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On Bayesian A- and D-Optimal Experimental
Designs in Infinite Dimensions

Alen Alexanderian∗,†, Philip J. Gloor‡, and Omar Ghattas§,¶,‖

Abstract. We consider Bayesian linear inverse problems in infinite-dimensional
separable Hilbert spaces, with a Gaussian prior measure and additive Gaussian
noise model, and provide an extension of the concept of Bayesian D-optimality
to the infinite-dimensional case. To this end, we derive the infinite-dimensional
version of the expression for the Kullback–Leibler divergence from the posterior
measure to the prior measure, which is subsequently used to derive the expres-
sion for the expected information gain. We also study the notion of Bayesian
A-optimality in the infinite-dimensional setting, and extend the well known (in
the finite-dimensional case) equivalence of the Bayes risk of the MAP estimator
with the trace of the posterior covariance, for the Gaussian linear case, to the
infinite-dimensional Hilbert space case.

Keywords: Bayesian inference in Hilbert space, Gaussian measure,
Kullback–Leibler divergence, Bayesian optimal experimental design, expected
information gain, Bayes risk.

1 Introduction

In a Bayesian inference problem, one uses experimental (observed) data to update the
prior state of knowledge about a parameter, which often specifies certain properties
of a mathematical model. The ingredients of a Bayesian inference problem include the
prior measure, which encodes our prior knowledge about the inference parameter, ex-
perimental data, and the data likelihood, which describes the conditional distribution of
the experimental data for a given model parameter. The solution of a Bayesian inference
problem is a posterior probability law for the inference parameter. The quality of this
solution, which can be measured using different criteria, depends to a large extent on the
experimental data used in solving the inference problem. In practice, acquisition of such
experimental data is often costly, as it requires deployment of scarce resources. Hence,
the problem of optimal collection of experimental data, i.e., that of optimal experimen-
tal design (OED) (Atkinson and Donev, 1992; Uciński, 2005; Pukelsheim, 2006), is an
integral part of modeling and decision making under uncertainty. The basic problem of
OED is to optimize a function of the experimental setup that describes, in a certain
sense, which needs to be specified, the statistical quality of the solution to the Bayesian
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inference problem. Note that what constitutes an experimental design depends on the
application at hand. For example, in a problem involving diffusive transport of a con-
taminant, one may use measurements of concentration at sensor sites in the physical
domain (at a certain point in time) to infer where the contaminant originated, i.e., the
initial state of the concentration field. In this problem, an experimental design specifies
the locations of the sensors in the physical domain. Note also that the inference param-
eter in this example, i.e., the initial concentration field, is a random function (random
field) whose realizations belong to an appropriate function space.

We consider the problem of design of experiments for inference problems whose
inference parameter belongs to an infinite-dimensional separable Hilbert space. This is
motivated by the recent interest in the Bayesian framework for inverse problems (Stuart,
2010). A Bayesian inverse problem involves inference of Hilbert space valued parameters
that describe physical properties of mathematical models, which are often governed by
partial differential equations. Study of such problems, which requires a synthesis of
ideas from inverse problem theory, PDE-constrained optimization, functional analysis,
and probability and statistics, has provided a host of interesting mathematical problems
with a wide range of applications. The problem of design of experiments in this infinite-
dimensional setting involves optimizing functionals of experimental designs, which are
defined in terms of operators on Hilbert spaces.

The precise definition of what is meant by an optimal design leads to the choice
of a design criterion. A popular experimental design criterion, in the finite-dimensional
case, is that of D-optimality, which seeks to minimize the determinant of the posterior
covariance operator. The geometric intuition behind D-optimality is that of minimizing
the volume of the uncertainty ellipsoid. Minimizing this determinant, however, is not
meaningful in infinite dimensions, as the posterior covariance operator is a trace-class
linear operator with eigenvalues that accumulate at zero. In the present work, we provide
an extension of the concept of D-optimal design to the infinite-dimensional Hilbert space
setting. In particular, we focus on the case of Bayesian linear inverse problems whose
parameter space is an infinite-dimensional separable Hilbert space H , and work in
a conjugate Gaussian setting by assuming a Gaussian prior measure and an additive
Gaussian noise model. To study the concept of D-optimality in the infinite-dimensional
setting we formulate the problem as that of maximizing the expected information gain,
measured by the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) from
posterior to prior. To be precise, if μpr denotes the prior measure, y is a vector of
experimental data, obtained using an experimental design that is specified by a vector
of design parameters ξ, and μy,ξ

post denotes the resulting posterior measure, then the KL
divergence from posterior to prior is given by,

Dkl

(
μy,ξ
post‖μpr

)
:=

∫
H

log

{
dμy,ξ

post

dμpr

}
dμy,ξ

post.

(The argument of the logarithm in the above formula is the Radon–Nikodym derivative
of the posterior measure with respect to the prior measure.) The experimental design

criterion is then defined by averaging Dkl(μ
y,ξ
post‖μpr) over all possible experimental data.
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In a Bayesian inverse problem, this averaging over experimental data can be done as
follows:

expected information gain :=

∫
H

∫
Y

Dkl

(
μy,ξ
post‖μpr

)
πlike(y|u; ξ)dy μpr(du),

where ξ is a fixed design vector, Y denotes the space of experimental data, and
πlike(y|u; ξ) is the data likelihood, which specifies the distribution of y for a given
u ∈ H .

It is known in the finite-dimensional Gaussian linear case (i.e., an inference prob-
lem with Gaussian prior and noise distributions) that maximizing this expected infor-
mation gain is equivalent to minimizing the determinant of the posterior covariance
operator, i.e., the usual D-optimal design problem. While this does not directly ex-
tend to the infinite-dimensional case, it suggests a mathematically rigorous path to an
infinite-dimensional analogue of Bayesian D-optimality. In the present work, we derive
analytic expressions for the KL divergence from posterior to prior in a Hilbert space.
This enables deriving the expression for the expected information gain, leading to the
infinite-dimensional version of the Bayesian D-optimal experimental design criterion.

We also discuss another popular experimental design criterion, that of A-optimality,
in the infinite-dimensional setting. An A-optimal design is one that minimizes the trace
of the posterior covariance operator i.e., if Cpost(ξ) : H → H denotes the posterior
covariance operator corresponding to an experimental design ξ, we seek to minimize
tr(Cpost(ξ)). In the statistics literature it is known (see, e.g., Chaloner and Verdinelli
(1995)) that for a Gaussian linear inference problem in H = R

n, minimizing the trace
of the posterior covariance matrix is equivalent to minimizing the average mean square
error of the maximum a posteriori probability (MAP) estimator for the inference pa-
rameter. We provide an extension of this result to the infinite-dimensional Hilbert space
setting, where we show that the trace of the posterior covariance operator—a positive,
self-adjoint, and trace-class operator on H —coincides with the average mean square
error of the MAP estimator.

1.1 Motivation

Let us begin with an example of a Bayesian inverse problem in finite dimensions, where
we seek to infer a parameter u ∈ R

n, using noisy experimental data y ∈ R
q and a

linear model that relates the experimental data and the parameter u. In a Bayesian
formulation, we model our prior knowledge/beliefs about u with a prior probability
distribution. We consider the case where this prior distribution is a Gaussian. Let us
denote a Gaussian measure with mean m and (symmetric positive definite) covariance
matrix Q by μ, and recall that the measure μ = N (m,Q) admits the Lebesgue density,

dμ

dx
(x) =

1√
(2π)n|Q|

exp
{
− 1

2
〈x−m,Q−1(x−m)〉

}
,

where by
dμ
dx

we denote the Radon–Nikodym derivative of μ with respect to the n-
dimensional Lebesgue measure. We consider a prior law μ0 = N (m0,C0) for u and
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assume that
y = Au+ η, (1)

where A : Rn → R
q is a q × n matrix, and η is a random vector that accounts for

the experimental noise. Furthermore, we assume a Gaussian noise model, i.e., η ∼
N (0,Γnoise), where Γnoise is the (symmetric positive definite) noise covariance matrix.

