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Entity Resolution with Empirically Motivated
Priors

Rebecca C. Steorts∗

Abstract. Databases often contain corrupted, degraded, and noisy data with
duplicate entries across and within each database. Such problems arise in cita-
tions, medical databases, genetics, human rights databases, and a variety of other
applied settings. The target of statistical inference can be viewed as an unsuper-
vised problem of determining the edges of a bipartite graph that links the observed
records to unobserved latent entities. Bayesian approaches provide attractive ben-
efits, naturally providing uncertainty quantification via posterior probabilities. We
propose a novel record linkage approach based on empirical Bayesian principles.
Specifically, the empirical Bayesian-type step consists of taking the empirical dis-
tribution function of the data as the prior for the latent entities. This approach
improves on the earlier HB approach not only by avoiding the prior specification
problem but also by allowing both categorical and string-valued variables. Our
extension to string-valued variables also involves the proposal of a new probabilis-
tic mechanism by which observed record values for string fields can deviate from
the values of their associated latent entities. Categorical fields that deviate from
their corresponding true value are simply drawn from the empirical distribution
function. We apply our proposed methodology to a simulated data set of German
names and an Italian household survey on income and wealth, showing our method
performs favorably compared to several standard methods in the literature. We
also consider the robustness of our methods to changes in the hyper-parameters.

1 Introduction

Entity resolution, also known as record linkage, de-duplication, or co-reference resolu-
tion (Christen, 2012), is the merger of multiple databases and/or removal of duplicated
records within a database in the absence of unique record identifiers. Traditional en-
tity resolution methods are based upon simple, unsupervised approaches to find links
between co-referent records (Fellegi and Sunter, 1969). These approaches compute pair-
wise probabilities of matching for all pairs of records, which is computationally infeasible
for databases of even moderate size (Winkler, 2006). An alternative to record-to-record
comparisons is the clustering of records to an unobserved latent entity. Such a cluster-
ing structure can be conceptualized as a bipartite graph with edges linking an observed
record to the latent entity to which it corresponds. Each latent entity has a “true” value
for each field included in the database, and the field values of the associated records
can be distorted from the “true” value with some probability. This methodology was
introduced by Steorts et al. (2014b, 2015) with a hierarchical Bayesian (HB) model, in
which records are clustered to latent entities and the values of the latent entities are
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assigned prior distributions through a high-dimensional data structure. (For brevity, we
will refer to Steorts et al. (2014b), but for more details see Steorts et al. (2015).) This
contribution unified the processes of record linkage and de-duplication under a single
framework. Nevertheless, the approach of Steorts et al. (2014b) was limited in some
respects. First, it could only be applied to categorical data. In practice, record linkage
problems often include string-valued data such as names, addresses, etc. The treatment
of such variables as categorical typically results in poor performance since it ignores the
notion of distance between strings that do not exactly agree. Second, the hierarchical
Bayesian model required the specification of priors for the latent entity values, which
can be quite difficult in many applied settings.

We propose methodology, clustering records to a hypothesized latent entity, with the
empirical distribution of the data for each field used as the prior for the corresponding
field values of the latent entities. Our model handles both categorical and noisy “text”
data. We seek to develop unsupervised learning approaches for entity resolution in
the absence of high-quality training data, which is often the case in many real-world
applications such as online medical records, genetics data, records of human rights
violations, and official statistics. In our approach, we advocate an EB formulation,
in which the prior for the latent entity value for each field is taken as the empirical
distribution of the data values for that field. This EB approach both simplifies the
model and eliminates the need to specify subjective priors for the latent entity values.
Moreover, the simplification of the model eases the computational burden imposed by
the required MCMC procedures. Our second major improvement to the record linkage
literature is that we allow the records to include both categorical and string-valued
variables. For string-valued variables, we model the distortion (i.e., the departures of
the record values from their associated latent individual values) using a probabilistic
mechanism based on some measure of distance between the true and distorted strings.
Our approach is flexible enough to permit the use of a variety of string distances, which
can thus be chosen to suit the needs of any given application. We apply our proposed
methodology to two datasets: a simulated dataset of German names and a data set from
the Italian Survey on Household and Wealth (SHIW). For both datasets, we show that
our method compares favorably to existing approaches in the literature. Furthermore,
we illustrate the robustness of our methods on both datasets in terms of the hyper
parameters/unknown parameters.

1.1 Prior Work

A variety of techniques for record linkage have been proposed, originally by Fellegi and
Sunter (1969), who gave the first mathematical model for one-to-one entity resolution
across two databases. Sadinle and Fienberg (2013) extended this approach to linking
records across k > 2 databases. Their approach is computationally infeasible for large-
scale record linkage, since it requires the estimation of 2N − 1 conditional probabilities
for databases with N records. More sophisticated approaches have typically employed
supervised or semi-supervised learning techniques in the disambiguation literature (Han
et al., 2004; Torvik and Smalheiser, 2009; Treeratpituk and Giles, 2009; Martins, 2011).
However, such methods assume the existence of large, accurate sets of training data,
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which are often difficult and/or expensive to obtain. We develop unsupervised learning
approaches for de-duplication for applications that lack high-quality training data. One
popular method that we compare to is that of random forests (Breiman, 2001), which
are ensembles of classification trees trained on bootstrap samples of the training data.
Random forests provide a powerful method of aggregating classification trees to improve
prediction in the decision tree framework. The predicted class from the random forest
is the class that receives the majority of the class votes of the individual trees. In
our context, the covariates of the trees are similarity scores, the training data are the
pairwise comparisons of the labeled records, and the binary-valued response class is
simply match/non-match. A tree’s class prediction for any pair of records assigns the
majority class vote (match vs. non-match) for the pair’s terminal node. Such methods
have been extended and used by Ventura (2013) for author disambiguation. Another
approach is provided by Bayesian Adaptive Regression Trees (BART) (Chipman et al.,
2010) applied to the same setup of covariates and responses. Winkler (2006) provides
an overview of both supervised and unsupervised entity resolution techniques.

