕ),x) = πk(σmσc(θ)|σmσi(ϕ),x) ,

where σmσc(θ) = σm(σc(θ)). The full permutation representation set is invariant over
an additional permutation representation σm (e.g. Sk = {σmσ1, . . . , σmσk!}) hence,
q(σc(θ)) and q(σmσc(θ)) are equal. Thus the standard estimator using q in (7) is equiv-
alent (from a computational viewpoint) to an estimator such that (i) proposals are
generated from a particular term hσc(θ) of (8) and (ii) importance weights are com-
puted according to (8). This makes a proposal generating step easier by ignoring label
switching even though all the hσ(θ)’s need be evaluated to compute q(θ).

3.3 Importance function based on marginal posterior densities

Importance functions found in (4) and (8) have the same underlying motivation of a
better approximation of the joint posterior distribution and the resulting estimator (5)
should therefore be more efficient. Both are designed to cover all of the k! clusters, which
are created by either symmetrising the labels of hyperparameter set {θ(j), z(j)}Jj=1 as

in (8) or by randomly permuting the label of each {θ(j), z(j)}J1
j=1 as in (4). Once k!

clusters of parameters of q are thus constructed, the corresponding conditional densities
constitute clusters for q.

Consider κ ∈ {1, . . . , k!}, a cluster index of q. Associating the cluster component
function qκ(·|x) with a support Sκ, the importance function q is expressed as

q(θ|x) =
k!∑

κ=1

p(κ)qκ(θ|x) (9)

where p(κ) is the proportion of those conditional densities that are associated with the

cluster κ and
∑k!

κ=1 p(κ) = 1. The importance function representation (8) is thus a
special case of (9) with (κ = 1, . . . , k!)

Sσκ = Sκ , hσκ(θ) = qκ(θ|x) and p(κ) = 1/k! .

By contrast, the density (4) does not achieve perfect symmetry, which means κ is not
uniformly distributed, although p(κ) → 1/k! as J1 → ∞.

A marginal likelihood estimate using q(θ) as in (9) follows by a standard importance
sampling identity

E(k) =

∫
Sq

πk(θ)pk(x|θ)
q(θ|x)

(
k!∑

κ=1

p(κ)qκ(θ|x)
)
dθ
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=

k!∑
κ=1

∫
Sκ

πk(θ)pk(x|θ)
q(θ|x) p(κ)qκ(θ|x)dθ = Ep(θ,κ)[ω(θ)] (10)

leading to

Ê(k) =
1

T

T∑
t=1

ω(θ(t)) ,

where ω(θ) = πk(θ)pk(x|θ)/q(θ|x), namely a weighted sum of integrals over the Sκ’s
(κ = 1, . . . , k!).

Due to the perfect symmetry in the clusters of (8), the integrals of ωqκ with respect
to θ over Sκ for κ = 1, . . . , k! are equal. Given an arbitrary cluster, κo, the evidence is

E(k) =
k!∑

κ=1

p(κ)

(∫
Sκ

ω(θ)qκ(θ|x)dθ
)

=

∫
Sκo

ω(θ)qκo(θ|x)dθ = Eqκo (θ|x)[ω(θ)] . (11)

Note that the corresponding estimator (Monte Carlo approximation based on T draws)
for the above is exactly of the same form as the estimator for (10).

Both (10) and (11) are thus importance sampling estimators using (4) and (8),
respectively. Hence standard convergence result hold: by the Law of Large Numbers,
both estimates asymptotically converge to E(k), and the Central Limit theorem also
holds

√
T

{
1

T

T∑
t=1

ω(θ(t))− E(k)

}
−→
T→∞

N (0, V )

where V
def
= V1 = varp(θ,κ|x)(ω(θ)) and V

def
= V2 = varqκo (θ|x)(ω(θ)) for (4) and (8),

respectively. The perfect symmetry in the clusters of (8) does not guarantee a better
efficiency in estimation and those variances are rather highly related to how well im-
portance functions approximate the joint posterior distribution. If J1 = Jk! and both
importance functions provide a good approximation and V1 ≈ V2 is expected.

4 Dual importance sampling using an approximation

Both estimators (10) and (11) suffer from massive computational demands when k is
large. In this section, we show how to approximate (7) and increase the computational
efficiency (i.e. computing time) as a result.