To solve the Bayesian inverse problem means to compute a posterior probability
law for the parameter u, given an experimental value of y. By Bayes’ theorem, the
probability density function (pdf) of u conditioned on y, i.e., the posterior pdf, is

π(u|y) = π(u,y)

π(y)
=

π(y|u)π(u)∫
Rn π(y|u)π(u) du , (2)

where π(u,y) is the joint pdf of u and y. In the present Gaussian linear case, substi-
tuting the respective Gaussian pdfs for the prior π(u) and the likelihood π(y|u) in (2)
one can show that

π(u|y) = 1√
(2π)n|C|

exp
{
− 1

2
〈u−m,C−1(u−m)〉

}
,

where m = C
(
A∗Γ−1

noisey+C−1
0 m0

)
and C−1 = C−1

0 +A∗Γ−1
noiseA; see, e.g., Tarantola

(2005, Chapter 3).

In a problem of optimal design of experiments, one seeks an experimental setup that
can be used to collect data y, from which the parameter u is optimally inferred. An
experimental design is usually identified with a vector of experimental design parame-
ters, which, as before, we denote by ξ. The vector ξ enters the Bayesian inverse problem
through the data likelihood π(y|u). The exact nature of this dependence on ξ is not
essential to our discussion so, for notational convenience, we suppress the vector ξ in
our derivations. (See, e.g., Chaloner and Verdinelli (1995) for an overview of how an
experimental design is incorporated in an inference problem in classical formulations.)

A D-optimal design is one that aims to minimize the volume of the uncertainty ellip-
soid; this is achieved by minimizing log det(C). An A-optimal design, on the other hand,
minimizes tr(C), which results in minimized average posterior variance. It is known
that, in the finite-dimensional case, minimizing log det(C) is equivalent to maximizing
the expected information gain,∫

Rn

∫
Rq

Dkl (π(u|y)‖π(u)) π(y|u)dy π(u)du, (3)

where Dkl (π(u|y)‖π(u)) =
∫
Rn log(π(u|y)/π(u))π(u|y) du. (Notice that in this finite-

dimensional setting, we can write the expression for the KL divergence and the expected
information gain in terms of the posterior and prior pdfs.) On the other hand, in the case
of Bayesian A-optimality, it is known in the finite-dimensional case that minimization
of tr(C) is equivalent to minimization of the average mean square error (see Section 5)
of the estimator m = C(A∗Γ−1

noisey +C−1
0 m0) of u.

The topic of the present paper is optimal design of experiments for Bayesian linear in-
verse problems, where the inference parameter belongs to an infinite-dimensional Hilbert
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space. In particular, we study Bayesian A- and D-optimality for such problems. It is
instructive to consider an example of an infinite-dimensional Bayesian inverse problem
to motivate the discussion that follows. Consider the following time-dependent partial
differential equation (PDE) that describes the conduction of heat in a physical domain
D with piecewise smooth boundary ∂D:

yt(x, t) = −∇ ·
(
κ(x)∇y(x, t)

)
(x, t) ∈ D × [0, tfinal],

y(x, 0) = u(x) x ∈ D,

κ∇y(x, t) · n = 0 (x, t) ∈ ∂D × [0, tfinal].

Here, y(x, t) is the temperature at a given point x ∈ D and at time t, yt denotes the
partial derivative of y with respect to t, and the function κ(x) describes the thermal
diffusivity of the medium. The function u(x) is the initial state, which, in the present
example, we consider to be the uncertain parameter that we wish to estimate. In par-
ticular, suppose that we have placed temperature sensors at points {x1,x2, . . . ,xns} in
D and take measurements at times {t1, t2, . . . , tnt} in [0, tfinal]. The problem of using
this temperature data to infer the initial state u(x), through a Bayesian formulation, is
an example of a Bayesian inverse problem with a inversion parameter that lives in an
infinite-dimensional function space.

Notice that the familiar form of the Bayes formula given in (2), in terms of pdfs
(Lebesgue densities), is not meaningful in this case, because there is no Lebesgue mea-
sure in infinite dimensions. Thus, the formulation of the Bayesian inverse problem in a
function space requires care. For Gaussian linear inverse problems in infinite dimensions,
it is known (Stuart, 2010) that analogous expressions for the mean and covariance oper-
ator of the posterior measure can be derived, albeit in terms of Hilbert space operators.
It is important to note that the study of Bayesian inverse problems in infinite dimen-
sions is not only an interesting theoretical exercise, but also has important implications
in practical computations. Namely, to derive appropriate formulations and consistent
discretizations of such Bayesian inverse problems, suitable for computer implementa-
tions, a careful understanding of these problems in infinite dimensions is essential. We
refer to the article Bui-Thanh et al. (2013), which describes consistent discretizations
and numerical algorithms for solution of infinite-dimensional Bayesian linear inverse
problems that are governed by PDEs.

1.2 Paper overview

Our goal is to study the Bayesian A- and D-optimal experimental design criteria in
infinite dimensions. To facilitate the discussion, in Section 2 we recall the background
material from analysis and probability in infinite dimensions that is needed in the rest
of the article. Next, we discuss the infinite-dimensional formulation of Bayesian inverse
problems in Section 3. We augment the presentation in that section with a brief dis-
cussion of the directions in the parameter space where significant uncertainty reduction
occurs in the inference process. In Section 4, we study Bayesian D-optimality in infinite
dimensions, where we derive expressions for the KL divergence from posterior to prior,
and derive the analogue of Bayesian D-optimality in the infinite-dimensional Hilbert
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space setting. Finally, in Section 5, we study Bayesian A-optimality in infinite dimen-
sions, where we extend the known result relating the trace of the posterior covariance
and the Bayes risk of the MAP estimator to infinite dimensions.

2 Background concepts

In this section, we outline the background concepts that are needed in the rest of this
article. In what follows, H denotes an infinite-dimensional separable real Hilbert space,

with inner-product 〈·, ·〉H and induced norm ‖·‖H = 〈·, ·〉1/2H .

2.1 Trace-class operators on HHH

Let L (H ) denote the set of bounded linear operators on H . For A ∈ L (H ), |A| =
(A∗A)1/2, where A∗ denotes the adjoint of A. We say A is of trace-class if for any
orthonormal basis {fj}∞j=1 of H ,

∞∑
j=1

〈|A|fj , fj〉H < ∞.

It is straightforward to show that the value of the above summation is invariant with
respect to the choice of the orthonormal basis (Reed and Simon, 1972). We denote by
L1(H ) the subspace of L (H ), consisting of trace-class operators. For A ∈ L1(H ),

tr(A) =

∞∑
j=1

〈Afj , fj〉H ,

where the sum is finite and its value is independent of the choice of the orthonormal
basis (Conway, 2000; Reed and Simon, 1972).

We say that a linear self-adjoint operator A is positive if 〈x,Ax〉H ≥ 0 for all x ∈ H ,

and is strictly positive if 〈x,Ax〉H > 0 for all nonzero x ∈ H . Let L sym+
1 (H ) be the

subspace of positive self-adjoint operators in L1(H ), and note that forA ∈ L sym+
1 (H ),

there exists an orthonormal basis of eigenvectors, {ej}, with corresponding (real, non-
negative) eigenvalues, {λj}, and tr(A) =

∑∞
j=1 〈Aej , ej〉H =

∑∞
j=1 λj . We also recall

that for A in L sym+
1 (H ) (or more generally to the space of positive self-adjoint compact

operators), the square root of A is defined as follows,

A1/2x =

∞∑
j=1

λ
1/2
j 〈ej , x〉H ej , x ∈ H .

