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GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH
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Quantile regression has become a valuable tool to analyze heterogeneous
covaraite-response associations that are often encountered in practice. The
development of quantile regression methodology for high-dimensional co-
variates primarily focuses on the examination of model sparsity at a single or
multiple quantile levels, which are typically prespecified ad hoc by the users.
The resulting models may be sensitive to the specific choices of the quantile
levels, leading to difficulties in interpretation and erosion of confidence in the
results. In this article, we propose a new penalization framework for quantile
regression in the high-dimensional setting. We employ adaptive L1 penalties,
and more importantly, propose a uniform selector of the tuning parameter for
a set of quantile levels to avoid some of the potential problems with model
selection at individual quantile levels. Our proposed approach achieves con-
sistent shrinkage of regression quantile estimates across a continuous range
of quantiles levels, enhancing the flexibility and robustness of the existing pe-
nalized quantile regression methods. Our theoretical results include the oracle
rate of uniform convergence and weak convergence of the parameter estima-
tors. We also use numerical studies to confirm our theoretical findings and
illustrate the practical utility of our proposal.

1. Introduction. We consider the problem of analyzing high and ultra-high
dimensional data, which have become widely available in a large variety of scien-
tific fields, such as biomedical imaging, signal processing, machine learning and
finance. In ultra-high dimensional data sets, the number of candidate covariates
p is allowed to increase at an exponential rate of the number of observations n,
but only a relatively small number s of them have real impact on the response vari-
able. In such a situation, it becomes very useful but challenging to identify relevant
variables and measure their influences.

Effort has been made to address this unprecedented challenge in the context of
linear regression [Meinshausen and Bühlmann (2006), Zhang and Huang (2008),
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Huang, Ma and Zhang (2008), Kim, Choi and Oh (2008), Lv and Fan (2009), Fan
and Lv (2011), among others]. Quantile regression [Koenker and Bassett (1978)]
has emerged as a flexible tool to model the effects of covariates on the conditional
quantiles, and it permits investigation of heterogeneity across quantiles. For exam-
ple, meteorologists typically focus on the extreme temperatures in climate studies.
Gaussian model-based procedures would be inadequate for addressing scientific
questions of this kind, and quantile models have a natural role to play. Most of
current literature on quantile regression for high-dimensional data inquire into co-
variate effects at single or multiple prespecified quantile levels, to which we shall
refer as locally concerned quantile regression. A number of authors, for example,
Knight and Fu (2000), Li, Liu and Zhu (2007), Zou and Yuan (2008), Wu and Liu
(2009) and Rocha, Wang and Yu (2009), considered the locally concerned quantile
regression using penalization to achieve sparsity. Several authors, such as Wang,
Wu and Li (2012), Zheng, Gallagher and Kulasekera (2013) and Fan, Fan and
Barut (2014), investigated cases with ultra-high dimensional covariates.

There are subtle and yet important issues with the practical use of locally con-
cerned quantile regression. For example, when interests lie in identifying variables
that impact the upper quantiles, would one just consider a single τ th quantile at
τ = 0.9, or several quantile levels? There is usually no clear scientific support for
choosing one τ over another nearby value. With a limited sample size, there is
variability in the set of selected variables as τ changes, even if just slightly. Such
variability is clearly undesirable for interpretation. More importantly, some impor-
tant variables are likely to be missed, simply due to chance, if we perform variable
selection at any given τ .

To address the limitations of locally concerned quantile regression, we pro-
pose an alternative model selection strategy, called globally concerned quantile
regression, that examines regression quantiles over a set of quantile levels, de-
noted by � ⊂ (0,1). Typically, � is selected as an interval of quantile levels that
well captures part of the conditional distributions. For example, � may be cho-
sen as [0.4,0.6] if we would like to identify variables that impact the center of
the conditional distributions, or [0.75,0.9] if we are interested in the upper tails.
If we are interested in identifying variables that have impact on any quantile of
the conditional distributions, we may choose � = [0.1,0.9]. If � is a singleton
set or a finite set, globally concerned quantile regression reduces to locally con-
cerned quantile regression. Therefore, we can take the view that globally concern
quantile regression extends locally concerned quantile regression by allowing for
contemporaneous evaluation of the covariate effects at a continuum of quantile
levels. This additional flexibility offered by globally concerned quantile regression
can enhance high-dimensional sparse modeling. Specifically, a globally concerned
quantile regression approach can take advantage of all useful information across
quantiles to improve the stability of variable selection. Even if an active variable is
missed by locally concerned quantile regression at the targeted quantile level, its
trail may still be captured within the neighborhood of the quantile level.
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A naive pointwise approach for globally concerned quantile regression in the
ultra-high dimensional setting would perform an existing locally concerned penal-
ization method separately at each τ ∈ � (including tuning parameter selection),
and then take the union of active variable sets identified at each τ . Such an ap-
proach tends to result in considerably overfitted models, as clearly demonstrated
by simulation studies in Section 4. The model overfitting phenomenon is analo-
gous to the inflated type-I error in multiple comparisons. Similar to the strategy
of controlling the familywise error rates by adjusting critical values of individual
tests in multiple comparison problems, we consider appropriate selection of the
tuning parameter in the penalization.

Belloni and Chernozhukov (2011) investigated the L1-penalized quantile re-
gression (L1-QR) for the ultra-high dimensional data setting and established some
useful results that hold uniformly across �. They established a near oracle consis-
tency rate

√
s logp/n for p > n, and showed that the model identified by L1-QR

contains the true model as a submodel. Nevertheless, there remain some important
open questions. First, in the ultra-high dimensional setting, logp could be o(nb)

for some b > 0. Thus the convergence rate
√

s logp/n is less satisfactory. No-
tice that AR-Lasso proposed by Fan, Fan and Barut (2014) enjoys a

√
s logn/n

convergence rate at a given quantile level. We ask if we can achieve the same
convergence rate for the penalized regression quantiles uniformly in �. Second, as
noted by Fan, Fan and Barut (2014) and Wang, Wu and Li (2012), L1-QR typically
does not possess the desired model selection oracle property. Can this deficiency
be corrected by adopting an adaptively weighted L1-penalty instead of the L1-
penalty under globally concerned quantile regression? Third, L1-QR requires an
assumption that the active covariate effects do not cross 0 as τ varies in �. We
hope that this restriction can be removed.

Motivated by the precursor work by Peng, Xu and Kutner (2014) on variable se-
lection under globally concerned quantile regression with a fixed covariate dimen-
sion, we study the penalization strategy of adaptively weighting the L1-penalty in
the ultra-high dimensional setting, in combination with a GIC-type uniform selec-
tor of the tuning parameter. The theoretical development for the high-dimensional
case cannot rely on the traditional empirical process arguments used in Peng, Xu
and Kutner (2014); instead we modify a chaining idea from Talagrand (2005) to
circumvent the difficulty with high dimensions. We are able to show that with
probability tending to one, the proposed estimator can successfully identify the set
of relevant covariates, including those having effects on some or all quantile levels
in �. The model selection oracle property can be established, implicating the same
convergence rate for the proposed estimator and the oracle estimator. We employ
the empirical process techniques to derive the convergence rate of the oracle esti-
mator and thus that of the proposed estimator. We demonstrate that the adaptively
weighted penalties can reduce the bias induced by the L1 penalties. Compared to
L1-QR, which may select a model of size as large as O(n/ logp), the proposed
method can achieve consistent model selection, and then an improved estimation
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convergence rate, which we show can be
√

s logn/n uniformly in τ ∈ �. When �

is a singleton set, and our estimator becomes one for penalized locally concerned
quantile regression, the convergence rate can be further improved to the oracle
rate, Op(

√
s/n). Our theoretical investigations do not preclude the cases where

the covariates effects equal zero at some quantile.
In addition, we show that any linear combination of the proposed estimator con-

verges weakly to a Gaussian process as a function of τ ∈ �. Such weak conver-
gence results have been lacking in the high-dimensional setting, possibly because
the increasing dimensionality makes the classical approaches to weak convergence
inapplicable. With a mild constraint on the model size, we show, for the first time,
that the proposed GIC-type uniform tuning parameter selector can ensure consis-
tent model selection in the ultra-high dimensional setting.

The rest of the article is organized as follows. In Section 2, we introduce a glob-
ally concerned quantile regression framework and propose an adaptively weighted
L1-penalization procedure. In Section 3, we investigate the theoretical proper-
ties of the proposed estimator. We conduct a Monte Carlo study to evaluate its
finite sample performance in Section 4. In Section 5, we demonstrate the proposed
method with a real data example. Further discussions are contained in Section 6.
We defer all technical proofs to Section 7.