It was shown in Section 3.2 that q as in (7) is invariant under a permutation of the
labels of θ and that proposals can be generated from a particular singular term hσc(θ)

of (8) without any loss of statistical efficiency. Given (θ(1), . . . ,θ(T )) ∼ hσc(θ), it is

natural to consider whether or not all terms in {hσ1(θ
(t)), . . . , hσk!

(θ(t))} are different
from zero for t = 1, . . . , T . In the case some are not, it is obviously computationally
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relevant to determine which ones among them are likely to be insignificant (i.e. almost
zero). This perspective motivates the following section and our proposal.

Given a proposal θ generated from a particular hσc(θ), θ ∈ Sσc , the importance
function for θ is an average of all hσ(θ)’s and the relative contribution of each term is

ησi(θ) = hσi(θ)
/
k!q(θ) = hσi(θ)

/ k!∑
l=1

hσl
(θ) , i = 1, . . . , k! .

If ησi(θ) is close to zero, hσi(θ) is negligible within q(θ), and on the opposite ησi(θ) ≈ 1
indicates a high contribution of hσi(θ). In other words, if the supports of hσi and hσc

do not overlap, ησi = 0. As the support intersection gets larger, ησi gets close to 1. The
expected relative contribution of hσi(θ)

Ehσc
[ησi(θ)] =

∫
Sσc

ησi(θ)hσc(θ) dθ

is estimated by

Êhσc
[ησi(θ)] =

1

M

M∑
l=1

ησi(θ
(l)) , θ(l) ∼ hσc(θ) . (12)

After an appropriate permutation of the indices, we obtain that Êhσc
[ησ1(θ)] ≥ · · · ≥

Êhσc
[ησk!

(θ)], namely that the corresponding hσ1 , . . . , hσk!
are in decreasing order of

expected contributions. The importance function q(θ) can then be approximated by
using only the n most important hσ’s (1 ≤ n ≤ k!), leading to the approximation

q̃n(θ) =
1

k!

n∑
i=1

hσi(θ) , (13)

and the mean absolute difference from q(θ) is approximated by

φ̂n =
1

M

M∑
l=1

∣∣∣q̃n(θ(l))− q(θ(l))
∣∣∣ , θ(l) ∼ hσc(θ) . (14)

When this mean absolute difference is below a certain threshold, τ , q̃n is considered
to be an appropriate approximation for q. We define the corresponding approximate set
A(k) ⊆ Sk to be made of {σ1, . . . , σn}, n being defined as the smallest size that satisfies

the condition φ̂n < τ . Under this truncation, the computational efficiency obviously
improves.

Note that A(k) is determined under the assumption that most proposals (θ(t)) are
potentially generated from hσc since the quality of an approximation is only guaranteed
under this assumption. Due to the perfect symmetry of q(θ) over the k! permutations,
the choice of σc is obviously irrelevant to the computational efficiency.
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If hσ’s are well separated, most of the Êhσc
[ησi(θ)]’s are likely to be negligible and

the size of A(k) becomes small, i.e. substantial reduction in computing time ensues.
One natural attempt towards this goal is through rearranging component labels of
the terms (θ(j), z(j))Jj=1 using a label switching removal technique with hopes that

supports of the transformed πk(·|ϕ(j),x)’s almost overlap. Therefore, the transformed
hσ’s may be well separated (or may hardly overlap). Since the importance function (q)
does not change through use of transformed hσ’s, the approximation to E(k) remains
valid and computing time may thus be reduced. The evidence estimate using such an
approximation is detailed in the following algorithm:

Algorithm 1 Dual importance sampling algorithm with approximation

1 Randomly select {z(j),θ(j)}Jj=1 from a Gibbs sequence and rearrange component
labels using a label switching removal technique. Then construct q(θ) as in (8).

2 Derive hσc(θ) and generate particles {θ(t)}Tt=1 ∼ hσc(θ).

3 Construct an approximation, q̃(θ), using the first M terms in {θ(t)}Tt=1:

3.1 Compute (hσ1(θ
(t)), . . . , hσk!

(θ(t)), ησ1(θ
(t)), . . . , ησk!

(θ(t))) for t = 1, . . . ,M and

Êhσc
[ησ1(θ)], . . . , Êhσc

[ησk!
(θ)] as in (12).