In what follows we shall make repeated use of the following result: if A ∈ L1(H )
and B ∈ L (H ) then AB and BA both belong to L1(H ) and tr(AB) = tr(BA); see,
e.g., Reed and Simon (1972), Da Prato and Zabczyk (2002, Chapter 1), or Gel’fand
and Vilenkin (1964). Moreover, it is straightforward to show that if A is a trace-class
operator and B : H → R

q is a bounded linear operator, then AB∗B ∈ L1(H ) and
tr(AB∗B) = tr(BAB∗).
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2.2 Borel probability measures on HHH

We work with probability measures on the measurable space (H ,B(H )), where B(H )
denotes the Borel sigma-algebra on H ; we refer to such measures as Borel probability
measures. Let μ be a Borel probability measure on H with bounded first and second
moments. The mean m ∈ H and covariance operator Q ∈ L (H ) of μ are characterized
as follows:

〈m,x〉H =

∫
H

〈z, x〉H μ(dz), 〈Qx, y〉H =

∫
H

〈x, z −m〉H 〈y, z −m〉H μ(dz),

for all x, y ∈ H . It is straightforward to show (see, e.g., Da Prato (2006)) that Q
belongs to L sym+

1 (H ), and that∫
H

‖x‖2H μ(dx) = tr(Q) + ‖m‖2H . (4)

Let us also recall the notion of the Fourier transform of a Borel measure μ on H .
The function μ̂ : H → R given by,

μ̂(ξ) =

∫
H

ei〈x,ξ〉 μ(dx),

is called the Fourier transform of μ. It is known that the Fourier transform μ̂ uniquely
determines μ; that is, if μ and ν are two Borel probability measures on H such that
μ̂(ξ) = ν̂(ξ) for all ξ ∈ H then μ = ν; see (Da Prato, 2006, Proposition 1.7).

2.3 Gaussian measures on HHH

In the present work, we shall be working with Gaussian measures on Hilbert spaces
(Da Prato, 2006); μ is a Gaussian measure on (H ,B(H )) if for every x ∈ H the linear
functional 〈x, ·〉H , considered as a random variable from (H ,B(H ), μ) to (R,B(R)),

is a (one-dimensional) Gaussian random variable. Given m ∈ H and Q ∈ L sym+
1 (H ),

the Gaussian measure μ = N (m,Q) is the unique probability measure with

μ̂(ξ) = exp

{
i〈m, ξ〉 − 1

2
〈Qξ, ξ〉

}
, ξ ∈ H .

We refer the reader to Da Prato (2006), Da Prato and Zabczyk (2002), or Da Prato and
Zabczyk (2014) for the theory of Gaussian measures on Hilbert spaces. If the covariance
operator Q satisfies ker(Q) = {0}, where ker(Q) denotes the null space of Q, we say
that N (m,Q) is a non-degenerate Gaussian measure.

In what follows, we shall use the following result, concerning the law of an affine
transformation on H : If μ = N (m,Q) is a Gaussian measure on H , A ∈ L (H ,K )
where K is also a Hilbert space, and b ∈ K , then Tx = Ax + b is a random vari-
able on H whose law (a probability measure on K ) is given by μT = μ ◦ T−1 =
N (Am+ b,AQA∗) (Da Prato, 2006). Using this result, we note that for z1, . . . , zn ∈
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H the mapping Ax = (〈z1, x〉H , . . . , 〈zn, x〉H), a linear transformation from H to
K = R

n, has law N (a,Σ) with a ∈ R
n and Σ ∈ R

n×n given by

ai = 〈zi,m〉H , Σij = 〈Qzi, zj〉H , i, j ∈ {1, . . . , n}.

See (Da Prato, 2006, Corollary 1.19) for derivation of this.

We also note that, for Tx = Ax+ b with A ∈ L (H ) and b ∈ H ,∫
H

‖Tx‖2H μ(dx) =

∫
H

‖ξ‖2H μT (dξ) = tr(AQA∗) + ‖Am+ b‖2H ,

where the last equality uses (4). It follows that if A ∈ L (H ) is a positive, self-adjoint
compact operator, and μ = N (m,Q) is a Gaussian measure, then∫

H

〈Ax, x〉H μ(dx) =

∫
H

∥∥∥A1/2x
∥∥∥2

H
μ(dx)

= tr(A1/2QA1/2) +
〈
A1/2m,A1/2m

〉
H

= tr(AQ) + 〈Am,m〉H . (5)

This shows that the well-known expression for the expectation of a quadratic form on
R

n extends to the infinite-dimensional Hilbert space setting. It can be shown that, as
in the finite-dimensional case, this result holds not just for Gaussian measures, but also
for any Borel probability measure with mean m and covariance operator Q; moreover,
the only requirement on the operator A is boundedness. That is, we have the following
result:

Lemma 1. Let μ be a Borel probability measure on H with mean m ∈ H and covari-
ance operator Q ∈ L sym+

1 (H ), and let A ∈ L (H ). Then,∫
H

〈Ax, x〉H μ(dx) = tr(AQ) + 〈Am,m〉H .

Proof. See Appendix A.

2.4 Kullback–Leibler divergence

In probability theory the Kullback–Leibler (KL) divergence, also referred to as the
relative entropy, is a measure of “distance” between two probability measures. This
notion was defined in Kullback and Leibler (1951). While the KL divergence is not
a metric—it is non-symmetric and does not satisfy the triangle inequality—it is used
commonly in probability theory and mathematical statistics to describe the distance
of a measure μ from a reference measure μ0. In particular, in Bayesian statistics, it is
common to use the KL divergence from the posterior measure to the prior measure to
quantify the information gain in the inference process. Moreover, the KL divergence
does satisfy some of the intuitive notions of distance, i.e., the KL divergence from μ to
μ0 is non-negative and is zero if and only if the two measures are the same.
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Let μ and μ0 be two Borel probability measures and suppose μ is absolutely con-
tinuous with respect to μ0. The KL divergence from μ to μ0, denoted by Dkl (μ‖μ0), is
defined as

Dkl (μ‖μ0) =

∫
H

log
{ dμ

dμ0

}
dμ.

Here dμ
dμ0

denotes the Radon–Nikodym derivative of μ with respect to μ0. In the case μ
is not absolutely continuous with respect to μ0, the KL divergence is +∞. Notice that
for Borel probability measures on R

n that admit densities with respect to the Lebesgue
measure, we may rewrite the definition of the KL divergence in terms the densities;
that is, if p and p0 are Lebesgue densities, i.e., probability density functions (pdfs), of μ
and μ0, respectively, one has Dkl (μ‖μ0) =

∫
Rn log(p(x)/p0(x)) p(x) dx. However, in an

infinite-dimensional Hilbert space, where there is no Lebesgue measure, we are forced
to work with the abstract definition of the KL divergence presented above.

In this paper, we shall be dealing with Gaussian measures on infinite-dimensional
Hilbert spaces. For Gaussian measures on R

n, one can use the expression for the (mul-
tivariate) Gaussian pdfs to derive the well-known analytic expression for the KL diver-
gence between Gaussians. In the infinite-dimensional Hilbert space setting, not only do
we not have access to pdfs, but also any two given Gaussian measures may not be equiv-
alent.1 In fact, if we consider a centered (zero-mean) Gaussian measure μ = N (0, C),
and its shifted version μ′ = N (m, C), it is known that μ and μ′ are either singular or
equivalent, and that μ and μ′ are equivalent if and only if the shift m belongs to the
space Hμ = range(C1/2). For a Gaussian measure, the space Hμ so defined is called
the Cameron–Martin space associated to μ. It is a known result (see, e.g., Da Prato
(2006)) that if the Hilbert space H is infinite-dimensional, then μ(range(C1/2)) = 0.
Thus we see that for a Gaussian measure μ on H , shifting the mean gives, μ-almost
surely, a Gaussian measure that is singular with respect to μ; see, e.g., Da Prato (2006,
Chapter 2). More generally, the conditions for the equivalence of two Gaussian measures
is specified by the Feldman–Hajek Theorem (Da Prato and Zabczyk, 2002, 2014).

