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For the Gaussian sequence model, we obtain nonasymptotic minimax
rates of estimation of the linear, quadratic and the �2-norm functionals on
classes of sparse vectors and construct optimal estimators that attain these
rates. The main object of interest is the class B0(s) of s-sparse vectors
θ = (θ1, . . . , θd ), for which we also provide completely adaptive estima-
tors (independent of s and of the noise variance σ ) having logarithmically
slower rates than the minimax ones. Furthermore, we obtain the minimax
rates on the �q -balls Bq(r) = {θ ∈ R

d : ‖θ‖q ≤ r} where 0 < q ≤ 2, and
‖θ‖q = (

∑d
i=1 |θi |q)1/q . This analysis shows that there are, in general, three

zones in the rates of convergence that we call the sparse zone, the dense zone
and the degenerate zone, while a fourth zone appears for estimation of the
quadratic functional. We show that, as opposed to estimation of θ , the correct
logarithmic terms in the optimal rates for the sparse zone scale as log(d/s2)

and not as log(d/s). For the class B0(s), the rates of estimation of the lin-
ear functional and of the �2-norm have a simple elbow at s = √

d (boundary
between the sparse and the dense zones) and exhibit similar performances,
whereas the estimation of the quadratic functional Q(θ) reveals more com-
plex effects: the minimax risk on B0(s) is infinite and the sparseness assump-
tion needs to be combined with a bound on the �2-norm. Finally, we apply
our results on estimation of the �2-norm to the problem of testing against
sparse alternatives. In particular, we obtain a nonasymptotic analog of the
Ingster–Donoho–Jin theory revealing some effects that were not captured by
the previous asymptotic analysis.

1. Introduction. In this paper, we consider the model

(1) yj = θj + σξj , j = 1, . . . , d,

where θ = (θ1, . . . , θd) ∈ R
d is an unknown vector of parameters, ξj are i.i.d. stan-

dard normal random variables, and σ > 0 is the noise level. We study the problem
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of estimation of linear and quadratic functionals:

L(θ) =
d∑

i=1

θi, and Q(θ) =
d∑

i=1

θ2
i ,

and of the �2-norm

‖θ‖2 = √
Q(θ)

based on the observations y1, . . . , yd .
In this paper, we assume that θ belongs to a given subset � of Rd . We will be

considering classes � with elements satisfying the sparsity constraints ‖θ‖0 ≤ s

where ‖θ‖0 denotes the number of nonzero components of θ , or ‖θ‖q ≤ r where

‖θ‖q =
(

d∑
i=1

|θi |q
)1/q

.

Here, r, q > 0 and the integer s ∈ [1, d] are given constants.
Let T (θ) be one of the functionals L(θ), Q(θ) or

√
Q(θ). As a measure of qual-

ity of an estimator T̂ of the functional T (θ), we consider the maximum squared
risk

sup
θ∈�

Eθ

(
T̂ − T (θ)

)2
,

where Eθ denotes the expectation with respect to the probability measure Pθ of
the vector of observations (y1, . . . , yd) satisfying (1). The best possible quality is
characterized by the minimax risk

R∗
T (�) = inf

T̂

sup
θ∈�

Eθ

(
T̂ − T (θ)

)2
,

where inf
T̂

denotes the infimum over all estimators. In this paper, we find minimax
optimal estimators of T (θ), that is, estimators T̃ such that

(2) sup
θ∈�

Eθ

(
T̃ − T (θ)

)2 � R∗
T (�).

Here and below, we write a � b if c ≤ a/b ≤ C for some absolute positive
constants c and C. Note that the minimax optimality is considered here in the
nonasymptotic sense, that is, (2) should hold for all d and σ .

The literature on minimax estimation of linear and quadratic functionals is
rather extensive. The analysis of estimators of linear functionals from the mini-
max point of view was initiated in [21] while for the quadratic functionals we refer
to [15]. These papers, as well as the subsequent publications [10, 11, 14, 16, 18,
19, 26, 27, 29–34, 36], focus on minimax estimation of functionals on the classes
� describing the smoothness properties of functions in terms of their Fourier or
wavelet coefficients. Typical examples are Sobolev ellipsoids, hyperrectangles or
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Besov bodies while a typical example of linear functional is the value of a smooth
function at a point. In this framework, a deep analysis of estimation of function-
als is now available including the minimax rates (and in some cases the minimax
constants), oracle inequalities and adaptation. Extensions to linear inverse prob-
lems have been considered in detail by [7, 8, 17]. Note that classes � studied
in this literature are convex classes. Estimation of functionals on the nonconvex
sparsity classes B0(s) = {θ ∈ R

d : ‖θ‖0 ≤ s} or Bq(r) = {θ ∈ R
d : ‖θ‖q ≤ r} with

0 < q < 1 has received much less attention. We are only aware of the paper [9],
which establishes upper and lower bounds on the minimax risk for estimators of
the linear functional L(θ) on the class B0(s). However, that paper considers the
special case when s < da for some a < 1/2, and σ = 1/

√
d and there is a logarith-

mic gap between the upper and lower bounds. Minimax rates for the estimation
of Q(θ) and of the �2-norm on the classes B0(s) and Bq(r), 0 < q < 2, were
not studied. Note, that estimation the �2-norm is closely related to minimax op-
timal testing of hypotheses under the �2 separation distance in the spirit of [24].
Indeed, the optimal tests for this problem are based on estimators of the �2-norm.
A nonasymptotic study of minimax rates of testing for the classes B0(s) and Bq(r),
0 < q < 2, is given in [4] and [40]. But for the testing problem, the risk function is
different and these papers do not provide results on the estimation of the �2-norm.
Note also that the upper bounds on the minimax rates of testing in [4] and [40]
depart from the lower bounds by a logarithmic factor.

In this paper, we find nonasymptotic minimax rates of estimation of the above
three functionals on the sparsity classes B0(s), Bq(r) and construct optimal es-
timators that attain these rates. We deal with nonconvex classes Bq (0 < q < 1)
for the linear functional and with the classes that are not quadratically convex
(0 < q < 2) for Q(θ) and of the �2-norm. Our main object of interest is the class
B0(s), for which we also provide completely adaptive estimators (independent of
σ and s) having logarithmically slower rates than the minimax ones. Some inter-
esting effects should be noted. First, we show that, for the linear functional and the
�2-norm there are, in general, three zones in the rates of convergence that we call
the sparse zone, the dense zone and the degenerate zone, while for the quadratic
functional an additional fourth zone appears. Next, as opposed to estimation of the
vector θ in the �2-norm (cf. [1, 5, 13, 28, 37, 40]), the correct logarithmic terms
in the optimal rates for the sparse zone scale as log(d/s2) and not as log(d/s).
Noteworthy, for the class B0(s), the rates of estimation of the linear functional and
of the �2-norm have a simple elbow at s = √

d (boundary between the sparse and
the dense zones) and exhibit similar performances, whereas the estimation of the
quadratic functional Q(θ) reveals more complex effects and is not possible only
on the basis of sparsity described by the condition θ ∈ B0(s). Finally, we apply our
results on estimation of the �2-norm to the problem of testing against sparse alter-
natives. In particular, we obtain a nonasymptotic analog of Ingster–Donoho–Jin
theory revealing some effects that were not captured by the previous asymptotic
analysis.
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2. Minimax estimation of the linear functional. In this section, we study
the minimax rates of estimation of the linear functional L(θ) and we construct
minimax optimal estimators.

Assume first that � is the class of s-sparse vectors B0(s) = {θ ∈ R
d : ‖θ‖0 ≤ s}

where s is a given integer, 1 ≤ s ≤ d . Consider the estimator

L̂ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d∑
j=1

yj1{|yj |>σ
√

2 log(1+d/s2)}, if s <
√

d,

d∑
j=1

yj , if s ≥ √
d,

where 1{·} denotes the indicator function.
The following theorem shows that

ψL
σ (s, d) = σ 2s2 log

(
1 + d/s2)

is the minimax rate of estimation of the linear functional on the class B0(s) and
that L̂ is a minimax optimal estimator.

THEOREM 1. There exist absolute constants c > 0,C > 0 such that, for any
integers s, d satisfying 1 ≤ s ≤ d , and any σ > 0,

(3) sup
θ∈B0(s)

Eθ

(
L̂ − L(θ)

)2 ≤ CψL
σ (s, d)

and

(4) R∗
L

(
B0(s)

) ≥ cψL
σ (s, d).

Proofs of (3) and of (4) are given in Sections 8 and 7, respectively. Note that
since log(1 + u) ≥ u/2 for 0 < u ≤ 1, and log(1 + u) ≤ u we have

(5) σ 2s2 log
(
1 + d/s2) � min

(
σ 2s2 log

(
1 + d/s2), σ 2d

)
for all 1 ≤ s ≤ d . This writing clarifies the fact that the rate exhibits a “hidden”
elbow at s = √

d . Thus,

(6) R∗
L

(
B0(s)

) � min
(
σ 2s2 log

(
1 + d/s2), σ 2d

)
.

We consider now the classes Bq(r) = {θ ∈ R
d : ‖θ‖q ≤ r}, where 0 < q ≤ 1,

and r is a positive number. For any r, σ, q > 0 any integer d ≥ 1, we define the
integer

(7) m = max
{
s ∈ {1, . . . , d} : σ 2 log

(
1 + d/s2) ≤ r2s−2/q}

if the set {s ∈ {1, . . . , d} : σ 2 log(1 + d/s2) ≤ r2s−2/q} is nonempty, and we put
m = 0 if this set is empty. The next two theorems show that the optimal rate of
convergence of estimators of the linear functional on the class Bq(r) is of the form

ψL
σ,q(r, d) =

{
σ 2m2 log

(
1 + d/m2), if m ≥ 1,

r2, if m = 0.
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The following theorem shows that ψL
σ,q(r, d) is a lower bound on the convergence

rate of the minimax risk of the linear functional on the class Bq(r).

THEOREM 2. If 0 < q ≤ 1, then there exists a constant c > 0 such that, for
any integer d ≥ 1 and any r, σ > 0, we have

(8) R∗
L

(
Bq(r)

) ≥ cψL
σ,q(r, d).

The proof of Theorem 2 is given in Section 7.
We now turn to the construction of minimax optimal estimators on Bq(r). For

0 < q ≤ 1, define the following statistic:

L̂q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∑
j=1

yj , if m >
√

d,

d∑
j=1

yj1{|yj |>2σ
√

2 log(1+d/m2)}, if 1 ≤ m ≤ √
d,

0, if m = 0.