Other related work appears in the statistics, computer science, and machine learning
literature, where the common theme is typically clustering or latent variable models.
One common application of interest is the disambiguation of document authors. Bhat-
tacharya and Getoor (2006) describe an entity-resolution approach based on latent
Dirichlet allocation, which infers the total number of unobserved entities (authors).
A requirement of this approach is that the number of co-authorship groups must be
known/estimated. Furthermore, labeled data is required for setting parameters in their
model. In the work of Dai and Storkey (2011), groups of authors are associated with
topics instead of individual authors, using a non-parametric Dirichlet process. However,
when clustering records to latent topics, the number of latent topics typically does not
grow as fast as the number of records. It is well known that if the number of data
points (records) grows and the number of latent clusters (entities) grows more slowly
or remains fixed, then the latent clusters are not exchangeable. Hence, the Dirichlet
mixture model, the Pitman–Yor process, and other related models (Kingman paintbox)
are inappropriate (Broderick and Steorts, 2014; Wallach et al., 2010).

Bayesian methods have a long history of use in record linkage models. A major
advantage of Bayesian methods is their natural handling of uncertainty quantification
for the resulting estimates. Within the Bayesian paradigm, most work has focused on
specialized approaches related to linking two files (Gutman et al., 2013; Tancredi and
Liseo, 2011; Larsen and Rubin, 2001; Belin and Rubin, 1995). These contributions,
while valuable, do not easily generalize to more than two files or to de-duplication. For
a review of recent development in Bayesian methods, see Liseo and Tancredi (2013).
De-duplication for more than two files was explored by Sadinle and Fienberg (2013).
These methods were found to be computationally infeasible for large databases as the
order of the algorithm was O(Nk), where N is the total number of records and k is the
number of files.

Recent advances were made by Steorts et al. (2014b), who introduced a hierarchical
Bayesian (HB) model that simultaneously handled record linkage and de-duplication for
categorical data. Their approach allowed for natural uncertainty quantification during
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analysis and post-processing. Also, they developed a framework for reporting a point

estimate of the linkage structure. Further advancements were made by Sadinle (2014),

who extended to string variables and used a “coreference matrix” as a prior on partitions

of the linkages. This work has the same features as our proposed work in taking advan-

tage of the Bayesian paradigm: it allows the incorporation of prior information on the

reliability of the field attributes, is unsupervised, and accounts for linkage uncertainty.

Steorts et al. (2015) pointed out the connection between the linkage structure and the

coreference matrix. However, the likelihood of Sadinle’s model incorporates the record

data only through pairwise similarity scores, whereas our method directly models the

actual field data of the records.

It should also be noted that there are certain types of seemingly relevant method-

ology that may in fact be irreconcilable with the basic structure of record linkage. In

particular, it may be asked whether nonparametric techniques can be brought to bear on

the record linkage problem. Unfortunately, such approaches typically entail notions of

exchangeability that are inappropriate in the context of record linkage. (See Broderick

and Steorts, 2014, for a more thorough discussion.)

2 Empirical Bayesian Model for Entity Resolution

We use a Bayesian model in the spirit of (Steorts et al., 2014b), but with three ma-

jor modifications. We compare and contrast the two models in the Appendix. Before

introducing our model, we first give our notation.

2.1 Notation

Suppose we have k lists, which we index with i. The ith list has ni records, which we

index with j. Each record corresponds to one of a population of Npop latent individuals,

which we index with j′. Note that the number of latent individuals represented by

records in the lists is at most N =
∑k

i=1 ni, but Npop may be larger or smaller than N .

Each record or latent individual has values on p fields, which we index with �. (The

model of Steorts et al. (2014b) assumed all fields to be categorical; however, we do not

make this limiting assumption.) The number of possible categorical values for the �th

field is M�.

Next, let Xij� denote the observed value of the �th field for the jth record in the ith

list, and let Yj′� denote the true value of the �th field for the j′th latent individual. Let

λij denote the latent individual to which the jth record in the ith list corresponds, i.e.,

Xij� and Yj′� represent the same individual if and only if λij = j′. Let Λ denote the

λij collectively. Let zij� be the indicator of whether a distortion has occurred for record

field value Xij�. Note that if zij� = 0, then Xij� = Yλij�. If instead zij� = 1, then Xij�

may differ from Yij�. Let δa denote the distribution of a point mass at a (e.g., δyλij�
).
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2.2 Model for Entity Resolution

Assume fields 1, . . . , ps are string-valued, while fields ps +1, . . . , ps + pc are categorical,
where ps + pc = p is the total number of fields.