In the present study, we work with a special case, namely that of a Bayesian linear
inverse problem on H with a Gaussian prior, an additive Gaussian noise model, and
finite-dimensional observations; in this case the posterior measure is also Gaussian and
is equivalent to the prior (Stuart, 2010), and thus, Dkl

(
μy
post‖μpr

)
is well-defined. Later

in the paper, we shall derive the expression for the KL divergence from posterior to prior
in an infinite-dimensional Hilbert space, which we shall use to derive the expression for
the expected information gain.

3 Bayesian linear inverse problems in a Hilbert space

We consider the problem of inference of a parameter u, which belongs to an infinite-
dimensional Hilbert space H . All our prior knowledge regarding the parameter u is
encoded in a Borel probably measure on H , which we refer to as the prior measure

1Recall that two measures are called equivalent if they are mutually absolutely continuous with
respect to each other.



680 Bayesian A- and D-Optimality in Infinite Dimensions

and denote by μpr; here we assume that μpr is a Gaussian measure μpr = N (upr, Cpr).2
Moreover, in what follows, we assume that ker(Cpr) = {0}, i.e., μpr is non-degenerate.
The inference problem uses experimental data y ∈ Y to update the prior state of
knowledge of the law of the parameter u. Here Y is the space of the experimental data,
which in the present work is Y = R

q (endowed with the Euclidean inner product). We
assume that u is a model parameter, which is related to experimental data y ∈ Y ,
according to the following noise model,

y = Gu+ η. (6)

The operator G : H → Y is the parameter-to-observable map and is assumed to be
a continuous linear mapping. In practice, for a given u, computing Gu would involve
the evaluation of a mathematical model with the parameter value u followed by the
application of a restriction operator to extract data at prespecified locations in space
and/or time. The discrepancy between the model output Gu and experimental data
y is modeled by η, which is a random vector that accounts for experimental noise,
i.e., noise associated with the process of collecting experimental data. We assume η ∼
N (0,Γnoise), and thus, the distribution of y|u is Gaussian, y|u ∼ N (Gu,Γnoise) with
pdf

πlike(y|u) =
1

Zlike
exp

{
− 1

2
(Gu− y)TΓ−1

noise(Gu− y)
}
,

where Zlike = (2π)q/2 det(Γnoise)
1/2. Note that in general Γnoise is a symmetric positive

definite matrix. In the present work, we focus on the case that the noise covariance
matrix is known, based on knowledge of the experimental noise levels and the cor-
relation lengths. This is a common assumption especially in the context of Bayesian
inverse problems that are governed by PDE models, where in addition, one often as-
sumes uncorrelated observations. An estimate of the noise levels in such cases is often
available based on the error tolerances of the measurement devices that are used to
collect data.

3.1 Bayes’ formula and the posterior measure

The solution of the Bayesian inverse problem is the posterior measure, describing the
law of the parameter u, conditioned on the experimental data y, and is linked to the

2To specify a Gaussian prior measure, we need to specify its mean and covariance. A computation-
ally tractable method of specifying prior covariance operators in Bayesian inverse problems in infinite
dimensions, with H = L2(D) where D is a bounded open set in R

d, is to define them as inverses of dif-
ferential operators. The information about the size of the variance and correlation lengths can be built
into the covariance operator by considering inverses of appropriately chosen Laplacian-like operators;
we refer to Stuart (2010) for theory and analytic examples and Bui-Thanh et al. (2013) for computa-
tional aspects of specifying such covariance operators. Gaussian priors so constructed are sometimes
referred to as smoothing (or regularizing) priors, due to the smoothing properties of their covariance
operators. The prior mean can be specified by a sufficiently regular element of H that reflects our prior
belief about the inversion parameter. (More precisely, we require that the prior mean belong to the

Cameron–Martin space range(C1/2
pr ).) See also Lindgren et al. (2011), where the authors develop theory

and computational methods for constructing Matérn-type Gaussian processes.
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prior measure μpr through the infinite-dimensional version of Bayes’ theorem (Stuart,
2010):

dμy
post

dμpr
=

1

Z(y)
πlike(y|u), (7)

where Z(y) is the normalization constant. It is convenient to use the notation

Φ(u;y) =
1

2
(Gu− y)TΓ−1

noise(Gu− y), (8)

so that πlike(y|u) ∝ exp{−Φ(u;y)}. This enables rewriting Bayes’ theorem as follows:

dμy
post

dμpr
=

1

Z0(y)
exp{−Φ(u;y)}, (9)

with Z0(y) =
∫

H exp{−Φ(u;y)}μpr(du). In the Gaussian linear case, it is possible to
evaluate Z0(y) analytically; see Lemma 2 below.

As discussed above, we consider Bayesian linear inverse problems, i.e., Bayesian
inverse problems involving a linear parameter-to-observable map G. It is known (Stuart,
2010) that for a Gaussian linear inverse problem, as specified above, the solution is a
Gaussian posterior measure μy

post = N (uy
post, Cpost) with

Cpost = (G∗Γ−1
noiseG + C−1

pr )
−1, uy

post = Cpost(G∗Γ−1
noisey + C−1

pr upr).

Notice that these expressions resemble the usual formulas for the mean and covariance
of the posterior measure in a finite-dimensional Gaussian linear inverse problem. We
refer to (Stuart, 2010, Example 6.32) for justification of these formulas for the infinite-
dimensional Bayesian linear inverse problems considered in the present work.

In practice, the noise covariance matrix, Γnoise is often a multiple of the identity,
Γnoise = σ2I, where σ is the experimental noise level. As mentioned above, we consider
the case where σ is known.3 In the derivations that follow, since there is no loss of
generality, we take σ = 1. Generalizing the results to the cases where Γnoise is an
anisotropic diagonal matrix (uncorrelated observations with varying experimental noise
levels) or more generally Γnoise that is symmetric and positive definite with nonzero off
diagonal entries (correlated observations) is straightforward. Moreover, for simplicity,
we assume that the prior is a centered Gaussian, i.e., upr = 0. Again, the generalization
to the case of non-centered prior measure is straightforward. With these simplifications,
the mean and covariance of the posterior measure are given by

Cpost = (G∗G + C−1
pr )

−1, uy
post = CpostG∗y. (10)

In what follows, we use the notation

Hm = G∗G. (11)

3Note that in problems where σ2 is unknown, one often lets σ2 be a hyper-parameter with its
own (usually non-informative) prior, and then works with a marginalized (over σ2) posterior for the
inference parameter.
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The motivation behind this notation is that G∗G is the Hessian of the functional, Φ(u;y),
which measures the magnitude of the misfit between experimental data y and model
prediction Gu. Note that in statistical terms, Hm is the Hessian of the negative log-
likelihood, which is also referred to as the Fisher information operator. Another notation
we shall use frequently is

H̃m = C1/2
pr HmC1/2

pr . (12)

Intuitively, this prior-preconditioned Hm can be thought of as the information operator
that has been filtered through the prior. To further appreciate the notion of the prior-
preconditioned data misfit Hessian, we note that the second moment of the parameter-
to-observable map, considered as a random variable G : (H ,B(H ), μpr) → (Rq,B(Rq))
is given by∫

H

|Gu|2 μpr(du) =

∫
H

〈Gu,Gu〉
Rq μpr(du)

=

∫
H

〈Hmu, u〉H μpr(du) = tr(CprHm) = tr(H̃m).

3.2 A spectral point of view of uncertainty reduction

Let H̃m be the prior-preconditioned data misfit Hessian as defined in (12) and denote

S = (I + H̃m)
−1. (13)

The posterior covariance operator, Cpost, given in (10), can be written as Cpost = C1/2
pr (I+

H̃m)
−1C1/2

pr = C1/2
pr SC1/2

pr . We consider the quantity

δ(Cpr, Cpost) := tr(Cpr)− tr(Cpost) = tr
(
C1/2
pr (I − S)C1/2

pr

)
.