THEOREM 3. Let 0 < q ≤ 1. There exists a constant C > 0 such that, for any
integer d ≥ 1 and any r, σ > 0, we have

(9) sup
θ∈Bq(r)

Eθ

(
L̂q − L(θ)

)2 ≤ CψL
σ,q(r, d).

The proof of Theorem 3 is given in Section 8. Theorems 2 and 3 imply that
ψL

σ,q(r, d) is the minimax rate of estimation of the linear functional on the ball

Bq(r) and that L̂q is a minimax optimal estimator.
Some remarks are in order here. Apart from the degenerate case m = 0 when the

zero estimator is optimal, we obtain on Bq(r) the same expression for the optimal
rate as on the class B0(s), with the difference that the sparsity s is now replaced
by the “effective sparsity” m. Heuristically, m is obtained as a solution of

σ 2m2 log
(
1 + d/m2) � r2m2−2/q,

where the left-hand side represents the estimation error for m-sparse signals es-
tablished in Theorem 1 and the right-hand side gives the error of approximating
a vector from Bq(r) by an m-sparse vector in squared �1-norm. Note also that, in
view of (5), we can equivalently write the optimal rate in the form:

ψL
σ,q(r, d) �

⎧⎪⎪⎨
⎪⎪⎩

σ 2d, if m >
√

d,

σ 2m2 log
(
1 + d/m2), if 1 ≤ m ≤ √

d,

r2, if m = 0.
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Thus, the optimal rate on Bq(r) has in fact three regimes that we will call the
dense zone (m >

√
d), the sparse zone (1 ≤ m ≤ √

d), and the degenerate zone
(m = 0). Furthermore, it follows from the definition of m that the rate ψL

σ,q(r, d)

in the sparse zone is of the order σ 2(r/σ )2q log1−q(1 + d(σ/r)2q), which leads to

ψL
σ,q(r, d) �

⎧⎪⎪⎨
⎪⎪⎩

σ 2d, if m >
√

d,

σ 2(r/σ )2q log1−q(1 + d(σ/r)2q), if 1 ≤ m ≤ √
d,

r2, if m = 0.

In particular, for q = 1, the logarithmic factor disappears from the rate, and the
optimal rates in the sparse and degenerate zones are both equal to r2. Therefore,
for q = 1, there is no need to introduce thresholding in the definition of L̂q , and
it is enough to use only the zero estimator for m ≤ √

d and the estimator
∑d

j=1 yj

for m >
√

d to achieve the optimal rate.

REMARK 1. In this section and throughout the paper, theorems on the min-
imax lower bounds are stated for the squared loss function only. However, the
proofs in Section 7 are given for the indicator loss function, which is more gen-
eral. For each of the considered classes �, they have the form

(10) inf
T̂

sup
θ∈�

Pθ

(∣∣T̂ − T (θ)
∣∣ ≥ ψ

) ≥ c,

where inf
T̂

denotes the infimum over all estimators, ψ is the corresponding min-
imax optimal rate and c > 0 is an absolute constant. Clearly, (10) implies lower
bounds for the minimax risk with any monotone nondecreasing loss function on
R+ taking value 0 at 0.

3. Minimax estimation of the quadratic functional. Consider now the prob-
lem of estimation of the quadratic functional Q(θ) = ∑d

i=1 θ2
i . For any integers

s, d satisfying 1 ≤ s ≤ d , and any σ > 0, we introduce the notation

ψ̄σ (s, d) =
{
σ 4s2 log2(1 + d/s2), if s <

√
d,

σ 4d, if s ≥ √
d.

The following theorem shows that

ψQ
σ (s, d, κ) = min

{
κ4,max

{
σ 2κ2, ψ̄σ (s, d)

}}
is a lower bound on the convergence rate of the minimax risk of the quadratic
functional on the class B2(κ) ∩ B0(s), where B2(κ) = {θ ∈R

d : ‖θ‖2 ≤ κ}.
THEOREM 4. There exists an absolute constant c > 0 such that, for any inte-

gers s, d satisfying 1 ≤ s ≤ d , and any κ,σ > 0, we have

(11) R∗
Q

(
B2(κ) ∩ B0(s)

) ≥ cψQ
σ (s, d, κ).
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The proof of Theorem 4 is given in Section 7.

REMARK 2. Note that the minimax risk R∗
Q(B2(κ)∩B0(s)) is monotone non-

decreasing in s while the right-hand side of (11) is not monotone in s. Neverthe-
less, there is no problem since ψ̄σ (s, d) is equivalent, up to absolute constants, to
a monotone function of s, for which (11) remains valid with another constant c.
For example, we have

(12) ψ̄σ (s, d) � df 2(min{1, s/
√

d}),
where f (t) = t log(1 + 4/t2). It is easy to check that the right-hand side of (12) is
monotone in s.

One of the consequences of Theorem 4 is that R∗
Q(B0(s)) = ∞ [set κ = ∞ in

(11)]. Thus, only smaller classes than B0(s) are of interest when estimating the
quadratic functional. The class B2(κ) ∩ B0(s) naturally arises in this context but
other classes can be considered as well.

We now turn to the construction of minimax optimal estimator on B2(κ) ∩
B0(s). Set

αs = E
(
X2|X2 > 2 log

(
1 + d/s2)) =

E(X21{|X|>
√

2 log(1+d/s2)})

P(|X| >
√

2 log(1 + d/s2))
,

where X ∼ N (0,1) denotes the standard normal random variable. Introduce the
notation

ψσ (s, d, κ) = max
{
σ 2κ2, ψ̄σ (s, d)

}
.

Thus,

(13) ψQ
σ (s, d, κ) = min

{
κ4,ψσ (s, d, κ)

}
.

Define the following statistic:

Q̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∑
j=1

(
y2
j − αsσ

2)1{|yj |>σ
√

2 log(1+d/s2)}, if s <
√

d and κ4 ≥ ψσ (s, d, κ),

d∑
j=1

y2
j − dσ 2, if s ≥ √

d and κ4 ≥ ψσ (s, d, κ),

0, if κ4 < ψσ (s, d, κ).

THEOREM 5. There exists an absolute constant C > 0 such that, for any inte-
gers s, d satisfying 1 ≤ s ≤ d , and any κ,σ > 0, we have

(14) sup
θ∈B2(κ)∩B0(s)

Eθ

(
Q̂ − Q(θ)

)2 ≤ CψQ
σ (s, d, κ).
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The proof of Theorem 5 is given in Section 8. Theorems 4 and 5 imply that
ψ

Q
σ (s, d, κ) is the minimax rate of estimation of the quadratic functional on the

class B2(κ) ∩ B0(s) and that Q̂ is a minimax optimal estimator.
As a corollary, we obtain the minimax rate of convergence on the class B2(κ)

(set s = d in Theorems 4 and 5). In this case, the estimator Q̂ takes the form

Q̂∗ =

⎧⎪⎪⎨
⎪⎪⎩

d∑
j=1

y2
j − dσ 2, if κ4 ≥ max

{
σ 2κ2, σ 4d

}
,

0, if κ4 < max
{
σ 2κ2, σ 4d

}
.

COROLLARY 1. There exist absolute constants c,C > 0 such that, for any
κ,σ > 0, we have

(15) sup
θ∈B2(κ)

Eθ

(
Q̂∗ − Q(θ)

)2 ≤ C min
{
κ4,max

(
σ 2κ2, σ 4d

)}

and

(16) R∗
Q

(
B2(κ)

) ≥ c min
{
κ4,max

(
σ 2κ2, σ 4d

)}
.

Note that the upper bounds of Theorem 5 and Corollary 1 obviously remain
valid for the positive part estimators Q̂+ = max{Q̂,0}, and Q̂∗,+ = max{Q̂∗,0}.
The upper rate as in (15) on the class B2(κ) with an extra logarithmic factor is
obtained for different estimators in [26, 27].

Alternatively, we consider the classes Bq(r), where r is a positive number and
0 < q < 2. As opposed to the case of B0(s), we do not need to consider intersection
with B2(κ). Indeed, it is granted that the �2-norm of θ is uniformly bounded thanks
to the inclusion Bq(r) ⊆ B2(r). For any r, σ > 0, 0 < q < 2, and any integer d ≥ 1
we set

ψQ
σ,q(r, d) =

⎧⎪⎪⎨
⎪⎪⎩

max
{
σ 2r2, σ 4d

}
, if m >

√
d,

max
{
σ 2r2, σ 4m2 log2(1 + d/m2)}, if 1 ≤ m ≤ √

d,

r4, if m = 0,

where m is the integer defined above [cf. (7)] and depending only on d, r, σ, q . The
following theorem shows that ψ

Q
σ,q(r, d) is a lower bound on the convergence rate

of the minimax risk of the quadratic functional on the class Bq(r).

THEOREM 6. Let 0 < q < 2. There exists a constant c > 0 such that, for any
integer d ≥ 1, and any r, σ > 0, we have

(17) R∗
Q

(
Bq(r)

) ≥ cψQ
σ,q(r, d).
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We now turn to the construction of minimax optimal estimators on Bq(r). Con-
sider the following statistic:

Q̂q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∑
j=1

y2
j − dσ 2, if m >

√
d,

d∑
j=1

(
y2
j − α̃mσ 2)1{|yj |>2σ

√
2 log(1+d/m2)}, if 1 ≤ m ≤ √

d,

0, if m = 0,

where α̃m = E(X2|X2 > 8 log(1 + d/m2)),X ∼N (0,1).

THEOREM 7. Let 0 < q < 2. There exists a constant C > 0 such that, for any
integer d ≥ 1, and any r, σ > 0, we have

(18) sup
θ∈Bq(r)

Eθ

(
Q̂q − Q(θ)

)2 ≤ CψQ
σ,q(r, d).

The proof of Theorem 7 is given in Section 8. Theorems 6 and 7 imply that
ψ

Q
σ,q(r, d) is the minimax rate of estimation of the quadratic functional on the

class Bq(r) and that Q̂q is a minimax optimal estimator.
Notice that, in view of the definition of m, in the sparse zone we have

σ 4m2 log2(1 + d/m2) � σ 4(r/σ )2q log2−q(1 + d(σ/r)2q),
which leads to

ψQ
σ,q(r, d) �

⎧⎪⎪⎨
⎪⎪⎩

max
{
σ 2r2, σ 4d

}
, if m >

√
d,

max
{
σ 2r2, σ 4(r/σ )2q log2−q(1 + d(σ/r)2q)}, if 1 ≤ m ≤ √

d,

r4, if m = 0.

One can check that for q = 2 this rate is of the same order as the rate obtained in
Corollary 1.