One major novelty addresses the prior distributions of the latent field values Yj′� of
the latent individuals. The model of Steorts et al. (2014b) used an HB construction for
these priors. However, such a prior can be extremely difficult to specify subjectively in
practice, particularly for string-valued variables. Thus, we instead propose an empirical
Bayesian approach in which we take the prior distribution of Yj′� to be the empirical
distribution of the values for field � in the combined set of record data. For each � ∈
{1, . . . , ps + pc}, let S� denote the set of all values for the �th field that occur anywhere
in the data, i.e., S� = {Xij� : 1 ≤ i ≤ k, 1 ≤ j ≤ ni}, and let α�(w) equal the empirical
frequency of value w in field �. Then let G� denote the empirical distribution of the data
in the �th field from all records in all lists combined. So, if a random variable W has
distribution G�, then for every w ∈ S�, P (W = w) = α�(w). Hence, we take G� to be
the prior for each latent individual Yj′�. We use the frequency of occurrence to increase
the weight of more “popular” entries. This approach provides dramatic computational
savings in comparison to a hierarchical specification of Steorts et al. (2014b), especially
when considering string-valued fields. Note that under this approach, the number of
possible values for any particular field of a latent entity is no greater than the number
of records. Thus, it is computationally feasible to consider a discrete distribution on this
set. Moreover, certain key quantities that may be necessary for subsequent calculations,
such as the string distance between two such values, can be computed a single time in
advance for all possible pairs. In contrast, under a hierarchical specification, a string-
valued field of a latent entity could presumably take any value in the set of all strings
(up to some maximum length). Such a set is so large that it presents computational
difficulties if it is to serve as the support of a distribution.

Unlike Steorts et al. (2014b), in our proposed model, we allow the distortion prob-
ability to depend on the list as well as the field, i.e., we take βi� instead of β�. This
change reflects the fact that different lists may be compiled using different data collec-
tion methods, which may be more or less prone to error.

The aforementioned alterations to the model also necessitate a modification of the
distortion model. If a distortion occurs for a categorical field �, we take the distribution
of the distorted value to be G�. If a distortion occurs for a string-valued field �, then
the probability that the distorted value takes the value w is given by

P (Xij� = w | λij , Yλij�, zij�) =
α�(w) exp[−c d(w, Yλij�)]∑

w∈S�
α�(w) exp[−c d(w, Yλij�)]

,

where c > 0 is known and d(·, ·) is some string distance, or equivalently, one minus some
string similarity score. For brevity, denote this distribution by F�(Yλij�). Our proposed
model is

Xij� | λij , Yλij�, zij�
ind∼

⎧⎪⎨
⎪⎩
δ(Yλij�) if zij� = 0,

F�(Yλij�) if zij� = 1 and � ≤ ps,

G� if zij� = 1 and � > ps,
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Yj′�
ind∼ G�,

zij� | βi�
ind∼ Bernoulli(βi�),

βi�
ind∼ Beta(a, b),

λij
ind∼ DiscreteUniform (1, . . . , N) , (1)

where all distributions above are also independent of each other. We assume that a, b,N
are known. We explore the sensitivity of these parameters, c, and d(·) in §6.

Remark. Although each distribution G� is constructed using the observed values of X
in the data, this dependency is ignored from the standpoint of computing the posterior
under the Bayesian model. This is merely a standard example of empirical Bayesian
methodology. Although admittedly a bit awkward to interpret from a purely philo-
sophical standpoint, the empirical Bayesian paradigm is quite well attested in both the
theory and practice of modern statistics (Robbins, 1956; Carlin and Louis, 2000).

To concisely state the joint posterior of the above model, first define for each w0 ∈ S�

the quantity

[h�(w0)]
−1

=
∑
w∈S�

exp [−c d(w,w0)] .

Note that h�(w0) can be computed in advance for each possible w0 ∈ S�. After some
simplification, the joint posterior is

π(λ,Y , z,β | X)

∝
k∏

i=1

ni∏
j=1

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

ps+pc∏
�=1

zij�=1

α�(Xij�)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ps∏
�=1

zij�=1

h�(Yλij�)

⎤
⎥⎥⎦ exp

[
−c

ps∑
�=1

zij� d(Xij�, Yλij�)

]⎫⎪⎪⎬
⎪⎪⎭

×

⎡
⎣ N∏
j′=1

ps+pc∏
�=1

α�(Yj′�)

⎤
⎦[ k∏

i=1

ps+pc∏
�=1

β
∑ni

j=1 zij�+a−1

i� (1− βi�)
ni−

∑ni
j=1 zij�+b−1

]

× I(Xij� = Yλij� for all i, j, � such that zij� = 0).

(See Appendix 7 for further details.)

3 Gibbs Sampler

Since it is not feasible to sample directly from the joint posterior, inference from the EB
model is made via a Gibbs sampler that cycles through drawing from the conditional
posterior distributions. We now provide these conditional distributions explicitly. Note
that notation throughout this section may suppress dependency on variables and/or
indices as needed for convenience.

First, consider β | Λ,Y , z,X. Let Zi� =
∑ni

j=1 zij�. Then it is straightforward to
show that
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βi� | Λ,Y , z,X
iid∼ Beta (Zi� + a, ni − Zi� + b) .

Next, consider z | Λ,Y ,β,X. First, note that if Xij� �= Yλij�, then zij� = 1. If
instead Xij� = Yλij�, then zij� ∼ Bernoulli[[qij�/(qij� + q̄i�)], where q̄i� = 1− βi� and

qij� =

{
βi� α�(Xij�)h�(Yλij�) exp

[
−c d(Xij�, Yλij�)

]
if � ≤ ps,

βi� α�(Xij�) if � > ps.

We now turn to the conditional distribution of Y | Λ, z,β,X. Each Yj′� takes values
in the set S�, which consists of all values for the �th field that appear anywhere in the
data. This implies that Yj′� | Λ, z,β,X takes the form

P (Yj′� = w | Λ, z,β,X) =
φj′�(w)

Φj′�

for all w ∈ S�, where Φj′� =
∑

w∈S�
φj′�(w). Let Rj′ = {(i, j) : λij = j′} be the set

of all records that correspond to individual j′. Immediately φj′�(w) = 0 if there exists
(i, j) ∈ Rj′ such that zij� = 0 and Xij� �= w. If instead, for all (i, j) ∈ Rj′ , either zij� = 1
or Xij� = w, then

φj′�(w) =

{
α�(w) exp

{∑
(i,j)∈Rj′

zij� [log h�(w)− c d(Xij�, w)]
}

if � ≤ ps,

α�(w) if � > ps.