For the class of Bayesian linear inverse problems that we consider in this work,
δ(Cpr, Cpost) ≥ 0. In particular, we note that if {λi} and {ei} are the eigenvalues and

the respective eigenvectors of H̃m, then

〈ei, (I − S)ei〉H = 1− 〈ei,Sei〉H = 1− 1/(1 + λi) = λi/(1 + λi) ≥ 0, i = 1, 2, . . . ,

which shows that δ(Cpr, Cpost) = tr(C1/2
pr (I −S)C1/2

pr ) ≥ 0. The quantity δ(Cpr, Cpost) can
thus be considered a measure of variance (uncertainty) reduction. More precisely, we
consider for each i ≥ 1,

〈ei, Cpostei〉H =

∫
H

〈
ei, u− uy

post

〉2
H

μy
post(du),

which measures the posterior variance of the coordinate of u in the direction ei.

Proposition 1. Let {λi, ei}∞1 be eigenpairs of H̃m. Then, 〈ei, Cpostei〉H ≤ 〈ei, Cprei〉H ,
for all i ≥ 1.
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Proof. Note that for each v ∈ H , Sv =
∑

j(1 + λj)
−1 〈ej , v〉H ej . Hence,

〈ei, Cpostei〉H =
〈
ei, C1/2

pr SC1/2
pr ei

〉
H

=
〈
C1/2
pr ei,SC1/2

pr ei

〉
H

=
∑
j

(1 + λj)
−1

〈
ej , C1/2

pr ei

〉2

H
≤

∑
j

〈
ej , C1/2

pr ei

〉2

H
=

∥∥∥C1/2
pr ei

∥∥∥2
H

= 〈ei, Cprei〉H ,

where the penultimate equality follows from Parseval’s identity.

Also,

tr(Cpost) = tr(Cpr)− tr(C1/2
pr (I − S)C1/2

pr ) =

∞∑
j=1

(1− αj) 〈ej , Cprej〉H ,

where αj = λj/(1 + λj). Thus, for eigenvalues λj that are large, we have αj ≈ 1 which
suggests that significant uncertainty reduction occurs in such directions. It is well known
that for large classes of ill-posed Bayesian inverse problems, the eigenvalues λi of H̃m

decay rapidly to zero, with a relatively small number of dominant eigenvalues indicating
the data-informed directions in the parameter space. This allows “focusing” the infer-
ence to low-dimensional subspaces of the parameter space H . Such ideas have been used
to develop efficient numerical algorithms for solution of infinite-dimensional Bayesian
inverse problems in works such as Bui-Thanh et al. (2013); Flath et al. (2011) and
for algorithms for computing A-optimal experimental designs for infinite-dimensional
Bayesian linear inverse problems in Alexanderian et al. (2014).

4 KL divergence from posterior to prior and expected
information gain

Let us first motivate the discussion by recalling the form of the KL divergence from
the posterior to prior in the finite-dimensional case. We use boldface letters for the
finite-dimensional versions of the operators appearing in the Bayesian inverse problem.
To indicate that we work in R

n, we denote by μpr,n and μy
post,n the prior and posterior

measures in the n-dimensional case. The following expression for Dkl(μ
y
post,n‖μpr,n) is

well known:

Dkl

(
μy
post,n‖μpr,n

)
=

1

2

[
− log

(
detCpost

detCpr

)
− n+ tr(C−1

pr Cpost) +
〈
C−1

pr u
y
post,u

y
post

〉
Rn

]
. (14)

Note that the above expression is not meaningful in the infinite-dimensional case. For
one thing, n appears explicitly in the expression. Moreover, in the infinite-dimensional
case, Cpr is a trace-class operator whose eigenvalues accumulate at zero, so dividing
by the determinant of the prior covariance is problematic as n → ∞. Finally, in the
infinite-dimensional case, C−1

pr is the inverse of a compact operator and hence is un-
bounded; therefore, the trace term, which involves the inverse of the prior covariance,
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needs clarification. However, it is possible to reformulate (14) and obtain an expression
that has meaning in the infinite-dimensional case as seen below.

A straightforward calculation shows that the first term on the right in (14) may be
simplified:

− log

(
detCpost

detCpr

)
= log

(
detCpr

detCpost

)
= log det

(
CprC

−1
post

)
= log det

(
C1/2

pr (Hm +C−1
pr )C

1/2
pr

)
= log det(H̃m + I). (15)

Recall that, in general, if A is Hermitian, then there exists a unitary matrix U such
that

D = [λiδij ] = U∗AU

is diagonal. In this case, the diagonal elements are the eigenvalues of A, and

det(I+A) = det(U) det(I+D) det(U∗) =
n∏

i=1

(1 + λi).

In the infinite-dimensional setting, given a trace-class operator A ∈ L sym+
1 (H ),

lim
n→∞

log

(
n∏

i=1

(1 + λi(A))

)
= lim

n→∞

n∑
i=1

log(1 + λi(A)) ≤ lim
n→∞

n∑
i=1

λi(A) < ∞,

so, motivated by the n-dimensional case, we may define the Fredholm determinant of
I +A as

det(I +A) =

∞∏
i=1

(1 + λi(A)),

where λi(A) are the eigenvalues of A (Simon, 1977). Hence, the final expression in (15)
is meaningful in infinite dimensions. Next, we consider the term −n+ tr(C−1

pr Cpost):

−n+ tr(C−1
pr Cpost) = −tr(I) + tr(C−1

pr Cpost)

= tr(C−1
pr Cpost − I) = tr

(
(C−1

pr −C−1
post)Cpost

)
= −tr(HmCpost), (16)

where in the last step we used the fact thatC−1
post = Hm+C−1

pr . Notice that the argument
of the trace in the final expression is in fact a trace-class operator in the infinite-
dimensional case and has a well-defined trace. Combining (15) and (16) and defining
the inner-product 〈x,y〉C−1

pr
= 〈C−1/2

pr x,C−1/2
pr y〉Rn for x,y ∈ R

n, we rewrite (14),

Dkl

(
μy
post,n‖μpr,n

)
=

1

2

[
log det(H̃m + I)− tr(HmCpost) +

〈
uy
post,u

y
post

〉
C−1

pr

]
. (17)

In Section 4.1, we derive, rigorously, alternate forms of the expression for the KL
divergence from posterior to prior in the infinite-dimensional Hilbert space setting; as
we shall see shortly, one of those forms is a direct extension of (17) to the infinite-
dimensional case. The reason for introducing the weighted inner-product 〈·, ·〉C−1

pr
will

also become clear in the discussion that follows.
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4.1 The KL-divergence from posterior to prior

In what follows, we shall use the following result, which is a consequence of Proposi-
tion 1.2.8 in Da Prato and Zabczyk (2002).

Proposition 2. Let A ∈ L (H ) be a positive self-adjoint operator, μ = N (0,Q) a
Gaussian measure on H , and b ∈ H . Then,∫

H

exp

{
−1

2
〈Ax, x〉H + 〈b, x〉H

}
μ(dx)

= det(I + Ã)−1/2 exp
{1

2

∥∥(I + Ã)−1/2Q1/2b
∥∥2

H

}
,

where Ã = Q1/2AQ1/2.

In the following technical lemma, we calculate the expression for Z0, introduced
in (9).

Lemma 2. Let Φ(u;y) = 1
2 (Gu− y)TΓ−1

noise(Gu− y), as defined by (8). Then,

Z0(y) :=

∫
H

exp{−Φ(u;y)}μpr(du)

= exp

{
−1

2
|y|2

}
det(I + H̃m)−1/2 exp

{
1

2
〈Cpostb, b〉H

}
,

where b = G∗y and Cpost = (G∗G + C−1
pr )

−1, as in (10).