2. Adaptively weighted L1-penalized quantile regression.

2.1. A globally concerned quantile regression framework. We consider a glob-
ally concerned quantile regression model, which takes the form

QY (τ |X) = XT β0(τ ) for τ ∈ �,(2.1)

where QY (τ |X) := inf{y : Pr(Y ≤ y|X) ≥ τ } denotes the τ th conditional quantile
of a response variable Y given X, X := (1,ZT )T is a p × 1 vector of covariates,
β0(τ ) := (α0(τ ),β∗

0(τ )T )T is a p × 1 vector of unknown coefficient functions of
τ , � ⊂ (0,1) is a prespecified set of interest. Here, � can take a general form as
the union of multiple disjoint intervals. In contrast, a locally concerned quantile
regression model can be expressed as (2.1) but with � being a singleton set or
a countable set. The coefficients α0(τ ) and β∗

0(τ ) represent intercept and covari-
ates effects on the τ th conditional quantile of Y given X, respectively, which are
allowed to vary over τ ∈ �. It is worth pointing out that the globally concerned
quantile regression model (2.1) bears a meaningful distinction from a location shift
linear model only when the covariates are confined to a compact set [Koenker
(2005)]. By this consideration, a bounded covariate space is assumed through-
out the presentation of theoretical results in Section 3. Nevertheless, our technical
proofs in Section 5 adopt a weaker assumption on covariates, which allows the
support of covariates to expand with n.
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We consider the ultra-high dimensional setting, where logp = o(nb) for some
b > 0. The set of relevant/active covariates under the globally concerned quantile
regression model (2.1) is defined as

S� := support
(
β0(τ ), τ ∈ �

)= {
j ∈ {2, . . . , p} : ∃τ ∈ �,

∣∣β(j)
0 (τ )

∣∣> 0
}
.

The implication from this definition is that we intend to identify all variables that
impact the selected segment of the conditional distribution of the response (re-
flected by the choice of �). A relevant variable may influence all or some of the
quantiles of interest. Let u(j) denote the j th component of the vector u. To ensure
the model identifiability of (2.1), we impose a global sparsity condition, which as-
sumes that the number of relevant covariates is small, relatively to the sample size,
that is, |S�| = s = o(n), where | · | denotes the cardinality. It is easy to see that
this global sparsity condition implies the local sparsity condition for a τ th quantile
regression model, |Sτ | = o(n), where

Sτ := support
(
β0(τ )

)= {
j ∈ {2, . . . , p} : ∣∣β(j)

0 (τ )
∣∣> 0

}
.

It is important to note that the stronger global sparsity condition is indispensable
for the globally concerned quantile regression. Suppose we only assume the local
sparsity for each τ ∈ �. Although |Sτ | = o(n) for all τ ∈ �, |S�| = |⋃τ∈� Sτ |
could still be greater than n when β0∼

(τ ) is allowed to change with τ and so is Sτ .

On the other hand, Belloni and Chernozhukov (2011) studied the globally con-
cerned L1-QR under the local sparsity condition, |Sτ | < s ≤ n/ log(n ∨ p) for all
τ ∈ �. This condition, when coupled with their constraint that the active covariate
effects do not cross 0, implies |S�| = o(n), the global sparsity condition assumed
in this paper.

Without loss of generality, we assume that S� = {2, . . . , s}; that is, the first s

variables have nonvanishing effects on the conditional distribution of interest. We
use Sc

� := {s + 1, . . . , p} to denote the collection of all irrelevant variables. We
allow the number of covariates p = pn and the true model size s = sn to increase
with the sample size n. To ease the presentation, we often omit the subscript n,
when it is clear from the context.

2.2. Adaptively weighted L1-penalized quantile regression. Given a random
sample consisting of n independent and identically distributed observations, de-
noted by {(Yi,Zi), i = 1, . . . , n}, we use the adaptively weighted L1-penalized
quantile regression estimator β̂λn

(τ ), which is the minimizer of the following ob-
jective function:

Qn(β; τ) =
n∑

i=1

ρτ

(
Yi − XT

i β
)+ λn

p∑
j=2

ωj (τ)
∣∣β(j)

∣∣ for τ ∈ �,(2.2)

where Xi := (1,ZT
i )T , ρτ (t) := t (τ − 1{t ≤ 0}) is the τ th quantile loss function,

λn is a tuning parameter controlling the overall model complexity over � and
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ωj(τ), j = 2, . . . , p are nonnegative weight functions assigned to β(j)(τ )’s. Con-
sequently, the estimated global model,

Ŝ� := {
j ∈ {2, . . . , p} : ∃τ ∈ �,

∣∣β̂(j)(τ )
∣∣> 0

}
,

is a collection of all active variables identified by β̂(τ ) over �. The general re-
quirements about wj(τ) and λn are expounded in theoretical studies presented
in Section 3. Note that adopting adaptive weights distinguishes the proposed es-
timation method from L1-QR in which the penalties assigned to covariates are
nonadaptive.

The proposed globally concerned quantile regression framework allows for
more flexibility in selecting the form of ωj(τ), as compared to locally concerned
quantile regression. For example, we can choose ωj (τ) to be one of the following
functions:

(w1) ωj (τ ) = 1/
∣∣β̃(j)(τ )

∣∣, (w2) ωj (τ ) = 1
/(

sup
τ∈�

∣∣β̃(j)(τ )
∣∣),

(w3) ωj (τ ) = 1
/∫

�

∣∣β̃(j)(τ )
∣∣dτ,

where β̃(τ ) is any uniformly consistent initial estimate of β0(τ ). The design of
these adaptive weight functions essentially follows the same idea behind the clas-
sical adaptive-Lasso [Zou (2006)] to assign different penalty levels according to
the conjectured variable importance. The choice (w1) corresponds to a traditional
choice of adaptive weights as seen in adaptive-Lasso [Zou (2006)], while the other
two examples reflect a global use of the information on β0(τ ), because ωj(τ) is
the same for all τ ∈ �. By using (w2) or (w3), we take the view that the variable
importance is, respectively, captured by the maximum signal strength or the cumu-
lative signal strength over τ ∈ �, corresponding to the L∞ and L1 norm of coeffi-
cient functions. Clearly other function norms may also be used to define adaptive
weights. Compared to (w2) and (w3), the adaptive weight (w1) is less tailored to
the objective of identifying the set of globally relevant variables; it changes with
τ and reflects the local relevance rather than the global importance of variables.
As elaborated in Section 3, the proposed adaptively weighted L1-penalized quan-
tile regression can achieve the model selection oracle property with all the weights
listed above. However, (w1) is generally subject to stronger signal conditions com-
pared to (w2) and (w3). Our numerical studies suggest that adopting (w2) or (w3)

may lead to more favorable finite sample performance as compared to using the
traditional adaptive weight, (w1).

For the initial estimator β̃(τ ), we recommend using the estimator from L1-QR,
which is a minimizer of (2.2) by setting ωj(τ) = 1, j = 2, . . . , p. Therefore, the
proposed adaptively weighted L1-penalized quantile regression consists of two
stages in the implementation. In the first stage, we employ the L1-QR to generate
β̃(τ ) and then construct the adaptively weight function ωj(τ), which are used in
the second stage to produce the function estimator, β̂λn

(·).
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Another important component of the proposed penalized estimation is to adopt a
common tuning parameter λn for τ ∈ �. This is key to achieving the oracle model
selection property for globally concerned quantile regression. If we tune λn(τ )

for local sparsity, it would result in inconsistent selection for the set of globally
irrelevant covariates, S�. This phenomenon shares a similar spirit to the issue of
inflated type I error in the multiple comparison setting, and is clearly demonstrated
via some simulations reported in Section 4.

To select λn, we propose the following uniform selector of tuning parameter
by using a GIC criterion adapted to the globally concerned quantile regression
model (2.1):

GIC(λ) :=
∫
�

log σ̂λ(τ ) dτ + |Ŝλ|φn,(2.3)

where Ŝλ := {j ∈ {2, . . . , p} : supτ∈� |β̂(j)
λ (τ )| �= 0}, σ̂λ(τ ) := n−1∑n

i=1 ρτ (Yi −
XT

i β̂λ(τ )), and φn is a sequence converging to 0 with n. We show in Theorem 3.4
that the proposed GIC criterion would ensure the oracle model selection property
when a reasonable upper bound for model size can be imposed to eliminate clearly
oversized models in model selection. The simulation studies in Section 4 demon-
strate satisfactory behaviors of the proposed tuning parameter selection.

2.3. Computation algorithm for β̂λn
(τ ). Here we assume that the adaptive

weight wj(τ) is a function or functional of the initial estimator β̃λn
(·).

To begin, we review some important results about standard quantile regression
to help understand the proposed computation algorithm. As elaborated in Bassett
and Koenker (1982), Koenker and Bassett (1978), Portnoy (1991), the sample re-
gression quantile function is piecewise constant on τ ∈ (0,1), due to the paramet-
ric programming nature of the optimization problem. By Corollary 3.1 of Portnoy
(1991), the size of breakpoint set for a regression quantile function is roughly
O(m logm), where m is the number of data points involved in the quantile re-
gression minimization problem. Koenker and D’Orey (1987) provided a detailed
account of how to compute a regression quantile function for all τ ∈ (0,1) via
parametric linear programming, including a procedure to determine all the break-
points. The implementation of the algorithm of Koenker and D’Orey (1987) has
been made available in rq() function in R package quantreg.

