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BAYESIAN MANIFOLD REGRESSION

BY YUN YANG1 AND DAVID B. DUNSON

University of California, Berkeley and Duke University

There is increasing interest in the problem of nonparametric regression
with high-dimensional predictors. When the number of predictors D is large,
one encounters a daunting problem in attempting to estimate a D-dimensional
surface based on limited data. Fortunately, in many applications, the support
of the data is concentrated on a d-dimensional subspace with d � D. Mani-
fold learning attempts to estimate this subspace. Our focus is on developing
computationally tractable and theoretically supported Bayesian nonparamet-
ric regression methods in this context. When the subspace corresponds to a
locally-Euclidean compact Riemannian manifold, we show that a Gaussian
process regression approach can be applied that leads to the minimax optimal
adaptive rate in estimating the regression function under some conditions.
The proposed model bypasses the need to estimate the manifold, and can be
implemented using standard algorithms for posterior computation in Gaus-
sian processes. Finite sample performance is illustrated in a data analysis
example.

1. Introduction. Dimensionality reduction in nonparametric regression is of
increasing interest given the routine collection of high-dimensional predictors. Our
focus is on the regression model

Yi = f (Xi) + wi,wi ∼ N
(
0, σ 2), i = 1, . . . , n,(1.1)

where Yi ∈ R, Xi ∈ R
D , f is an unknown regression function, and wi is a resid-

ual having variance σ 2. We face problems in estimating f accurately due to the
moderate to large number of predictors D. Fortunately, in many applications, the
predictors have support that is concentrated near a d-dimensional subspace M. If
one can learn the mapping from the ambient space to this subspace, the dimen-
sionality of the regression function can be reduced massively from D to d , so that
f can be much more accurately estimated.

There is an increasingly vast literature on subspace learning, but there remains
a lack of approaches that allow flexible nonlinear dimensionality reduction, are
scalable computationally to moderate to large D, have theoretical guarantees and
provide a characterization of uncertainty. Castillo et al. [10] directly constructed
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a nonstationary Gaussian process prior on a known manifold though rescaling the
solutions of the heat equation. However, in many cases, the manifold is not known
in advance.

With this motivation, we focus on Bayesian nonparametric regression methods
that allow M to be an unknown Riemannian manifold. One natural direction is to
choose a prior to allow uncertainty in M, while also placing priors on the mapping
from xi to M, the regression function relating the lower-dimensional features to
the response, and the residual variance. Some related attempts have been made
in the literature. Tokdar et al. [31] propose a logistic Gaussian process model,
which allows the conditional response density f (y|x) to be unknown and changing
flexibly with x, while reducing dimension through projection to a linear subspace.
Their approach is elegant and theoretically grounded, but does not scale efficiently
as D increases and is limited by the linear subspace assumption. Also making
the linear subspace assumption, [25] proposed a Bayesian finite mixture model
for sufficient dimension reduction. Page et al. [24] instead propose a method for
Bayesian nonparametric learning of an affine subspace motivated by classification
problems.

There is also a limited literature on Bayesian nonlinear dimensionality reduc-
tion. Gaussian process latent variable models (GP-LVMs) (Lawrence [19]) were
introduced as a nonlinear alternative to PCA for visualization of high-dimensional
data. Kundu and Dunson [18] proposed a related approach that defines separate
Gaussian process regression models for the response and each predictor, with these
models incorporating shared latent variables to induce dependence. The latent vari-
ables can be viewed as coordinates on a lower dimensional manifold, but daunting
problems arise in attempting to learn the number of latent variables, the distribu-
tion of the latent variables, and the individual mapping functions while maintain-
ing identifiability restrictions. Chen et al. [11] instead approximate the manifold
through patching together hyperplanes. Such mixtures of linear subspace-based
methods may require a large number of subspaces to obtain an accurate approxi-
mation even when d is small.

It is clear that probabilistic models for learning the manifold face daunting sta-
tistical and computational hurdles. In this article, we take a very different approach
in attempting to define a simple and computationally tractable model, which by-
passes the need to estimate M but can exploit the lower-dimensional manifold
structure when it exists. In particular, our goal is to define an approach that ob-
tains a minimax-optimal adaptive rate in estimating f , with the rate adaptive to
the manifold and smoothness of the regression function. Surprisingly, we show
that this can be achieved with a simple Gaussian process prior.

Section 2 provides background and our main results. Section 3 discusses two
approaches to construct intrinsic dimension adaptive estimators. Section 4 con-
tains a toy example and a simulation study of finite sample performance relative
to competitors. Section 5 provides auxiliary results that are crucial for proving
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the main results. Technical proofs are deferred to Section 6. A review of neces-
sary geometric properties and selected proofs are included in the supplementary
material [36].

2. Gaussian processes on manifolds.

2.1. Background. Gaussian processes (GP) are widely used as prior distribu-
tions for unknown functions. For example, in the nonparametric regression (1.1),
a GP can be specified as a prior for the unknown function f . In classification,
the conditional distribution of the binary response Yi is related to the predic-
tor Xi through a known link function h and a regression function f as Yi |Xi ∼
Ber[h{f (Xi)}], where f is again given a GP prior. The following developments
will mainly focus on the regression case. The GP with squared exponential covari-
ance is a commonly used prior in the literature. The law of the centered squared
exponential GP {Wx : x ∈X } is entirely determined by its covariance function,

Ka(x, y) = EWxWy = exp
(−a2‖x − y‖2/2

)
,(2.1)

where the predictor domain X is a subset of RD , ‖ · ‖ is the usual Euclidean norm
and a is a length scale parameter. Although we focus on the squared exponen-
tial case, our results can be extended to a broader class of covariance functions
with exponentially decaying spectral density, including standard choices such as
Matérn, with some elaboration. We use GP(m,K) to denote a GP with mean func-
tion m :X →R and covariance function K : X ×X →R.

Given n independent observations, the minimax rate of estimating a D-variate
function that is only known to be Hölder s-smooth is n−s/(2s+D) [28]. [35] proved
that, for Hölder s-smooth functions, a prior specified as

WA|A ∼ GP
(
0,KA), AD ∼ Ga(a0, b0),(2.2)

for Ga(a0, b0) the Gamma distribution with p.d.f. p(t) ∝ ta0−1e−b0t leads to the
minimax rate n−s/(2s+D) up to a logarithmic factor (logn)β with β ∼ D adaptively
over all s > 0 without knowing s in advance. The superscript in WA indicates the
dependence on the random scaling or inverse bandwidth parameter A.

In many real problems, the predictor X can be represented as a vector in high
dimensional Euclidean space R

D , where D is called the ambient dimensionality.
When D is large, assumptions are required to conquer the notorious curse of di-
mensionality. One common assumption requires that f only depends on a small
number d � n of components of the vector X that are identified as important. In
the GP prior framework, [27] proposed to use “spike and slab” type point mass
mixture priors for different scaling parameters for each component of X to do
Bayesian variable selection. Assuming the function is flat in all but d directions,
[3] showed that a dimension-specific scaling prior for inverse bandwidth parame-
ters can lead to a near minimax rate for anisotropic smooth functions. We instead
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FIG. 1. In these data, 72 size 128 × 128 images were taken for a “lucky cat” from different angles:
one at every 5 degrees of rotation. 36 images are displayed in this figure.

assume that the predictor lies on a manifold M of intrinsic dimension d with
d � D. An example is shown in Figure 1. These data [23] consist of 72 images
of a “lucky cat” taken from different angles 5◦,10◦, . . . . The predictor X ∈ R

1282

is obtained by vectorizing the 128 × 128 image. The response Y is a continuous
function f of the rotation angle θ ∈ [0,2π ] satisfying f (0) = f (2π), such as sin
or cos functions. Intuitively, the predictor X concentrates on a circle in D = 1282-
dim ambient space, and thus the intrinsic dimension d of X is equal to one, the
dimension of the rotation angle θ .

2.2. Bayesian regression on manifold. When X ∈ M with the manifold M
d-dimensional, a natural question is whether we can achieve the intrinsic rate
n−s/(2s+d) for f Hölder s-smooth without estimating M.

Kpotufe [16] and Kpotufe and Dasgupta [17] used random projection trees to
partition the ambient space and constructed a piecewise constant estimator based
on the partition. The authors showed that their estimator has a convergence rate at
least n−1/(2+k) for Lipschitz continuous functions that is adaptive to the intrinsic
dimension d , where k is guaranteed to be of order O(d logd). A more general
framework is considered in [7] and [6], which covers the case where covariates
lie on a low dimensional manifold in R

D . They studied partition-based estimators
and proved an n−r/(2r+1) rate, where r depends on how well the truth f can be ap-
proximated by their class. However, it is not clear whether their class of piecewise
polynomial functions in R

D can adapt to manifold structures.
Ye and Zhou [37] showed that a least squares regularized algorithm with appro-

priate d-dependent regularization parameter can achieve a convergence rate at least
n−s/(8s+4d)(logn)2s/(8s+4d) for functions with Hölder smoothness s ≤ 1. Bickel
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and Li [5] proved that local polynomial regression with d-dependent bandwidth
can attain the minimax rate n−s/(2s+d) for functions with Hölder smoothness s ≤ 2.
However, similar adaptive properties have not been established for a Bayesian pro-
cedure. In this paper, we prove that a GP prior on the regression function with a
proper prior for the scaling parameter leads to the minimax rate for functions with
Hölder smoothness s ≤ {2, γ − 1}, where γ is the smoothness of the manifold M.
Moreover, we describe two approaches to construct an intrinsic dimension adaptive
estimator in Section 3. The first estimator of d is independent of the GP prior and
only based on the covariates {Xi}, since most information about the manifold is
contained in {Xi}. The second estimator of d is based on cross validation and uses
the posterior mean of the GP prior. Unlike the first estimator, the second estimator
cannot guarantee consistently estimating d , but still yields an optimal convergence
rate for estimating the regression function f . However, the second estimator does
not need any regularity assumption on the distribution of Xi other than i.i.d. In the
remainder of this section, we first propose the model, and then provide a heuristic
argument explaining the possibility of manifold adaptation.