Proof. First note that (recall that we have assumed Γnoise = I)

Φ(u;y) =
1

2
(Gu− y)T (Gu− y) =

1

2
〈Gu,Gu〉

Rq − 〈Gu,y〉
Rq +

1

2
〈y,y〉

Rq

=
1

2
〈Hmu, u〉H − 〈G∗y, u〉H +

1

2
|y|2. (18)

Therefore, ∫
H

exp{−Φ(u;y)}μpr(du)

= exp

{
−1

2
|y|2

}∫
H

exp

{
−1

2
〈Hmu, u〉H + 〈b, u〉H

}
μpr(du),

where b = G∗y. By Proposition 2, we have∫
H

exp

{
−1

2
〈Hmu, u〉H + 〈b, u〉H

}
μpr(du)

= det(I + C1/2
pr HmC1/2

pr )−1/2 exp

{
1

2

∥∥∥(I + C1/2
pr HmC1/2

pr )−1/2C1/2
pr b

∥∥∥2
H

}

= det(I + H̃m)
−1/2 exp

{
1

2

∥∥∥(I + H̃m)
−1/2C1/2

pr b
∥∥∥2

H

}
.

The assertion of the lemma now follows, since Cpost = C1/2
pr (I + H̃m)

−1C1/2
pr .
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The following result provides the expression for the KL divergence from posterior to
prior:

Proposition 3. Let μpr be a centered Gaussian measure on H , and μy
post =

N
(
uy
post, Cpost

)
be the posterior measure for a Bayesian linear inverse problem with

additive Gaussian noise model as described in Section 3. Then,

Dkl

(
μy
post‖μpr

)
=

1

2

[
log det(I + H̃m)− tr(HmCpost)−

〈
uy
post,G∗(Guy

post − y)
〉
H

]
. (19)

Proof. Consider (9), and note that

Dkl

(
μy
post‖μpr

)
=

∫
H

log

{
dμy

post

dμpr

}
μy
post(du)

= − logZ0(y)−
∫

H

Φ(u;y)μy
post(du). (20)

Using (18) to expand Φ(u;y), the integral on the right becomes∫
H

Φ(u;y)μy
post(du) =

1

2

∫
H

〈Hmu, u〉H μy
post(du)−

∫
H

〈G∗y, u〉H μy
post(du) +

1

2
|y|2.

The second integral evaluates to
〈
G∗y, uy

post

〉
H

, by the definition of the mean of the
measure, and the first integral evaluates, via the formula for the integral of a quadratic
form to ∫

H

〈Hmu, u〉H μy
post(du) = tr(HmCpost) +

〈
uy
post,Hmu

y
post

〉
H

.

Using the expression for Z0 from Lemma 2,

− logZ0(y) =
1

2
|y|2 − log det(I + H̃m)

−1/2 − 1

2
〈CpostG∗y,G∗y〉H

=
1

2
|y|2 + 1

2
log det(I + H̃m)−

1

2

〈
uy
post,G∗y

〉
H

,

where we have also used the definition of uy
post. Substituting into (20), we obtain

Dkl

(
μy
post‖μpr

)
=
1

2
log det(I + H̃m)−

1

2

〈
uy
post,G∗y

〉
H

− 1

2
tr(HmCpost)−

1

2

〈
uy
post,Hmu

y
post

〉
H

+
〈
G∗y, uy

post

〉
H

,

which, after some algebraic manipulation and recalling that Hm = G∗G, yields the
assertion of the proposition.

Let us note the following interpretation for the last term appearing inDkl

(
μy
post‖μpr

)
given in (19). Consider the function Φ(u) = 1

2 (Gu− y)T (Gu− y), which is the familiar
data misfit term in the deterministic interpretation of the corresponding linear inverse
problem. (For notational simplicity we have suppressed the dependence of Φ on the
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data vector y.) Note that the variational derivative of Φ at a point u ∈ H in direction
h ∈ H is given by

Φ′(u)h =
d

dε

∣∣∣
ε=0

Φ(u+ εh) = 〈Gu− y,Gh〉
Rq = 〈G∗(Gu− y), h〉H .

Next, recall that the mean of the posterior, uy
post, of the present Bayesian linear inverse

problem coincides with the MAP estimator for the inference parameter u and is the
global minimizer of the regularized cost functional given by

J (u) = Φ(u) +
1

2
〈u, u〉C−1

pr
, (21)

with minimization done over the Cameron–Martin space, Hμpr = range(C1/2
pr ) ⊂ H ;

see Stuart (2010); Dashti et al. (2013). The inner-product in the regularization term is

〈x, y〉C−1
pr

=
〈
C−1/2
pr x, C−1/2

pr y
〉
H

, x, y ∈ Hμpr .

We have, by the first order optimality conditions, J ′(uy
post)h = 0 for every h ∈ Hμpr ,

that is, 〈
G∗(Guy

post − y), h
〉
H

+
〈
uy
post, h

〉
C−1
pr

= 0, for all h ∈ Hμpr .

Thus, in particular, −〈G∗(Guy
post − y), uy

post〉H = 〈uy
post, u

y
post〉C−1

pr
. This leads to the

following alternate form of expression (19):

Dkl

(
μy
post‖μpr

)
=

1

2

[
log det(I + H̃m)− tr(HmCpost) +

〈
uy
post, u

y
post

〉
C−1
pr

]
. (22)

Note that this expression for the KL divergence Dkl

(
μy
post‖μpr

)
is the direct extension

of the corresponding expression in the case of H = R
n as given in (17) to infinite

dimensions.

Remark 1. A straightforward modification of the arguments leading to (19), for the
case of a prior μpr = N (upr, Cpr), gives

Dkl

(
μy
post‖μpr

)
=

1

2

[
log det(I + H̃m)− tr(HmCpost)−

〈
uy
post − upr,G∗(Guy

post − y)
〉
H

]
.

Moreover, in view of the argument leading to (22), we have

Dkl

(
μy
post‖μpr

)
=

1

2

[
log det(I + H̃m)− tr(HmCpost) +

〈
uy
post − upr, u

y
post − upr

〉
C−1
pr

]
.

Remark 2. In the discussion above, we mentioned in passing the notion of the MAP
estimator of the inference parameter. Recall that in the finite-dimensional case, a MAP
estimator is defined as a point in the parameter space that maximizes the pdf (i.e.,
the Lebesgue density) of the posterior measure. While this definition does not extend
to the infinite-dimensional setting, it is still possible to define a notion of the MAP
estimator in infinite dimensions. Denote by Bε(z) the open ball of radius ε > 0 centered
at z ∈ H . A MAP estimator can be understood as a point u∗ such that Bε(u

∗) has
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maximal probability as ε → 0. We refer to Dashti et al. (2013) for a rigorous treatment
of the mathematical questions concerning MAP estimators of Bayesian inverse prob-
lems in separable Banach spaces. In particular, it is shown in Dashti et al. (2013) that
MAP estimators are the minimizers of the regularized cost functionals of form (21),
corresponding to the associated Bayesian inverse problems. In the Gaussian linear set-
ting considered here, the functional J (u) has a unique global minimizer—the MAP
estimator, which also coincides with the posterior mean.

4.2 Expected information gain

Here we derive the expression for the expected information gain. We first prove the
following technical lemma, which is needed in the proof of the main result in this section.

Lemma 3. The following identities hold:

1. Eμpr

{
Ey|u

{〈
uy
post,G∗y

〉
H

}}
= tr(H̃m),

2. Eμpr

{
Ey|u

{〈
uy
post,Hmuy

post

〉
H

}}
= tr(SH̃2

m),

where H̃m and S are as in (12) and (13), respectively.

Proof. We present the proof of the first statement; the second one follows from a similar
argument. Let us begin from the inner expectation. Note that, by the definition of uy

post

we have 〈
uy
post,G∗y

〉
H

= 〈CpostG∗y,G∗y〉H = 〈y,GCpostG∗y〉
Rq .

