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Comment on Article by Dawid and Musio∗

C. Grazian†, I. Masiani‡, and C. P. Robert§

Abstract. This note is a discussion of the article “Bayesian model selection based
on proper scoring rules” by A. P. Dawid and M. Musio, to appear in Bayesian
Analysis. While appreciating the concepts behind the use of proper scoring rules,
we point out here some possible practical difficulties with the advocated approach.
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The1 frustrating issue of Bayesian model selection preventing improper priors (DeGroot,
1982) and hence most objective Bayes approaches has been a major impediment to the
development of Bayesian statistics in practice (Marin and Robert, 2007), as the failure
to provide a “reference” answer is an easy entry for critics who point out the strong
dependence of posterior probabilities on prior assumptions. This was presumably not
forecasted by the originator of the Bayes factor, Harold Jeffreys, who customarily and
informally used improper priors on nuisance parameters in his construction of Bayes
factors (Robert et al., 2009). (The expansion (4) in the paper, while worth recalling,
is unlikely to convince such critics.) It is therefore a very welcome item of news that a
truly Bayesian approach can allow for improper priors.

As also pointed out in the paper, there exist a wide range of “objective Bayes”
solutions in the literature (Robert, 2001), all provided with validating arguments of
sorts, but this range by itself implies that such solutions are doomed in that they
cannot agree for a given dataset and a given prior.

Finding a criterion that does not depend on the normalising constant of the predic-
tive possibly is the unravelling key to handle improper priors, and we congratulate the
authors for this finding of the Hyvärinen score and related proper scoring rules. Some
difficulties deriving from the use of improper prior distributions in model choice may
be solved by applying the approach proposed in the paper. There are nonetheless some
issues with this solution:

• (Calibration difficulties) Once the score value is computed, the calibration of its
strength very loosely relates to a loss function, hence makes decision in favour of
a model difficult;

• (A clear dependence on parameterisation) Changing x into the transform h(x)
produces a different score;
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Figure 1: Boxplots over 1,000 simulations of the sample distributions of the scores of
seven models under analysis, depending on the true model. Model selection is performed
in the case of nested linear normal models. The data was simulated from one of seven
nested linear models with up to six covariates. The design matrix is denoted by X.
While M0 is the model that uses zero covariate, M1 to M6 use the first, the first two,
up to all of the covariates. The values of the covariates were simulated from normal
proposals, except for the first column, made of 1’s. The data y = (y1, . . . , yn) have
distribution y|θ ∼ N(Xθ, σ2), with n = 100 and σ2 = 10. In (a) the true model used
for the generations is M2 (which considers a single regressor), in (b) it is M3 which
considers the first two regressors, in (c) it is M1 which considers only the constant,
while in (d) the correct model is M0 which has no parameter.

• (A dependence on the dominating measure) As exhibited in the case of exponential
families and (30), changing the dominating measure modifies the score function;

• The arbitrariness of the Hyvärinen score, which is indeed independent of the
normalising constant, but offers limited arguments in favour of this particular
combination of derivatives. Since there exists an immense range of possible score
functions, a stronger connection with inferential properties is a clear requirement;

• As noted above, consistency is not a highly compelling argument for the layper-
son, as it does not help in the calibration and selection of the score. Having an
inconsistent multivariate score, while the prequential score remains consistent, is
highlighting this difficulty.

Furthermore, the only application of the method presented in the paper is within the
setting of the Normal linear model, and we worry that the approach may not be easily



C. Grazian, I. Masiani, and C. P. Robert 513

Figure 2: (Linear model) Log-Bayes factor (red) and difference of the scores (blue) as
a function of an increasing sample size n = 1, . . . , 1000, and of the prior variance on
θ, V = cσ2, where σ2 = 10 is known. Given simulated data y = (y1, . . . , yn) with
conditional distribution y|θ ∼ N(Xθ, σ2), we consider one regressor and two possible
models for generating the data: M0 : θ = 0 and M1 : θ = 1 when the true model is M1.

extended to other types of models. In particular, the representation of the precision
matrix of the marginal distribution in (33), based on the Woodbury matrix inversion
lemma, is essential to easily apply the proper scoring rule approach to model choice
with an improper prior, given that an improper prior may then be seen as a limiting
version of a conjugate prior and its influence disappears in the following computations.
However, the approach overcomes the singularity of the precision matrix of the marginal
distribution.

We first performed some simulation studies when applying the proposed method to
models that differ from the Normal linear model. When choosing between two different
models with no covariates, we observed that the proposed approach can perform well
as, for instance, when a Gamma model is opposed to a Normal model (well in the sense
of comparing with a standard Bayes factor). However, when a Pareto distribution and
a Normal distribution are compared, the approach does not often select the right model
when data are generated from the Pareto distribution, while the Bayes factor always
yields the right model. In addition, we came to the realisation that the method based on
the Hyvärinen scoring rule may not be applied to some models, for example, when data
come from a Laplace distribution, which is not differentiable at 0, or for discrete models.

Our simulation studies have also covered linear models, both nested and non-nested.
The details of the simulation models are given in the captions of Figures 1–3. The
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Figure 3: (Nested models) Log-Bayes factor (red) and difference of the scores (blue) as
a function of an increasing sample size n = 1, . . . , 1000, and of the prior variance on θ,
V = cσ2, where σ2 = 10. The setting is the same as Figure 1, where we consider six
possible regressors and we compare model M3 which considers the first three regressors
against model M6 which considers all the regressors (M3 is the true model in our
simulations).

performance of the multivariate Hyvärinen score when comparing Normal linear models
is excellent, as shown in Figure 1, even when using an improper prior, provided the
sample size is larger than the number of parameters in the model. Following repeated
simulations, we observed that the method is always able to choose the right model. We,
however, noticed that, when the true model does not involved covariates, the ability of
the method to discriminate between models is reduced. Although this approach shows
a consistent behaviour and chooses the right model with higher and higher certainty
when the sample size increases, our simulations have also shown that the log-proper
scoring rule tends to infinity more slowly than the Bayes factor or than the likelihood
ratio. It is approximately four times slower, all priors being equal, as shown in Figures
2 and 3, which represent the comparison between the approach based on the log-Bayes
factor and the one based on the difference between the score functions for the case of
linear models, both nested (Figure 3) and non-nested (Figure 2).

As a final remark, we would like to point out the alternative and recent proposal of
Kamary et al. (2014) for correctly handling partly improper priors in testing settings
through the tool of mixture modelling, each model under comparison corresponding to a
component of the mixture distribution. Testing is then handled as an estimation problem
in an encompassing model. Therein, the authors show consistency in a wide range of
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situations. We currently appreciate the approach through mixture estimation as the
most compelling for the many reasons advanced in Kamary et al. (2014), in particular
because the posterior distribution of the weight of a model is easily interpretable and
scalable towards selecting this very model or an alternative one. Furthermore, it returns
posterior probabilities for the models under comparison without the need to resort to
specific prior probability weights.
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