3.2 Reorder the σ’s so that Êhσc
[ησ1(θ)] ≥ · · · ≥ Êhσc

[ησk!
(θ)].

3.3 Initialise n = 1 and compute q̃n(θ
(1)), . . . , q̃n(θ

(M)) as in (13) and φ̂n as in (14).

If φ̂n=1 < τ , go to Step 4. Otherwise set n = n+ 1 and update q̃n and φ̂n until
φ̂n < τ .

4 Calculate q̃n(θ
(M+1)), . . . , q̃n(θ

(T )) and replace q(θ(1)), . . . , q(θ(T )) with

q̃n(θ
(1)), . . . , q̃n(θ

(T )) in (5) to estimate Ê(k).

In Step 1, we followed the method suggested by Jasra et al. (2005), even though
alternatives implemented in the label.switching package of Papastamoulis and Iliopoulos
(2010) or in Rodriguez and Walker (2014) could be implemented as well. The total
number of h values that are computed is Tk! in the standard dual importance sampling
scheme but decreases to (Mk!) + |A(k)|(T −M) when using q̃n(θ). The relative gain in
the total number of terms is thus

Δ(A(k)) =
(Mk!) + |A(k)|(T −M)

Tk!
=

M

T

(
1− |A(k)|

k!

)
+

|A(k)|
k!

. (15)

The gain will therefore depend on |A(k)|, when compared with k!, hence ultimately on
the acceptable mean absolute difference τ .

5 Simulation study

Two simulated mixture datasets and two real datasets are used to examine the perfor-
mances of seven marginal likelihood estimators. The simulated datasets, D1 and D2,
are:



584 Importance Sampling for Mixture Marginal Likelihoods

Figure 1: Histogram of the data against estimated six- and four-Gaussian mixture den-
sities (solid line) for (a) the Galaxy dataset and (b) the fishery dataset, respectively.

(D1) x1, . . . , x60 ∼ 0.3N(−1, 1) + 0.7N(5, 22);

(D2) x1, . . . , x80 ∼ 0.15N(−5, 1) + 0.65N(1, 22) + 0.2N(6, 1)

where N(μ, σ2) denotes a normal distribution with mean μ and standard deviation σ.
Two real datasets, called galaxy and fishery datasets, respectively, are shown in Figure 1.
They have been frequently used in the literature as benchmarks (see, e.g. Chib, 1995;
Frühwirth-Schnatter, 2006; Jasra et al., 2005; Richardson and Green, 1997; Stephens,
2000b).

Gaussian and Dirichlet priors are used for the means (μi)
k
i=1 and proportions λ,

(μi)
k
i=1 ∼ N(0, 102) and (λ1, . . . , λk) ∼ Dir(1, . . . , 1) .

For the variance parameters (σ2
i )

k
i=1, inverse Gamma distributions with two sets of

hyperparameters, IG(2, 3) and IG(2, 15), are considered. With the second calibration,
label switching naturally occurred in Gibbs sequences in our simulation experiments.
Removing the first 5000 Gibbs simulations as burn-ins, 104 Gibbs simulations are used
to approximate E(k).

Firstly, a sensitivity analysis is conducted about the expected relative contribution of
hσi to q(θ) with respect to M . Then we choose values for both M and τ . In Section 5.2,
the performance of seven estimators are compared through a large simulation study,
which confirms that the dual importance sampling is a reliable estimator with a lower
demand in computation time.

5.1 Determining M and τ

The approximation set is constructed in two steps. First, we compute Êhσc
[ησ1(θ)], . . .,

Êhσc
[ησk!(θ)], based on reduced samples of size M as in (12). Second, we derive which

terms are negligible when compared with the threshold τ . In our experiments, we chose
τ conservatively so that all zero terms are identified. In MATLAB, 10−324 is rounded
down to 0 thus τ = 10−324 was chosen for the following simulation studies.
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M Êhσ1
[ησ1 ] Êhσ1

[ησ2 ] |A(k)| φ̂n

102 1.0 1.89× 10−102 1 0
103 1.0 5.25× 10−90 1 0
104 1.0 4.62× 10−91 1 0
105 1.0 3.56× 10−80 1 0

Table 1: Estimates for {Êhσ1
[ησi ]}k!i=1, |A(k)| and φ̂n against M for D1 (k = 2). The

prior for a variance parameter is IG(2, 3). Note that Êhσ1
[ησ1 ] = 1 due to rounding.