4. Minimax estimation of the �2-norm. Interestingly, the minimax rates of
estimation of the �2-norm ‖θ‖2 = √

Q(θ) do not degenerate as the radius κ grows
to infinity, as opposed to the rates for Q(θ) established above. It turns out that
the restriction to B2(κ) is not needed to get meaningful results for estimation of√

Q(θ) on the sparsity classes. We drop this restriction and assume that � = B0(s).
Consider the estimator

N̂ =
√

max{Q̂•,0},
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where

Q̂• =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d∑
j=1

(
y2
j − αsσ

2)1{|yj |>σ
√

2 log(1+d/s2)}, if s <
√

d,

d∑
j=1

y2
j − dσ 2, if s ≥ √

d.

The following theorem shows that N̂ is a minimax optimal estimator of the �2-
norm ‖θ‖2 = √

Q(θ) on the class B0(s) and that the corresponding minimax rate
of convergence is

ψ
√

Q
σ (s, d) =

{
σ 2s log

(
1 + d/s2), if s <

√
d,

σ 2
√

d, if s ≥ √
d.

THEOREM 8. There exist absolute constants c > 0,C > 0 such that, for any
integers s, d satisfying 1 ≤ s ≤ d , and any σ > 0,

(19) sup
θ∈B0(s)

Eθ

(
N̂ − ‖θ‖2

)2 ≤ Cψ
√

Q
σ (s, d)

and

(20) R∗√
Q

(
B0(s)

) ≥ cψ
√

Q
σ (s, d).

Proofs of (19) and of (20) are given in Sections 8 and 7, respectively.
Our next step is to analyze the classes Bq(r). For any r, σ > 0, 0 < q < 2, and

any integer d ≥ 1 we set

ψ
√

Q
σ,q (r, d) =

⎧⎪⎪⎨
⎪⎪⎩

σ 2
√

d, if m >
√

d,

σ 2m log
(
1 + d/m2), if 1 ≤ m ≤ √

d,

r2, if m = 0,

where m is the integer defined above [cf. (7)] and depending only on d, r, σ, q . The
estimator that we consider when θ belongs to the class Bq(r) is

N̂q =
√

max{Q̂q,0}.
THEOREM 9. Let 0 < q < 2. There exist constants C,c > 0 such that, for any

integer d ≥ 1, and any r, σ > 0, we have

(21) sup
θ∈Bq(r)

Eθ

(
N̂q − ‖θ‖2

)2 ≤ Cψ
√

Q
σ,q (r, d)

and

(22) R∗√
Q

(
Bq(r)

) ≥ cψ
√

Q
σ,q (r, d).
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Proofs of (21) and of (22) are given in Sections 8 and 7, respectively.
As in the case of linear and quadratic functionals, we have an equivalent expres-

sion for the optimal rate:

ψ
√

Q
σ,q (r, d) �

⎧⎪⎪⎨
⎪⎪⎩

σ 2
√

d, if m >
√

d,

σ 2(r/σ )q log1−q/2(1 + d(σ/r)2q), if 1 ≤ m ≤ √
d,

r2, if m = 0.

Though we formally did not consider the case q = 2, note that the logarithmic
factor disappears from the above expression when q = 2, and the optimal rates in
the sparse and degenerate zones are both equal to r2. This suggests that, for q = 2,
there is no need to introduce thresholding in the definition of N̂q , and it is enough
to use only the zero estimator for m ≤ √

d and the estimator (max{∑d
j=1 y2

j −
dσ 2,0})1/2 for m >

√
d to achieve the optimal rate.

5. Estimation with unknown noise level. In this section, we discuss modifi-
cations of the above estimators when the noise level σ is unknown. A general idea
leading to our construction is that the smallest y2

j are likely to correspond to zero
components of θ , and thus to contain information on σ not corrupted by θ . Here,
we will demonstrate this idea only for estimation of s-sparse vectors in the case
s ≤ √

d . Then, not more than d −√
d smallest y2

j can be used for estimation of the
variance. Throughout this section, we assume that d ≥ 3.

We start by considering estimation of the linear functional. Then it is enough to
replace σ in the definition of L̂ by the following statistic:

σ̂ = 3
(

1

d

∑
j≤d−√

d

y2
(j)

)1/2
,

where y2
(j) ≤ · · · ≤ y2

(d) are the order statistics associated to y2
1 , . . . , y2

d . Note that
σ̂ is not a good estimator of σ but rather an over-estimator. The resulting estimator
of L(θ) is

L̃ =
d∑

j=1

yj1{|yj |>σ̂
√

2 log(1+d/s2)}.

THEOREM 10. There exists an absolute constant C such that, for any integers
s and d satisfying s ≤ √

d , and any σ > 0,

sup
θ∈B0(s)

Eθ

(
L̃ − L(θ)

)2 ≤ CψL
σ (s, d).

The proof of Theorem 10 is given in Section 8.
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Note that the estimator L̃ depends on s. To turn it into a completely data-driven
one, we may consider

L̃′ =
d∑

j=1

yj1{|yj |>σ̂
√

2 logd}.

Inspection of the proof of Theorem 10 leads to the conclusion that

(23) sup
θ∈B0(s)

Eθ

(
L̃′ − L(θ)

)2 ≤ Cσ 2s2 logd.

Thus, the rate for the data-driven estimator L̃′ is not optimal but the deterioration
is only in the expression under the logarithm.

A data-driven estimator of the quadratic functional can be taken in the form:

Q̃ =
d∑

j=1

y2
j 1{|yj |>σ̂

√
2 logd}.

The following theorem shows that the estimator Q̃ is nearly minimax on
B2(κ) ∩ B0(s) for s ≤ √

d .

THEOREM 11. There exists an absolute constant C such that, for any integers
s and d satisfying s ≤ √

d , and any σ > 0,

sup
θ∈B2(κ)∩B0(s)

Eθ

(
Q̃ − Q(θ)

)2 ≤ C max
{
σ 2κ2, σ 4s2 log2 d

}
.

The proof of Theorem 11 is given in Section 8.

6. Consequences for the problem of testing. The results on estimation of the
�2-norm stated above allow us to obtain the solution of the problem of nonasymp-
totic minimax testing on the classes B0(s) and Bq(r) under the �2 separation dis-
tance. For q ≥ 0, u > 0, and δ > 0, consider the set

�q,u(δ) = {
θ ∈ Bq(u) : ‖θ‖2 ≥ δ

}
.

Assume that we wish to test the hypothesis H0 : θ = 0 against the alternative

H1 : θ ∈ �q,u(δ).

Let � be a test statistic with values in {0,1}. We define the risk of test � as the
sum of the first type error and the maximum second type error:

P0(� = 1) + sup
θ∈�q,u(δ)

Pθ (� = 0).

A benchmark value is the minimax risk of testing

Rq,u(δ) = inf
�

{
P0(� = 1) + sup

θ∈�q,u(δ)

Pθ (� = 0)
}
,
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where inf� is the infimum over all {0,1}-valued statistics. The minimax rate of
testing on �q,u is defined as λ > 0, for which the following two facts hold:

(i) for any ε ∈ (0,1) there exists Aε > 0 such that, for all A > Aε ,

(24) Rq,u(Aλ) ≤ ε,

(ii) for any ε ∈ (0,1) there exists aε > 0 such that, for all 0 < A < aε ,

(25) Rq,u(Aλ) ≥ 1 − ε.

Note that this defines a nonasymptotic minimax rate of testing as opposed
to the classical asymptotic definition that can be found, for example, in [24].
A nonasymptotic minimax study of testing for the classes B0(s) and Bq(r) is given
by [4] and [40]. However, those papers derive the minimax rates of testing on �q,u

only up to a logarithmic factor. The next theorem provides the exact expression for
the minimax rates in the considered testing setup.

THEOREM 12. For any integers s and d satisfying 1 ≤ s ≤ d , and any σ >

0, the minimax rate of testing on �0,s is equal to λ = (ψ
√

Q
σ (s, d))1/2. For any

0 < q < 2, and any r, σ > 0, the minimax rate of testing on �q,r is equal to λ =
(ψ

√
Q

σ,q (r, d))1/2.

The proof of this theorem consists in establishing the upper bounds (24) and
the lower bounds (25). We note first that the lower bounds (25) are essentially
proved in [4] and [40]. However, in those papers they are stated in somewhat dif-
ferent form, so for completeness we give a brief proof in Section 7, which is very
close to the proofs of the lower bounds (20) and (22). The upper bounds (24) are
straightforward in view of (19) and (21). Indeed, for example, to prove (24) with
q = 0 and u = s, we fix some A > 0 and consider the test

(26) �∗ = 1{N̂>(A/2)(ψ

√
Q

σ (s,d))1/2}.

Then, writing for brevity ψ = ψ
√

Q
σ (s, d) and applying Chebyshev’s inequality,

we have

R0,s(Aψ) ≤ P0
(
�∗ = 1

)+ sup
θ∈�0,s (A

√
ψ)

Pθ

(
�∗ = 0

)

≤ P0(N̂ > A
√

ψ/2) + sup
θ∈B0(s)

Pθ

(
N̂ − ‖θ‖2 ≤ −A

√
ψ/2

)
(27)

≤ 2 sup
θ∈B0(s)

Eθ (N̂ − ‖θ‖2)
2

(A/2)2ψ
≤ C∗A−2
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for some absolute constant C∗ > 0, where the last inequality follows from (19).
Choosing Aε as a solution of C∗A−2

ε = ε we obtain (24). The case 0 < q < 2 is
treated analogously by introducing the test

�∗
q = 1{N̂>(A/2)(ψ

√
Q

σ,q (r,d))1/2}
and using (21) rather than (19) to get the upper bound (24).

Furthermore, as a simple corollary we obtain a nonasymptotic analog of the
Ingster–Donoho–Jin theory. Consider the problem of testing the hypothesis H0 :
θ = 0 against the alternative H1 : θ ∈ �s(δ) where

(28) �s(δ) = {
θ ∈R

d : ‖θ‖0 = s, θj ∈ {0, δ}, j = 1, . . . , d
}

for some integer s ∈ [1, d] and some δ > 0. Ingster [22] and Donoho and Jin [12]
studied a slightly different but equivalent problem (with θj taking values 0 and δ at
random) assuming in addition that s = da for some a ∈ (0,1/2). In an asymptotic
setting when σ → 0 and d = dσ → ∞, Ingster [22] obtained the detection bound-
ary in the exact minimax sense, that is, the value λ = λσ such that asymptotic
analogs of (24) and (25) hold with Aε = aε and ε = 0. Donoho and Jin [12] proved
that the detection boundary is attained at the higher criticism test. Extensions to
the regression and classification problems and more references can be found in [3,
23, 25]. Note that the alternatives in these papers are defined not exactly in the
same way as in (28).