Analogous to (2.2), we propose the prior for the regression function f as

WA|A ∼ GP
(
0,KA), Ad ∼ Ga(a0, b0),(2.3)

where d is the intrinsic dimension of the manifold M and Ka is defined as in (2.1)
with ‖ · ‖ the Euclidean norm of the ambient space R

D . Adaptation to unknown
intrinsic dimensionality is considered in Section 3. Although the GP in (2.3) is
specified through embedding in the R

D ambient space, we essentially obtain a GP
on M if we view the covariance function Ka as a bivariate function defined on
M × M. Moreover, this prior has two major differences with usual GPs or GP
with Bayesian variable selection:

1. Unlike GP with Bayesian variable selection, all predictors are used in the
calculation of the covariance function Ka ;

2. The dimension D in the prior for inverse bandwidth A is replaced with the
intrinsic dimension d .

Intuitively, one would expect that a geodesic distance should be used in the
squared exponential covariance function (2.1). However, there are two main ad-
vantages of using the Euclidean distance instead of a geodesic distance. First, when
a geodesic distance is used, the covariance function may fail to satisfy the positive
definiteness requirement. In contrast, with the Euclidean distance in (2.1), Ka is
ensured to be positive definite. Second, for a given manifold M, a geodesic dis-
tance can be specified in many ways through different Riemannian metrics on M.
However, different geodesic distances are equivalent to each other and to the Eu-
clidean distance on R

D . Therefore, by using the Euclidean distance, we bypass
the need to estimate a geodesic distance, but still reflect the geometric structure
of the observed predictors in terms of pairwise distances. In addition, although
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we use the full data in the calculation of the covariance function, computation is
fast for moderate sample sizes n regardless of the size of D since only pairwise
Euclidean distances among D-dimensional predictors are involved, whose compu-
tational complexity scales linearly in D.

In this work, we primarily focus on compact manifolds without boundary. The
study of manifolds with boundaries is beyond the scope of this paper, since bound-
aries usually have smaller dimensions than the intrinsic dimension of the manifold.
As a consequence, in order to achieve optimal rate on boundaries, we may need to
consider nonstationary Gaussian process priors, whose length scale parameter A

varies on the manifold. However, if we stick with the prior (2.3), then we conjec-
ture that the rate is still optimal in the interior, but suboptimal on the boundaries.

Now we provide some heuristic explanations on why the rate is adaptive to
the predictor manifold. Although the ambient space is RD , the support M of the
predictor X is a d dimension submanifold of RD . As a result, the GP prior specified
in Section 2.1 has all probability mass on the functions supported on this manifold,
leading the posterior contraction rate to entirely depend on the evaluations of f

on M. Following [13, 14], the posterior contraction rate of the GP prior is said to
be at least εn under a semimetric dn if

�
(
dn(f,f0) > εn|Sn

)→ 0 in probability as n → ∞,

where Sn = {(X1, Y1), . . . , (Xn,Yn)} denotes the dataset and �(A|Sn) is the pos-
terior of A. Here, the semimetric dn measures the discrepancy between f and the
truth f0. For example, dn can be chosen as the empirical L2 metric ‖ · ‖n defined
through ‖f − f0‖2

n = (1/n)
∑n

i=1(f (xi) − f0(xi))
2 in fixed design and the L2

metric ‖ · ‖2 defined through ‖f − f0‖2
2 �

∫
M(f (x) − f0(x))2Q(dx), with Q the

marginal distribution for predictor X, in random design. Since the semimetric dn

solely depends on evaluations of f on the manifold M, we only need to fit and
infer f on M for the purpose of making predictions. Consider a special case when
the points on manifold M have a global smooth representation x = φ(t), where
t ∈ R

d is the global latent coordinate of x. Then the regression function

f (x) = f
[
φ(t)

]
� h(t), t ∈R

d,(2.4)

is essentially a d-variate s-smooth function when φ is sufficiently smooth. Conse-
quently, estimating the function f on R

D boils down to the estimation of a function
h on R

d , which makes the intrinsic rate attainable.

2.3. Convergence rate under fixed design. Let Cs(M) be the Banach space
of functions on M with Hölder smoothness s. The following theorem is our main
result which provides posterior convergence rate under fixed design.

THEOREM 2.1. Assume that M is a d-dimensional compact Cγ submanifold
of RD . For any f0 ∈ Cs(M) with s ≤ min{2, γ −1}, if we specify the prior as (2.2),
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then (5.1) below will be satisfied for εn a multiple of n−s/(2s+d)(logn)κ1 and ε̄n a
multiple of εn(logn)κ2 with κ1 = (1 + d)/(2 + d/s) and κ2 = (1 + d)/2. This
implies that the posterior contraction rate with respect to ‖ · ‖n will be at least a
multiple of n−s/(2s+d)(logn)d+1.

The ambient space dimensionality D implicitly influences the rate through a
multiplicative constant. This theorem suggests that the Bayesian model (2.3) can
adapt to both the low dimensional manifold structure of X and the smoothness
s ≤ 2 of the regression function. The condition s ≤ 2 on the smoothness is due
to the order of error in approximating the intrinsic distance dM by the Euclidean
distance d (Proposition 7.5 in the supplementary material [36]).

Generally, the intrinsic dimension d is unknown and needs to be estimated. In
the case when the intrinsic dimensionality d is misspecified as d ′, the following
result still ensures the rate to be much better than n−O(1/D) when d ′ is not too
small, although the rate may become suboptimal.

THEOREM 2.2. Assume the same conditions as in Theorem 2.1, but with the
prior specified as (2.2) with d ′ �= d and d ′ > d2/(2s + d).

1. If d ′ > d , then the posterior contraction rate with respect to ‖ · ‖n will be at
least a multiple of n−s/(2s+d ′)(logn)κ , where κ = (1 + d)/(2 + d ′/s);

2. If d2

2s+d
< d ′ < d , then the posterior contraction rate with respect to ‖ · ‖n

will be at least a multiple of n−((2s+d)d ′−d2)/(2(2s+d)d ′)(logn)κ , where κ = (d +
d2)/(2d ′ + dd ′/s) + (1 + d)/2.

2.4. Convergence rate under random design. Theorem 2.1 characterizes the
posterior contraction rate in fixed design. In general, convergence rate in random
design is more challenging. Van Der Vaart and Van Zanten [33] obtains posterior
convergence rates for regression on Euclidean space R

d using GP priors. How-
ever, they require s ≥ d/2 for estimating an s-smooth function. This assumption
restricts the applicability of Theorem 2.1 as it assumes s ≤ 2. Van Der Vaart and
Van Zanten [33] also makes a crucial assumption that the prior puts all its mass
over s-smooth function spaces, which excludes the interesting case of estimating
nonanalytic functions with the squared exponential covariance function.

Instead of directly proving that Theorem 2.1 works in random design, we take
a different approach by post-processing the posterior. We show that the post-
processed posterior can achieve the same rate ε̄n with respect to ‖ · ‖2, and the
corresponding Bayes estimator f̂ satisfies ‖f̂ − f0‖2 � ε̄n with high probability.
Here, we use the notation an � bn to indicate an = O(bn) as n → ∞. Usual em-
pirical process theory (Lemma 6.2, or [32]) requires the function space to be uni-
formly bounded in order for the empirical norm ‖ · ‖n to be comparable to the L2
norm ‖ · ‖2 uniformly over the space. This motivates us to truncate the functions
sampled from the posterior distribution. The idea of post-processing a posterior
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has also been considered in [21] for Bayesian monotone regression, where poste-
rior samples are projected into the monotone function space.

Let A be any upper bound for ‖f0‖∞. In practice, one may choose A based on
prior knowledge or set A to be a large multiple of maxi=1,...,m |Ỹi | based on another
dataset {(X̃i, Ỹi)}mi=1 independent of Sn. In the rest of the paper, we assume that an
upper bound A for ‖f0‖∞ is known. For any function f , denote its truncation by A

as fA = (f ∨ (−A)) ∧ A. Then our post-processed posterior is the posterior of fA

and the corresponding estimator f̂A is given by f̂A(x) = ∫
fA(x) d�(f |Sn), which

is the posterior expectation of fA. In practice, f̂A can be easily obtained by taking
the average of {f (j)

A : j = 1, . . . ,N} where {f (j) : j = 1, . . . ,N} are sampled from
the posterior distribution of f . The reasons for truncating f in the posterior are
two-fold. For practical purposes, truncation will never deteriorate an estimator,
that is, |fA(x) − f0(x)| ≤ |f (x) − f0(x)| for all x as long as A ≥ ‖f0‖∞. For
theoretical purposes, we require the estimator to be bounded in order to compare
‖ · ‖n and ‖ · ‖2 by applying results in empirical process theory.