M Êhσ1
[ησ1 ] Êhσ1

[ησ2 ] Êhσ1
[ησ3 ] Êhσ1

[ησ4 ] Êhσ1
[ησ5 ] Êhσ1

[ησ6 ] |A(k)| φ̂n

102 1.0 3.56×10−16 5.05×10−55 4.64×10−65 8.27×10−144 9.53×10−160 2 0
103 1.0 1.22×10−8 3.01×10−49 2.27×10−53 3.08×10−125 1.11×10−144 2 0
104 1.0 2.03×10−8 1.76×10−43 4.87×10−49 2.61×10−95 8.31×10−136 2 0
105 1.0 1.04×10−5 2.27×10−39 1.51×10−44 4.30×10−87 1.56×10−122 2 0

Table 2: Estimates for {Êhσ1
[ηi]}k!i=1, |A(k)| and φ̂n with respect to M for D2 (k = 3).

The prior for a variance parameter is IG(2, 15). Note that Êhσ1
[ησ1 ] = 1 due to rounding

errors.

The expected relative contribution measures for D1 and D2 are given in Tables 1
and 2, respectively. For J = 102 initial Gibbs simulations, significantly contributing
clusters are easily identified by (Êhσ1

[ησi(θ)])
k!
i=1, and both |A(k)| and φ̂ are relatively

stable against M . Under a natural lack of label switching, q(θ) seems to be well approx-
imated using only hσ1(θ), as seen in Table 1. Even when some label switching occurs in
a Gibbs sequence corresponding to a Gaussian mixture model with three components,
only two terms, hσ1(θ) and hσ2(θ), significantly contribute to q(θ), as seen in Table 2.
For the subsequent analyses in this paper, we chose J = 102, M = 103 and τ = 10−324.

5.2 Simulation results

The following seven marginal likelihood estimators using an equal number of proposals
are compared:

Ê∗
Ch Chib’s method (2) using T = 104 samples and multiplying by k! to compensate

for lack of label switching;

ÊCh Chib’s method (2), using T = 104 randomly permuted Gibbs samples;

ÊIS Importance sampling using q as in (6), with a maximum likelihood estimate for
zo1 , . . . , z

o
n and T = 104 particles;

ÊDS Dual importance sampling using q as in (7), with T = 104 particles and J = 100
Gibbs samples in q(θ);
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ÊA
DS Dual importance sampling using an approximation as in (13), with T = 104 par-

ticles, J = 100 and M = 103;

ÊJ1 Importance sampling using q as in (4) with T = 104 particles and J1 = 100k! Gibbs
samples in q;

ÊBS Bridge sampling (3), using M1 = M2 = 5× 103 samples and q(θ) as in (4) via 10

iterations. Label switching is imposed in hyperparameters {θ(j), z(j)}J1
j=1 in q and

J1 = 100k!.

The marginal likelihood estimates (in log-scales) and the effective sample size (ESS)
ratios, R = ESS/T , are summarised in Figures 2 and 3 by boxplots, based on 50

replicates. Subscripts of Ê and R denote the estimating technique. Note that a modified
ESS, provided by (35) in Doucet et al. (2000), is used here for numerical stability. All
estimators are based on 104 proposals, as in Table 3, where summing up the second and
third columns leads to a fixed total number of function evaluations. Within our setup,
ÊIS is the least demanding in terms of computational workload while the remaining
importance estimators require the same workload, except for ÊA

DS .

Simulated mixture datasets

Mixture models of two and three components are fitted to D1 and D2, respectively.
Regardless of the presence or absence of label switching in the resulting Gibbs sequences,
all estimates based on importance sampling except ÊIS coincide with ÊCh, albeit with
possibly smaller Monte Carlo variations as seen in Figures 2 and 3 and Table 4. When
a suitable approximate for q(θ) is used for the dual importance sampling, no significant
difference in the estimates and the effective sample sizes is observed. The mean sizes
of A(k) in Table 5 are always smaller than k! and it shows that E(k) can be estimated
with a lesser computational workload. When posterior modes are very well separated (no
natural label switching ever present in Gibbs sequences), the number of evaluations in q
is reduced almost by the maximal factor of 1/k!. Computing time increases by a factor
of k! with k for most importance sampling based estimators in Table 6 and increases
relatively slowly for Chib’s methods. Overall, ÊBS requires the highest computing time.