For clarity, let us denote L = GCpostG∗. Recall that y|u is distributed according to
N (Gu,Γnoise), and that we assumed Γnoise = I. Using the formula for the expectation
of a quadratic form (on Y = R

q), Lemma 1, we have

Ey|u

{〈
uy
post,G∗y

〉
H

}
= Ey|u {〈y, Ly〉Rq} = tr(L)+〈Gu, LGu〉

Rq = tr(L)+〈u,G∗LGu〉H .

By the comment at the end of Section 2.1 and recalling that Cpost = C1/2
pr SC1/2

pr ,

tr(L) = tr(GCpostG∗) = tr(CpostHm) = tr(C1/2
pr SC1/2

pr Hm)

= tr(SC1/2
pr HmC1/2

pr ) = tr(SH̃m). (23)

Therefore,

Ey|u

{〈
uy
post,G∗y

〉
H

}
= tr(SH̃m) + 〈u,G∗LGu〉H . (24)

Next, to compute the outer expectation, we proceed as follows (keep in mind that
μpr = N (0, Cpr)). By Lemma 1,

Eμpr {〈u,G∗LGu〉H } =

∫
H

〈u,G∗LGu〉H μpr(du) = tr(G∗LGCpr);
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and

tr(G∗LGCpr) = tr(G∗GCpostG∗GCpr) = tr(HmCpostHmCpr)
= tr(C1/2

pr HmCpostHmC1/2
pr ) = tr(C1/2

pr HmC1/2
pr SC1/2

pr HmC1/2
pr )

= tr(H̃mSH̃m) = tr(SH̃2
m).

Thus, combining (23), (24), and (25),

Eμpr

{
Ey|u

{〈
uy
post,G∗y

〉
H

}}
= tr(SH̃m) + tr(SH̃2

m) = tr(SH̃m(I + H̃m))

= tr(H̃m(I + H̃m)S) = tr(H̃m),

which is the first statement of the lemma.

The following theorem is the main result of this section.

Theorem 1. Let μpr be a centered Gaussian prior measure on H , and μy
post =

N
(
uy
post, Cpost

)
be the posterior measure for a Bayesian linear inverse problem with

additive Gaussian noise model as described in Section 3. Then,

Eμpr

{
Ey|u

{
Dkl

(
μy
post‖μpr

)}}
=

1

2
log det(I + H̃m).

Proof. By (19) we have

Eμpr

{
Ey|u

{
Dkl

(
μy
post‖μpr

)}}
=

1

2
log det(I + H̃m)

−1

2
tr(HmCpost)−

1

2
Eμpr

{
Ey|u

{〈
uy
post,G∗(Guy

post − y)
〉
H

}}
. (25)

Using the previous lemma, we proceed as follows:

Eμpr

{
Ey|u

{〈
uy
post,G∗(Guy

post − y)
〉
H

}}
= Eμpr

{
Ey|u

{〈
uy
post,Hmu

y
post

〉
H

}}
− Eμpr

{
Ey|u

{〈
uy
post,G∗y

〉
H

}}
= tr(SH̃2

m)− tr(H̃m)

= tr(S(H̃m − S−1)H̃m) = −tr(SH̃m).

Thus, since tr(HmCpost) = tr(H̃mS) = tr(SH̃m), the expression for the expected infor-

mation gain in (25) simplifies to Eμpr

{
Ey|u

{
Dkl

(
μy
post‖μpr

)}}
= 1

2 log det(I + H̃m).

The result above provides the infinite-dimensional analogue of Bayesian D-optimality.
As mentioned in the introduction, an experimental design ξ enters the Bayesian inverse
problem through the data likelihood. This dependence on ξ, in the present Gaussian
linear case, is manifested through a ξ dependent data misfit Hessian, Hm = Hm(ξ).
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Consequently, the D-optimal design problem in the infinite-dimensional Hilbert space
setting is given by,

maximize
ξ∈Ξ

log det(I + H̃m(ξ)),

where Ξ is the design space which needs to be specified in a given experimental design
problem.

Remark 3. As mentioned earlier, in a large class of Bayesian inverse problems, H̃m

admits a low-rank approximation,

H̃mv ≈
r∑

i=1

λi 〈ei, v〉H ei, v ∈ H ,

where r is the numerical rank of H̃m, and {λi}ri=1 are the dominant eigenvalues of H̃m

with respective eigenvectors {ei}ri=1. Thus, one can use the following approximation

log det(I + H̃m) ≈
r∑

i=1

log(1 + λi),

which enables an efficient means of approximating the expected information gain.

5 Expected mean square error of the MAP estimator
and Bayesian A-optimality

In this section, we consider another well-known optimal experimental design criterion,
Bayesian A-optimality, which aims to minimize the trace of the posterior covariance
operator. It is known in the statistics literature that for inference problems with a finite-
dimensional parameter, this is equivalent to minimizing the expected mean square error
of the mean posterior, which, in the case of a Bayesian linear inverse problem, coincides
with the MAP estimator. In this section, we extend this result to the infinite-dimensional
Hilbert space setting.

The MSE of the MAP estimator uy
post is

MSE(uy
post;u) = Ey|u

{∥∥u− uy
post

∥∥2
H

}
.

The MSE is also referred to as the risk of the estimator uy
post, corresponding to a

quadratic loss function. A straightforward calculation shows that

MSE(uy
post;u) =

∥∥u− Ey|u
{
uy
post

}∥∥2
H

+ Ey|u

{∥∥uy
post − Ey|u

{
uy
post

}∥∥2
H

}
, (26)

Note that the first term in (26) quantifies the magnitude of estimation bias, and the
second term describes the variability of the estimator around its mean. The following
technical lemma provides the expression for MSE(uy

post;u) in the infinite-dimensional
Hilbert space setting.



A. Alexanderian, P. J. Gloor, and O. Ghattas 691

Lemma 4. Let uy
post be the MAP estimator for u as in (10). Then,

MSE(uy
post;u) = ‖(CpostHm − I)u‖2H + tr(C2

postHm).

Proof. Consider the expression for MSE(uy
post;u), given in (26). For the first term in

the sum, we have

u− Ey|u
{
uy
post

}
= u− Ey|u {CpostG∗y} = u− CpostG∗Gu = (I − CpostHm)u.

Next, note that ξ(y) = uy
post − Ey|u

{
uy
post

}
has law μ = N (0,Q) with Q =

(CpostG∗)(CpostG∗)∗ = CpostHmCpost. Therefore,

Ey|u

{∥∥uy
post − Ey|u

{
uy
post

}∥∥2
H

}
=

∫
H

‖ξ‖2H μ(dξ) = tr(CpostHmCpost) = tr(C2
postHm).

Next, we consider the average over the prior measure of the MSE,

Eμpr

{
MSE(uy

post;u)
}
=

∫
H

∫
Y

∥∥u− uy
post

∥∥2
H

πlike(y|u) dy μpr(du),

which is also known as the Bayes risk of the estimator uy
post, corresponding to a quadratic

loss function (Carlin and Louis, 1997; Berger, 1985). The following result extends the
well-known result regarding the connection between the Bayes risk of the MAP estimator
and the trace of the posterior covariance, for a Bayesian linear inverse problem, in the
infinite-dimensional Hilbert space setting.

Theorem 2. Let μpr be a centered Gaussian prior measure on H , and μy
post =

N
(
uy
post, Cpost

)
be the posterior measure for a Bayesian linear inverse problem with

additive Gaussian noise model, as described in Section 3. Then, Eμpr

{
MSE(uy

post;u)
}
=

tr(Cpost).

Proof. By Lemma 4,

Eμpr

{
MSE(uy

post;u)
}
=

∫
H

‖(CpostHm − I)u‖2H μpr(du) + tr(C2
postHm), (27)

and since (CpostHm − I)u ∼ N (0, (CpostHm − I)Cpr(CpostHm − I)∗) =: μ,∫
H

‖(CpostHm − I)u‖2H μpr(du) =

∫
H

‖ξ‖2H μ(dξ)

= tr((CpostHm − I)Cpr(CpostHm − I)∗).