The following theorem shows that the truncated GP posterior contracts to f0
at a near minimax-optimal rate with respect to both ‖ · ‖n and ‖ · ‖2. Moreover,
the corresponding estimator f̂A is near minimax-optimal in both fixed design and
random design. A proof is provided in Section 6.

THEOREM 2.3. Assume the same conditions as in Theorem 2.1. In addition,
suppose that X1, . . . ,Xn are i.i.d. samples coming from a distribution Q supported
on the manifold M and the true function f0 satisfies ‖f0‖∞ ≤ A. Then

�
(
max

{‖fA − f0‖n,‖fA − f0‖2
}
> εn|Sn

)→ 0 in probability as n → ∞.

Moreover, with probability tending to one, the following holds:

max
{‖f̂A − f0‖n,‖f̂A − f0‖2

}≤ Cε̄n � n−s/(2s+d)(logn)d+1,

with ε̄n given in Theorem 2.1 and C a positive constant.

REMARK. The assumption that an upper bound A on ‖f0‖∞ is known is re-
strictive. As a reviewer pointed out, there is still room for improvement on the
convergence rate under random design, for example, our boundedness assumption
‖f0‖∞ ≤ A takes away part of the difficulty of the problem, and proving bound-
edness in L∞ for posterior distributions can be highly nontrivial. We admit that
this boundedness assumption may not be theoretically appealing, and needs fur-
ther investigation; nevertheless, it is a mild assumption in practice—under this
assumption, our truncation procedure provides a practically useful way to circum-
vent the difficult problem of proving boundedness in L∞. Moreover, by using this
“truncated” posterior distribution we no longer need the strong s ≥ d/2 condition
made in [33]. An alternative way to restrict the support of the posterior measure
into a given function class is to replace the prior �(·) with the conditional measure
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�(·|B), where the set B encodes the constraint. For example, [15] (Section 2.4)
sets B = {‖f ‖∞ ≤ A} to obtain a posterior measure supported on bounded func-
tions, and [4] (Corollary 7.2) uses B = {‖f ‖γ ≤ A} to ensure that the posterior
measure is supported on Cγ , the Banach space of Hölder γ -smooth functions
equipped with norm ‖ · ‖γ . This alternative “conditioning” procedure appears to
be more difficult to implement in practice than our “truncating” procedure.

2.5. Dimensionality reduction. Tenenbaum et al. [29] and Roweis and Saul
[26] initiated the area of manifold learning, which aims to design nonlinear di-
mensionality reduction algorithms to map high dimensional data into a low dimen-
sional feature space under the assumption that data fall on an embedded nonlin-
ear manifold within the high dimensional ambient space. A combination of man-
ifold learning and usual nonparametric regression leads to a two-stage approach,
in which a dimensionality reduction map from the original ambient space R

D to
a feature space R

d̃ is estimated in the first stage and a nonparametric regression
analysis with low dimensional features as predictors is conducted in the second
stage. As a byproduct of Theorem 2.1, we provide a theoretical justification for
this two stage approach under some mild conditions.

Let � : RD → R
d̃ be a dimensionality reduction map, which may be con-

structed based on the design points {Xi}. For identifiability, we require the re-
striction �M of � on the manifold M to be a diffeomorphism, that is, �M is
injective and both �M and its inverse are smooth. This requires the projection di-
mension d̃ to satisfy d̃ ≥ d . Diffeomorphism is the least and only requirement so
that both the intrinsic dimension d of the predictor and the smoothness s of regres-
sion function f are invariant. If we view �(RD) as the new ambient space, then
the corresponding new regression function f̃ is induced by f via

f̃ (x̃) = f
[
�−1

M (x̃)
]

for all x̃ ∈ �M(M).

Accordingly, the empirical norm of f̃ under fixed design becomes ‖f̃ ‖2
n =∑n

i=1 |f̃ (�(Xi))|2. By the identifiability condition on � , f̃ is a well-defined
function on the manifold M, represented as a submanifold in the ambient space
R

d̃ , and has the same smoothness as f . Therefore, by specifying a GP prior
(2.2) directly on R

d̃ , we are able to achieve a posterior contraction rate at least
n−s/(2s+d)(logn)d+1, as indicated by the following theorem.

THEOREM 2.4. Assume that M is a d-dimensional compact Cγ submanifold
of RD . Suppose that � : RD → R

d̃ is an ambient space mapping (dimension re-
duction) such that when restricted on M, � is a Cγ ′

-diffeomorphism. Then by
specifying the prior (2.2) with {�(Xi)}ni=1 as observed predictors and the Eu-

clidean norm of Rd̃ as the norm ‖ · ‖ in (2.1), we have that for any f0 ∈ Cs(M)

with s ≤ min{2, γ − 1, γ ′ − 1}, (5.1) will be satisfied for εn = n−s/(2s+d)(logn)κ1
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and ε̄n = εn(logn)κ2 with κ1 = (1 + d)/(2 + d/s) and κ2 = (1 + d)/2. This im-
plies that the posterior contraction rate with respect to ‖ · ‖n will be at least
εn = n−s/(2s+d)(logn)d+1.

3. Adaptation to intrinsic dimension. To make our approach adaptive to the
intrinsic dimension d , we follow an empirical Bayes approach by plugging in an
estimator of the intrinsic dimension. Such an estimator can be chosen by focus-
ing either on the consistent estimation of d or on the optimal prediction in terms
of f . In the latter approach, the estimator for d may not be consistent but one can
still achieve a near minimax-optimal rate for estimating f . Focusing on our trun-
cated estimator in random design, we describe two approaches in the following
subsections.

3.1. Intrinsic dimension estimation. As d is a hyper-parameter in prior (2.3),
in principle one can specify a prior for d over a finite grid d1 ≤ · · · ≤ dp and
conditioning on d = dj , use (2.3) as a prior for f . Since WA is conditionally inde-
pendent of d given A, one can marginalize out d and obtain an equivalent prior for
A as a mixture distribution. In the proof of Theorem 2.1, a critical property of the
prior of A employed is its tail behavior as P(A > a) ∼ exp(−Cad). However, with
an extra level of prior for d , the tail P(A > a) of the marginal prior is dominated
by exp(−Cad1), which has a similar decay rate as the prior Ad1 ∼ Ga(a0, b0).
This illustrates that specifying a prior for d may still lead to a suboptimal rate as
suggested by Theorem 2.2.

Intuitively, in random design information about the intrinsic dimension d is con-
tained in the marginal distribution of X, and this information cannot be fully re-
vealed by estimating the conditional distribution P(Y |X). This motivates our first
approach of estimating d directly based on the covariates {Xi}.

Many estimation methods have been proposed for determining the intrinsic di-
mension of a dataset lying on a manifold [8, 9, 12, 20, 22]. For example, [20]
considers a likelihood based approach and [22] relies on singular value decom-
position of the local sample covariance matrix. [12] proposes a nearest-neighbor
method and analyzes its finite-sample properties. Their estimator d̂ takes the form
as

d̂ = log 2

log r̂ (k)(X1) − log r̂ (�k/2�)(X1)
,

where r̂ (k)(X1) is the distance from X1 to its kth nearest neighbor in {Xi}. Let
B(x, r) ⊂ R

D denote a ball centering at point x ∈ M with radius r in the ambient
space R

D . Consider the following condition:

ASSUMPTION A. Xi are i.i.d. samples coming from a distribution Q sup-
ported on the manifold M with Q(Xi ∈ B(x, r)) = η(x, r)rd , where the function
η : M× [0,∞) → [0,∞) satisfies: (1) infx∈M η(x,0) > 0; (2) For any point x ∈
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M, η(x, ·) is differentiable in (0,∞) and right-differentiable at 0; (3) There exist
positive constants (B,B ′, r0), such that for any (x, r) ∈ M × [0, r0), ∂

∂r
η(x, r) ≤

B ′η(x, r) and |η(x, r) − η(x,0)| ≤ Bη(x,0)r .

Assumption A requires that the distribution Q of Xi is well spreaded over the
manifold and locally resembles a smooth and regular distribution over Rd , which
appears natural. Farahmand et al. [12] proved that under Assumption A, if n ≥ k2d ,
then it holds with probability at least 1 − δ that

|d̂ − d| ≤ C

{(
k

n

)1/d

+
√

log(4/δ)

k

}
,

where C is some constant independent of k and n. As a consequence, if we choose
k = n1/2 and let d̂R be the closest integer to d̂ , then P0(d̂R �= d) → 0 as n → ∞,
that is, d̂R is a consistent estimator of d .

We use d̂R as an estimator of d and plug in d̂R into our prior (2.3) to obtain an
empirical Bayes estimator f̂EB, based on the truncation procedure in Section 2.4.
The following corollary summarizes its asymptotic performance.

COROLLARY 3.1. Assume Assumption A and the same conditions as in The-
orem 2.3, then with probability tending to one,

max
{‖f̂EB − f0‖n,‖f̂EB − f0‖2

}
� n−s/(2s+d)(logn)d+1.

REMARK. Although the estimator d̂ is specifically built for random design,
it also works in fixed design under some deterministic conditions on the design
points {Xi}. For example, the key step of the proofs in [12] is to show that for
any fixed x ∈ M, the random quantity r̂ (k)(x) converges to rp(x), where p = k/n

and rp(x) is the solution of the equation p = η(x, rp)rd
p , by applying Bernstein’s

inequality (Lemma 4, [12]). Therefore, if we assume that the fixed-design points
{Xi} are well distributed so that n−1|{i : Xi ∈ B(x, r)}| ∈ [(1 − α)η(x, r)rd, (1 +
α)η(x, r)rd] holds for each (x, r) ∈ M×(0, r0), where |E| denotes the cardinality
of a set E, α ∈ (0,1/(4(d + 1))) is some constant and the function η satisfies
Assumption A, then |d̂ −d| ≤ C(k

n
)1/d holds for some constant C depending on α.