Estimate Number of posterior Number of marginal posterior Number of proposals
evaluations density evaluations in q

ÊIS T Tk! T

ÊDS T TJk! T

ÊA
DS T (M + (T −M)|A(k)|/k!)Jk! T

ÊJ1 T TJ1 T

ÊBS M1 (M1 +M2)J1 M1 +M2

Table 3: Computation steps required by different evidence estimation approaches. Note
that the required computation for ÊBS includes 10 iterations.
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Figure 2: Boxplots of evidence estimates in log-scale (left, middle) and effective sample
sizes ratios (right). Mixture models with two and three Gaussian components are fitted
to (top) D1 and (bottom) D2, respectively. The prior for {σ2

i }ki=1 is IG(2, 3) and label

switching did not occur in Gibbs samples. One outlier of ÊIS in the top-left panel is
discarded.

Figure 3: Boxplots of evidence estimates in log-scale (left, middle) and effective sample
sizes ratios (right). Mixture models with two and three Gaussian components are fitted
to (top) D1 and (bottom) D2, respectively. The prior for {σ2

i }ki=1 is IG(2, 15) and label

switching naturally occurred in Gibbs samples. Two outliers for Ê∗
Ch in the top-left

panel are discarded.
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Figure 4: Boxplots of evidence estimates in log-scale (left, middle) and effective sample
sizes ratios (right). Mixture models with three and four Gaussian components are fitted
to (top) D1 and (bottom) D2, respectively. The prior for {σ2

i }ki=1 is IG(2, 3) and label
switching occurs due to an extra component.

Data p(σ2) k ÊIS Ê∗
Ch ÊCh ÊDS ÊA

DS ÊJ1 ÊBS

D1 IG(2, 3) 2 −158.0896 −158.0484 −158.0594 −158.0578 −158.0575 −158.0568 −158.0563
IG(2, 15) 2 −160.5695 −159.8051 −160.3762 −160.3689 −160.3700 −160.3618 −160.3721
IG(2, 3) 3 −160.3487 −156.8313 −158.1181 −158.1823 −158.1732 −158.1833 −158.2115

D2 IG(2, 3) 3 −224.0944 −223.9207 −223.9379 −223.9285 −223.9229 −223.9279 −223.9323
IG(2, 15) 3 −231.6750 −230.5445 −231.1845 −231.1876 −231.1902 −231.1539 −231.2115
IG(2, 3) 4 −225.1238 −220.9748 −223.3749 −223.6071 −223.5916 −223.5936 −223.6009

Table 4: Average values for 50 estimates for E(k) per estimator.

When A(k) < k!, some reduction in the computing time of Ê(k)ADS is observed and is
due to ignoring zero function evaluations.

The above study considers the case when a mixture model is not overfitted, i.e. does
not have superfluous components, and when label switching does not necessarily occur.
In the event a mixture model is overfitted, label switching always occurs due to those
extra (and unnecessary) components in a mixture representation. However, this does
not mean that we cannot transform conditional densities associated with each of hσ’s to
be closer, resorting to a label switching removal technique. For instance, mixture models
with three and four components were fitted to the datasets D1 and D2, respectively.
For those overfitted mixtures, performance phenomena similar to the above study are
again observed in Figure 4 and Table 4; Ê∗

Ch and ÊIS are quite off from the remaining
estimators; an approximate set size |A(k)| remains smaller than k! in Table 5 and the
corresponding computing time is reduced as shown by Table 6.

Disagreement in the values of ÊIS versus ÊCh shows that an importance function may
(unsurprisingly) fail to properly approximate pk(x|θ)πk(θ), resulting in an unreliable
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D k k! |A1(k)| Δ(A1) |A2(k)| Δ(A2)
D1 2 2 1.00 (0.00) 0.55 (2.26× 10−16) 1.73 (0.45) 0.88 (0.20)
D2 3 6 1.02 (0.14) 0.25 (0.02) 2.18 (0.60) 0.43 (0.09)

D k k! |A3(k)| Δ(A3)
D1 3 6 4.92 (1.26) 0.82 (0.21)
D2 4 24 16.52 (8.28) 0.69 (0.34)

Table 5: Mean and standard deviation (values in brackets) estimates for the approxima-
tion set size, |A(k)|, and the reduction rate of a number of evaluated h-terms, Δ(A), as
in (15) for D1 and D2. Subscripts 1 and 2 indicate results using the priors σ2 ∼ IG(2, 3)
and σ2 ∼ IG(2, 15), respectively. Estimates using overfitted models (σ2 ∼ IG(2, 3)) are
indicated by the subscript 3.