Finally, we consider the conditional distribution of Λ | Y , z,β,X, where

P (λij = v | Y , z,β,X) =
ψij(v)

Ψij

for all v ∈ {1, . . . , N}, where Ψij =
∑N

v=1 ψij(v). Note immediately that ψij(v) = 0 if
there exists � such that zij� = 0 and Xij� �= Yv�. If instead, for all �, either zij� = 1 or
Xij� = Yv�, then

ψij(v) = exp

{
ps∑
�=1

zij� [log h�(Yv�)− c d(Xij�, Yv�)]

}
.

Remark. The categorical fields affect the conditional distribution of Λ | Y , z,β,X
only insofar as they exclude certain values from the support of each distribution alto-
gether. If a particular field of a particular record is distorted, then it carries no infor-
mation about the latent individual to which the record should be linked. On the other
hand, if the field is not distorted, then it restricts the possible latent individuals to only
those that coincide with the record in the field in question (between or among which
the field conveys no preference).
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4 Application to RLdata500

To investigate the performance of our proposed methodology compared to existing meth-
ods, we considered the RLdata500 data set from the R RecordLinkage package, which
has been considered (in some form) by Steorts et al. (2014a); Christen (2005); Christen
and Pudjijono (2009); Christen and Vatsalan (2013). This simulated data set consists
of 500 records, each with a first and last name and full date of birth. These records
contain 50 records that are intentionally constructed as “duplicates” of other records
in the data set, with randomly generated errors. The data set also includes a unique
identifier for each record, so that we know we compare our methods to “ground truth.”
The particular type of data found here is one in which duplication is fairly rare.

We briefly review the four classifications of how pairs of records can be linked or not
linked under the truth and under the estimate. There are four possible classifications.
First, record pairs can be linked under both the truth and under the estimate, which
we refer to as correct links (CL). Second, record pairs can be linked under the truth
but not linked under the estimate, which are called false negatives (FN). Third, record
pairs can be not linked under the truth but linked under the estimate, which are called
false positives (FP). Fourth and finally, record pairs can be not linked under the truth
and also not linked under the estimate, which we refer to as correct non-links (CNL).
The vast majority of record pairs are classified as correct non-links in most practical
settings. Then the true number links is CL + FN, while the estimated number of links
is CL + FP. The usual definitions of false negative rate and false positive rate are

FNR =
FN

CL+FN
, FPR =

FP

FP+CNL
.

However, FPR as defined above is not an appropriate measure of record linkage perfor-
mance, since the very large number of correct non-links (CNL) ensures that virtually
any method will have an extremely small FPR, regardless of its actual quality.

Instead, we assess performance in terms of false positives by replacing FPR with the
false discovery rate, i.e., the proportion of estimated links that are incorrect:

FDR =
FP

CL+FP
,

where by convention we take FDR = 0 if its numerator and denominator are both zero,
i.e., if there are no estimated links. Note that if the four classification pairs are laid out
as a 2 × 2 contingency table, then 1 − FNR and 1 − FDR correspond to the number
of correct links as a fraction of its row and column totals (in some order). Thus, FDR
serves as another natural counterpart to FNR.

We applied our proposed methodology to the RLdata500 data set with a = 1 and
b = 99, which corresponds to a prior mean of 0.01 for the distortion probabilities.
Also, we took c = 1 in the string distortion distribution. We treated birth year, birth
month, and birth day as categorical variables. We treated first and last names as strings
and took the string distance d(·, ·) as Edit distance (Winkler, 2006; Christen, 2012).
We ran 400,000 iterations of the Gibbs sampler described in Section 3. Note that the
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Gibbs sampler provides a sample from the posterior distribution of the linkage structure
(as well as the other parameters and latent variables). Note that we take the entire
Gibbs sampling run as the MCMC output, i.e., we do not “thin” the chain or remove
a “burn-in.” The posterior density under the proposed EB method can be found in
Figure 1. Next, we assess the convergence of our Gibbs sampler for the linkage structure
in Figure 2. Furthermore, for each of the chains, the Geweke diagnostic does not reveal
any immediately apparent convergence problems.

Figure 1: Posterior density of the number of distinct individuals in the sample for the
RLdata500 dataset under the proposed methodology, along with the posterior mean
(black dashed line) and true value (red line).

For comparison purposes, we also implemented five existing record linkage approaches
for the RLdata500 data. Two of these methods were the simple approaches that link two
records if and only if they are identical (“Exact Matching”) and that link two records
if and only if they disagree on no more than one field (“Near-Twin Matching”).

The remaining three methods are regression-based procedures that treat each pair of
records as a match or non-match. Each procedure takes as covariates the Edit distance
for first names and for last names, as well as the indicators of agreement on birth year,
month, and day. To reduce the number of record pairs under consideration, we first
implemented a screening step that automatically treats records as non-matched if the
median of their five covariate values (i.e., their five similarity scores) is less than 0.8.
Hence, the remaining three methods are applied to only those record pairs that are not
excluded by the screening criterion (99 pairs, including all 50 true matches). The first
regression-based method considered was the approach of Bayesian additive regression
trees (BART) (Chipman et al., 2010) with a binomial response and probit link, and with
200 trees in the sum. Next, we applied the random forests procedure of Breiman (2001)
for classification, with 500 trees. Finally, we considered ordinary logistic regression. For
each method, we fit the model on 10%, 20%, and 50% of the data (i.e., the training set)
and evaluated its performance on the remainder (i.e., the testing set). For each training
data percentage, we repeated the fit for 100 randomly sampled training/testing splits
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Figure 2: Trace plots of the number of latent entities that are represented in the sample
by exactly one record (“singles”) and by exactly two records (“doubles”) for 400,000
Gibbs samples for the RLdata500 dataset.

and calculated the overall error rate as the average of the error rates obtained by using
each of the 100 splits. We also fit and evaluated each model on the full data.