3.2. Cross validation. In this subsection, we select a best dimension and its
associated estimator as constructed in Section 2.4 based on prediction accuracy on
a testing set. This selection rule cannot consistently estimate d but still yields an
optimal convergence rate for estimating f (see Theorem 3.2 below). In principle,
the selection procedure described in this subsection may be applicable to other
hyperparameter selection problems.

We focus on random design. Let dmax be a pre-specified upper bound for d . For
example, we can choose dmax = 20. Let �k denote the prior (2.3) with d = k for
k = 1, . . . , dmax. The selection procedure proceeds as follows:
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1. Randomly split the whole data set with size n + m into a training set Sn =
{(Xi, Yi) : i = 1, . . . , n} and a testing set S̃m = {(X̃i, Ỹi) : i = 1, . . . ,m}.

2. For k = 1, . . . , dmax, obtain a truncated Bayes estimator f̂ (k) under �k de-
fined as the posterior mean

∫
fA d�k(f |Sn) as in Section 2.4. Compute its mean

squared prediction error (MSPE) E
(k)
m = m−1∑m

i=1(f̂
(k)(X̃i)− Ỹi)

2 on the testing
set.

3. Let d̂CV = arg mink E
(k)
m . The final estimator is defined by f̂CV = f̂ (d̂CV).

The intuition is simple: an estimator with minimal MSPE, which approximately
minimizes ‖f̂ (k) − f0‖2

2 over k, should be at least better than f̂ (d), the estimator
under the true intrinsic dimension d . In practice, one can repeat steps 1 and 2 for
a number of times and use an averaged MSPE instead of E

(k)
m to improve stability.

However, the following theorem suggests that one splitting suffices for the adap-
tation to the dimensionality. Due to space constraints, its proof is provided in the
supplementary material [36].

THEOREM 3.2. Suppose d ≤ dmax and A ≥ ‖f0‖∞ in the cross validation
procedure. If mε̄2

n → ∞ with ε̄n any upper bound to the posterior convergence rate
under the true intrinsic dimension d , then under the conditions in Theorem 2.3,

‖f̂CV − f0‖2 ≤ 2
√

2ε̄n � n−s/(2s+d)(logn)d+1

holds with probability tending to 1. Here, the probability is the joint probability of
the training set and the testing set.

REMARK. The condition on m suggests that the size of the testing set is al-
lowed to be of order O(nγ ) for any γ > 2s/(2s + d), which depends on the un-
known smoothness s and intrinsic dimension d , and can be substantially smaller
than n if s is small and d is large. This condition provides the right intuition that
if we are not expected to accurately estimate the unknown parameter, then only a
small number of testing samples are needed in the cross validation step. In prac-
tice, one may simply choose m to be a small fraction of n. A reviewer pointed out
that again the boundedness assumption ‖f0‖∞ ≤ A plays an important role in the
application of Bernstein’s inequality in the proof of Theorem 3.2. We agree that
how to avoid this boundedness assumption is still an open problem worth further
theoretical investigation.

4. Numerical examples.

4.1. Regression on the Swiss roll. We start with a toy example where X lies
on a two-dimensional Swiss roll in the 100-dimensional Euclidean space (Figure 2
plots a typical Swiss roll in the three-dimensional Euclidean space). X is generated
as follows. We first sample T = (T1, T2, T3)

T from a two-dimensional Swiss roll
in three-dimensional ambient space as

T1 = U cos(U), T2 = V, T3 = U sin(U),
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FIG. 2. A typical Swiss roll in three-dimensional Euclidean space.

with U ∼ Unif(3π
2 , 9π

2 ) and V ∼ Unif(0,20). Then we transform T into a 100-
dimensional vector via X = �T , where � is a random matrix with size 100-by-3,
whose components follow i.i.d. N(0,1). � will be fixed in each synthetic dataset.
The response Y depends on X through

Y = 4
(

1

3π
U − 1 + 3π

2

)2

+ π

20
V + N

(
0,0.12).

To assess the fitting performance, we use the empirical error ‖f̂ − f0‖n of our
estimator f̂ on the design points as a criterion. In the GP approach, we apply
the empirical Bayes approach described in Section 3.1 and run 10,000 iterations
with the first 5000 as burn-in in each replicate. We report an average empirical
error (AEE) over 100 replicates in Table 1. In this example, the GP estimator has
a relatively fast convergence rate even though the dimensionality of the ambient
space is large, which is consistent with our theory.

4.2. Application to the lucky cat data. The lucky cat data (Figure 1) has intrin-
sic dimensionality one, which is the dimension of the rotation angle θ . Since we

TABLE 1
Simulation results for the Swiss roll example over 100 replicates. The numbers in the parentheses

indicate standard deviations

n = 50 n = 100 n = 200 n = 400 n = 800

AEE 0.164 (0.090) 0.143 (0.026) 0.121 (0.012) 0.106 (0.005) 0.095 (0.003)
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TABLE 2
Square root of MSPE for the lucky cat data by using two different approaches over 100 random

splitting are displayed. The numbers in the parentheses indicate standard deviations

n = 18 n = 36 n = 54

EN 0.416 (0.152) 0.198 (0.042) 0.149 (0.031)
LASSO 0.431 (0.128) 0.232 (0.061) 0.163 (0.038)
GP 0.332 (0.068) 0.128 (0.036) 0.077 (0.014)
2GP 0.181 (0.051) 0.124 (0.038) 0.092 (0.021)

know the true value of θ , we create the truth f0(θ) = cos θ as a continuous function
on the unit circle. The responses are simulated from Yi = f0(θi) + wi by adding
independent Gaussian noises wi ∼ N(0,0.12) to the true values. In this model, the
total sample size N = 72 and the predictors Xi lie in R

D , with D = 16,384. To
assess the impact of the sample size n on the fitting performance, we randomly
divide n = 18, 36 and 64 samples into a training set and treat the rest as a testing
set. The training set is used for fitting a model and the testing set is used for quan-
tifying the estimation accuracy. For each training size n, we repeat this procedure
for m = 100 times and calculate the square root of the following mean squared
prediction error (MSPE) on the testing set,

m∑
l=1

1

N − n

∑
i∈Tl

∥∥Ŷi − f0(θi)
∥∥2

,

where Tl is the lth testing set and Ŷi is an estimation of E[Y |Xi] = f0(θi). We
apply two GP based algorithms on this data set: 1. vanilla GP specified by (2.3);
2. Two stage GP (2GP) where the D-dimensional predictors were projected into
R

2 by using Laplacian eigenmap [2] in the first stage and then a GP with pro-
jected features as predictors was fitted in the second stage. To assess the prediction
performance, we also compare our GP prior based models (2.3) with lasso [30]
and elastic net (EN) [38] under the same settings. We choose these two competing
models because they are among the most widely used methods in high dimensional
regression settings and perform especially good when the true model is sparse. In
the GP models, we set d = 1 since the sample size for this dataset is too small for
most dimension estimation algorithms to reliably estimate d . In addition, for each
simulation, we run 10,000 iterations with the first 5000 as burn-in.

The results are shown in Table 2. As we can see, under each training size n,
GP performs the best. Moreover, as n increases, the prediction error of GP decays
much faster than EN and Lasso: when n = 18, the square root of MSPEs by using
EN and lasso are about 125% of that by using GP; however, as n increases to 54,
this ratio becomes about 200%. Moreover, the standard deviations of the square
roots of MSPEs by using GP are also significantly lower than those by using lasso
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and EN. It is not surprising that 2GP has better performance than GP when n is
small since the dimensionality reduction map � is constructed using the whole
dataset (the available Laplacian eigenmap code we used cannot do interpolations).
Therefore, as the training size n becomes closer to the total sample size 72, GP
becomes better. In addition, GP is computationally faster than 2GP due to the use
of the manifold learning algorithm in the first stage of 2GP.

5. Auxiliary results. In the GP prior (2.3), the covariance function Ka : M×
M → R is defined on the submanifold M. Therefore, (2.3) essentially defines a
GP on M and we can study its posterior contraction rate as a prior for functions
on the manifold. In this section, we combine geometry properties and Bayesian
nonparametric asymptotic theory to prove the theorems in Section 2.

5.1. Reproducing kernel Hilbert space on the manifold. Being viewed as a
covariance function defined on [0,1]D × [0,1]D , Ka(·, ·) corresponds to a repro-
ducing kernel Hilbert space (RKHS) H

a , which is defined as the completion of
H, the linear space of all functions x �→ ∑m

i=1 aiK
a(xi, x), x ∈ [0,1]D , indexed

by a1, . . . , am ∈ R and x1, . . . , xm ∈ [0,1]D,m ∈ N, relative to the norm induced
by the inner product 〈Ka(x, ·),Ka(y, ·)〉Ha = Ka(x, y). Similarly, Ka(·, ·) can
also be viewed as a covariance function defined on M × M, with the associated
RKHS denoted by H̃

a . Here, H̃a is the completion of H̃, which is the linear space
of all functions x �→ ∑m

i=1 aiK
a(xi, x), x ∈ M, indexed by a1, . . . , am ∈ R and

x1, . . . , xm ∈M,m ∈N.
Many probabilistic properties of GPs are closely related to the RKHS associated

with its covariance function. Readers can refer to [1] and [34] for an introduction
on the RKHS theory for GPs on Euclidean spaces. In order to generalize properties
of the RKHS in Euclidean spaces to submanifolds, we need a link to transfer the
theory. The next lemma achieves this by characterizing the relationship between
H

a and H̃
a .