Below we provide a detailed description of the proposed computation algorithm
for β̂λn

(·). Our basic strategy for determining the full function path of β̂λn
(·) is to

formulate β̂λn
(τ ) as regression quantile of some augmented datasets. By the gen-

eral property of regression quantile functions discussed above, we can conclude
that β̂λn

(τ ) is a piecewise constant function changing at only a finite number of

breakpoints. Our algorithm delineates how the breakpoint set of β̂λn
(·) can be ob-

tained by using rq() function after appropriate data manipulations. We also provide
sample code in Section 4 of the supplemental article [Zheng, Peng and He (2015)].
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Step 1. Follow Belloni and Chernozhukov (2011) to obtain the tuning param-
eter λ̃n for computing the L1-QR estimator β̃(τ ).

Step 2. Fit the rq() function to the augmented dataset, {(y∗
i ,x∗

i ),1 ≤ i ≤ n +
2p − 2}, where (y∗

i ,x∗
i ) = (yi,xi ) for 1 ≤ i ≤ n, (y∗

n+j ,x∗
n+j ) = (0, λ̃nej ) and

(y∗
n+p+j ,x∗

n+p+j ) = (0,−λ̃nej ) for 1 ≤ j ≤ p − 1. Here ej is a p-dimensional
vector with the j th component equal to 1 and all the others equal to 0. The results
would include the set of all breakpoints of β̃(·), denoted by R1, and also the value
of β̃(τ ) at each breakpoint. The function estimator β̃(·) is a piecewise constant
function that jumps only at breakpoints in R1.

Step 3. Compute the adaptive weights ωj(τ) (j = 2, . . . , p) based on β̃(·).
Let {

Ik(R1) = [
τk(R1), τk+1(R1)

)
, k = 1, . . . , |R1|}

be the set of τ -intervals on each of which the weights, ω2(τ ), . . . ,ωp(τ ), are all
constant. Here |R1| denotes the size of the breakpoint set R1.

Step 4. Calculate GIC(λ) on a sequence of tuning parameter candidates. More
specifically, given any fixed tuning parameter λ,

Step 4.1. Set k = 1.
Step 4.2. Fit the rq() function to the augmented dataset {(y†

i ,x†
i ),1 ≤ i ≤ n +

2p − 2}, where (y
†
i ,x†

i ) = (yi,xi) for 1 ≤ i ≤ n, (y
†
n+j ,x†

n+j ) = (0, λωj (τ )ej ),

and (y
†
n+p+j ,x†

n+p+j ) = (0,−λωj (τ )ej ) for 1 ≤ j ≤ p − 1. Denote the resulting

breakpoint set by R2,k(R1). For each breakpoint τ ∈ R2,k(R1) ∩ Ik(R1), let β̂λ(τ )

be the corresponding rq() coefficient estimate.
Step 4.3. Increase k by 1, and go back to step 4.2 unless k > |R1|.
Step 4.4. Calculate GIC(λ) based on β̂λ(·), which is now fully determined with

the breakpoint set given by
⋃|R1|

k=1 R2,k(R1) ∩ Ik(R1).
Step 5. Find λ̂n that minimizes GIC(λ).
Step 6. Obtain β̂λn

(·) over τ ∈ � corresponding to λ = λ̂n.

It is worth pointing out that Belloni and Chernozhukov (2011) proposed to
choose their tuning parameter, λ̃n, based on simulations of a pivot quantity, and
thus step 1 can be carried out without iterating with other steps. The construc-
tion of the augmented dataset in step 2 is motivated by the fact that the def-
inition of (y∗

n+k, x
∗
n+k) and (y∗

n+p+k−1, x
∗
n+p+k−1) makes ρτ (y

∗
n+k − x∗T

n+kβ) +
ρτ (y

∗
n+p+k−1 − x∗T

n+p+k−1β) = λ̃n|β(k+1)| (k = 1, . . . , p − 1). Consequently,

n+2p−2∑
i=1

ρτ

(
y∗
i − x∗T

i β
)= n∑

i=1

ρτ

(
yi − xT

i β
)+ λ̃n

p∑
j=2

∣∣β(j)
∣∣.

This finding indicates that β̃(τ ) can be equivalently formulated as the τ th regres-
sion quantile of the augmented dataset, {(y∗

i ,x∗
i ),1 ≤ i ≤ n + 2p − 2}. Thus β̃(τ )
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is piecewise constant over τ , and so is wj(τ). It allows us to use existing software,
such as rq(), to solve the L1-QR as a standard quantile regression problem and
to obtain the full function path of the initial estimator, β̃(·). The same idea is ap-
plied in step 4.2, with additional attention paid to incorporating adaptive weights,
which may change with τ . More specifically, given that wj(τ) is piecewise con-
stant over τ , we can separately handle β̂λn

(·) in each τ -interval where adaptive

weights are constant over τ . With data manipulations similar to those for β̃(τ ), we
can formulate β̂λn

(τ ) as the τ th regression quantile of an augmented dataset, as

shown in step 4.2. Therefore, the breakpoint set of β̂λn
(·) in the given τ -interval

can be obtained by using the rq() function. The union of all such breakpoint sets
then gives the breakpoint set of β̂λn

(·); see step 4.4. In the special case where the
weight function is chosen as (w2) or (w3), |R1| would be 1, and the loop between
steps 4.2 and 4.3 would not be needed.

Note that the above algorithm enables us to determine β̂λn
(·) for all τ ∈ �.

However, the computation burden could be heavy in ultra-high dimensional set-
tings, since the size of the breakpoint set is roughly at O((n + 2p) log(n +
2p)) [Portnoy (1991)]. To alleviate the computational burden, one can approx-
imate β̂λn

(·) by a càdlàg step function which jumps at a sufficiently fine pre-
specified grid in �. Specifically, let Sn denote a τ -grid in �, inf{�} = τ0 <

τ1 < · · · < τM(n) = sup{�}. Define the size of Sn by ‖Sn‖ = max{τk − τk−1;k =
1, . . . ,M(n)}. We propose to approximate β̂λn

(·) by β̂
Sn

λn
(·), where for τ ∈ �,

β̂
Sn

λn
(τ ) =∑M(n)

k=1 β̂λn
(τk)I (τk−1 < τ ≤ τk). With the smoothness of β0(·) assumed

in condition (C3) in Section 3, we can show that β̂
Sn

λn
(τ ) has the same uniform

convergence rate and asymptotic distribution as β̂λn
(τ ) when (ns)1/2‖Sn‖ = o(1).

The proof is provided in Section 3 of the supplemental article [Zheng, Peng and
He (2015)].

In our simulation studies, we chose the grid of size 5/2n. The estimator based
on grid approximation performs well with realistic sample sizes. In our real data
analysis, β̂λn

(τ )’s obtained from the exact and approximate calculations select the
same set of variables.

Clearly, adopting β̂
Sn

λn
(τ ) is computationally appealing because it only requires

calculating β̂λn
(τ ) at M(n) grid points. Given that the only technical constraint

for M(n) is limn→∞ M(n)/(ns)1/2 = ∞, M(n) can be chosen to be much smaller
than the total number of exact breakpoints. For example, under our simulation set-
up (II) with n = 200 and p = 400, the average number of breakpoints [with (w2)

adopted] from 50 simulations is 4130, while the number of grid points that we used
in simulations is 2n/5 = 80. Such a dramatic difference between the number of ex-
act breakpoints and M(n) indicates a huge savings in computation from adopting
a grid based approximation instead of the exact calculation of β̂λn

(τ ) when n and
p are large.
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The interpretation of the final model after variable selection may be enhanced
by imposing a reasonable semiparametric structure to the coefficient functions
in β0(·). For example, constant effects may be assumed for a subset of selected
variables according to preliminary scientific information or exploratory analysis.
Taking into account such additional information in the post-variable-selection es-
timation can lead to efficiency gains in addition to simplified interpretations. Such
model polishing may follow similar lines of existing work, such as Qian and Peng
(2010) and Yang and He (2012), but will not be further exploited in the paper.

3. Theoretical properties. In this section, we investigate the theoretical prop-
erties of the adaptively weighted L1-penalized quantile regression. To ease the pre-
sentation, we decompose Xi , i = 1, . . . , n, into (XT

ia,XT
ib)

T , where Xia , Xib corre-
spond to the relevant and irrelevant covariates, respectively. Similarly, we write β

as (βT
a ,βT

b )T . In particular, we have the true coefficients β0(τ ) = (βT
0a(τ ),0)T .

3.1. Preliminaries. We impose the following regularity conditions to facilitate
our technical derivations:

(C1) (Condition on the conditional density.) Let fτ (·|x) denote the probability
density function of Yi − XT

i β0(τ ) given Xi = x. For each x at the support of X,
supτ∈� fτ (·|x) < f̄ and infτ∈� fτ (0|x) ≥ f for some constants f̄ , f > 0. More-
over, there exists a constant A0 > 0, such that for all u,

sup
τ∈�,x

∣∣fτ (u|x) − fτ (0|x)
∣∣≤ A0|u|.