D1 D2

Estimator �T1 �T2 �T3 �T1 �T2 �T3

Ê∗
Ch 0.64 0.91 1.01 1.19 1.22 1.50

ÊCh 0.64 0.70 0.99 1.09 1.09 1.56

ÊIS 0.06 0.06 0.54 0.61 0.62 0.63

ÊDS 0.52 0.51 1.56 1.73 1.67 7.06

ÊA
DS 0.40 0.56 1.53 0.86 1.08 3.54

ÊJ1 0.48 0.47 1.97 2.05 1.83 9.10

ÊBS 0.87 0.84 2.49 2.42 2.38 10.75

Table 6: Elapsed time in seconds for evidence approximations in mixture models for
D1 and D2 using a 2.5 GHz Intel Core i5 processor. Subscripts 1 and 2 of �T indicate
results using the priors σ2 ∼ IG(2, 3) and σ2 ∼ IG(2, 15), respectively. Computing
times for overfitted models (σ2 ∼ IG(2, 3)) are indicated by the subscript 3.

estimate with large variation. Significantly small effective sample sizes (i.e. very small
values for RIS) back this observation. When label switching naturally occurs, as in the
Gibbs sequence (either under the variance prior IG(2, 15) or due to extra components),

Ê∗
Ch disagrees with the other estimates, see Figures 3 and 4. Also unsurprisingly, this

indicates that the simplistic correction through a multiplication by k! is of no use, as
reported in Neal (1999), Frühwirth-Schnatter (2006) and Marin and Robert (2008).

Galaxy and fishery datasets

The priors suggested by Richardson and Green (1997) are used for our simulation study:

μ1, . . . , μk ∼ N(x̄, r2/4),
σ2
1 , . . . , σ

2
k ∼ IG(2, β),
β ∼ G(0.2, 10/r2),

λ1, . . . , λk ∼ Dirichlet(1, . . . , 1)

where x̄ and r are the median and the range of x, respectively. Normal mixture models
are fitted to both datasets and estimates of log(E(k)) and R are summarised in Fig-
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Figure 5: Simulation result for the galaxy dataset. Boxplots of evidence estimates in log-
scale (left, middle) and effective sample sizes ratios (right). Mixture models with (top)
three, (middle) four, and (bottom) six Gaussian components are fitted. One outlier of

ÊCh in the top-left panel is discarded.

Data k ÊIS Ê∗
Ch ÊCh ÊDS ÊA

DS ÊJ1 ÊBS

Fishery data 3 −519.6454 −519.3633 −519.5993 −519.3584 −519.3630 −519.4073 −519.3718
4 −518.1560 −515.9706 −516.8680 −516.6662 −516.6196 −517.2511 −516.6378

Galaxy data 3 −225.8305 −225.5019 −225.4799 −225.4989 −225.5040 −225.5129 −225.4992
4 −224.9167 −222.3848 −223.9332 −224.0716 −224.0109 −224.0754 −224.1287
6 −226.1190 −221.0257 −223.1993 −222.7597 −222.5898 −222.7697 −222.7767

Table 7: Average values for 50 estimates for E(k) per estimator.

ures 5 and 6 and Table 7. In general, a similar behaviour of log(Ê(k)) and R is observed

between the methods. For all cases, the dual importance sampling schemes (ÊDS and

ÊA
DS), ÊJ1 and ÊBS agree with Chib’s approach (ÊCh). Unless modes in joint poste-

rior distributions are clearly separated (e.g. |A(k)| ≈ 1), log(Ê∗
Ch) is biased due to an

improper permutation correction. ÊIS is quite off from other estimates, due to a poor
support for q.