A natural nonasymptotic analog of these results consists in establishing the min-
imax rate of testing on �s(δ) in the sense of the definition (24)–(25). This is done
in the next corollary that covers not only �s(δ) but also the following more general
class:

�∗
s (δ) =

{
θ ∈ R

d : ‖θ‖0 = s, min
j :θj �=0

|θj | ≥ δ
}
.

We define the minimax rate of testing on the classes �s and �∗
s similarly as such

rate was defined for �q,u, by modifying (24)–(25) in an obvious way.

COROLLARY 2. Let s and d be integers satisfying 1 ≤ s ≤ d , and let σ > 0.

The minimax rate of testing on �s is equal λ = σ
√

log(1 + d/s2) for s ≤ √
d .

Furthermore, the minimax rate of testing on �∗
s is equal to

λ =
⎧⎨
⎩σ

√
log

(
1 + d/s2

)
, if s <

√
d,

σd1/4/
√

s, if s ≥ √
d.

The proof of the upper bound in this corollary is essentially the same as in
Theorem 12. We take the same test statistic �∗ and then act as in (27) using that
�s(Aλ) and �∗

s (Aλ) are included in �0,s(Aλ
√

s). The proof of the lower bound
for the case s ≤ √

d is also the same as in Theorem 12 since the measure μρ used
in the proofs (cf. Section 7) is supported on s-sparse vectors θ with all coefficients
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taking the same value. For s >
√

d , we need a slightly different lower bound argu-
ment; see Section 7 for the details.

Ingster [22] and Donoho and Jin [12] derived the asymptotic rate of testing in
the form λ = c(a)σ

√
logd where the exact value c(a) > 0 is explicitly given as a

function of a appearing in the relation s = da , 0 < a < 1/2. Corollary 2 allows us
to explore more general behavior of s leading to other types of rates. For example,
we find that the minimax rate of testing is of the order σ if s = √

d and it is
of the order σ

√
log logd if s � √

d/(logd)γ for any γ > 0. Such effects are not
captured by the previous asymptotic results. Note also that the test �∗ [cf. (26)]
that achieves the minimax rates in Corollary 2 is very simple; it is a plug-in test
based on the estimator of the �2-norm. We do not need to invoke refined techniques
as the higher criticism test. However, we do not prove that our method achieves the
exact constant c(a) in the specific regime considered by Ingster [22] and Donoho
and Jin [12].

7. Proofs of the lower bounds.

7.1. General tools. The proofs of the lower bounds in this section use a tech-
nique based on a reduction to testing between two probability measures, one of
which is a mixture measure. This is a special case of what is called the method of
fuzzy hypotheses or Le Cam’s method since Le Cam [35] was apparently the first
to consider this kind of argument.

Let μ be a probability measure on �. Denote by Pμ the mixture probability
measure:

Pμ =
∫
�

Pθμ(dθ).

A vector θ ∈ R
d is called s-sparse if ‖θ‖0 = s. For an integer s such that 1 ≤ s ≤ d

and ρ > 0, we denote by μρ the uniform distribution on the set of s-sparse vectors
in R

d with all nonzero coefficients equal to σρ. Let

χ2(P ′,P
) =

∫ (
dP ′/dP

)2
dP − 1

be the chi-square divergence between two mutually absolutely continuous proba-
bility measures P ′ and P .

The following lemma is obtained by combining arguments of Baraud [4] and
Cai and Low [9].

LEMMA 1. For all σ > 0, ρ > 0, 1 ≤ s ≤ d , we have

χ2(Pμρ ,P0) ≤
(

1 − s

d
+ s

d
eρ2

)s

− 1.

For completeness, the proof of this lemma is given in the Appendix. We will
also need a second lemma, which is a special case of Theorem 2.15 in [39].
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LEMMA 2. Let � be a subset of Rd containing 0. Assume that there exists a
probability measure μ on � and numbers v > 0, β > 0 such that T (θ) = 2v for
all θ ∈ supp(μ) and χ2(Pμ,P0) ≤ β , then

inf
T̂

sup
θ∈�

Pθ

(∣∣T̂ − T (θ)
∣∣ ≥ v

) ≥ 1

4
exp(−β),

where inf
T̂

denotes the infimum over all estimators.

7.2. Proof of the lower bound (4) in Theorem 1. Set ρ =
√

log(1 + d/s2).
Then, by Lemma 1,

(29) χ2(Pμρ ,P0) ≤
(

1 − s

d
+ s

d

(
1 + d

s2

))s

− 1 =
(

1 + 1

s

)s

− 1 ≤ e − 1.

Next, L(θ) = σsρ for all θ ∈ supp(μρ), and also supp(μρ) ⊆ B0(s). Thus, the
assumptions of Lemma 2 are satisfied with � = B0(s), β = e − 1, v = σsρ/2 =
(1/2)σ s

√
log(1 + d/s2) and T (θ) = L(θ). An application of Lemma 2 yields

inf
T̂

sup
θ∈B0(s)

Pθ

(∣∣T̂ − L(θ)
∣∣ ≥ (1/2)σ s

√
log

(
1 + d/s2

)) ≥ 1

4
exp(1 − e),

which implies (4).

7.3. Proof of Theorem 4. We start by rewriting in a more convenient form the
lower rates we need to prove. For this, consider separately the cases s ≥ √

d and
s <

√
d .

Case s ≥ √
d . The lower rate we need to prove in this case is min{κ4,

max(σ 2κ2, σ 4d)}. It is easy to check that we can write it as follows:

(30) min
{
κ4,max

(
σ 2κ2, σ 4d

)} =

⎧⎪⎪⎨
⎪⎪⎩

σ 2κ2, if κ4 > σ 4d2,

σ 4d, if σ 4d < κ4 ≤ σ 4d2,

κ4, if κ4 ≤ σ 4d.

Note that the lower rate σ 4d for σ 4d < κ4 ≤ σ 4d2 follows from the lower rate κ4

for κ4 < σ 4d and the fact that the minimax risk is a nondecreasing function of κ .
Therefore, to prove Theorem 4 for s ≥ √

d , it is enough to show that R∗
Q(B2(κ) ∩

B0(s)) ≥ c(lower rate), where c > 0 is an absolute constant, and

(31) lower rate =
{
σ 2κ2, if κ4 > σ 4d2 and s = √

d,

κ4, if κ4 ≤ σ 4d and s = √
d.

In (31), we assume without loss of generality that
√

d is an integer and we replace
without loss of generality the condition s ≥ √

d by s = √
d since the minimax risk

is a nondecreasing function of s.
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Case s <
√

d . The lower rate we need to prove in this case is

min
{
κ4,max

(
σ 2κ2, σ 4s2 log2(1 + d/s2))}.

The same argument as above shows that the analog of representation (30) holds
with d replaced by s2 log2(1 + d/s2), and that it is enough to prove the lower rate
of the form

(32) lower rate =
{
σ 2κ2, if κ4 > σ 4s4 log4(1 + d/s2) and s <

√
d,

κ4, if κ4 ≤ σ 4s2 log2(1 + d/s2) and s <
√

d.

Thus, to prove Theorem 4 it remains to establish (31) and (32). This is done in the
following two propositions. Proposition 1 is used with b = log 2 and it is a more
general fact than the first lines in (31) and (32) since B2(κ) ∩ B0(s) ⊇ B2(κ) ∩
B0(1), and s log(1 + d/s2) ≥ log 2 for 1 ≤ s ≤ √

d . Proposition 2 is applied with
b = 1/(log 2).

PROPOSITION 1. Let b > 0. If κ > bσ , then

inf
T̂

sup
θ∈B2(κ)∩B0(1)

Pθ

(∣∣T̂ − Q(θ)
∣∣ ≥ (3b/8)σκ

) ≥ 1

4
exp

(−b2/4
)
,

where inf
T̂

denotes the infimum over all estimators of Q.

PROPOSITION 2. Let b > 0. If κ4 ≤ b2σ 4s2 log2(1 + d/s2) and 1 ≤ s ≤ d ,
then

inf
T̂

sup
θ∈B2(κ)∩B0(s)

Pθ

(∣∣T̂ − Q(θ)
∣∣ ≥ κ2/

(
2 max(b,1)

)) ≥ 1

4
exp(1 − e),

where inf
T̂

denotes the infimum over all estimators of Q.

REMARK 3. At first sight, the proof of the lower bound seems to exhibit a
paradox: the proof for the rate σ 2κ2 involves a two-point comparison, while the
trivial rate κ4 needs a more elaborate proof. But, in fact it is not surprising since
the rate σ 2κ2 is independent from the dimension d , so that it is natural that the
proof only uses simple arguments that also hold for d = 1. On the other hand, the
bound κ4 needs a construction based on multiple hypotheses, since the dimension-
dependent rate σ 4d derives from it in view of the above argument.

7.4. Proof of Proposition 1. Consider the vectors θ = (κ,0, . . . ,0) and θ ′ =
(κ − bσ/2,0, . . . ,0). Clearly, θ and θ ′ belong to B2(κ) ∩ B0(1). We have

d
(
θ, θ ′)� ∣∣Q(θ) − Q

(
θ ′)∣∣ = ∣∣σ 2b2/4 − κσb

∣∣ > 3σκb/4,

and the Kullback–Leibler divergence between Pθ and Pθ ′ satisfies

K(Pθ ,Pθ ′) = ‖θ − θ ′‖2
2

2σ 2 = b2

8
.

We now apply Theorem 2.2 and (2.9) in [39] to obtain the result.
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7.5. Proof of Proposition 2. Set ρ = κ/(σ
√

max(b,1)s). Then ρ2 ≤ log(1 +
d/s2) and due to (29) we have χ2(Pμρ ,P0) ≤ e − 1. Next, Q(θ) = ‖θ‖2

2 =
sσ 2ρ2 = κ2/max(b,1) for all θ ∈ supp(μρ), which implies supp(μρ) ⊆ B2(κ).
We also have supp(μρ) ⊆ B0(s) by construction. Therefore, the assumptions of
Lemma 2 are satisfied with � = B2(κ) ∩ B0(s), β = e − 1, v = κ2/(2 max(b,1))

and T (θ) = Q(θ). An application of Lemma 2 yields the result.

7.6. Proof of Theorem 2. In order to prove Theorem 2, we will need the fol-
lowing proposition.

PROPOSITION 3. Let b > 0. If κ2 ≤ b2σ 2s2 log(1+d/s2) and 1 ≤ s ≤ d , then

inf
T̂

sup
θ∈B1(κ)∩B0(s)

Pθ

(∣∣T̂ − L(θ)
∣∣ ≥ κ/

(
2 max(b,1)

)) ≥ 1

4
exp(1 − e),

where inf
T̂

denotes the infimum over all estimators.