(C2) (Conditions on covariates.) The covariates are normalized such that

E[(X(j)
i )2] = 1, for j = 2, . . . , p and σ̂j =

√∑n
i=1(X

(j)
i )2/n obey

lim
n→∞ Pr

(
max

2≤j≤p
|σ̂j − 1| ≤ 1/2

)
= 1.

(C3) [Condition on the true regression coefficients β0(τ ).] There exists a posi-
tive constant L, such that∥∥β0a(τ1) − β0a(τ2)

∥∥≤ L
√

s|τ1 − τ2| for all τ1, τ2 ∈ �,

where ‖ · ‖ denotes the l2-norm, and s is the size of S�.
(C4) (Conditions on the identifiability of the true model.) The eigenvalues of

E[XiaXT
ia] are bounded from below and above by some constants λmin and λmax,

respectively. Moreover,

q := inf
δ∈Rs,δ �=0

E[(XT
i δ)2]3/2

E[|XT
i δ|3] > 0,

where Rs = {δ ∈ Rp : δb = 0}.
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Conditions (C1)–(C4) basically follow the assumptions imposed in Belloni and
Chernozhukov (2011), since we will adopt L1-QR to construct the consistent ini-
tial estimates. These conditions are also needed to derive the convergence rate of
our proposed estimator. Condition (C1) only imposes mild conditions on the condi-
tional density of the response given covariates, and does not assume homoscedas-
ticity. Condition (C2) requires the covariates to be well behaved with finite second
moments. Condition (C3) implies that the true regression coefficient function is
Lipschitz continuous with respect to τ . The eigenvalue conditions from (C4) are
widely assumed in the literature of high-dimensional models. They are critical to
the model identifiability. The restricted nonlinear impact (RNI) coefficient q con-
trols the quality of minoration of the quantile loss function by a quadratic function
over the true global model.

3.2. Main results. We start with a hypothetical scenario assuming that all rel-
evant covariates are known in advance, and establish the asymptotic properties
of the oracle regularized estimator obtained from it. Then we will show that our
proposed estimator can enjoy the same properties despite the lack of true model in-
formation. The oracle regularized estimator, denoted by β̂

o
(τ ) = ((β̂

o

a(τ ))T ,0)T ,
is the minimizer of (2.2) over Rs . The following theorem shows that the oracle reg-
ularized estimator is uniformly consistent over �, with the described convergence
rate.

THEOREM 3.1. Under regularity conditions (C1)–(C4), if

sup
τ∈�,j∈Sτ

λnωj (τ ) = Op(
√

n logn),

then the oracle regularized estimator satisfies

sup
τ∈�

∥∥β̂o

λn
(τ ) − β0(τ )

∥∥= Op(
√

s logn/n).

Theorem 3.1 shows that if λn and ωj (τ)’s are appropriately chosen, the bias
introduced by the penalty terms can be well controlled. The uniform upper bound
for ‖β̂o

λn
(τ ) − β0(τ )‖ indicates the uniform consistency of the oracle regularized

estimator with the convergence rate
√

s logn/n, which is within a logarithmic fac-
tor of the optimal rate

√
s/n shown by He and Shao (2000). If we only consider a

finite number of τ ’s, we obtain the following corollary:

COROLLARY 3.1. Suppose regularity conditions (C1)–(C4) hold. Given a
fixed τ0, if maxj∈Sτ0

λnωj (τ0) = Op(
√

n), then the oracle regularized estimator
satisfies ∥∥β̂o

λn
(τ0) − β0(τ0)

∥∥= Op(
√

s/n).
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According to Corollary 3.1, the locally concerned oracle regularized estimator
can achieve the optimal convergence rate. This suggests that the additional loga-
rithmic factor in Theorem 3.1 is needed to guarantee the uniform convergence.

Next, we establish the weak convergence for the penalized oracle estimator,
β̂

o

λn
(τ ). We define two p × p matrices,

Hτ :=
(

E
[
XiaXT

iafτ (0|Xia)
]

0

0 0

)
and

H−1
τ :=

([
E
[
XiaXT

iafτ (0|Xia)
]]−1 0

0 0

)
.

THEOREM 3.2. Suppose regularity conditions (C1)–(C4) hold, s = o(n1/3)

and supj∈Sτ ,τ∈� λnωj (τ ) = Op(
√

n logn). Given any α ∈ Rp such that ‖α‖ = 1,
we have:

(a) If
√

n/(s logn) inf2≤j≤s,τ∈� |β(j)
0 (τ )| → ∞, then we have that

2n1/2αT Hτ

(
β̂

o

λn
(τ ) − β0(τ ) + λn

2n
H−1

τ

[
ω(τ ) ◦ sgn

(
β0(τ )

)]T )

converges weakly to a mean zero Gaussian process with covariance �(τ, τ ′) :=
(τ ∧ τ ′ − ττ ′)E[αT

a XiaXT
iaαa]. Here ◦ denotes the Hadamard product, ∧ is the

minimum operator and ω(τ ) = (ω1(τ ), . . . ,ωp(τ ))T .
(b) If supτ∈� n−1/2λn‖ωa(τ )‖ = op(1), then

2n1/2αT Hτ

(
β̂

o

λn
(τ ) − β0(τ )

)
converges weakly to a mean zero Gaussian process with covariance �(τ, τ ′).

Theorem 3.2 states two weak convergence results under two different condi-
tions. Part (a) requires that inf2≤j≤s,τ∈� |β(j)

0 (τ )|, the minimum signal strength of
all relevant covariates is beyond the level O(

√
s logn/n). This would exclude the

cases where some active variables have coefficient functions crossing 0 or partially
equal to 0. Part (b) assumes supτ∈� n−1/2λn‖ωa(τ )‖ = op(1). If we choose adap-
tive weight (w2), with β̃(τ ) obtained from Belloni and Chernozhukov (2011), then
we have

sup
τ∈�

λn

∥∥ωa(τ )
∥∥≤ λn

√
s
[

min
2≤j≤s

sup
τ∈�

(∣∣β(j)
0 (τ )

∣∣+ Op(
√

s logp/n)
)]−1

.

Thus the condition in (b) is satisfied if
√

n/(λn

√
s)min2≤j≤s supτ∈� |β(j)

0 (τ )| →
∞ and

√
s logp/n = o(min2≤j≤s supτ∈� |β(j)

0 (τ )|). These two conditions require

supτ∈� |β(j)
0 (τ )|, j = 2, . . . , s, the maximum impact of each relevant variable is

beyond the level O(
√

s logp/n ∨ λn

√
s/

√
n). Yet

√
s logn/n = o(

√
s logp/n ∨
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λn

√
s/

√
n) is typical in the high-dimensional cases, and the varying covariate

effects are allowed to cross zero or partially equal zero in our framework. Us-
ing similar arguments, with adaptive weight (w3) used, condition (b) is satisfied
if inf2≤j≤s

∫
� |β(j)

0 (τ )|dτ is beyond the level O(
√

s logp/n ∨ λn

√
s/

√
n). Thus

condition (b) is neither weaker nor stronger than condition (a). If we choose (w1)

as the adaptive weight, then condition (b) can be satisfied by the signal assump-
tion that inf2≤j≤s,τ∈� |β(j)

0 (τ )| is beyond the level O(
√

s logp/n ∨ λn

√
s/

√
n).

Therefore, Theorem 3.2 entails weaker signal conditions from using global adap-
tive weights, (w2) and (w3), than that from adopting the local adaptive weight,
(w1).

For the oracle regularized estimator to have asymptotic normality, the true
model size is allowed to be o(n1/3), the fastest model growth rate required in Welsh
(1989) and He and Shao (2000) for the unpenalized quantile regression estimator
to have the asymptotic normality.

If we can show the oracle regularized estimator β̂
o

λn
(τ ) is also the minimizer

of (2.2) over Rp with probability tending to 1, then our proposed estimator enjoys
the same properties established in Theorems 3.1 and 3.2. The following theorem
shows that with probability approaching 1, β̂λn

(τ ) = β̂
o

λn
(τ ).

THEOREM 3.3. Suppose regularity conditions (C1)–(C4) and

sup
j∈Sτ ,τ∈�

λnωj (τ ) = Op(
√

n logn)

hold. Furthermore, we assume following conditions hold:

sup
j>s,δ∈Rs

E[(X(j)
i XT

i δ)2]
‖δ‖2 = o

(
logp

s log2 n

)
,

and n/(s2 logp) → ∞. If λn/(
√

s logp) → ∞ and (infj>s,τ∈� ωj (τ ))−1√n/√
s logp = Op(1), then we have

Pr
(

sup
τ∈�

∣∣β̂o

λn
(τ ) − β̂λn

(τ )
∣∣= 0

)
→ 1.