LEMMA 5.1. For any f ∈ H̃
a , there exists g ∈ H

a such that g|M = f and
‖g‖Ha = ‖f ‖

H̃a , where g|M is the restriction of g on M. Moreover, for any other
g′ ∈ H

a with g′|M = f , it holds that ‖g′‖Ha ≥ ‖f ‖
H̃a . This implies ‖f ‖

H̃a =
infg∈Ha,g|M=f ‖g‖Ha .

This lemma implies that any element f in the RKHS H̃
a can be considered

as the restriction of some element g in the RKHS H
a . Particularly, there exists a

unique such element g in H
a such that the norm is preserved, that is, ‖g‖Ha =

‖f ‖
H̃a .

5.2. Background on posterior convergence rate for GP. As shown in [13, 14],
in order to characterize the posterior contraction rate in a Bayesian nonparametric
problem, such as density estimation, fixed design regression or classification, we
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need to verify some conditions on the prior measure �. Specifically, we describe a
set of sufficient conditions on the randomly rescaled GP prior (2.2) given in [35].
Let X be the predictor space and f0 : X → R be the true function that is of in-
terest, for example, the log density logp(x) in density estimation, the conditional
expection E[Y |X] in regression and the logistic-transformed conditional proba-
bility logitP(Y = 1|X) in classification. We will not consider density estimation
since the knowledge of the support M is needed so that ef0 can be properly nor-
malized to produce a valid density function. Let εn and ε̄n be two sequences. If
there exist Borel measurable subsets Bn of C(X ) such that for n sufficiently large,

P
(∥∥WA − f0

∥∥∞ ≤ εn

)≥ e−nε2
n,

P
(
WA /∈ Bn

)≤ e−4nε2
n,(5.1)

logN
(
ε̄n,Bn,‖ · ‖∞

)≤ nε̄2
n,

where WA ∼ � and ‖ · ‖∞ is the sup-norm on C(X ), then the posterior contrac-
tion rate would be at least εn ∨ ε̄n under ‖ · ‖n. In our case, X is the d-dimensional
submanifold M in the ambient space R

D . We require M to be compact because
the space of continuous functions on a compact metric space is a separable Banach
space, which is fundamental to apply the theory from [35]. To verify the first con-
centration condition, we need to give an upper bound to the so-called concentration
function [35] φa

f0
(ε) of the GP Wa around the truth f0 for any given a and ε. φa

f0
(ε)

is composed of two terms. Both terms depend on the RKHS H̃
a associated with

the covariance function of the GP Wa . The first term is the decentering function
inf{‖h‖2

H̃a
: ‖h−f0‖∞ < ε}, where ‖ · ‖

H̃a denotes the RKHS norm. This quantity
measures how well the truth f0 is approximated by the elements in the RKHS. The
second term is the negative log small ball probability − logP(‖Wa‖∞ < ε), which
intimately depends on the covering entropy logN(εn, H̃

a
1,‖ · ‖∞) of the unit ball

in the RKHS H̃
a . As a result of this dependence, the second and third conditions

in (5.1) are often satisfied as byproducts of the first condition by applying Borell’s
inequality [34].

As pointed out by [35], the key to ensure the smoothness adaptability of the GP
prior on the Euclidean space is the sub-exponentially decaying tail of the spectral
density of its stationary covariance function. This property on the spectral density
is satisfied for the squared exponential and the Matérn class covariance functions.
More specifically, by Bochner’s theorem the squared exponential covariance func-
tion K1(x, y) = exp{−‖x − y‖2/2} (with unit inverse bandwidth) on R

D has a
spectral representation as

K1(x, y) =
∫
RD

e−i(λ,x−y)μ(dλ),
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where μ is its spectral measure with sub-Gaussian tail. Sub-Gaussian tail satisfies
the sub-exponential tail requirement, that is, for some (in fact, any) δ > 0,∫

eδ‖λ‖μ(dλ) < ∞.(5.2)

For convenience, we will focus on the squared exponential covariance function.
Extending the results to other types of covariance functions with sub-exponential
decaying spectral densities can also be done with more efforts.

5.3. Decentering function. To estimate the decentering function, we need con-
struct a function Ia(f ) on the manifold M for approximating any differentiable
function f on M, so that the magnitude of the RKHS norm ‖Ia(f )‖

H̃a can be
controlled. Unlike in the Euclidean space where functions in the RKHS H

a can be
represented via Fourier transformation [35], there is no general way to represent
and calculate RKHS norms of functions in the RKHS H̃

a on a manifold. In the
next lemma, we provide a specific way to construct an approximation Ia(f ) with
a controllable RKHS norm via convolving f with Ka on the manifold M:

Ia(f )(x) =
(

a√
2π

)d ∫
M

Ka(x, y)f (y) dV (y)

(5.3)

=
(

a√
2π

)d ∫
M

exp
{
−a2‖x − y‖2

2

}
f (y) dV (y), x ∈ M,

where V is the Riemannian volume form of M. Heuristically, for large a, the
above integrand only has a nonnegligible value in a small neighborhood around x.
Therefore, we can conduct a change of variable in the above integral with trans-
formation φx : Bδ → W defined by (7.2) in the supplementary material [36] in a
small neighborhood W of x:

Ia(f )(x) =
(

a√
2π

)d ∫
Rd

exp
{
−a2‖φx(u) − φx(0)‖2

2

}

× f
(
φx(u)

)√
det
(
g

φ
ij (u)

)
du

≈
(

a√
2π

)d ∫
Rd

exp
{
−a2‖u‖2

2

}
f
(
φx(u)

)
du

≈ f
(
φx(0)

)= f (x), x ∈ M,

where the above approximation holds since: 1. φx(0) = x; 2. φx preserves
local distances [supplementary material [36], Proposition 7.5(3)]; 3. the Ja-

cobian
√

det(gφ
ij (u)) is close to one [supplementary material [36], Proposi-

tion 7.5(2)]. From this heuristic argument, we can see that the approxima-
tion error ‖Ia(w) − f0‖∞ is determined by two factors: the convolution error
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|( a√
2π

)d
∫
Rd exp{−a2‖u‖2

2 }f (φx(u)) du − f (x)| and the nonflat error caused by
the nonzero curvature of M. Moreover, we can expand each of these errors as a
polynomial of 1/a and call the expansion term related to 1/ak as the kth order
error.

When M is Euclidean space R
d , the nonflat error is zero, and by Taylor expan-

sion the convolution error has order s if f0 ∈ Cs(Rd) and s ≤ 2, where Cs(Rd) is
the Holder class of s-smooth functions on R

d . The constraint s ≤ 2 occurs because
the Gaussian kernel exp{−‖(x − y)‖2/2} only has a vanishing moment up to first
order:

∫
x exp(−‖(x − y)‖2/2) dx = 0. More generally, the convolution error has

order up to s + 1 if the convolution kernel K has vanishing moments up to order s,
that is,

∫
xtK(x) dx = 0, t = 1, . . . , s. On the other hand, for general manifold

M with nonvanishing curvature tensor, the nonflat error always has order two (see
the proof of Lemma 5.2). This implies that even with a carefully chosen covariance
function that can improve the convolution error to higher order, the overall approx-
imation still tends to exhibit second-order error due to the deterioration caused by
the nonzero curvature of the manifold. The following lemma formalizes the above
heuristic argument on the order of the approximation error caused by using (5.3) as
an approximation to f and provides an upper bound on the decentering function.

LEMMA 5.2. Assume that M is a d-dimensional compact Cγ submanifold of
RD . Then for any f ∈ Cs(M) with s ≤ min{2, γ }, there exist constants a0 ≥ 1,
C > 0 and B > 0 depending only on μ, M and f such that for all a ≥ a0,

inf
{
‖h‖2

H̃a : sup
x∈M

∣∣h(x) − f (x)
∣∣≤ Ca−s

}
≤ Bad.

5.4. Centered small ball probability. As indicated by the proof of Lemma 4.6
in [35], in order to prove an upper bound on − logP(‖Wa‖∞ < ε), we only need
to provide an upper bound on the covering entropy logN(ε, H̃a

1,‖ · ‖∞) of the unit
ball in the RKHS H̃

a . Following the discussion in Section 4.1, we want to link H̃
a

to H
a , the associated RKHS defined on the ambient space RD . Therefore, we need

a lemma to characterize this space H
a ([35], Lemma 4.1).

LEMMA 5.3. H
a is the set of real parts of the functions

x �→
∫

ei(λ,x)ψ(λ)μa(dλ),

when ψ runs through the complex Hilbert space L2(μa). Moreover, the RKHS
norm of the above function is ‖ψ‖L2(μa), where μa is the spectral measure of the
covariance function Ka .