PROOF. We proceed as in the proof of Proposition 2 with the following mod-
ifications. We now set ρ = κ/(max(b,1)σ s). Then χ2(Pμρ ,P0) ≤ e − 1 and
L(θ) = ‖θ‖1 = sσρ = κ/max(b,1) for all θ ∈ supp(μρ), so that supp(μρ) ⊆ � =
B1(κ) ∩ B0(s) and Lemma 2 applies with β = e − 1, v = κ/(2 max(b,1)) and
T (θ) = L(θ). �

PROOF OF THEOREM 2. First, notice that, for an integer s ∈ [1, d], and 0 <

q < 1, κ > 0,

(33) B1(κ) ∩ B0(s) ⊂ Bq(r) if s1−qκq = rq.

We will prove the theorem by considering separately the cases m = 0 and m ≥ 1.

Case m = 0. Then r2 < σ 2 log(1 + d) and the assumption of Proposition 3 is
satisfied with s = 1, b = 1 and κ = r . Applying Proposition 3 with these parame-
ters and using (33) with s = 1, we easily deduce that R∗

L(Bq(r)) ≥ Cr2.
Case m ≥ 1. We now use the embedding (33) with s = m. Then

(34) κ = rm1−1/q ≥ σm

√
log

(
1 + d/m2

)
,

where the last inequality follows from the definition of m. Furthermore, the fact
that m ≥ 1 and the definition of m imply

2−2/qr2m−2/q ≤ r2(m + 1)−2/q < σ 2 log
(
1 + d/(m + 1)2)

(35)
≤ σ 2 log

(
1 + d/m2).

This proves that for κ defined in (34) we have κ2 ≤ 22/qσ 2m2 log(1 + d/m2).
Thus, the assumption of Proposition 3 is satisfied with s = m, b = 21/q and κ

defined in (34). Applying Proposition 3 with these parameters and using (33)
with s = m we deduce that R∗

L(Bq(r)) ≥ Cκ2. This and (34) yield R∗
L(Bq(r)) ≥

Cσ 2m2 log(1 + d/m2), which is the desired lower bound. �
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7.7. Proof of Theorem 6. First notice that, for an integer s ∈ [1, d], and 0 <

q < 2, κ > 0,

(36) B2(κ) ∩ B0(s) ⊂ Bq(r) if s1−q/2κq = rq.

Consider separately the cases m = 0, 1 ≤ m ≤ √
d , and m >

√
d .

Case m = 0. Then r2 < σ 2 log(1 + d) so that the assumption of Proposition 2
is satisfied with s = 1, b = 1 and κ = r . Applying Proposition 2 with these param-
eters and using (36) with s = 1 and κ = r , we get that R∗

Q(Bq(r)) ≥ Cr4.

Case 1 ≤ m ≤ √
d . We start by using (36) with s = m. Then

(37) κ = rm1/2−1/q ≥ σ

√
m log

(
1 + d/m2

)
,

where the last inequality follows from the definition of m. For this κ , using (35)
we obtain κ2 ≤ 22/qσ 2m log(1 + d/m2). Thus, the assumption of Proposition 2 is
satisfied with s = m, b = 22/q and κ defined in (37). Applying Proposition 2 with
these parameters and using (36) with s = m we deduce that R∗

Q(Bq(r)) ≥ Cκ4.

This and (37) prove the lower bound R∗
Q(Bq(r)) ≥ Cσ 4m2 log2(1 + d/m2).

To show that R∗
Q(Bq(r)) ≥ Cσ 2r2, we use (36) with s = 1 and κ = r . Now,

m ≥ 1, which implies r2 ≥ σ 2 log(1 + d) ≥ σ 2(log 2). Thus, the assumption of
Proposition 1 is satisfied with s = 1, κ = r , and any 0 < b <

√
log 2, leading to the

bound R∗
Q(B2(κ) ∩ B0(1)) ≥ Cσ 2r2. This inequality and the embedding in (36)

with s = 1 yield the result.
Case m >

√
d . It suffices to note that the argument used above in the case

1 ≤ m ≤ √
d remains valid for m >

√
d and s = √

d instead of s = m (assum-
ing without loss of generality that

√
d is an integer).

7.8. Proof of the lower bound (20) in Theorem 8. Let s <
√

d . Set ρ =√
log(1 + d/s2). Due to (29) we have χ2(Pμρ ,P0) ≤ e−1. Next, ‖θ‖2 = σρ

√
s =

σ
√

s log(1 + d/s2) for all θ ∈ supp(μρ), and supp(μρ) ⊆ B0(s) by construction.
Therefore, the assumptions of Lemma 2 are satisfied with � = B0(s), β = e − 1,

v = σ
√

s log(1 + d/s2)/2 and T (θ) = ‖θ‖2. An application of Lemma 2 yields the

result for s <
√

d . To obtain the lower bound for s ≥ √
d , it suffices to consider

the case s = √
d (assuming without loss of generality that

√
d is an integer) and to

repeat the above argument with this value of s.

7.9. Proof of the lower bound (22) in Theorem 9. If m = 0, we have r2 <

σ 2 log(1 + d). In this case, set ρ = r/σ , s = 1. Then, ρ <
√

log(1 + d) and
due to (29) with s = 1 we have χ2(Pμρ ,P0) ≤ 1. Next, ‖θ‖2 = ‖θ‖q = r for all
θ ∈ supp(μρ). Thus, supp(μρ) ⊆ Bq(r) and the assumptions of Lemma 2 are sat-
isfied with � = Bq(r), β = 1, v = r/2 and T (θ) = ‖θ‖2, which implies the bound
R∗√

Q
(Bq(r)) ≥ Cr2 for m = 0.
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Case 1 ≤ m ≤ √
d . Use the same construction as in the proof of (20) replac-

ing there s with m. Then ‖θ‖2 = σ
√

m log(1 + d/m2), and ‖θ‖q = σρm1/q =
σm1/q

√
log(1 + d/m2) for all θ ∈ supp(μρ). By definition of m, we have

σm1/q
√

log(1 + d/m2) ≤ r guaranteeing that supp(μρ) ⊆ Bq(r). Other elements
of the argument remain as in the proof of (20).

Case m >
√

d . Use the same construction as in the proof of (20) with s = √
d

(assuming without loss of generality that
√

d is an integer). Then ρ = √
log 2,

‖θ‖2 = σd1/4√log 2, and ‖θ‖q = σd1/(2q)
√

log 2 ≤ r (by definition of m) for all
θ ∈ supp(μρ). Other elements of the argument remain as in the proof of (20).

7.10. Proof of the lower bounds in Theorem 12 and in Corollary 2. The fol-
lowing lemma reduces the proof to the argument, which is very close to that of the
previous two proofs.

LEMMA 3. If μ is a probability measure on �, then

inf
�

{
P0(� = 1) + sup

θ∈�

Pθ (� = 0)
}

≥ 1 −
√

χ2(Pμ,P0),

where inf� is the infimum over all {0,1}-valued statistics.

PROOF. For any {0,1}-valued statistic �,

P0(� = 1) + sup
θ∈�

Pθ (� = 0) ≥ P0(� = 1) +
∫
�

Pθ (� = 0)μ(dθ)

= P0(� = 1) + Pμ(� = 0) ≥ 1 − V (Pμ,P0)

≥ 1 −
√

χ2(Pμ,P0),

where V (·, ·) denotes the total variation distance and the last two inequalities fol-
low from the standard properties of this distance (cf. Theorem 2.2(i) and (2.27) in
[39]). �

PROOF OF THE LOWER BOUND IN THEOREM 12 FOR q = 0. We use a
slightly modified argument of Section 7.8. As in Section 7.8, it suffices to prove

the result in the case s <
√

d . Then ψ
√

Q
σ (s, d) = σ 2s log(1 + d/s2), so that our

aim is to show that the lower rate of testing on B0(s) is λ = σ
√

s log(1 + d/s2).
Fix A ∈ (0,1). We use Lemma 3 with � = �0,s(Aλ) and μ = μρ where we take

ρ = A
√

log(1 + d/s2). For all θ ∈ supp(μρ), we have ‖θ‖2 = σρ
√

s = Aλ while
supp(μρ) ⊆ B0(s) by construction. Hence, supp(μρ) ⊆ �0,s(Aλ), so that we can
apply Lemma 3. Next, by Lemma 1,

χ2(Pμρ ,P0) ≤
(

1 − s

d
+ s

d

(
1 + d

s2

)A2)s

− 1 ≤
(

1 + A2

s

)s

− 1

(38)
≤ exp

(
A2)− 1,
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where we have used that (1 + x)A
2 − 1 ≤ A2x for 0 < A < 1, x > 0. The last

display and Lemma 3 imply that R0,s(Aλ) ≥ 1 −
√

exp(A2) − 1. Choosing aε

such that
√

exp(a2
ε ) − 1 = ε proves (25). �

PROOF OF THE LOWER BOUND IN THEOREM 12 FOR 0 < q < 2. The proof
follows along similar lines but now we modify, in the same spirit, the argument
of Section 7.9 rather than that of Section 7.8. The corresponding ρ in Section 7.9
is multiplied by a suitable A ∈ (0,1) and then Lemma 3 is applied. We omit the de-
tails.

�

PROOF OF THE LOWER BOUND IN COROLLARY 2. As explained after the
statement of Corollary 2, we need only to consider the case s >

√
d for the class

�∗
s . Then, λ = σd1/4/

√
s. Instead of μρ we consider now a slightly different mea-

sure μ̄ρ , which is the uniform distribution on the set of s-sparse vectors in R
d with

nonzero coefficients taking values in {−σρ,σρ}. Then similarly to Lemma 1,

(39) χ2(Pμ̄ρ ,P0) ≤
(

1 − s

d
+ s

d
cosh

(
ρ2))s

− 1;

cf. formula (27) in [4]. Fix A ∈ (0,1). We now use Lemma 3 with � = �∗
s (Aλ)

and μ = μ̄ρ where we take ρ = Ad1/4/
√

s. For all θ ∈ supp(μ̄ρ), we have |θj | =
σρ = Aσd1/4/

√
s = Aλ and also supp(μ̄ρ) ⊆ {‖θ‖0 = s} by construction. Hence,

supp(μ̄ρ) ⊆ �∗
s (Aλ), so that we can apply Lemma 3. Since s >

√
d, we have

ρ < 1. Using (39) and the fact that cosh(x) ≤ 1 + x2 for 0 < x < 1, we obtain

χ2(Pμ̄ρ ,P0) ≤
(

1 + sρ4

d

)s

− 1 ≤ exp
(
A4)− 1

and we complete the proof in the same way as it is done after (38). �

8. Proofs of the upper bounds. We will use the following lemma.

LEMMA 4. For X ∼ N (0,1) and any x > 0, we have

4√
2π(x + √

x2 + 4)
e−x2/2 ≤ P

(|X| > x
) ≤ 4√

2π(x + √
x2 + 2)

e−x2/2,(40)

E
[
X21{|X|>x}

] ≤
√

2

π

(
x + 2

x

)
e−x2/2,(41)

E
[
X41{|X|>x}

] ≤
√

2

π

(
x3 + 3x + 1

x

)
e−x2/2.(42)
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Inequality (40) is due to [6] and [38]. Inequalities (41) and (42) follow from
integration by parts.