Note that we only considered methods that can take advantage of the string-valued
nature of the name variables, since any method that treats these variables as categorical
is unlikely to be competitive. In particular, this rules out the approach of Tancredi and
Liseo (2011) and the SMERE procedure of Steorts et al. (2014b).

The performance of our proposed empirical Bayesian method and the other ap-
proaches in terms of FNR and FDR is shown in Table 1. Note that by the construction
of the data set, the exact matching approach produces no estimated links, so trivially its
FNR and FDR are 1 and 0, respectively. Since our EB method does not rely on training
data, the FNR and FDR simply are what they are, which are both very low for this data
set. We compare to BART, Random Forests, and logistic regression, where we reiterate
that for each model we used training splits of 10%, 20%, and 50%. We repeated each
procedure 100 times and averaged the results. Moreover, as is well known for supervised
methods, the apparent error rates can be reduced when more training data is used to fit
the model. For example, when we compare the EB method with the supervised methods
(10% training), our method beats each supervised procedure in both FNR and FDR.
We illustrate that the error rates can be brought down if the amount of training data is
increased, but this raises the question of whether the supervised procedure is overfitting.

The EB method produces very low FNR and FDR compared to the supervised
learning methods. We see that each supervised method is sensitive to how much training
data is used, which is not desirable, and that often both low FNR and low FDR cannot
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be achieved for the supervised methods. We also point out that there is already an unfair
advantage given to the supervised methods over the unsupervised methods. However,
if we truly are being empirical and using the data twice, this raises the question of
which method has the advantage over the other. Since these methods are not easily
comparable, this also needs investigation in future work.

Procedure FNR FDR
Empirical Bayes 0.02 0.04
Exact Matching 1 0
Near-Twin Matching 0.08 0
BART (10% training) 0.10 0.16
BART (20% training) 0.07 0.11
BART (50% training) 0.03 0.04
Random Forests (10% training) 0.05 0.15
Random Forests (20% training) 0.04 0.09
Random Forests (50% training) 0.02 0.06
Logistic Regression (10% training) 0.09 0.16
Logistic Regression (20% training) 0.06 0.07
Logistic Regression (50% training) 0.02 0.01

Table 1: False negative rate (FNR) and false discovery rate (FDR) for the proposed EB
methodology and five other record linkage methods as applied to the RLdata500 data.

We also calculated some additional information to assess the performance of our
methodology. The linkage structure implies a certain number of distinct individuals for
the data set, which we call Ndistinct. Our Gibbs sampler provides a sample from the
posterior distribution of Ndistinct, which is plotted below in Figure 1. The posterior
mean is 449, while the posterior standard deviation is 7.2. (Note that the true number
of distinct individuals in the data set is 450.)

5 Application to Italian Household Survey

We also evaluated the performance of our proposed methodology using data from the
Italian Survey on Household Income and Wealth (SHIW), a sample survey conducted
by the Bank of Italy every two years. The 2010 survey covered 19,836 individuals, while
the 2008 survey covered 19,907 individuals. The goal is to merge the 2008 and 2010
lists by considering the following categorical variables: year of birth, working status,
employment status, branch of activity, town size, geographical area of birth, sex, whether
or not Italian national, and highest educational level obtained. Note in particular that
data about individuals’ names is not available, which makes record linkage on this data
set a challenging problem. (However, a unique identifier is available to serve as the
“truth.”) As in Section 4, we evaluate performance using false negative rate (FNR) and
false discovery rate (FDR).

We applied our proposed methodology to a subset of this data (region 6; all other
regions exhibit similar behavior) with a = 1 and b = 99, which corresponds to a prior
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mean of 0.01 for the distortion probabilities. Also, we took c = 1 in the string distortion
distribution. We treated all variables here as categorical. We ran 10,000 iterations of
the Gibbs sampler described in Section 3, which took approximately 10 hours.

In principle, we would also apply the same methods as in Section 4 (BART, random
forests, and logistic regression). These methods essentially treat each pair of records
as an observation. Since the number of record pairs is very large (242,556 record pairs
arising from 697 observations from region 6), it is necessary to first reduce the number
of record pairs under consideration by a screening rule to eliminate pairs that are clearly
non-linked. For the data of Section 4, it was straightforward to find a screening rule
(based on the median of the similarity scores) that greatly reduced the number of record
pairs under consideration while still including all pairs that were truly linked. However,
we could not find any viable screening rule for this data, at least in part because all
fields are categorical. More specifically, any screening rule of the form “eliminate a
record pair unless it agrees on at least K out of a particular set of M fields” either
inadvertently eliminates some true links or retains far too many record pairs (at least
44,426). In practice, of course, the elimination of some true links is not a major problem,
as it simply creates some automatic false negatives. However, the application of such
a screening method is inappropriate if the goal is to evaluate the performance of a
record linkage method, since the automatic false negatives would create a substantial
handicap that is not the fault of the method itself. (Still, the necessity of such a screening
method is an inherent disadvantage of any method that treats each record pair as an
observation. Of course, our proposed empirical Bayesian model does not suffer from this
problem.)

Since it is not clear how to obtain a fair comparison of our methodology to BART,
random forests, or logistic regression, we instead compare to other methods: the ap-
proach of Tancredi and Liseo (2011) and the SMERE approach of Steorts et al. (2014b).
We also compare to the approaches of exact and “near-twin” matching. The approach
of Tancredi and Liseo (2011) took 3 hours, while SMERE took 20 minutes. Under the
recommendation of Tancredi and Liseo (2011), we ran 100,000 iterations of the Gibbs
sampler, which we also did for SMERE.