Based on this representation of H
a on R

D , [35] proved an upper bound
KaD(log 1

ε
)D+1 for logN(ε, H̃a

1,‖ · ‖∞) through constructing an ε-covering set
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composed of piecewise polynomials. However, there is no straightforward gen-
eralization of their scheme from Euclidean spaces to manifolds. The following
lemma provides an upper bound on the covering entropy of H̃a

1, where the expo-
nents only depend on the intrinsic dimension d . The main novelty in our proof is
the construction of an ε-covering set composed of piecewise transformed polyno-
mials (6.9) via analytically extending the truncated Taylor polynomial approxima-
tions (6.6) to the elements in H̃

a
1. As the proof indicates, the d in ad relates to

the covering dimension d of M, i.e. the ε-covering number N(ε,M, ε) of M is
proportional to 1/εd . The d in (log 1

ε
)d+1 relates to the order of the number kd of

coefficients in piecewise transformed polynomials of degree k in d variables.

LEMMA 5.4. Assume that M is a d-dimensional Cγ compact submanifold of
RD with γ ≥ 2. Then for the squared exponential covariance function Ka , there
exists a constant K depending only on d , D and M, such that for all ε < 1/2
and a > max{a1, ε

−1/(γ−1)}, where constant a1 = δ/(2δ0
√

d), δ0 is defined in
Lemma 7.7 in the supplementary material [36] and δ is the constant in (5.2), it
holds that

logN
(
ε, H̃a

1,‖ · ‖∞
)≤ Kad

(
log

1

ε

)d+1

.

Similar to Lemma 4.6 in [35], Lemma 5.4 implies an upper bound on
− logP(‖Wa‖∞ < ε).

LEMMA 5.5. Assume that M is a d-dimensional compact Cγ submanifold of
R

D with γ ≥ 2. If Ka is the squared exponential covariance function with inverse
bandwidth a, then for some a1 > 0, there exist constants C and ε0 that only depend
on a1, μ, d , D and M, such that for all a ≥ max{a1, ε

−1/(γ−1)} and ε < ε0,

− logP
(

sup
x∈M

∣∣Wa
x

∣∣≤ ε
)

≤ Cad

(
log

a

ε

)d+1
.

5.5. Posterior contraction rate of GP on manifolds. By using the manifold
adapted lemmas in Section 5.3 to 5.4, the proofs of Theorems 2.1 and 2.2 follow
similar ideas as the proof of Theorem 3.1 in [35] and are provided in the supple-
mentary material [36].

6. Proofs. In this section, we provide proofs for the key results in the paper.

6.1. Proof of Lemma 5.1. Consider the map � : H̃ → H that maps the func-
tion

m∑
i=1

aiK
a(xi, ·) ∈ H̃, a1, . . . , am ∈ R, x1, . . . , xm ∈M,m ∈N
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on M to the function of the same form
∑m

i=1 aiK
a(xi, ·) ∈ H, but viewed as a

function on [0,1]D . By definitions of RKHS norms, � is an isometry between
H̃ and a linear subspace of H. As a result, � can be extended to an isometry
between H̃

a and a complete subspace of Ha . To prove the first part of this lemma, it
suffices to verify that for any f ∈ H̃

a , g = �(f )|M = f . Assume that the sequence
{fn} ∈ H̃ satisfies ‖fn − f ‖

H̃a → 0, as n → ∞, then by the definition of � on H̃,
�(fn)|M = fn. For any x ∈ [0,1]D , by the reproducing property and Cauchy–
Schwarz inequality,∣∣�(fn)(x) − g(x)

∣∣= ∣∣〈Ka(x, ·),�(fn) − g
〉
Ha

∣∣
≤ √

Ka(x, x)
∥∥�(fn) − �(f )

∥∥
Ha

= ‖fn − f ‖
H̃a → 0 as n → ∞,

where the last step follows since � is an isometry. This indicates that g can be
obtained as the pointwise limit of �(fn) as a function on [0,1]D and in the special
case when x ∈ M,

g(x) = lim
n→∞�(fn)(x) = lim

n→∞fn(x) = f (x).

Denote the orthogonal complement of �(H̃a) in H
a as �(H̃a)⊥. Since (g′ −

g)|M = 0, we have 〈Ka(x, ·), g − g′〉Ha = 0 for all x ∈ M, which implies
g − g′ ⊥ �(H̃a), that is, g′ − g ∈ �(H̃a)⊥. Then by applying the Pythagorean
theorem, we obtain ∥∥g′∥∥2

Ha = ‖g‖2
Ha + ∥∥g − g′∥∥2

Ha ≥ ‖g‖2
Ha .

6.2. Proof of Lemma 5.2. The proof consists of two parts. In the first part, we
prove that the approximation error of Ia(f ) can be decomposed into four terms.
The first term T1 is the convolution error defined in our previous heuristic ar-
gument. The second term T2 is caused by localization of the integration, which
is negligible due to the exponential decay of the squared exponential covariance
function. The third and fourth terms T3, T4 correspond to the nonflat error. T3 is
caused by the error |‖φq(u)− q‖2 −‖u‖2| of approximating the geodesic distance

with Euclidean distance, and T4 the error |
√

det(gφ
ij (u)) − 1| of approximating the

local Jacobian by 1. Therefore, the overall approximation error |Ia(f )(x) − f (x)|
has order s in the sense that for some constant C > 0 dependent on M and f :

sup
x∈M

∣∣Ia(f )(x) − f (x)
∣∣≤ Ca−s, s ≤ min{2, γ }.(6.1)

In the second part, we prove that Ia(f ) belongs to H̃
a and has a squared RKHS

norm ‖Ia(f )‖2
H̃a

≤ Bad , where B is a positive constant independent of a.
Step 1 (Estimation of the approximation error): This part follows similar ideas

as the proof of Theorem 1 in [37], where they have shown that (6.1) holds for



896 Y. YANG AND D. B. DUNSON

s ≤ 1. Our proof generalizes their results to s ≤ 2 and, therefore, involves a more
careful treatment.

By Proposition 7.5 in the supplementary material [36], for each p ∈ M,
there exists a neighborhood Wp and an associated δp satisfying the two con-
ditions in Proposition 7.4 and equations (7.4)–(7.6) in the supplementary mate-
rial [36]. By compactness, M can be covered by

⋃
p∈P Wp for a finite subset P

of M. Then supx∈M |Ia(f )(x) − f (x)| = supp∈P{supx∈Wp
|Ia(f )(x) − f (x)|}.

Let δ∗ = minp∈P{min{δp,1/
√

2Cp}} > 0, where Cp is defined in equation (7.6)
in the supplementary material [36]. Choose a0 ≥ 1 sufficiently large such that
C0

√
(2d + 8) loga0/a0 < δ∗, where C0 is the C2 in Lemma 7.6 in the supple-

mentary material [36].
Let q ∈ Wp and a > a0. Define B

q
a = {x ∈ M : dM(q, x) <

C0
√

(2d + 8) loga/a}. Combining equation (7.3) in the supplementary material
[36] and the fact that Eq is a diffeomorphism on Bδ∗(0),

Bq
a =

{
Eq

(
d∑

i=1

uie
q
i

)
: u ∈ B̃a

}
⊂ Eq

(
Bδ∗(0)

)
,

where B̃a = {u : ‖u‖ < C0
√

(2d + 8) loga/a} ⊂ Bδ∗(0).
Denote φq(u) = Eq(

∑d
i=1 uie

q
i ). Then B

q
a = φq(B̃a). By Definition (7.1) in the

supplementary material [36],
(

a√
2π

)d ∫
B

q
a

Ka(q, y)f (y) dV (y)

=
(

a√
2π

)d ∫
B̃a

exp
{
−a2‖q − φq(u)‖2

2

}
f
(
φq(u)

)√
det
(
g

q
ij

)
(u) du.

Therefore, by (5.3) we have the following decomposition:

Ia(f )(q) − f (q) = T1 + T2 + T3 + T4,

where

T1 =
(

a√
2π

)d ∫
B̃a

exp
{
−a2‖u‖2

2

}[
f
(
φq(u)

)− f
(
φq(0)

)]
du,

T2 =
(

a√
2π

)d ∫
M\Bq

a

Ka(q, y)f (y) dV (y)

−
(

a√
2π

)d ∫
Rd\B̃a

exp
{
−a2‖u‖2

2

}
f (q) du,

T3 =
(

a√
2π

)d ∫
B̃a

{
exp

{
−a2‖q − φq(u)‖2

2

}
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− exp
{
−a2‖u‖2

2

}}
f
(
φq(u)

)
du,

T4 =
(

a√
2π

)d ∫
B̃a

exp
{
−a2‖q − φq(u)‖2

2

}
f
(
φq(u)

)(√
det
(
g

q
ij

)
(u) − 1

)
du.

Step 1.1 (Estimation of T1): Let g = f ◦φq . Since f ∈ Cs(M) and (φq,Bδ∗(0))

is a Cγ coordinate chart, we have g ∈ Cs(Rd) and, therefore,

g(u) − g(0) =
⎧⎪⎨
⎪⎩

R(u, s), if 0 < s ≤ min{1, γ },
d∑

i=1

∂g

∂ui

(0)ui + R(u, s), if 1 < s ≤ min{2, γ },

where the remainder term |R(u, s)| ≤ C1‖u‖s for all 0 < s ≤ min{2, γ }. Since B̃a

is symmetric, ∫
B̃a

exp
{
−a2‖u‖2

2

}
ui du = 0, i = 1, . . . , d,

and, therefore,

|T1| ≤ C1

(
a√
2π

)d ∫
B̃a

exp
{
−a2‖u‖2

2

}
‖u‖s du = C2a

−s .