In this section, we will use the notation

(43) x =
√

2 log
(
1 + d/s2

)
, Ŝ = {

j : |yj | > σx
}
, S = {j : θj �= 0}.

We also recall that the observations are of the form yj = θi + σξj , j = 1, . . . , d ,
with i.i.d. errors ξj ∼ N (0,1). We will denote by Ci, i = 1,2, . . . , absolute pos-
itive constants, and by C absolute positive constants that can vary from line to
line.

8.1. Proof of the bound (3) in Theorem 1. Clearly, Eθ (
∑d

j=1 yj − L(θ))2 =
σ 2d . Thus, in view of (5), to prove (3) it is enough to show that for s ≤ √

d we
have

(44) sup
θ∈B0(s)

Eθ

(
L̂∗ − L(θ)

)2 ≤ Cσ 2s2 log
(
1 + d/s2)

where

L̂∗ =
d∑

j=1

yj1{|yj |>σ
√

2 log(1+d/s2)}

and C > 0 is an absolute constant. Recalling the notation set in (43), we have

(45) L̂∗ − L(θ) = ∑
j∈S

(yj − θj ) − ∑
j∈S\Ŝ

yj + ∑
j∈Ŝ\S

yj .

Thus, for θ ∈ B0(s), we obtain

Eθ

(
L̂∗ − L(θ)

)2 ≤ 3E
(∑

j∈S

σξj

)2
+ 3Eθ

(∑
j∈S

yj1{|yj |≤σx}
)2

+ 3E
(∑

j∈Sc

σ ξj1{|ξj |>x}
)2

≤ 3σ 2
{(

s + s2x2)+ ∑
j∈Sc

E
(
ξ2
j 1{|ξj |>x}

)}

≤ 3σ 2
{(

s + s2x2)+ d

√
2

π

(
x + 2

x

)
e−x2/2

} [
by (41)

]

≤ 3σ 2
{(

s + s2x2)+ s2

√
2

π

(
x + 2

x

)}
,

and (44) follows since x ≥ √
2 log 2 for s ≤ √

d .



MINIMAX ESTIMATIONS OF SOME FUNCTIONALS UNDER SPARSITY 945

8.2. Proof of Theorem 3. We will consider only the sparse zone 1 ≤ m ≤ √
d

since the cases m = 0 and m >
√

d are trivial. Fix θ ∈ Bq(r). We will use the
notation

d̃ = 1 + d/m2, x̃ = 2
√

2 log d̃, S̃ = {
j : |θj | > σx̃/2

}
.

Note that

(46) Card(S̃) ≤
(

2r

σ x̃

)q

< 2−q/2(m + 1) ≤ 21−q/2m,

where the first inequality is due to the fact that θ ∈ Bq(r) and the second follows
from the definition of m.

Consider first the bias of L̂q . Lemma 5 yields

(
Eθ (L̂q) − L(θ)

)2 ≤ C

(
d∑

j=1

min
(|θj |, σ x̃

))2

≤ C

(
d∑

j=1

|θj |q(σ x̃)1−q

)2

≤ C

(
r

σ x̃

)2q

σ 2 log d̃(47)

≤ Cσ 2m2 log d̃,

where we have used (46). Next, the variance of L̂q has the form

Varθ (L̂q) =
d∑

j=1

Varθ (yj1{|yj |>σx̃}).

Here, for indices j belonging to S̃, using (46) we have∑
j∈S̃

Varθ (yj1{|yj |>σx̃}) ≤ 2
∑
j∈S̃

Varθ (yj ) + 2
∑
j∈S̃

Varθ (yj1{|yj |≤σ x̃})

≤ 2 Card(S̃)σ 2(1 + x̃2)(48)

≤ Cσ 2m log d̃.

For indices j belonging to S̃c, we have∑
j∈S̃c

Varθ (yj1{|yj |>σx̃}) ≤ ∑
j∈S̃c

Eθ

(
y2
j 1{|yj |>σx̃}

)

≤ 2
∑
j∈S̃c

θ2
j + 2σ 2

∑
j∈S̃c

Eθ

(
ξ2
j 1{|yj |>σx̃}

)
(49)

≤ 2
(∑

j∈S̃c

|θj |
)2

+ 2σ 2
∑
j∈S̃c

E
(
ξ2
j 1{|ξj |>

√
2 log d̃}

)
.
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Using the same argument as in (47), we find

(50)
(∑

j∈S̃c

|θj |
)2

≤ C

(
d∑

j=1

min
(|θj |, σ x̃

))2

≤ Cσ 2m2 log d̃.

Finally, (41) implies

(51) σ 2
∑
j∈S̃c

E
(
ξ2
j 1{|ξj |>

√
2 log d̃}

) ≤ Cσ 2(d/d̃)

√
log d̃ ≤ Cσ 2m2 log d̃,

where for the last inequality we have used that log d̃ ≥ log 2 for m ≤ √
d . Combin-

ing (48)– (51), we obtain that

Varθ (L̂q) ≤ Cσ 2m2 log d̃.

Together with (41), this yields the desired result:

sup
θ∈Bq(r)

Eθ

(
L̂q − L(θ)

)2 ≤ Cσ 2m2 log d̃.

8.3. Proof of Theorem 5. We will use the notation set in (43). Moreover, we
recall the definition of the estimator studied here:

Q̂∗ =

⎧⎪⎪⎨
⎪⎪⎩

d∑
j=1

y2
j − dσ 2, if κ4 ≥ max

{
σ 2κ2, σ 4d

}
,

0, if κ4 < max
{
σ 2κ2, σ 4d

}
.

The upper bound κ4 for κ4 < ψσ (s, d, κ) is trivial since the risk of the zero
estimator is equal to κ4. Let now κ4 ≥ ψσ (s, d, κ). We analyze separately the
cases s ≥ √

d , κ4 ≥ ψσ (s, d, κ), and s <
√

d , κ4 ≥ ψσ (s, d, κ).

Case s ≥ √
d and κ4 ≥ ψσ (s, d, κ). Then Q̂ = Q̂∗ and Theorem 5 claims a

bound with the rate ψ
Q
σ (s, d, κ) = ψσ (s, d, κ) = max(σ 2κ2, σ 4d). To prove this

bound, note that

Q̂∗ − Q(θ) = 2σ

d∑
j=1

θj ξj + σ 2
d∑

j=1

(
ξ2
j − 1

)
.

Thus, for all θ ∈ B2(κ),

Eθ

(
Q̂∗ − Q(θ)

)2 = 4σ 2E

(
d∑

j=1

θj ξj

)2

+ σ 4E

(
d∑

j=1

(
ξ2
j − 1

))2

(52)
= 4σ 2‖θ‖2

2 + 2σ 4d ≤ 6 max
(
σ 2κ2, σ 4d

)
.
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Case s <
√

d and κ4 ≥ ψσ (s, d, κ). Then Q̂ = Q̂′ where

Q̂′ =
d∑

j=1

(
y2
j − ασ 2)1{|yj |>σ

√
2 log(1+d/s2)}

and ψ
Q
σ (s, d, κ) = max(σ 2κ2, σ 4s2 log2(1 + d/s2)). Here and below in this proof

we set for brevity α = αs .
Let x be defined in (43). Since s <

√
d , we have x ≥ √

2 log 2. Using Lemma 4,
we find that, for s ≤ √

d ,

(53) α = E(X21{|X|>x})
P(|X| > x)

≤ (x + 2/x)(x + 1) ≤ 5x2 = 10 log
(
1 + d/s2).

Similarly to (45), we get

Q̂′ − Q(θ) = ∑
j∈S

(
y2
j − ασ 2 − θ2

j

)− ∑
j∈S\Ŝ

(
y2
j − ασ 2)+ ∑

j∈Ŝ\S

(
y2
j − ασ 2),

where S and Ŝ are defined in (43). Thus,

Eθ

(
Q̂′ − Q(θ)

)2 ≤ 3Eθ

[(∑
j∈S

(
y2
j − ασ 2 − θ2

j

))2
+
( ∑

j∈S\Ŝ

(
y2
j − ασ 2))2

(54)

+
( ∑

j∈Ŝ\S

(
y2
j − ασ 2))2]

.

For θ ∈ B2(κ) ∩ B0(s), the first term on the right-hand side satisfies

Eθ

(∑
j∈S

(
y2
j − ασ 2 − θ2

j

))2
= E

(∑
j∈S

(
2σθj ξj + σ 2(ξ2

j − α
)))2

≤ 4σ 2‖θ‖2
2 + 2σ 4s2(α2 + 3

)
(55)

≤ 4σ 2‖θ‖2
2 + 2σ 4s2(25x4 + 3

)
,

where the last inequality derives from (53). Hence, using the definition of x in (43)
we find

Eθ

(∑
j∈S

(
y2
j − ασ 2 − θ2

j

))2
≤ C1

(
σ 2‖θ‖2

2 + σ 4s2 log2(1 + d/s2))
(56)

≤ C1
(
σ 2κ2 + σ 4s2 log2(1 + d/s2)).

Furthermore, by definition of Ŝ,

Eθ

( ∑
j∈S\Ŝ

(
y2
j − ασ 2))2

≤ 4σ 4s2 log2(1 + d/s2)+ 2σ 4s2α2

≤ C2σ
4s2 log2(1 + d/s2)
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for any θ ∈ B0(s). Finally, α was chosen such that, for any j /∈ S,

Eθ

[(
y2
j − ασ 2)1{|yj |>σx}

] = σ 2E
[(

X2 − α
)
1{|X|>x}

] = 0,

where X ∼N (0,1). Thus, by independence we have

Eθ

( ∑
j∈Ŝ\S

(
y2
j − ασ 2))2

= ∑
j /∈S

Eθ

[(
y2
j − ασ 2)21{|yj |>σx}

]

≤ σ 4dE
[(

X2 − α
)21{|X|>x}

]
(57)

≤ 16σ 4dE
[
X41{|X|>x}

]
since α ≤ 5X2 on the event {|X| > x}, cf. (53). Now, Lemma 4 implies

Eθ

( ∑
j∈Ŝ\S

(
y2
j − ασ 2))2

≤ C3σ
4dx3e−x2/2,

and by the definition of x,

Eθ

( ∑
j∈Ŝ\S

(
y2
j − ασ 2))2

≤ C4σ
4s2x3

≤ (C4/
√

2 log 2)σ 4s2x4 ≤ C5σ
4s2 log2(1 + d/s2),

where we have used the fact that x ≥ √
2 log 2. Combining the above displays

yields

sup
θ∈B2(κ)∩B0(s)

Eθ

(
Q̂′ − Q(θ)

)2 ≤ C6 max
(
σ 2κ2, σ 4s2 log2(1 + d/s2)).