Theorem 3.3 not only establishes the model selection oracle property of β̂λn
(τ ),

but also indicates β̂λn
(τ ) enjoys the weak convergence under mild conditions

stated in Theorem 3.2. Moreover, Theorem 3.3, coupled with Theorem 3.1, indi-
cates that the bias of the proposed estimator can be bounded by o(

√
s logn/n), the

same rate achieved by Fan, Fan and Barut (2014) for AR-Lasso at a single quantile
level. In high-dimensional settings, this bound can be smaller than o(

√
s logp/n),

a bias bound established by Belloni and Chernozhukov (2011), which is applicable
to the globally concerned quantile regression method with nonadaptive L1 penalty.



2238 Q. ZHENG, L. PENG AND X. HE

The condition supj>s,δ∈Rs
E[(X(j)

i XT
i δ)2]/‖δ‖2 = o(logp/(s log2 n)) essen-

tially asks for weak correlations between relevant covariates and irrelevant covari-
ates so that relevant and irrelevant covariates can be well separated. It can be seen
that the model growth rate condition, n/(s2 logp) → ∞, is satisfied by the condi-
tions for Theorem 3.2. The conditions supj∈Sτ ,τ∈� λnωj (τ ) = Op(

√
n logn) and

λn/(
√

s logp) → ∞ indicate different signal strength requirements under differ-
ent choices of adaptive weights. With adaptive weight (w1), the signal condition

lim
n→∞ inf

2≤j≤s,τ∈�

∣∣β(j)
0 (τ )

∣∣ √
n√

s log(p)
= ∞(3.1)

is necessary for one to apply Theorem 3.3. When (w2) or (w3) is used, the signal

condition can be relaxed to limn→∞ inf2≤j≤s supτ∈� |β(j)
0 (τ )|

√
n√

s log(p)
= ∞, or

limn→∞ inf2≤j≤s

∫
τ∈� |β(j)

0 (τ )|dτ
√

n√
s log(p)

= ∞, respectively. These weaker sig-
nal conditions can well accommodate scenarios with covariate effects crossing
zero at some τ ∈ �.

In the presence of heavy-tailed distributions, signal condition (3.1), coupled
with the estimation error bound established in Theorem 3.1 for the oracle estima-
tor, implies uniform sign consistency across τ ∈ �, namely

lim
n→∞ Pr

(
sup

τ∈�,2≤j≤s

I
{
sgn
(
β̂

(j)
λn

(τ )
) �= sgn

(
β

(j)
0 (τ )

)}= 1
)

= 0.

Consider the special case with finite s and p = O(n1/2), which Fan, Fan and Barut
(2014) (see Proposition 1) used to investigate the suboptimality of Lasso in the case
of heavy-tailed error distributions. Our signal requirement for globally concerned
quantile regression achieving uniform sign consistency can be weaker than what is
required by least squares-based Lasso. This finding provides further evidence for
the suboptimality of Lasso in the presence of heavy-tailed distributions.

3.3. GIC procedure for λn. The performance of the proposed adaptively
weighted L1-penalized quantile regression hinges on the choice of tuning pa-
rameter λn. To achieve the model selection oracle property, the tuning param-
eter λn and the adaptive weights ωj(τ)’s are required to satisfy the follow-
ing conditions: supj∈Sτ ,τ∈� λnωj (τ ) = Op(

√
n logn), λn/(

√
s logp) → ∞ and

(infj>s,τ∈� ωj (τ ))−1√n/
√

s logp = Op(1). However, the theoretically optimal
λn is not practically achievable because it depends on the unknown true model
size s. Although many existing criteria including AIC and cross-validation could
be potentially employed to select the tuning parameter, Wang, Li and Tsai (2007)
and Zhang, Li and Tsai (2010) showed that the tuning parameter selected by AIC
and cross-validation may fail to consistently identify the true model. Wang, Li and
Leng (2009) considered the tuning parameter selection with a modified BIC in
the setting of high-dimensional linear regression with p < n, and Wang and Zhu
(2011) extended the modified BIC to the situation where p could be larger than n.
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They demonstrated the modified BIC can identify the true model consistently for
high-dimensional linear regression. The modified BIC can be considered as the
generalized information criterion (GIC) according to Nishii (1984). Motivated by
those results, we select the practically optimal λ̂n by minimizing GIC.

Fan and Tang (2013) recently considered the GIC tuning parameter selection in
high-dimensional penalized generalized linear regression. In addition to the chal-
lenging aspects noted by Fan and Tang (2013), our problem has one more difficult
aspect due to varying τ ∈ �. As a result, we introduce

∫
� log σ̂λ(τ ) dτ to measure

the cumulative model fitting of varying effects over �.
We define over-fitted model as OF := {S : S � S�} and under-fitted model as

UF := {S : S /∈ OF, S �= S�}. To study the properties of the proposed GIC in (3.2),
we first introduce an axillary GIC of model S, which is defined as

GIC(S) =
∫
τ∈�

log
(
σ̂S(τ )

)
dτ + |S|φn,(3.2)

where σ̂S(τ ) = n−1∑n
i=1 ρτ (Yi − XT

i β̂S(τ )) measure the fitness of model S at τ th
quantile, and β̂S(τ ) is obtained by the unpenalized quantile regression. We also
define σ(τ) = n−1∑n

i=1 ρτ (Yi − XT
i β0(τ )), which serves as a baseline of model

fitness.
In addition, we set a model size upper bound, denoted by Cm(n), with s <

Cm(n) < p. This means that we limit model search to submodels with size no
more than Cm(n). Such an assumption has been widely assumed in the studies of
tuning parameter selection for high-dimensional models; see, for example, Chen
and Chen (2008), Wang and Zhu (2011), Fan and Tang (2013). On one hand, it
reduces the number of candidate models from 2p to 2Cm(n) and greatly alleviates
the computation. On the other hand, it is needed so that the fitness of the model
can be correctly measured.

To establish the asymptotic properties of the GIC tuning parameter selector, we
assume the following condition (C4+), which is an enhanced version of (C4):

(C4+) (a)

min := inf
δ∈Rp,‖δ‖0≤Cm(n),δ �=0

δT E[XiXT
i ]δ

‖δ‖2 > 0,

(b)

max := sup
δ∈Rp,‖δ‖0≤Cm(n),δ �=0

δT E[XiXT
i ]δ

‖δ‖2 < ∞,

(c)

q ′ := inf
δ∈Rp,‖δ‖0≤Cm(n),δ �=0

E[(XT
i δ)2]3/2

E[|XT
i δ|3] > 0,

where ‖ · ‖0 denotes the L0 norm.
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Recall φn is defined in (2.3) as a sequence converging to 0. Let ξn denote
min1≤j≤s

∫
� |β(j)

0 (τ )|dτ , which measures the minimal overall effect of intercept
and relevant variables upon the conditional distribution. We characterize the be-
havior the GIC for any model S with size no more than Cm(n) by the following
theorem:

THEOREM 3.4. Suppose conditions (C1), (C2), (C3) and (C4+) hold. If
logp/n = o(φn), φn = o(ξ

5/2
n ), and Cm(n) logp/n = o(ξ3

n ), we have

Pr
(

inf
S �=S�,|S|≤Cm(n)

GIC(S) > GIC(S�)
)

→ 1.

Theorem 3.4 indicates that the true model S� has the smallest GIC value among
the models with size no more than Cm(n). Let λ̂n denote the minimizer of (2.3).
The following corollary shows that the proposed GIC tuning parameter selector
can consistently identify the true model with probability approaching 1.

COROLLARY 3.2. Under the same conditions as in Theorem 3.4, if

sup
τ∈�,j∈Sτ

ωj (τ ) = Op

(√
n/(

√
s logp)

)
,

and (infj>s,τ∈� ωj (τ ))−1√n/
√

s logp = Op(1), then we have

Pr(Ŝ
λ̂n

= S�) → 1,

where Ŝλ is defined in (2.3).

4. Simulation studies. We conduct simulation studies to evaluate the finite
sample performance of the proposed method. We consider the adaptively weighted
L1-penalized quantile regression with three weight functions, (w1), (w2) and
(w3), denoted by AW1,AW2 and AW3, respectively. We compare them with sev-
eral other methods: (i) the adaptive-LASSO quantile regression at a single pre-
determined quantile level τ , denoted by SS(τ ); (ii) adaptive-LASSO with least
squares objective function, denoted by LS; (iii) the L1-QR over �, which is the
initial estimator (step 1) of our proposed algorithm; (iv) the pointwise approach
by collecting estimates from SS(τ ) over τ ∈ � denoted by PS1; and (v) the one-
step estimate from PS1 by unpenalized quantile regression using variables selected
by PS1 over τ ∈ �, which is denoted by PS2. Note that PS1 and PS2 have the
same variable selection results but differ in their coefficient estimates. Except for
L1-QR, the tuning parameter λn for the other methods is selected by a GIC cri-
terion with φn = log(logn) logp/n. The candidate values for λn include the n/4
equally-spaced grid points between 0 and n/10. We use the sample size n = 200
and generate Y based on model (2.1) with p = 400 covariates. We consider four
setups, denoted by (I), (II), (III) and (IV).
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FIG. 1. The coefficient functions in simulation set-ups (II) and (III).