Step 1.2 (Estimation of T2): Denote T2 = S1 + S2 where S1 and S2 are the first
term and second term of T2, respectively. By Lemma 7.6 in the supplementary
material [36], for y ∈ M \ B

q
a , ‖q − y‖ ≥ dM(q, y)/C0 ≥ √

(2d + 8) loga/a.
Therefore,

|S1| =
∣∣∣∣
(

a√
2π

)d ∫
M\Bq

a

exp
{
−a2‖q − y‖2

2

}
f (y) dV (y)

∣∣∣∣
≤ ‖f ‖∞ Vol(M)

(
a√
2π

)d

exp
{
−(2d + 8) loga

2

}

= C3a
−4 ≤ C3a

−s .

As for S2, we have

|S2| ≤ ‖f ‖∞
(

a√
2π

)d ∫
‖u‖≥C0

√
(2d+8) loga/a

exp
{
−a2‖u‖2

2

}
du

≤ ‖f ‖∞
(

a√
2π

)d ∫
Rd

exp
{
−C2

0(2d + 8) loga

4

}
exp

{
−a2‖u‖2

4

}
du

= C4a
−C2

0 (d/2+2) ≤ C4a
−s,

since d ≥ 1, C0 ≥ 1 and a ≥ a0 ≥ 1.
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Combining the above inequalities for S1 and S2, we obtain

|T2| ≤ (C3 + C4)a
−s = C5a

−s .

Step 1.3 (Estimation of T3): By equation (7.6) in Proposition 7.5 and equation
(7.3) in the supplementary material, we have∣∣‖u‖2 − ∥∥q − φq(u)

∥∥2∣∣= ∣∣d2
M
(
q,φq(u)

)− ∥∥q − φq(u)
∥∥2∣∣

(6.2)
≤ Cpd4

M
(
q,φq(u)

)= Cp‖u‖4.

Therefore, by using the inequality |e−a − e−b| ≤ |a − b|max{e−a, e−b} for a, b >

0, we obtain

|T3| ≤ ‖f ‖∞
(

a√
2π

)d ∫
B̃a

max
{

exp
{
−a2‖q − φq(u)‖2

2

}

× exp
{
−a2‖u‖2

2

}}
a2‖u‖4

2
du.

By equation (6.2) and the fact that u ∈ B̃a , we obtain ‖u‖2 ≤ (δ∗)2 ≤ 1/(2Cp).
Consequently,∣∣‖u‖2 − ∥∥q − φq(u)

∥∥2∣∣≤ 1
2‖u‖2,

∥∥q − φq(u)
∥∥2 ≥ 1

2‖u‖2.(6.3)

Therefore,

|T3| ≤ ‖f ‖∞
(

a√
2π

)d ∫
B̃a

exp
{
−a2‖u‖2

4

}
a2‖u‖4

2
du = C6a

−2 ≤ C6a
−s,

since a ≥ a0 ≥ 1.
Step 1.4 (Estimation of T4): By equation (7.5) in Proposition 7.5 in the supple-

mentary material [36], there exists a constant C7 depending on the Ricci tensor of
the manifold M, such that∣∣√det

(
g

q
ij

)
(u) − 1

∣∣≤ C7‖u‖2.

Therefore, by applying equation (6.3) again, we obtain

|T4| ≤ C4‖f ‖∞
(

a√
2π

)d ∫
B̃a

exp
{
−a2‖u‖2

4

}
‖u‖2 du = C8a

−2 ≤ C8a
−s .

Combining the above estimates for T1, T2, T3 and T4, we have

sup
x∈M

∣∣Ia(f )(q)(x) − f (q)(x)
∣∣≤ (C2 + C3 + C6 + C8)a

−s = Ca−s .

Step 2 (Estimation of the RKHS norm): Since 〈Ka(x, ·),Ka(y, ·)〉
H̃a = Ka(x,

y), we have

∥∥Ia(f )
∥∥
H̃a =

(
a√
2π

)2d ∫
M

∫
M

Ka(x, y)f (x)f (y) dV (x) dV (y)

≤ ‖f ‖2∞
(

a√
2π

)d ∫
M

dV (x)

(
a√
2π

)d ∫
M

Ka(x, y) dV (y).
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Applying the results of the first part to function f ≡ 1, we have∣∣∣∣
(

a√
2π

)d ∫
M

Ka(x, y) dV (y) − 1
∣∣∣∣≤ Ca−2 ≤ C,

since a ≥ a0 ≥ 1. Therefore,

∥∥Ia(f )
∥∥
H̃a ≤ (1 + C)‖f ‖2∞

(
a√
2π

)d

Vol(M) = Bad.

6.3. Proof of Lemma 5.4. By Lemmas 5.1 and 5.3, a typical element of H̃a

can be written as the real part of the function

hψ(x) =
∫

ei(λ,x)ψ(λ)μa(dλ) for x ∈ M

for ψ :RD →C a function with
∫ |ψ |2μa(dλ) ≤ 1. This function can be extended

to R
D by allowing x ∈ R

D . For any given point p ∈M, by (7.2) in the supplemen-
tary material [36], we have a local coordinate φp : Bδ0(0) ⊂ R

d →R
D induced by

the exponential map Ep . Therefore, for x ∈ φp(Bδ0(0)), hψ(x) can be written in
local q-normal coordinates as

hψ,p(u) = hψ

(
φp(u)

)= ∫
ei(λ,φp(u))ψ(λ)μa(dλ), u ∈ Bδ0(0).(6.4)

Similar to the idea in the proof of Lemma 4.5 in [35], we want to extend the
function hψ,p to an analytical function z �→ ∫

ei(λ,φp(z))ψ(λ)μa(dλ) on the set
� = {z ∈ C

d : ‖Re z‖ < δ0,‖ Im z‖ < ρ/a} for some ρ > 0. Then we can obtain
upper bounds on the mixed partial derivatives of the analytic extension hψ,p via
the Cauchy formula, and finally construct an ε-covering set of H̃a

1 by piecewise
polynomials defined on M. Unfortunately, this analytical extension is impossible
unless φp(u) is a polynomial. This motivates us to approximate φp(u) by its γ th
order Taylor polynomial Pp,γ (u). More specifically, by Lemma 8.2 and the dis-
cussion after Lemma 7.7 in the supplementary material [36], the error caused by
approximating φp(u) by Pp,γ (u) is∣∣hψ

(
φp(u)

)− hψ

(
Pp,γ (u)

)∣∣≤ a
∥∥φp(u) − Pp,γ (u)

∥∥≤ Ca‖u‖γ .(6.5)

For notation simplicity, fix p as a center and denote the function hψ(Pp,γ (u))

by r(u) for u ∈ Bδ0 . Since Pp,γ (u) is a polynomial of degree γ , by viewing the
function r as a function of argument u ranging over the product of the imaginary
axes in C

d , we can extend

r(u) =
∫

ei(λ,Pp,γ (u))ψ(λ)μa(dλ), u ∈ Bδ0(0)(6.6)

to an analytical function z �→ ∫
ei(λ,Pp,γ (z))ψ(λ)μa(dλ) on the set � = {z ∈

C
d : ‖Re z‖ < δ0,‖ Im z‖ < ρ/a} for ρ = δ, where δ < 1/2 is defined in (5.2).
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Moreover, by Cauchy–Schwarz inequality, |r(z)| ≤ C for z ∈ � and C2 =∫
eδ‖λ‖μ(dλ) < ∞. Therefore, by the Cauchy formula, with Dn denoting the par-

tial derivative of orders n = (n1, . . . , nd) and n! = n1! · · ·nd !, we have the follow-
ing bound for partial derivatives of r at any u ∈ Bδ0(0),∣∣∣∣D

nr(u)

n!
∣∣∣∣≤ C

Rn
,(6.7)

where R = ρ/(a
√

d). Based on the inequalities (6.5) and (6.7), we can construct
an ε-covering set of H̃a

1 as follows.
Set a1 = δ/(2δ0

√
d), then for any a > a1, R < 2δ0. Since M ⊂ [0,1]D , with

C2 defined in Lemma 7.6 in the supplementary material [36], let {p1, . . . , pm} be
an R/(2C2)-net in M for the Euclidean distance, and let M =⋃

i Bi be a partition
of M into sets B1, . . . ,Bm obtained by assigning every x ∈ M to the closest pi ∈
{p1, . . . , pm}. By (7.3) and Lemma 7.6 in the supplementary material [36]

∣∣(φpi
)−1

(x)
∣∣< C2

R

2C2
= R

2
< δ0,(6.8)

where φpi
is the local normal coordinate chart at pi . Therefore, we can consider

the piecewise transformed polynomials P =∑m
i=1 Pi,ai

1Bi
, with

Pi,ai
(x) = ∑

n·≤k

ai,n

[(
φpi

)−1
(x)

]n
, x ∈ φpi

(
Bδ0(0)

)
.(6.9)

Here, the sum ranges over all multi-index vectors n = (n1, . . . , nd) ∈ (N ∪ {0})d
with n· = n1 + · · · + nd ≤ k. Moreover, for y = (y1, . . . , yd) ∈ R

d , the notation
yn used above is short for y

n1
1 y

n2
2 · · ·ynd

d . We obtain a finite set of functions by
discretizing the coefficients ai,n for each i and n over a grid of mesh width ε/Rn-
net in the interval [−C/Rn,C/Rn] [by (6.7)]. The log cardinality of this set is
bounded by

log
(∏

i

∏
n:n·≤k

#ai,n

)
≤ m log

( ∏
n:n·≤k

2C/Rn

ε/Rn

)
≤ mkd log

(
2C

ε

)
.