REMARK 4. This proof elucidates why we have chosen the threshold x in the
form (43). In (54), the three terms on the right-hand side are of the order respecti-
vely σ 2κ2 +σ 4s2x4, σ 4s2x4 and σ 4dx3e−x2/2. Among these, the expressions con-
taining x are balanced if σ 4s2x4 � σ 4dx3e−x2/2, which is equivalent to xex2/2 �
d/s2. This leads to a choice of x in the form

√
2 log(d/s2) − log log(d/s2) �√

2 log(d/s2).

8.4. Proof of Theorem 7. Fix θ ∈ Bq(r). We will prove the theorem only for
1 ≤ m ≤ √

d since the case m = 0 is trivial and the result for the case m >
√

d

follows from (52) and the fact that ‖θ‖2 ≤ ‖θ‖q ≤ r . In this proof, we will write
for brevity α = α̃m, d̃ = 1+d/m2, x̃ = 2(2 log d̃)1/2. Let J ⊆ {1, . . . , d} be the set
of indices corresponding to the m largest in absolute value components of θ , and
let |θ |(j) denote the j th largest absolute value of the components of θ . It is easy to
see that

|θ |(j) ≤ ‖θ‖q

j1/q
.
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This implies

∑
j∈J c

θ2
j = ∑

j≥m+1

|θ |2(j) ≤ |θ |2−q
(m)

∑
j≥m+1

|θ |q(j) ≤
(‖θ‖q

m1/q

)2−q

‖θ‖q
q = ‖θ‖2

qm1−2/q .

Therefore, since θ ∈ Bq(r) and due to the definition of m,

(58)
∑
j∈J c

θ2
j ≤ r2m1−2/q ≤ σ 2m log d̃

and

(59) ∀j ∈ J c : |θj | ≤ rm−1/q ≤ σ

√
log d̃ ≤ σ x̃/2.

We have

Q̂q − Q(θ) = ∑
j∈J

{
y2
j − ασ 2 − θ2

j

}− ∑
j∈J\S̃

{
y2
j − ασ 2}

(60)
+ ∑

j∈S̃\J

{
y2
j − ασ 2}− ∑

j∈J c

θ2
j ,

where S̃ = {j : |θj | > σx̃/2}. Consider the first sum on the right-hand side of
(60). Since Card(J ) = m, and α ≤ 40 log d̃ [which is obtained analogously to (53)
recalling that now α = α̃m instead of α = αs], the same argument as in (56) leads
to

(61) Eθ

(∑
j∈J

{
y2
j − ασ 2 − θ2

j

})2
≤ C

(
σ 2‖θ‖2

2 + σ 4m2 log2 d̃
)
.

Next, consider the second sum on the right-hand side of (60). By definition of S̃,

Eθ

( ∑
j∈J\S̃

{
y2
j − ασ 2})2

≤
(∑

j∈J

σ 2(x̃ + α)

)2
≤ Cσ 4m2 log2 d̃.(62)

Let us now turn to the third sum on the right-hand side of (60). The bias-variance
decomposition yields

Eθ

( ∑
j∈S̃\J

{
y2
j − ασ 2})2

= Eθ

(∑
j∈J c

(
y2
j − ασ 2)1{|yj |>σx̃}

)2

= ∑
j∈J c

Varθ
((

y2
j − ασ 2)1{|yj |>σx̃}

)

+
[∑
j∈J c

Eθ

((
y2
j − ασ 2)1{|yj |>σx̃}

)]2
.
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Here,

Varθ
((

y2
j − ασ 2)1{|yj |>σx̃}

) ≤ Eθ

((
y2
j − ασ 2)1{|yj |>σx̃}

)2

≤ CEθ

((
θ4
j + σ 4ξ4

j + α2σ 4)1{|yj |>σx̃}
)

≤ C
[
θ4
j + α2σ 4 + σ 4E

(
ξ4
j 1{|ξj |>x̃/2}

)] [
by (59)

]
.

Using now the same argument as in (57) to bound E(ξ4
j 1{|ξj |>x̃/2}), we obtain

∑
j∈J c

Varθ
((

y2
j − ασ 2)1{|yj |>σx̃}

) ≤ C

(∑
j∈J c

θ4
j + σ 4m2 log2 d̃

)

≤ C

((∑
j∈J c

θ2
j

)2
+ σ 4m2 log2 d̃

)
.

Furthermore, by Lemma 6,∣∣∣∣∑
j∈J c

Eθ

((
y2
j − ασ 2)1{|yj |>σx̃}

)∣∣∣∣ ≤ C
∑
j∈J c

θ2
j .

Combining the above displays leads to the following bound:

(63) Eθ

( ∑
j∈S̃\J

{
y2
j − ασ 2})2

≤ C

((∑
j∈J c

θ2
j

)2
+ σ 4m2 log2 d̃

)
.

From (60)–(63), we deduce that

Eθ

(
Q̂q − Q(θ)

)2 ≤ C

(
σ 2‖θ‖2

2 +
(∑

j∈J c

θ2
j

)2
+ σ 4m2 log2 d̃

)
.

The result now follows if we use (58) and note that ‖θ‖2 ≤ ‖θ‖q ≤ r .

8.5. Proof of the upper bound (19) in Theorem 8. Fix θ ∈ B0(s) and set for

brevity τ = (ψ
√

Q
σ (s, d))1/2. We will bound the risk Eθ (N̂ −‖θ‖2)

2 separately for
the cases ‖θ‖2 ≤ τ and ‖θ‖2 > τ .

Case ‖θ‖2 ≤ τ . Using the elementary inequality (a − b)2 ≤ 2(a2 − b2) + 4b2,
we find

Eθ

(
N̂ − ‖θ‖2

)2 ≤ 2Eθ

(
max{Q̂•,0} − Q(θ)

)+ 4Q(θ)

≤ 2
(
Eθ

(
Q̂• − Q(θ)

)2)1/2 + 4τ 2.

Note that Q̂• = Q̂ if we set κ = τ in the definition of Q̂. Furthermore, θ ∈ B0(s)

and, in the case under consideration θ belongs to B2(τ ). Now, use that for all
θ ∈ B2(τ ) ∩ B0(s), due to Theorem 5, we have

Eθ

(
Q̂• − Q(θ)

)2 ≤ CψQ
σ (s, d, τ ).
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Using this inequality and the fact that ψ
Q
σ (s, d, τ ) = (ψ

√
Q

σ (s, d))2, we obtain the
desired rate:

Eθ

(
N̂ − ‖θ‖2

)2 ≤ C7ψ
√

Q
σ (s, d) + 4τ 2 = (C7 + 4)ψ

√
Q

σ (s, d).

Case ‖θ‖2 > τ . Using the elementary inequality ∀a > 0, b ≥ 0, (a − b)2 ≤
(a2 − b2)2/a2, we find

Eθ

(
N̂ − ‖θ‖2

)2 ≤ Eθ (Q̂• − Q(θ))2

‖θ‖2
2

.

Now, we bound Eθ (Q̂• − Q(θ))2 along the lines of the proof of Theorem 5. In
particular, if s ≥ √

d we have Q̂• = Q̂∗, τ = σd1/4 and using (52) we obtain

Eθ (Q̂• − Q(θ))2

‖θ‖2
2

≤ 4σ 2 + 2σ 4d

‖θ‖2
2

≤ 4σ 2 + 2σ 4d

τ 2 ≤ C8σ
2
√

d,

which is the desired rate. If s <
√

d , we have Q̂• = Q̂′, τ = σ
√

s log(1 + d/s2)

and using (56) and the subsequent bounds in the proof of Theorem 5, we obtain

Eθ (Q̂• − Q(θ))2

‖θ‖2
2

≤ 3(C1σ
2‖θ‖2

2 + (C1 + C2 + C5)σ
4s2 log2(1 + d/s2))

‖θ‖2
2

≤ C9

(
σ 2 + σ 4s2 log2(1 + d/s2)

τ 2

)
(64)

≤ C10σ
2s log

(
1 + d/s2),

which is again the desired rate.

8.6. Proof of the upper bound (21) in Theorem 9. The case m = 0 is trivial.
For m ≥ 1, we use the same method of reduction to the risk of estimators of Q

as in the proof of (19). The difference is that now we set τ = (ψ
√

Q
σ,q (r, d))1/2, we

replace s by m and we apply Theorem 7 rather than to Theorem 5. In particular,
an analog of (64) with s = m is obtained using (61).

8.7. Proof of Theorem 10. Here, we will use the notation set in (43). As in the
proof of the bound (3) and with the same notation, we have, for θ ∈ B0(s),

Eθ

(
L̃ − L(θ)

)2 ≤ 3E
(∑

j∈S

σξj

)2
+ 3Eθ

(∑
j∈S

yj1{|yj |≤σ̂ x}
)2

+ 3E
(∑

j∈Sc

σ ξj1{σ |ξj |>σ̂x}
)2

≤ 3
{(

sσ 2 + s2Eθ

(
σ̂ 2)x2)+ σ 2

∑
j∈Sc

E
(
ξ2
j 1{σ |ξj |>σ̂x}

)}
.
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Here,

Eθ

(
ξ2
j 1{σ |ξj |>σ̂

√
2 log(1+d/s2)}

)
= Eθ

(
ξ2
j 1{σ |ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂>σ }

)
+ Eθ

(
ξ2
j 1{σ |ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂≤σ }

)
.

The first term on the right-hand side satisfies

Eθ

(
ξ2
j 1{σ |ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂>σ }

) ≤ Eθ

(
ξ2
j 1{|ξj |>

√
2 log(1+d/s2)}

)

≤ Cs2

d

√
log

(
1 + d/s2

)
[by (41)].

For the second term, we use Lemma 7 to get

Eθ

(
ξ2
j 1{σ |ξj |>σ̂

√
2 log(1+d/s2)}1{σ̂≤σ }

) ≤
√

E
(
ξ4

1

)√
Pθ (σ̂ ≤ σ)

≤ C
√

d exp(−√
d/C).