Setup (I). The intercept coefficient function is
√

2�−1(τ ), where �−1 is the
quantile function of the standard normal distribution. The covariates Zi are gener-
ated from the multivariate normal distribution Np(0,�) with � = (σjk)p×p and
σjk = 0.5|j−k|. The coefficients for Z(1),Z(2),Z(5),Z(8),Z(12) and Z(16) are set
to be 2, 1.5, 3, 1, 0.9, and 1 constantly over τ , and the other coefficients are zero.
It is clear that setup (I) is a standard linear regression model with normal random
errors.

Setups (II) and (III). The intercept coefficient function is set to be 0, and only
Z(1),Z(2) and Z(8) have nonzero coefficients. We plot the coefficient functions
for Z(1),Z(2) and Z(8) in Figure 1(a) and (b), respectively, for these two setups.
We first generate Z̃i from Np(0,�) where � is the same as that used in setup
(I), and then set Zi = �(Z̃i) (componentwise operation), where �(·) is the stan-
dard normal distribution function. Setups (II) and (III) are designed to assess the
performance of the proposed estimator in varying covariate effects models.

In these setups, we set � = [0.1,0.9] and choose τ = 0.25,0.50 and 0.75 for
SS(τ ). We compare the performance of the different methods described above in
terms of the following criteria:

NCN: Mean number of correctly identified variables (with nonzero coeffi-
cient functions);

NIN: Mean number of incorrectly selected variables;
PUF: Percentage of under-fitted models;
PCF: Percentage of correctly fitted models;
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POF: Percentage of over-fitted models;
RAEE�: Median of relative absolute estimation errors with respect to the or-

acle unpenalized quantile estimator β̂
o
(τ ) over � (under the correctly specified

sparse model), defined as

RAEE�(β) =
∫
� ‖β(τ ) − β0(τ )‖1 dτ∫
� ‖β̂o

(τ ) − β0(τ )‖1 dτ
.

The first five criteria are used to assess the model selection performance. We would
like to have NCN to be close to the true number of signals [i.e., 6 in setup (I) and 3
in setups (II) and (III)]. The ideal PCF is 100%, but the other measures (NIN, PUF
and POF) should be as close to 0 as possible. The measure RAEE� is aimed to
evaluate the global estimation accuracy for τ ∈ �. We hope this measure to be as
small as possible. For SS(τ ) and LS, we calculate RAEE� by extrapolating the
coefficient function estimate as the constant valued function over τ ∈ �.

In Table 1, we present simulation results for setups (I)–(III) based on 400 simu-
lations. Under setup (I), where the true model is a standard linear model with nor-
mal random errors, we find that AW1,AW2,AW3, SS(0.25),SS(0.50),SS(0.75)

and LS all have very similar performance in model selection and estimation accu-
racy. Since the oracle estimator adopted here is based on the quantile regression
and the random errors follow a normal distribution, it is reasonable to observe that
LS has the best performance in estimation accuracy. Nevertheless, this advantage
over the other approaches is only moderate. We also observe that applying the
naive strategy of merging variable selection results from all SS(τ ), as in PS1 and
PS2, tends to produce an over-fitted model (2.1) with POF = 94.0%. The large
RAEE� of PS2 suggests that such an over-fitted model tends to have considerably
deteriorated estimation accuracy.

In setups (II) and (III), we observe that LS has very poor performance in identi-
fying the true model. For example, in setup (II), although Z(8) has a strong effect
on the response at all quantile levels except for τ = 0.5, the symmetric traits make
its mean effect on Y neutralized. Thus LS frequently fails to select Z(8), yielding
NCN = 1.95 and PUF = 100%. Yet, if one simply applies the locally concerned
penalized median regression, Z(8) is characterized as an inactive variable as well,
and its effects on other segments of the conditional distribution of Y given Z are
overlooked. The unsatisfactory results of SS(0.50) support the use of our globally
concerned quantile regression, which enables a more thorough assessment of co-
variates impacting across various quantiles. Compared to SS(0.25) and SS(0.75),
where Z(8) is an active variable, the proposed method for globally concerned quan-
tile regression seems to considerably enhance the power for selecting the correct
set of relevant variables. This is clearly indicated by the PCF improvement, rang-
ing between 20% and 30%. Similarly to setup (I), PS1 and PS2, the naive “global”
methods, suffer from the over-fitting problem with POF = 78.3%. The superiority
of the proposed method is more evident in setup (III), where Z(1) and Z(2) have
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TABLE 1
Simulation results for setup (I)–(III)

Set-up Method NCN NIN PUF (%) PCF (%) POF (%) RAEE�

(I) AW1 6.00 0.09 0.0 90.7 9.3 1.54
AW2 6.00 0.07 0.0 93.3 6.7 1.39
AW3 6.00 0.06 0.0 93.7 6.3 1.36

SS(0.25) 5.99 0.16 1.3 84.5 14.2 1.22
SS(0.50) 6.00 0.07 0.0 93.8 6.2 1.06
SS(0.75) 5.99 0.16 0.8 85.7 13.5 1.19

LS 6.00 0.28 0.0 79.9 20.1 0.77
L1-QR 6.00 109.90 0.0 0.0 100.0 3.89

PS1 6.00 2.71 0.0 6.0 94.0 1.28
PS2 6.00 2.71 0.0 6.0 94.0 13.45

(II) AW1 2.84 0.04 14.8 80.5 4.7 3.62
AW2 2.91 0.05 7.7 87.8 4.5 1.83
AW3 2.87 0.04 11.5 84.8 4.5 1.92

SS(0.25) 2.42 0.10 39.9 55.7 4.4 4.48
SS(0.50) 1.99 0.00 100.0 0.0 0.0 3.07
SS(0.75) 2.51 0.05 38.8 59.5 1.7 4.26

LS 1.95 0.18 100.0 0.0 0.0 3.85
L1-QR 3.00 26.30 0.0 0.0 100.0 4.90

PS1 3.00 1.77 0.5 21.7 78.3 2.58
PS2 3.00 1.77 0.5 21.7 78.3 12.04

(III) AW1 2.83 0.19 16.0 70.3 13.7 2.05
AW2 2.85 0.21 14.2 71.0 14.8 1.34
AW3 2.80 0.09 19.5 73.8 6.7 1.38

SS(0.25) 1.79 0.12 100.0 0.0 0.0 3.64
SS(0.50) 1.01 0.01 100.0 0.0 0.0 3.29
SS(0.75) 1.76 0.08 100.0 0.0 0.0 2.70

LS 2.10 0.18 99.5 0.2 0.3 3.44
L1-QR 2.98 26.78 1.8 0.0 98.2 3.67

PS1 2.94 1.65 5.5 24.2 70.3 1.48
PS2 2.94 1.65 5.5 24.2 70.3 8.78

partial effects on two disjoint quantile ranges. In this case, the PCFs of AW1, AW2
and AW3 are still over 70%, which is far above the PCFs achieved by the other
methods.

By comparing RAEE� in Table 1, we observe that the proposed globally adap-
tive estimators outperform the other methods also in estimation accuracy for non-
i.i.d. error models. In addition, Table 1 suggests that adopting weight functions,
(w2) and (w3), which are designed to capture the global signal strength, generally
yields better finite-sample performance, compared to the traditional weight (w1).
We also note that AW2 and AW3 have similar or even smaller RAEE� as compared
to PS1, an approach that penalizes for local sparsity separately for each quantile
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TABLE 2
Local estimation error ratio over SS(0.50) at τ = 0.5

for setup (I)–(III)

Set-up AW1 AW2 AW3 PS1 PS2 LS

(I) 1.16 1.13 1.14 1.00 11.01 0.75
(II) 1.19 1.61 1.63 1.00 18.52 2.35
(III) 1.01 1.17 1.18 1.00 6.21 1.33

index τ . This shows that the proposed globally adaptive method does not sacri-
fice estimation accuracy while avoiding the over-fitting issue associated with the
naive pointwise approach. This observation is in line with our theoretical results in
Theorem 3.1 and Corollary 3.1.

We also examine the local estimation accuracy of different methods. Specif-
ically, we compute the L1 loss of each estimator of β0(0.5) and then calculate
its ratio to that obtained from SS(0.50). The results in Table 2 suggest that our
globally concerned penalization method may lose a small proportion of local esti-
mation efficiency compared to the locally concerned SS(0.5), a reasonable price to
pay for achieving better global model selection and estimation results. On the other
hand, PS2 has much larger local estimation errors compared to the other methods.
This may be viewed as a natural consequence of the poor global sparsity control
by the naive pointwise approach.