Turning to convergence of the Gibbs sampler for our method, we again look at trace
plots as we did for the RLdata500 data as can be seen in Figure 4. Based on these plots,
it appears fairly safe to treat the MCMC sample as an approximate draws from the
posterior distribution (not necessarily independent, however). Thus, Table 2 compares
the FNR and FDR of our proposed EB methodology to that of the approach of Tancredi
and Liseo (2011) and of SMERED from Steorts et al. (2014b). We note that SMERED
and the EB method perform about the same, and vastly improved upon the method
of Tancredi and Liseo (2011). Again, we reiterate that this data set consists solely
of categorical variables that provide relatively little information by which to link or
separate records, hence, the large error rates in Table 2 are not surprising. We note that
the number of links missed among twins and near-twins is 28,246, so any method will
do poorly on this type of data without a field attribute that helps the linkage procedure
drastically. This is shown very well by the FNR and FDR in Figure 3. Again, this is not
a weakness of the method, but of the feature-poor data.



R. C. Steorts 861

Procedure FNR FDR
Empirical Bayes 0.34 0.36
Tancredi–Liseo 0.52 0.46
SMERE 0.33 0.29
Exact Matching 0.29 0.70
Near-Twin Matching 0.14 0.98

Table 2: False negative rate (FNR) and false discovery rate (FDR) for the proposed
empirical Bayesian methodology and two other record linkage methods as applied to
the Italian Household Survey data.

As in Section 4, we again examined the posterior distribution of the number of
distinct individuals in the data set. This posterior, which has mean 498.8 and standard
deviation 0.48, is shown in Figure 3. (We provide a sensitivity analysis in Section 6.)

Figure 3: Posterior density of the number of distinct individuals in the sample for the
Italian data under the proposed EB-type methodology, along with the posterior mean
(black dashed line) and true value (red line).

6 Robustness to Prior Specification

In Sections 4 and 5, we investigated the performance of our proposed methodology on
data sets from RLdata500 and the SHIW. To do so, we made specific choices for various
quantities in the model in (1). In particular, we chose values of the hyperparameters a
and b that determine the prior for the distortion probabilities. Note that for a record
linkage problem to be sensible, the distortion probabilities cannot be close to 1. Thus,
the prior distribution’s distortion probabilities should avoid placing probability near 1.
Based on our choice of the Beta distribution, it follows that b � 1. Intuitively, values
below b = 2 are quite unsound, and, in fact, b = 2 is too small for any real application.
For example, a prior such as a Beta(1, 1) with a variance such as 1/12 is not very sensible
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Figure 4: Trace plots of the number of latent entities that are represented in the sample
bye exactly one record (“singles”), by exactly two records (“doubles”), and by exactly
three records (“triples”) for 10,000 Gibbs samples of the Italian dataset.

to be used as a distortion probability. Hence, we do not consider setting a+ b to values
smaller than 10.

We also chose a steepness parameter c and a string metric d to govern the distortion
distributions of string-valued fields. Finally, we chose a value of the effective latent
population size Npop. In practice, however, it may not be immediately clear how to
make these choices when faced with an unfamiliar application or data set. Hence, it is
of interest to know how robust the model in (1) is to changes in these various quantities.

RLdata500 data We begin with the RLdata500 data. For each Gibbs sampling run
described below, we executed 100,000 iterations.

We first consider the effect of varying the values of a and b, while fixing c = 1 and
Npop = 500 with d as edit distance. Note that the prior distribution of the distortion
probabilities is Beta(a, b), so a/(a+b) is the prior mean for these distortion probabilities.
Moreover, for any fixed value of a/(a+b), increasing the values of a and b proportionally
decreases the variance of this prior distribution. Figure 5 shows the results obtained by
fixing a/(a+b) = 0.002 and varying a and b proportionally. It can be seen from the left-
most posterior densities that when b < 10, the posterior underestimates the truth. We
also see this behavior more clearly by looking at how the posterior mean and posterior
standard deviation change as we vary a, b (see Table 3).

We also consider the effect of varying the ratio a/(a + b) while holding a + b fixed
at either a+ b = 100 (left plot of Figure 6) or a+ b = 10 (right plot of Figure 6)), with
c, d, and Npop the same as in Figure 5). We see that in the left plot when we vary the
prior mean and when this value is high (10 percent), this causes over-linkage and the
observed sampled size is too low. In the right figure, we find the bottom three in the
legend are clumping in the same place around 390–400 for the observed sample size.
The only one that is close to ground truth is a = 0.0003, b = 9.9997. We find from this
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Figure 5: Posterior density of the number of distinct individuals in the sample for the
RLdata500 data for several values of a and b. Note that a/(a+ b) = 0.002 in all cases.
The red line marks the true value.

a b posterior mean standard deviation
0.004 1.996 398.35 28.45
0.010 4.990 398.58 31.15
0.020 9.980 407.07 19.09
0.040 19.96 422.67 13.69
0.100 49.90 442.78 5.71
0.200 99.80 447.37 6.20

Table 3: Posterior mean and standard deviation of the number of distinct individuals in
the sample for the RLdata500 data for several values of a and b (compare to Figure 5).

plot (as in Figure 5) that when b < 10, the model tends to underestimate the observed
sample size. This makes sense because the value of b in a Beta distribution controls how
fast the distribution dies off for larger probabilities. Thus, setting b too small makes
it very likely that you will have distortion probabilities that are moderate. Both the
behavior just described of both plots is reinforced by Tables 4 and 5.