Combining the above displays and using Lemma 7 to bound Eθ (σ̂
2), we obtain

Eθ

(
L̃ − L(θ)

)2 ≤ Cσ 2s2 log
(
1 + d/s2).

8.8. Proof of Theorem 11. Set S̃ = {j : |yj | ≥ σ̂
√

2 logd} and recall that S =
{j : θj �= 0}. As in the proof of Theorem 5, we get

Eθ

(
Q̃ − Q(θ)

)2 ≤ 3Eθ

[(∑
j∈S

(
y2
j − θ2

j

))2
+
( ∑

j∈S\S̃
y2
j

)2
+
( ∑

j∈S̃\S
y2
j

)2]
.

We bound separately the three terms on the right-hand side. For θ ∈ B2(κ)∩B0(s),
the first term on the right-hand side satisfies, due to (56) with α = 0,

(65) Eθ

(∑
j∈S

(
y2
j − θ2

j

))2
≤ C

(
σ 2‖θ‖2

2 + σ 4s2) ≤ C
(
σ 2κ2 + σ 4s2).

Using Lemma 7, we find

Eθ

( ∑
j∈S\S̃

y2
j

)2
= Eθ

(∑
j∈S

y2
j 1{|yj |<σ̂

√
2 logd}

)2

(66)
≤ s2Eθ

(
σ̂ 4)(2 logd)2 ≤ Cσ 4s2 log2 d.

Finally, we write the third term as follows:

(67) Eθ

( ∑
j∈S̃\S

y2
j

)2
= Eθ

(∑
j /∈S

σ 2ξ2
j 1{σ |ξj |>σ̂

√
2 logd}

)2
≤ 2(A1 + A2),
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where

A1 = Eθ

(
d∑

j=1

σ 2ξ2
j 1{σ |ξj |>σ̂

√
2 logd}1{σ̂>

√
2σ }

)2

,

A2 = Eθ

(
d∑

j=1

σ 2ξ2
j 1{σ̂≤√

2σ }

)2

.

Using (42), we obtain

A1 ≤ σ 4Eθ

(
d∑

j=1

ξ2
j 1{|ξj |>2

√
logd}

)2

≤ 2σ 4d2E
(
X41{|X|>2

√
logd}

)
(68)

≤ Cσ 4(logd)3/2,

where X ∼ N (0,1). Next,

A2 ≤ σ 4Eθ

(
d∑

j=1

ξ2
j 1{σ̂≤√

2σ }

)2

≤ σ 4d2 max
1≤j≤d

Eθ

(
ξ4
j 1{σ̂≤√

2σ }
)
.

Using (42), we find

Eθ

(
ξ4
j 1{σ̂≤√

2σ }
) ≤ Eθ

(
ξ4
j 1{|ξj |>2

√
logd}

)+ Eθ

(
ξ4
j 1{|ξj |≤2

√
logd}1{σ̂≤√

2σ }
)

≤ C

d2 (logd)3/2 + 16(logd)2Pθ (σ̂ ≤ √
2σ).

The last two displays and the bound for Pθ (σ̂ ≤ √
2σ) from Lemma 7 yield

(69) A2 ≤ Cσ 4(logd)3/2.

Combining (65)–(69) proves the theorem.

APPENDIX: AUXILIARY LEMMAS

PROOF OF LEMMA 1. We first follow the lines of the proof of Theorem 7 in
[9] and then apply a result of [2] (cf. also Section 6 in [20]) in the same spirit as
it was done in [4]. Let ϕσ be a density of normal distribution with mean 0 and
variance σ 2. For I ∈ S(s, d), let

gI (y1, . . . , yd) =
d∏

j=1

ϕσ (yj − fj ),

where fj = σρ1j∈I . The density of Pμρ is

g = 1(d
s

) ∑
I∈S(s,d)

gI
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and we can write

χ2(Pμρ ,P0) =
∫ (

dPμρ

dP0

)2
dP0 − 1 =

∫
g2

f
− 1,

where f is a density of n i.i.d. normal random variables with mean 0 and vari-
ance σ 2. Now,

∫
g2

f
= 1(d

s

)2

∑
I∈S(s,d)

∑
I ′∈S(s,d)

∫
gIgI ′

f
.

It is easy to see that ∫
gIgI ′

f
= exp

(
ρ2 Card

(
I ∩ I ′)),

which implies

∫
g2

f
= E exp

(
ρ2J

)
,

where J is a random variable with hypergeometric distribution,

P(J = j) =
(s
j

)(d−s
s−j

)
(d
s

) .

As shown in [2], J coincides in distribution with the conditional expectation
E[Z|B] where Z is a binomial random variable with parameters (s, s/d) and B is
a suitable σ -algebra. This fact and Jensen’s inequality lead to the following bound
implying the lemma:

∫
g2

f
≤ E exp

(
ρ2Z

) =
(

1 − s

d
+ s

d
eρ2

)s

. �

In the next two lemmas, we will use the notation Di(t) = E(Xi1{X>t}) for
i ≥ 0, t > 0, where X ∼ N (0,1). Clearly, D0(t) = 1 − �(t), and D1(t) = φ(t)

where � and φ are the standard normal c.d.f. and density, respectively. For i ≥ 2
integration by parts gives Di(t) = t i−1φ(t) + (i − 1)Di−2(t). It follows that
Di(t) = O(ti−1e−t2/2) as t → ∞, and each Di as well as each of its derivatives is
uniformly bounded.

LEMMA 5. Let y ∼ N (a, σ 2) and T̂ = y1{|y|>στ } where τ > 0. Set B(a) =
E(T̂ ) − a. Then there exists C > 0 such that∣∣B(a)

∣∣ ≤ C min
(|a|, στ

)
.
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PROOF. Note that B(a) = E(y1{|y|≤στ }), so that |B(a)| ≤ στ . Thus, it re-
mains to show that there exists C > 0 such that |B(a)| ≤ C|a|. We have

B(a) = a
(
D0(τ + a/σ) + D0(τ − a/σ)

)+ σ
(
D1(τ + a/σ) − D1(τ − a/σ)

)
.

Since all Di and their derivatives are uniformly bounded the result follows. �

LEMMA 6. Let y ∼ N (a, σ 2), and τ > 0. Let α be such that E[(X2 −
α)1{|X|>τ }] = 0, where X ∼ N (0,1). Then there exists C > 0 such that∣∣E[(y2 − ασ 2)1{|y|>στ }

]∣∣ ≤ Ca2.

PROOF. We have

E
[(

y2 − ασ 2)1{|y|>στ }
] = σ 2(D2(τ + a/σ) + D2(τ − a/σ)

)
+ 2aσ

(
D1(τ + a/σ) − D1(τ − a/σ)

)
+ (

a2 − ασ 2)(D0(τ + a/σ) + D0(τ − a/σ)
)
.

Using that D0 is bounded and D1 is Lipschitz continuous, we see that it is enough
to check the condition |f (a)| ≤ Ca2 for

f (a) = σ 2[D2(τ + a/σ) + D2(τ − a/σ) − α
(
D0(τ + a/σ) + D0(τ − a/σ)

)]
.

Now, f (0) = 0 by definition of α and f ′(0) = 0 because f is symmetric. Since the
second derivatives of D2 and D0 are uniformly bounded, Taylor’s theorem gives
the result. �

LEMMA 7. For any θ such that ‖θ‖0 ≤ √
d, we have

(70) Eθ

(
σ̂ 2) ≤ 9σ 2, Eθ

(
σ̂ 4) ≤ Cσ 4

and

(71) Pθ (σ̂ ≤ σ) ≤ Cd exp(−√
d/C)

for some absolute constant C > 0.

PROOF. Since ‖θ‖0 ≤ √
d, we have

σ̂ 2 ≤ 9

d

d−‖θ‖0∑
j=1

y2
(j).

Denote by F the set of indices i corresponding to the d −‖θ‖0 smallest values y2
i .

Then
d−‖θ‖0∑

j=1

y2
(j) = ∑

i∈F

y2
i = σ 2

∑
i∈Sc

ξ2
i + ∑

i∈S∩F

y2
i − σ 2

∑
i∈Sc∩Fc

ξ2
i ,
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where S = {j : θj �= 0}. For any i ∈ S ∩ F and any j ∈ Sc ∩ Fc, we have

y2
i ≤ σ 2ξ2

j .

Furthermore, Card(S ∩ F) = Card(Sc ∩ Fc). Therefore,

σ̂ 2 ≤ 9σ 2

d

∑
i∈Sc

ξ2
i .

This implies (70). We now prove (71). Let G be the set of indices i corresponding
to the �d − √

d� smallest y2
i . Here, �x� denotes the largest integer less than or

equal to x. Then we have∑
j≤d−√

d

y2
(j) = ∑

i∈G

y2
i ≥ σ 2

∑
i∈Sc∩G

ξ2
i ≥ σ 2

∑
i∈Sc

ξ2
i − 2

√
dσ 2 max

i∈Sc
ξ2
i ,

where we have used that Card(Gc) ≤ 2
√

d . This implies

σ̂ 2 ≥ 9σ 2

d

∑
i∈Sc

ξ2
i − 18σ 2

√
d

max
i∈Sc

ξ2
i .

Thus,

Pθ (σ̂ ≤ √
2σ) ≤ P

(
9σ 2

∑
i∈Sc

ξ2
i − 18

√
dσ 2 max

i∈Sc
ξ2
i ≤ 2dσ 2

)
(72)

≤ P
(

9
∑
i∈Sc

ξ2
i ≤ 3d

)
+ P

(
18 max

i∈Sc
ξ2
i ≥ √

d
)
.

The first term on the right-hand side of (72) satisfies

P
(

3
∑
i∈Sc

ξ2
i ≤ d

)
≤ P(UD − D ≤ −2d/3 + √

d),

where D = Card(Sc), and UD is a χ2 random variable with D degrees of freedom.
A standard bound on the tails of χ2 random variables (see, e.g., [33]) yields

P(UD − D ≤ −t) ≤ exp
(−t2/(4D)

)
, ∀t > 0.

Thus, for d > 2, we obtain

P
(

3
∑
i∈Sc

ξ2
i ≤ d

)
≤ exp

(−(2d/3 − √
d)2/(4D)

) ≤ exp(−d/C),

where C > 0 is an absolute constant. Finally, the second term on the right-hand
side of (72) satisfies

P
(

max
i∈Sc

ξ2
i ≥

√
d

18

)
≤ d exp

(
−

√
d

36

)

in view of (40). Plugging the last two displays in (72), we obtain (71). �
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