Setup (IV). We intend to assess the utility of the proposed method in select-
ing active variables at tail quantiles. We generate data from a linear regression
model, where the covariates Zi are generated from the multivariate normal dis-
tribution Np(0,�), the same covariance matrix used in setup (I). The effects of
Z(1),Z(2),Z(5),Z(12),Z(16) and Z(25) are set to be 1.5, 1.25, 2, 4/3, 2 and 3 con-
stantly over τ , and all other covariates have constantly zero coefficients across τ .
For each simulated dataset, to identify active variables at quantile level τ = 0.05,
we implement SS(0.05) as well as AW1, AW2, AW3, L1-QR, PS1, PS2 with
� = [0.03,0.07]. The results are reported in Table 3 are based on 400 simulated
data sets. By comparing SS(0.05) with SS(0.25),SS(0.50) and SS(0.75) in setup
(I), we observe a larger variability in model selection for quantile regression at
the tail quantile with τ = 0.05, reflected by a relatively smaller PCF = 51.0%. On
the other hand, the proposed methods, AW1,AW2 and AW3, still maintain satis-
factory performance in model selection with PCFs above 80%. This demonstrates
that by accumulating information in the neighborhood around a tail quantile, the
proposed method may boost the power of correct model selection at tail quantiles.
We also conduct simulations with � chosen as [0.025,0.075]. Note that such a
choice of � may represent the same interest in the response distribution reflected
by � = [0.03,0.07]. Thus it would be desirable to observe that the variable se-
lection results between these two choices of � are in close proximity. The results
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TABLE 3
Simulation results over � = [0.03,0.07] for setup (IV)

Set-up Method NCN NIN PUF PCF POF RAEE�

(IV) AW1 5.83 0.01 11.8 87.2 1.0 2.15
AW2 5.87 0.03 11.8 86.2 2.0 1.63
AW3 5.80 0.03 17.8 80.5 1.8 1.62
SS(0.05) 5.99 0.85 1.0 51.0 48.0 1.28
L1-QR 6.00 35.53 0.0 0.0 100.0 3.85
PS1 6.00 3.18 0.2 13.8 87.0 1.29
PS2 6.00 3.18 0.2 13.8 87.0 10.55

in Table A.1 (see the supplemental article [Zheng, Peng and He (2015)]) are very
similar to those in Table 3. The results in Table A.2 further demonstrate a good
agreement in the selected variables between the two choices of �, [0.03,0.07]
and [0.025,0.075]. These suggest that the proposed estimators are quite robust to
reasonable variations in the choice of �.

5. A real data example. We now illustrate the application of the proposed
method by analyzing a microarray data set reported by Scheetz et al. (2006). This
real dataset contains expression values of 31,042 probe sets on 120 12-week-old
male offsprings of rats. As in Huang, Ma and Zhang (2008), Kim, Choi and Oh
(2008) and Wang, Wu and Li (2012), we are interested in identifying genes whose
expressions are predictive for gene TRIM32, which is associated with a genetically
heterogeneous disease of multiple organ systems. The probe corresponding to gene
TRIM32 is 1389163_at. Our approach to finding relevant genes is to apply high-
dimensional quantile regression analyses upon the remaining probe sets. In our
analysis, we further narrow down the problem to selecting variables that impact
ordinary expression levels of probe 1389163_at, which may be roughly captured
by the middle part of the response distribution. Therefore, we formulate the target
of our analysis as S�, considering two reasonable choices of �, (0.2,0.8) and
(0.25,0.75).

We use the data set available in R package flare, which have been processed to
exclude probes that are not expressed or lack variation. There remain 200 probe
sets serving as covariates. We choose AW2 as the representative of the proposed
globally concerned method. In addition, we also implement the adaptive-LASSO
method for locally concerned quantile regression, SS(τ ), at τ = 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, and the pointwise approaches, PS1 and
PS2, as described in Section 4.

To evaluate each method, we compute its prediction error as follows. First, we
randomly split the 120 rats into a training set and a test set, each consisting of 60
subjects. We apply the method to the training data set and obtain the estimator of
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β0(τ ), denoted by β̂
train

(τ ). Next, we calculate the prediction error over the test
set as

PE(�) =
∑n

i=1 1{Subject i in test set} ∫� ρτ (Yi − XT
i β̂

train
(τ )) dτ∑n

i=1 1{Subject i in test set} .

For SS(τ ), we calculate PE(�) by treating the coefficient estimate as a constant
valued function over τ ∈ �.

Table 4 lists the probe sets selected by each method using all 120 observations.
In addition, we present the averages of PE(�) along with the corresponding stan-
dard deviations (within parentheses). All calculations are based on 400 replications
of random splitting into training and test sets.

From Table 4, it is clear that the set of probes selected by the locally concerned
quantile method considerably varies with τ . Only probe “25,141” is selected by
all SS(τ )’s considered. The probe “24,565,” which was consistently selected by
SS(τ ) with τ = 0.60,0.65,0.70,0.75, does not show up in the estimated active
variable set for lower τ ’s. These may suggest a heterogeneous relationship across
different segments of the response distribution, but the variations are partly due
to the sensitivity of the variable selection methods as τ varies. In fact, there is a

TABLE 4
Probe sets identified by various methods

PE(�)

� Method Probes � = (0.2,0.8) � = (0.25,0.75)

(0.2,0.8) AW2 “24,565,” “25,141,” “25,367,” “29,045” 0.146 (0.016) –
(0.25,0.75) AW2 “24,565,” “25,141,” “25,367,” “29,045” – 0.124 (0.011)

(0.2,0.8) PS1 17 probes 0.151 (0.016) –
(0.25, 0.75) PS1 13 probes – 0.129 (0.012)

(0.2, 0.8) PS2 17 probes 0.143 (0.013) –
(0.25, 0.75) PS2 13 probes – 0.124 (0.011)

0.25 SS “6222,” “15,863,” “22,140,” “25,141,” 0.191 (0.024) 0.151 (0.018)
“25,439,” “29,045”

0.30 SS “25,141,” “29,045” 0.181 (0.023) 0.146 (0.017)
0.35 SS “14,949,” “24,245,” “25,141,” “29,045” 0.174 (0.022) 0.141 (0.016)
0.40 SS “25,141,” “29,045” 0.170 (0.020) 0.138 (0.015)
0.45 SS “25,141” 0.167 (0.020) 0.135 (0.015)
0.50 SS “25,141” 0.165 (0.020) 0.135 (0.015)
0.55 SS “25,141” 0.164 (0.020) 0.136 (0.015)
0.60 SS “21,092,” “24,565,” “25,141” 0.167 (0.021) 0.137 (0.017)
0.65 SS “24,565,” “25,141” 0.169 (0.023) 0.140 (0.018)
0.70 SS “11,711,” “24,565,” “25,141” 0.176 (0.025) 0.146 (0.019)
0.75 SS “24,565,” “25,141,” “25,367” 0.186 (0.028) 0.155 (0.023)
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quite large variability in the selected probes at low quantile indices. For exam-
ple, SS(0.25) selected 6 probes, but SS(0.30) selected only 2 probes. It would be
difficult to interpret such variable selection results at two close quantile indices.

To identify S�, PS1 and PS2, which take the union of selected variables from lo-
cally concerned SS(τ ), select a total number of 13 probes for � = (0.25,0.75) and
17 probes for � = (0.2,0.8). In contrast, the proposed globally concerned quan-
tile regression AW2 only selects 4 probes but renders very competitive prediction
errors. It has the smallest PE(�) when � = (0.25,0.75) and the second smallest
PE(�) when � = (0.2,0.8). The results show that the globally concerned quantile
regression approach can mitigate the over-fitting problem of the alternative meth-
ods based on local quantile regression approach. Furthermore, AW2 selects the
same set of probes with the two slightly different choices of �. This suggests the
robustness of our method to small changes of �, which is a desirable feature from
the perspective of model selection.

6. Remarks. We aim to provide a rigorous statistical approach to identifying
variables that are predictive to some or all quantiles at the percentile level in a
predetermined set �. Our work does not directly address how � should be cho-
sen because the choice of � should align with the scientific problem at hand. In
practice, � can be chosen as a large interval, say [0.1,0.9], to reflect an interest in
normal outcomes, or a smaller interval, say [0.75,0.9], to reflect our interest in the
upper tail of the response distribution. Even in the cases where one is interested
in a single quantile level τ , our work suggests that applying the proposed method
with � chosen as a small interval containing τ can lead to more stable variable
selection results when the sample size n is limited (relative to p).

In applications, it is likely that we have more than one reasonable choice of �.
For example, either (0.7,0.9) or (0.75,0.9) can be a reasonable choice for � when
we are interested in identifying variables that impact the upper tails of the response
variable. This reinforces our belief that the variable selection results should be
quite insensitive to small changes in the choice of �. Our simulation studies and
data example suggest that our approach is robust to small variations of �. These
empirical results further endorse the practical value of the proposed method.