Next, we vary the choice of c, the steepness parameter of the string distortion dis-
tribution. Note that the larger the value of c, the less likely it is for string-valued record
fields to be distorted to values that are far (as measured by the string metric d) from
their corresponding latent entity’s field value. We set a = 0.01, b = 99, and Npop = 500,
and we took d to be edit distance. The results are shown in Figure 8. We see that
resulting estimated posterior is sensitive to the choice of c.

We also considered two different string metrics, the aforementioned edit distance as
well as Jaro–Winkler distance (Winkler, 2006), for use as the distance d in the string
distortion distribution. We set c = 1 and Npop = 500, and we took a few choices for a
and b for each string metric. The result for Jaro–Winkler distance is shown in Figure 7.
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Figure 6: Posterior density of the number of distinct individuals in the sample for the
RLdata500 data for several values of a and b. The left plot fixes a+ b = 100 in all cases,
while the right plot fixes a+ b = 10 in all cases. The red line marks the true value.

a b posterior mean standard deviation
0.03 99.97 452.6889 10.32819
0.1 99.99 447.0832 4.862139
0.3 99.97 447.2618 4.900142
1 99 445.3222 4.098847
3 97 441.6043 3.611562
10 90 426.177 4.607082

Table 4: Posterior mean and standard deviation of the number of distinct individuals
in the sample for the RLdata500 data for several values of a and b (compare to the left
plot of Figure 6).

a b posterior mean standard deviation
0.003 9.997 430.7297 27.22453
0.01 9.99 410.5785 21.98859
0.03 9.97 403.055 17.24064
0.1 9.9 395.769 11.26418
0.3 9.7 392.6065 9.743864
1 9 386.1448 8.609332

Table 5: Posterior mean and standard deviation of the number of distinct individuals in
the sample for the RLdata500 data for several values of a and b (compare to the right
plot of Figure 6).



R. C. Steorts 865

Figure 7: Posterior density of the number of distinct individuals in the sample for the
RLdata500 data for several values of a and b using Jaro–Winkler distance instead of
edit distance in the string distortion distribution. Note that a/(a + b) = 0.002 in all
cases. The red line marks the true value.

a b posterior mean standard deviation
0.004 1.996 459.49425 29.04779
0.010 4.990 417.7381 56.48478
0.020 9.980 421.621 54.85565
0.040 19.96 395.0226 33.55952
0.100 49.90 424.9393 29.36313
0.200 99.80 455.7053 15.59177

Table 6: Posterior mean and standard deviation of the number of distinct individuals
in the sample for the RLdata500 data for several values of a and b using Jaro–Winkler
distance instead of edit distance in the string distortion distribution (compare to Fig-
ure 7).

(The corresponding plot for edit distance is shown in the aforementioned Figure 5.)
We see that when b < 10 under both choices of d, the estimated posterior is greatly
underestimated. We see that as b increases and a is quite small, then the posterior is
more concentrated around the true posterior and true observed sample size (red line).
We see this same behavior in Tables 3 and 6.

Finally, we investigate the effect of different choices of the effective latent population
sizeNpop. We consider values ofNpop both smaller and larger than the sample size, while
fixing a = 0.01, b = 99, and c = 1 and taking d to be edit distance. The results are
shown in Figure 9. We see that when we use Npop = 450 and Npop = 550, we find the
posterior means are 448 and 457, and the posterior standard deviations are 1 and 7,
respectively (running the chain for 30,000 iterations). When we useNpop = 1000, we find
the posterior mean is 479 with a posterior standard deviation of 10. It can be seen that
small changes to Npop do not yield dramatic differences in the posterior distribution of
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Figure 8: Posterior density of the number of distinct individuals in the sample for the
RLdata500 data for several values of c, with a = 0.01 and b = 99. The red line marks
the true value.

Figure 9: Posterior density of the number of distinct individuals in the sample for the
RLdata500 data for several values of the latent population size Npop, with a = 0.01 and
b = 99. The red line marks the true value.

the observed sample size, but larger changes to Npop can have a more substantial effect.
Thus, determination of a procedure or guideline for choosing an appropriate value of
Npop is an important goal of future study.

Italian Data We also investigated the sensitivity of the Italian data results to changes
in the various subjective parameters.
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Figure 10: Posterior density of the number of distinct individuals in the sample for the
Italian data for several values of the latent population size Npop, with a = 1 and b = 99.
The red line marks the true value.

We first varied the latent population size Npop while taking a = 1, b = 99, c = 1, and
d as edit distance. Each Gibbs sampling run consisted of 30,000 iterations. The results
are shown in Figure 10 and Table 7, and they are broadly similar to those observed for
the RLdata500 data discussed previously.

Npop posterior mean standard deviation
600 400.65 7.95
1300 517.35 9.42
2000 560.614 7.89

Table 7: Posterior mean and standard deviation of the number of distinct individuals
in the sample for the Italian data for several values of Npop (compare to Figure 10).

We also considered various values of a and b, with c = 1, Npop = 1300, and edit
distance used as the distance metric in the string distortion distribution. Each Gibbs
sampling run consisted of 30,000 iterations. We began by varying a and b both together
with their ratio held constant, as shown in Figure 11 and Table 8. Next, we varied a and b
separately with their sum held constant, as shown in Figure 12 and Tables 9 and 10.
Again, the results were fairly similar to those for the RLdata500 data.