Symptoms of the “curse of dimensionality” are observed. As k increases, the effective
sample size decreases exponentially fast and the variation in the estimates increases.
When k = 6, the variation in the estimates of ÊCh is much larger than those based
on importance sampling and the approximation (ÊA

DS) with the current value for M is
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Figure 6: Simulation result for the fishery dataset. Boxplots of evidence estimates in
log-scale (left, middle) and effective sample sizes ratios (right). Mixture models with

(top) three and (bottom) four Gaussian components are fitted. Two outliers of ÊCh in
the top-left panel are discarded.

slightly biased. Bridge sampling provides relatively stable estimates against k. Due to

the exponential increase of k!, a fast increase in computing is observed for all estimators

in Table 8.

The reduction in numbers of evaluated terms used to approximate Ê(k) varies case

by case, as shown in Table 9; the maximum reduction of 82% and the minimum of

57%. Particularly, a maximum computing time reduction of 59% compared to ÊBS is

observed when k = 4 and k = 6 (see Table 8).

Estimator Fishery data Galaxy data
k = 3 k = 4 k = 3 k = 4 k = 6

Ê∗
Ch 1.16 1.54 1.06 1.68 2.13

ÊCh 1.18 1.61 1.05 1.88 7.19

ÊIS 0.33 0.58 0.16 0.92 7.83

ÊDS 1.91 8.47 1.74 8.61 396.81

ÊA
DS 1.74 6.51 1.54 6.41 245.95

ÊJ1 2.32 14.85 2.32 10.67 530.54

ÊBS 2.82 13.79 2.76 12.53 610.18

Table 8: Elapsed time in seconds for evidences approximation of mixture models for
fishery and galaxy datasets using a 2.5 GHz Intel Core i5 processor.
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k k! |A(k)| Δ(A)
3 6 1.00 (0.00) 0.25 (0.00)
4 24 2.10 (0.76) 0.18 (0.03)

(a) Fishery data

k k! |A(k)| Δ(A)
3 6 1.10 (0.30) 0.26 (0.04)
4 24 8.94 (4.56) 0.43 (0.17)
6 720 65.44 (27.38) 0.18 (0.03)

(b) Galaxy data

Table 9: Mean and standard deviation (values in brackets) of approximate set sizes,
|A(k)|, and the reduction rate of a number of evaluated h-terms Δ(A) as in (15) for (a)
fishery and (b) galaxy datasets.

6 Discussion

This paper considered evidence approximations by importance sampling for mixture
models and re-evaluated some of the known challenges resulting from high multimodality
in a posterior density. Importance sampling requires that the support of an importance
function encompasses the support of a posterior density to perform properly. In the
specific case of mixture models, missing some of modes in a posterior distribution is
likely to produce an unsuitable support, hence a poor estimate of the evidence.

In our experiments, exchangeable priors are used and the posterior density ex-
hibits k! symmetrical terms. Two marginal likelihood estimators are proposed here and
tested against other existing estimators. The first approach exploits the permutation
of π(·|x, zo) with a point-wise MLE, zo, to create an importance function. However,
due to a poor resulting support, this approach performs quite poorly in our simulation
studies. Another poor estimate is derived from Chib’s method when the invariance by
permutation is not reproduced in the sample (Neal, 2001).

A second importance function is constructed by double Rao–Blackwellisation, hence
the denomination of dual importance sampling. We demonstrate both methodologically
and practically that this solution fits the demands of evidence estimation for mixture
models. Moreover, introducing a suitable and implementable approximation scheme, we
show how to reduce the exponential increase in computational workload. The core idea
of this approximation is to bypass negligible elements in the approximation thanks to
the perfect symmetry of a posterior density. When posterior modes are well-separated,
the gain is of a larger magnitude than when those modes strongly overlap.

Borrowing from the original approach in Chib (1996), dual importance sampling
can be extended to cases when conditional Gibbs sampling densities are not available
in closed form. However, this solution suffers from the curse of dimensionality, just like
any other importance sampling estimator.

Alternative evidence approximation techniques could as well be considered for this
problem, as exemplified in Friel and Wyse (2012). For instance, ensemble Monte Carlo
samples from local ensembles that are extensions or compositions of the original, e.g. us-
ing parallel tempering Monte Carlo methods. Extending this idea, Bayes factor approx-
imations were proposed using annealed importance sampling (Neal, 2001) and power
posteriors (Friel and Pettitt, 2008). Further investigation is needed to characterise the
performances of those alternative solutions in the setting of mixture models and label
switching.
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