We proceed as follows:

tr((CpostHm − I)Cpr(CpostHm − I)∗) = tr((CpostHm − I)∗(CpostHm − I)Cpr)
= tr(HmC2

postHmCpr)− tr(HmCpostCpr)− tr(CpostHmCpr) + tr(Cpr).
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Let us first consider the last two terms; recalling that Cpost = C1/2
pr SC1/2

pr ,

−tr(CpostHmCpr) + tr(Cpr) = −tr(C1/2
pr SC1/2

pr HmCpr) + tr(Cpr)
= −tr(CprSH̃m) + tr(Cpr)
= tr(CprS(S−1 − H̃m)) = tr(CprS) = tr(Cpost).

Thus, by (27),

Eμpr

{
MSE(uy

post;u)
}
= tr(C2

postHm) + tr(HmC2
postHmCpr)− tr(HmCpostCpr) + tr(Cpost).

Hence, showing that the first three terms sum to zero completes the proof. To this end,
we note that tr(HmCpostCpr) = tr(H̃mSCpr) and that

tr(C2
postHm) + tr(HmC2

postHmCpr) = tr(H̃mSCprS) + tr(H̃mSCprSH̃m)

= tr
(
H̃mSCprS(I + H̃m)

)
= tr(H̃mSCpr).

Appendix A: Proof of Lemma 1

Let {ei}∞1 be a complete orthonormal set in H , and denote by Πn the orthogonal
projection of H onto Span{e1, . . . , en}; that is, for x ∈ H , Πn(x) =

∑n
i=1 〈ei, x〉H ei.

First note that∫
H

〈Ax, x〉H =

∫
H

〈A(x−m), x−m〉H μ(dx)

+

∫
H

〈Ax,m〉H μ(dx) +

∫
H

〈Am,x〉H μ(dx)− 〈Am,m〉H .

By the definition of the mean of the measure, the last three terms sum to 〈Am,m〉H .
Thus, the rest of the proof consists of showing

∫
H 〈A(x−m), x−m〉H μ(dx) = tr(AQ).

Note that for every x ∈ H , x−m = limn→∞ Πn(x−m), so

lim
n→∞

〈AΠn(x−m),Πn(x−m)〉H = 〈A(x−m), x−m〉H .

Moreover, | 〈AΠn(x−m),Πn(x−m)〉H | ≤ ‖A‖ ‖x−m‖2H , and since Q is trace-class,

the measure μ has a bounded second moment. Hence,
∫

H ‖x−m‖2H μ(dx) < ∞. There-
fore, we can apply the Lebesgue Dominated Convergence Theorem to get

lim
n→∞

∫
H

〈AΠn(x−m),Πn(x−m)〉H μ(dx) =

∫
H

〈A(x−m), x−m〉H μ(dx). (28)

Next, let {ei}∞1 be the (complete) set of eigenvectors of Q with corresponding (real)
eigenvalues {λi}∞1 . We know that AQ is trace-class with

tr(AQ) =
∑
i

〈AQei, ei〉H =
∑
i

λi 〈Aei, ei〉H . (29)
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Also, ∫
H

〈AΠn(x−m),Πn(x−m)〉H μ(dx)

=

n∑
i,j=1

∫
H

〈Aei, ej〉H 〈x−m, ei〉H 〈x−m, ej〉H μ(dx)

=

n∑
i,j=1

〈Aei, ej〉H
∫

H

〈x−m, ei〉H 〈x−m, ej〉H μ(dx)

=

n∑
i,j=1

〈Aei, ej〉H 〈Qei, ej〉H =

n∑
i=1

λi 〈Aei, ei〉H .

Combining this last result with (28) and (29), we get∫
H

〈A(x−m), x−m〉H μ(dx) = lim
n→∞

∫
H

〈AΠn(x−m),Πn(x−m)〉H μ(dx)

= lim
n→∞

n∑
i=1

λi 〈Aei, ei〉H = tr(AQ). �
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Flath, H. P., Wilcox, L. C., Akçelik, V., Hill, J., van Bloemen Waanders, B., and Ghat-
tas, O. (2011). “Fast algorithms for Bayesian uncertainty quantification in large-scale
linear inverse problems based on low-rank partial Hessian approximations.” SIAM
Journal on Scientific Computing, 33(1). MR2783201. doi: http://dx.doi.org/

10.1137/090780717. 683

Gel’fand, I. M. and Vilenkin, N. Y. (1964). Generalized Functions. Vol. 4: Applications
of Harmonic Analysis. Translated by Amiel Feinstein. Academic Press, New York -
London, 1964. MR0173945. 676

Kullback, S. and Leibler, R. A. (1951). “On Information and Sufficiency.” Annals of
Mathematical Statistics, 22(1): 79–86. MR0039968. doi: http://dx.doi.org/10.
1214/aoms/1177729694. 672, 678

Lindgren, F., Rue, H., and Lindström, J. (2011). “An explicit link between Gaus-
sian fields and Gaussian Markov random fields: the stochastic partial differen-
tial equation approach.” Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 73(4): 423–498. MR2853727. doi: http://dx.doi.org/

10.1111/j.1467-9868.2011.00777.x. 680

Pukelsheim, F. (2006). Optimal Design of Experiments, volume 50. SIAM. MR2224698.
doi: http://dx.doi.org/10.1137/1.9780898719109. 671

Reed, M. and Simon, B. (1972). Methods of Modern Mathematical Physics. Vol. 1.:
Functional Analysis. Academic Press. 676

Simon, B. (1977). “Notes on Infinite Determinants of Hilbert Space Operators.”
Advances in Mathematics, 24: 244–273. MR0482328. doi: http://dx.doi.org/

10.1016/0001-8708(77)90057-3. 684

Stuart, A. M. (2010). “Inverse problems: a Bayesian perspective.” Acta Numerica,
19: 451–559. MR2652785. doi: http://dx.doi.org/10.1017/S0962492910000061.
672, 675, 679, 680, 681, 687

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estima-
tion. siam. MR2130010. doi: http://dx.doi.org/10.1137/1.9780898717921. 674

http://www.ams.org/mathscinet-getitem?mr=2244975
http://dx.doi.org/10.1007/3-540-29021-4
http://www.ams.org/mathscinet-getitem?mr=1985790
http://dx.doi.org/10.1017/CBO9780511543210
http://www.ams.org/mathscinet-getitem?mr=3236753
http://dx.doi.org/10.1017/CBO9781107295513
http://www.ams.org/mathscinet-getitem?mr=3104933
http://dx.doi.org/10.1088/0266-5611/29/9/095017
http://www.ams.org/mathscinet-getitem?mr=2783201
http://dx.doi.org/10.1137/090780717
http://dx.doi.org/10.1137/090780717
http://www.ams.org/mathscinet-getitem?mr=0173945
http://www.ams.org/mathscinet-getitem?mr=0039968
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://www.ams.org/mathscinet-getitem?mr=2853727
http://dx.doi.org/10.1111/j.1467-9868.2011.00777.x
http://dx.doi.org/10.1111/j.1467-9868.2011.00777.x
http://www.ams.org/mathscinet-getitem?mr=2224698
http://dx.doi.org/10.1137/1.9780898719109
http://www.ams.org/mathscinet-getitem?mr=0482328
http://dx.doi.org/10.1016/0001-8708(77)90057-3
http://dx.doi.org/10.1016/0001-8708(77)90057-3
http://www.ams.org/mathscinet-getitem?mr=2652785
http://dx.doi.org/10.1017/S0962492910000061
http://www.ams.org/mathscinet-getitem?mr=2130010
http://dx.doi.org/10.1137/1.9780898717921


A. Alexanderian, P. J. Gloor, and O. Ghattas 695
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