7 Discussion

We have made several main contributions with this paper. First, we have extended the
categorical record linkage and de-duplication methodology of Steorts et al. (2014b) to
a new approach that handles both categorical and string-valued data, while using the
same linkage structure Λ. This extension to string-valued data makes our approach
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Figure 11: Posterior density of the number of distinct individuals in the sample for the
Italian data for several values of a and b. Note that a/(a + b) = 0.0001. The red line
marks the true value.

a b posterior mean standard deviation
0.0005 4.9995 470.2311 14.87979
0.001 9.999 516.5542 9.333234
0.002 19.998 525.6803 10.94388
0.005 49.995 525.8361 9.770544
0.01 99.99 486.0217 9.669656
0.02 199.98 486.0217 9.669656

Table 8: Posterior mean and standard deviation of the number of distinct individuals
in the sample for the Italian data for several values of a and b (compare to Figure 11).

flexible enough to accommodate a variety of applications. Note that all of the vari-
ous benefits of the approach of Steorts et al. (2014b) are obtained by our new for-
mulation. In particular, the ability to calculate posterior matching probabilities leads
to exact error propagation (as opposed to merely providing bounds) when estimates
arising from the record linkage model are subsequently integrated into other types of
analyses (e.g., capture–recapture techniques for estimating population size). Moreover,
our proposed empirical Bayesian approach retains the aforementioned benefits of the
Bayesian paradigm while eliminating the need to specify subjective priors for the la-
tent individuals. Indeed, the only subjective parameters that must be specified at all
are the values a and b that determine the distribution of the distortion probabilities,
the value c that appears in the string distortion distribution, and the latent popula-
tion size Npop. We demonstrated our method by applying it to a simulated data set for
which accurate record linkage is fairly easy and a real data set for which accurate record
linkage is quite difficult. We found that our method compares favorably to a collection
of popular supervised learning methods and another standard Bayesian method in the
literature.
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Figure 12: Posterior density of the number of distinct individuals in the sample for the
Italian data for several values of a and b. The left plot fixes a+ b = 10 in all cases, while
the right plot fixes a+ b = 100 in all cases. The red line marks the true value.

a b posterior mean standard deviation
0.03 99.97 528.5115 12.02456
0.1 99.99 524.0653 11.87278
0.3 99.97 527.7922 11.86949
1 99 507.8796 10.123
3 97 493.3781 9.100615
10 90 485.0756 9.199441

Table 9: Posterior mean and standard deviation of the number of distinct individuals in
the sample for the Italian data for several values of a and b (compare to the right plot
of Figure 12).

a b posterior mean standard deviation
0.003 9.997 554.4813 5.389025
0.01 9.99 528.9712 19.40173
0.03 9.97 521.1844 15.62619
0.1 9.9 510.0594 20.46328
0.3 9.7 504.7957 16.15656
1 9 500.853 17.39763
2 8 494.7102 13.51739

Table 10: Posterior mean and standard deviation of the number of distinct individuals
in the sample for the Italian data for several values of a and b (compare to the left plot
of Figure 12).

Our work serves as an early entry into the literature of empirical Bayesian record
linkage methodology, and it can likely be improved, extended, and tailored to fit par-
ticular problems and applications. We believe that unsupervised methods, such as our
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proposed method, have a clear advantage over supervised approaches since in most
applications, training data is scarce or unavailable altogether and in many cases the
validity of the training data cannot be checked or trusted. One assumption that should
be considered in future work is considering that the latent entities be allowed to vary by
databases, such that if the data is not collected at the same time in each database, such
a model would allow more flexibility, however, it may then suffer from computational
issues.

It is clear from both the present work and the results of Steorts et al. (2014b) that
Markov chain Monte Carlo (MCMC) procedures impose serious computational limi-
tations on the database sizes that are addressable by these Bayesian record linkage
techniques. Since real record linkage applications often involve databases with millions
of records, there is the possibility that MCMC-based Bayesian inference may not be
the most promising direction for future research. Possible solutions may be provided by
the variational Bayesian literature. Variational approximations work by systematically
ignoring some dependencies among the variables being inferred, bounding the error this
introduces into the posterior distribution, and minimizing the bound. If properly chosen,
the minimization is a fast optimization problem and the minimal error is small. Such
techniques have long been used to allow Bayesian methods to scale to industrial-sized
data sets in domains such as topic modeling (Wainwright and Jordan, 2008; Broderick
et al., 2013). In particular, the framework developed by Wainwright and Jordan (2008);
Broderick et al. (2013) allows for a full posterior distribution. This is appealing for
record linkage methodology since it would allow quick estimation of posterior matching
probabilities for propagation into subsequent analyses. It is also possible that the com-
putational difficulties of the Bayesian record linkage approach could be circumvented
by some other altogether different approach, such as the formulation of a model for
which various posterior quantities of interest are calculable in closed form or via more
manageable numerical procedures.

Appendix

Joint Posterior Derivation

We derive the joint posterior below.
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If we restrict the allowed values of λij to the set {1, . . . , N}, then the last line above is ir-
relevant. Also, for each w0 ∈ S�, define the quantity h�(w0) ={∑

w∈S�
exp[−c d(w,w0)]

}−1
, i.e., h�(w0) is the normalizing constant for the distribu-

tion F�(w0). We can compute h�(w0) in advance for each possible w0 ∈ S�. We can
simplify the posterior to
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Comparison of SMERED and EB Model

We compare the main differences between SMERED and the EB model proposed here.
First, SMERED assumes categorical (non-string or non-text data). Furthermore, it as-
sumes a generative hierarchal Bayesian model, instead of an empirical Bayesian model.
An HB model works very well for categorical data, however, becomes quickly intractable
for noisy “text” data. Finally, the models are similar in that both cluster records to a
hypothesized latent entity. The HB model assumes the latent entity is from a Multi-
nomial distribution, whereas, we assume the latent entity is drawn from the empirical
distribution of either some data related to the data at hand or the data itself. This
allows for faster updating of the latent quantities.
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