Since R = ρ/(a
√

d), we can choose m = N(M,‖ · ‖, ρ/(2C0ad1/2)) � ad . To
complete the proof, it suffices to show that for k of order log(1/ε), the resulting
set of functions is a Kε-net for constant K depending only on μ.

For any function f ∈ H̃
a
1, by Lemma 5.1, we can find a g ∈ H̃

a
1 such that

g|M = f . Assume that rg (subscript g indicates the dependence on g) is the local
polynomial approximation for g defined as (6.6). Then we have a partial derivative
bound on rg as ∣∣∣∣D

nrg(pi)

n!
∣∣∣∣≤ C

Rn
.
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Therefore, there exists a universal constant K and appropriately chosen ai in (6.9),
such that for any z ∈ Bi ⊂ M,

∣∣∣∣∑
n·>k

Dnrg(pi)

n! (z − pi)
n

∣∣∣∣≤ ∑
n·>k

C

Rn
(R/2)n ≤ C

∞∑
l=k+1

ld−1

2l

≤ KC

(
2

3

)k

,

∣∣∣∣∑
n·≤k

Dnrg(pi)

n! (z − pi)
n − Pi,ni

(z)

∣∣∣∣≤ ∑
n·≤k

ε

Rn
(R/2)n ≤

k∑
l=1

ld−1

2l
ε ≤ Kε.

Moreover, by (6.5) and (6.8),∣∣g(z) − rg(z)
∣∣≤ Ca

∥∥(φpi
)−1

(z)
∥∥γ ≤ aRγ ≤ Ka−(γ−1) < Kε,

where the last step follows by the condition on a.
Consequently, we obtain∣∣f (z) − Pi,ni

(z)
∣∣= ∣∣g(z) − Pi,ni

(z)
∣∣≤ ∣∣g(z) − rg(z)

∣∣+ ∣∣rg(z) − Pi,ni
(z)
∣∣

≤ KC

(
2

3

)k

+ 2Kε.

This suggests that the piecewise polynomials form a 3Kε-net for k sufficiently
large so that (2/3)k is smaller than Kε.

6.4. Proof of Theorem 2.3. Let P
(n)
0 denote the joint distribution of {Yi}ni=1

in fixed design or the joint distribution of {(Xi, Yi)}ni=1 in random design. First,
we consider fixed design. We will apply the following lemma which strengthens
the result in Theorem 2.1. A proof of this lemma is provided in Section 9 of the
supplementary material [36].

LEMMA 6.1. Under the conditions of Theorem 2.1, there exists a sequence of
measurable sets An satisfying P

(n)
0 (Ac

n) → 0, such that for some positive constant
c and any t ≥ 1,

P
(n)
0 I (An)�

(‖f − f0‖n ≥ t ε̄n|Sn

)≤ e−cnε2
nt2

.

By plugging in t = 1,2, . . . into the above display, dividing both sides by
exp{−cnε2

nt
2/2} and taking a summation, we can obtain

P
(n)
0 I (An)

∞∑
k=1

�
(‖f − f0‖n ≥ kε̄n|Sn

)
ecnε2

nk2/2 ≤
∞∑

k=1

e−cnε2
nk2/2 → 0,
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as n → ∞. As a consequence, there exists a sequence of events {Cn} satisfying
Cn ⊂ An and P

(n)
0 (Cn) → 1 as n → ∞, such that under Cn the following inequal-

ity holds uniformly for all k = 1,2, . . .:

�
(‖f − f0‖n ≥ kε̄n|Sn

)≤ e−cnε2
nk2/2.

For any t ≥ 1, there always exists an integer kt ≥ 1 such that kt ≤ t < kt + 1. Then
the preceding display implies

�
(‖f − f0‖n ≥ t ε̄n|Sn

)≤ �
(‖f − f0‖n ≥ (kt + 1)ε̄n|Sn

)
(6.10)

≤ e−cnε2
n(kt+1)2/2 ≤ e−cnε2

nk2
t /8 ≤ e−cnε2

nt2/8.

Therefore, by Fubini’s theorem we have that under the event Cn∫
‖f − f0‖2

n d�(f |Sn) =
∫ ∞

0
�
(‖f − f0‖2

n ≥ s|Sn

)
ds

≤ ε̄2
n +

∫ ∞
ε̄2
n

�
(‖f − f0‖2

n ≥ s|Sn

)
ds(6.11)

≤ ε̄2
n +

∫ ∞
ε2
n

e−cns/8 ds = ε̄2
n + 8

cn
e−cnε2

n/8 ≤ 2ε̄2
n

for n sufficiently large so that 8
cn

e−cnε2
n/8 ≤ ε̄2

n.

Since f̂A = ∫
fA d�(f |Sn), we have decomposition

∫ ‖fA −f0‖2
n d�(f |Sn) =∫ ‖fA − f̂A‖2

n d�(f |Sn) + ‖f̂A − f0‖2
n. Combining this decomposition with the

fact that |fA(x) − f0(x)| ≤ |f (x) − f0(x)| for any x, we obtain

‖f̂A − f0‖2
n ≤

∫
‖f − f0‖2

n d�(f |Sn).

By combining the preceding display with (6.11) and noticing P
(n)
0 (Cn) → 1, we

can conclude that ‖f̂A −f0‖2
n ≤ 2ε̄2

n holds with probability tending to 1 as n → ∞.
The proof for random design is more involved. We will utilize the following

result for comparing ‖ · ‖n and ‖ · ‖2 based on empirical process theory ([32],
Lemma 5.16). Let HB(ε,F,‖ · ‖) denote the ε-bracketing entropy of a function
space F with respect to a norm ‖ · ‖.

LEMMA 6.2. Suppose supf ∈F ‖f ‖∞ ≤ A and Xi are i.i.d. with distribu-

tion Q. For δ satisfying nA−2δ2 ≥ HB(A−1δ,F,‖ · ‖2) and η ∈ (0,1), we have

Q(n)

(
sup

f ∈F,‖f ‖2≥25δ/η

∣∣∣∣‖f ‖n

‖f ‖2
− 1

∣∣∣∣≥ η

)
≤ 8 exp

(−CnA−2δ2η2),
where the constant C > 0 does not depend on A and Q(n) denotes the joint distri-
bution of {Xi}ni=1.
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According to the proof of Theorem 2.1 in the supplementary material [36], there
exists a sequence of sieves {Bn} that satisfies

N
(
3ε̄n,Bn,‖ · ‖∞

)≤ nε̄2
n and �(f /∈ Bn) ≤ e−4nε2

n .

By the second inequality above and Lemma 1 in [14], we obtain that the poste-
rior probability �(f /∈ Bn|Sn) ≤ e−c1nε2

n under the event An with some constant
c1 > 0. This inequality together with (6.10) implies

�
(‖f − f0‖n ≤ ε̄n, f ∈ Bn|Sn

)≥ 1 − 2e−c2nε2
n

under the event An ∩ Cn = Cn, where c2 = min{c/8, c1}.
Let Bn,A = {fA : f ∈ Bn}. If {f (j)} forms an ε-net of Bn, then {f (j)

A } forms
an ε-net of Bn,A. As a result, the covering entropy of Bn,A is bounded by that
of Bn. Combining this, the two preceding displays, inequality (6.10) and the fact
that an ε-bracket entropy is always bounded by an ε-covering entropy with respect
to ‖ · ‖∞, we obtain that under the event An ∩ Cn = Cn,

�
(‖fA − f0‖n ≤ ε̄n, fA ∈ Bn,A|Sn

)≥ 1 − 2e−c2nε2
n,(6.12)

HB

(
3ε̄n,Bn,A,‖ · ‖2

)≤ nε̄2
n.(6.13)

Given inequality (6.13), we can apply Lemma 6.2 with F = Bn,A − f0, δ = ε̄n

and η = 1/2 to obtain that there exists a sequence of events En with P
(n)
0 (En) =

Q(n)(En) → 1 as n → ∞ such that under En,

1

2
≤ sup

fA∈Bn,A,‖fA−f0‖2≥64ε̄n

‖fA − f0‖n

‖fA − f0‖2
≤ 3

2
.

By combining the above with inequality (6.12), we obtain �(‖fA − f0‖2 ≤
64ε̄n|Sn) ≥ 1 − 2e−c2nε2

n and then∫
‖fA − f0‖2

2 d�(f |Sn) ≤ 642ε̄2
n + 4A2�

(‖fA − f0‖2 ≥ 64ε̄n|Sn

)≤ 4097ε̄2
n

under the event Cn ∩En for n sufficiently large so that 8A2e−c2nε2
n ≤ ε̄2

n. Therefore,
we have ‖f̂A − f0‖2

2 ≤ ∫ ‖fA − f0‖2
2 d�(f |Sn) ≤ 4097ε̄2

n with probability at least

P
(n)
0 (Cn ∩ En) → 1 as n → ∞.

SUPPLEMENTARY MATERIAL

Reviews of geometric properties and proofs of Theorems 2.1, 2.2, 2.4
and 3.2 (DOI: 10.1214/15-AOS1390SUPP; .pdf). Concepts and results in differ-
ential and Riemannian geometry were reviewed in Section 7, where new results are
included with proofs. Then proofs of Theorems 2.1, 2.2, 2.4 and 3.2 are provided
in Section 8.

http://dx.doi.org/10.1214/15-AOS1390SUPP
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