7. Technical proofs. We present the proofs of our main results in this section.
We start with introducing some notation. Given a random sample Z1, . . . ,Zn,
we adopt the following empirical process notation: Let Gn(f ) = Gn(f (Zi)) :=
n−1/2∑n

i=1(f (Zi) − E[f (Zi)]) and Enf = Enf (Zi) := ∑n
i=1 f (Zi)/n. Let

ψτ (u) = τ − 1{u < 0} denote the score function of ρτ (u) and Mn(τ, δ) :=
n−1/2∑n

i=1 Xiψτ (Yi − XT
i β0(τ ) − XT

i δ). We define Bs(t) = {β ∈ Rp :
βb = 0, infτ∈� ‖β − β0(τ )‖ ≤ t} and Rs(B) = {δ ∈ Rs : ‖δ‖ ≤ (s log2 n/n)1/2B}
for some B > 0. We use τ ∗ to denote min{� ∪ 1 − �} and ∂A to denote the
boundary of a set A.
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As mentioned in Section 2.1, it is more meaningful to investigate the globally
concerned quantile regression model (2.1) when the support of X is compact. How-
ever, our theoretical work can be established in more general conditions, where the
magnitude of covariates is allowed to increase in a suitable rate with n. In particu-
lar, the following condition is assumed for the proof:

(C5) (Conditions on the largest covaraites.) We assume

Pr
(

max
1≤i≤n,2≤j≤s

∣∣X(j)
i

∣∣≤ M1n

)
→ 1 and

Pr
(

max
1≤i≤n,s+1≤j≤p

∣∣X(j)
i

∣∣≤ M2n

)
→ 1,

for some M1n = o(n1/2/(s logn)3/2) and M2n ≤
√

n/(s2 logp).

We denote the event that max2≤j≤p |σ̂j − 1| ≤ 1/2, the event that
max1≤i≤n,2≤j≤s |X(j)

i | < M1n and the event that max1≤i≤n,s<j≤p |X(j)
i | < M2n

by �0, �1, and �2, respectively. According to conditions (C2) and (C5), we have
γ0n := Pr(�c

0) → 0, γ1n := Pr(�c
1) → 0 and γ2n := Pr(�c

2) → 0.
Next, we present the technical lemmas used in the proofs of our theorems and

corollaries. The proofs of lemmas and Corollaries 1–2 are relegated to Section 2
of the supplemental article [Zheng, Peng and He (2015)].

LEMMA 7.1. Under conditions (C1)–(C4), if t < 3qf λmin/(4A0λ
3/2
max), then

for any δ ∈ Rs,‖δ‖ ≤ t , we have

E
[
ρτ

(
Yi − XT

i

(
β0(τ ) + δ

))− ρτ

(
Yi − XT

i β0(τ )
)]≥ f λmin

4
t2.(7.1)

LEMMA 7.2. Under conditions (C2)–(C4), with probability at least 1 −
16/n3 − γ0, we have

sup
τ∈�,δ∈Rs,‖δ‖≤t

∣∣Gn

[
ρτ

(
Yi − XT

i

(
β0(τ ) + δ

))− ρτ

(
Yi − XT

i β0(τ )
)]∣∣

(7.2)
≤ 16

√
s lognt + 120

√
st
√

logn + logL/2 − log t/2.

LEMMA 7.3. Under the conditions of (C4), given a fixed τ0, with probability
at least 1 − 8/a, we have

sup
δ∈Rs,‖δ‖≤t

1√
n

∣∣Gn

[
ρτ0

(
Yi −XT

i

(
β0(τ )+δ

))−ρτ0

(
Yi −XT

i β0(τ )
)]∣∣≤ 12a

√
λmaxst.

LEMMA 7.4. Under conditions (C1)–(C5), give any α ∈ Rs , such that ‖α‖ =
1, if s = o(n1/3), then we have

sup
δ∈Rs(B)

sup
τ∈�

∣∣αT {Mn,τ (δ) − E
[
Mn,τ (δ)

]− Mn,τ (0) + E
[
Mn,τ (0)

]}∣∣= op(1).
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LEMMA 7.5. Under conditions (C1), (C3) and (C4) given an α ∈ Rs such
that ‖α‖ = 1, αT Mn(τ,0) converges weakly to a mean zero Gaussian process with
variance τ(1 − τ)E[αT

a XiaXT
iaαa].

LEMMA 7.6. Under condition (C1), if E[|Yi − XT
i β0(τ0)|] exists for some

τ0 ∈ �, then we have

τ ∗[E[∣∣Yi − XT
i β0(τ0)

∣∣]− (2f )−1]
≤ inf

τ∈�
σ(τ) ≤ sup

τ∈�

σ(τ) ≤ E
[∣∣Yi − XT

i β0(τ0)
∣∣]+ (2f )−1,

almost surely.

LEMMA 7.7. Under conditions (C1), (C2), (C3) and (C4+), for some k ≤
Cm(n) = o(n/ logp), with probability at least 1 − 16 exp(−(A2 − 2) logp) − γ0,
we have

sup
S�⊆S,|S|=k

sup
τ∈�

∥∥β̂S(τ ) − β0(τ )
∥∥≤ 16(2 + √

192)A
√

k logp/n/(f min),

for some constant A > 2.

LEMMA 7.8. Under the same conditions as in Theorem 3.4, for some constant
A > 2, we have

Pr
(

inf
S∈OF,|S|≤Cm(n)

GIC(S) > GIC(S�)
)

≥ 1 − 16 exp
(−(A2 − 3

)
logp

)− 12/p − 16/n3 − γ0n.

LEMMA 7.9. Under the same conditions as in Theorem 3.4, for some constant
A > 2, we have

Pr
(

inf
S∈UF,|S|≤Cm(n)

GIC(S) > GIC(S�)
)

≥ 1 − 16 exp
(−(A2 − 3

)
logp

)− 16/n3 − γ0.

LEMMA 7.10. Under the same conditions as in Theorem 3.4, for some con-
stant A > 2, we have

inf
S∈OF,|S|=k,τ∈�

σ̂S(τ ) − σ̂S�(τ ) ≥ −225(f min)
−1(k − s) logp,

with probability at least 1 − 16 exp(−(A2 − 2) logp) − 12/p − γ0n.
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LEMMA 7.11. Under the same conditions as in Theorem 3.3, with probability
at least 1 − 4 exp(C3s logp/2 + 4s logn)− γ2, for some constant C3 > 1, we have

sup
τ∈�,δ∈Rs(B)

n1/2αj

{
Mn(τ, δ) − E

[
Mn(τ, δ)

]− Mn(τ,0) + E
[
Mn(τ,0)

]}

≤ 4C3

√
n logp.

In the following, we provide the proofs for the theoretical results in Section 3.2.

PROOF OF THEOREM 3.1. We consider Qn(β; τ) − Qn(β0(τ ); τ) over {β ∈
Rp : infτ∈� ‖β − β0(τ )‖ ≤ t}

Qn(β; τ) − Qn

(
β0(τ ); τ )

=
n∑

i=1

ρτ

(
Yi − xT

i β
)− n∑

i=1

ρτ

(
Yi − xT

i β0(τ )
)

+ λn

p∑
j=2

ωj(τ)
(∣∣β(j)

∣∣− ∣∣β(j)
0 (τ )

∣∣)

= nE
[
ρτ

(
Yi − XT

i β
)− ρτ

(
Yi − XT

i β0(τ )
)]

+ √
nGn

[
ρτ

(
Yi − XT

i β
)− ρτ

(
Yi − XT

i β0(τ )
)]

+ λn

p∑
j=2

ωj(τ)
(∣∣β(j)

∣∣− ∣∣β(j)
0 (τ )

∣∣)
:= I1 + I2 + I3.

According to Lemma 7.1, if t < 3qf λmin/(4A0λ
3/2
max), then we obtain

I1 ≥ n
f λmin

4
t2.(7.3)

By Lemma 7.2, with probability at least 1 − 16/n3 − γ0,

sup
τ∈�

|I2| ≤ √
n
{
16
√

s lognt + 120
√

st
√

logn + logL/2 − log t/2
}
.(7.4)

For I3, since supj∈Sτ ,τ∈� λnωj (τ ) = Op(
√

n logn), we have

I3 = ∑
j∈Sτ

λnωj (τ )
(∣∣β(j)

∣∣− ∣∣β(j)
0 (τ )

∣∣)+ ∑
j /∈Sτ

λnωj (τ )
(∣∣β(j)

∣∣− 0
)

≥ ∑
j∈Sτ

λnωj (τ )
(∣∣β(j)

∣∣− ∣∣β(j)
0 (τ )

∣∣)
(7.5)

≥ −max
j∈Sτ

λnωj (τ )
∑
j∈Sτ

(∣∣β(j) − β
(j)
0 (τ )

∣∣)

≥ −max
j∈Sτ

λnωj (τ )
√

st = −Op(
√

ns lognt).
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Equations (7.3), (7.4) and (7.5) together imply that with probability at least 1 −
16/n3 − γ0,

inf
β∈∂Bs (t),τ∈�

Qn(β; τ) − Qn

(
β0(τ ); τ )

≥ n
f λmin

4
t2 − Op(

√
ns lognt)

− √
n(16

√
s lognt + 120

√
st
√

logn + logL/2 − log t/2)

≥ f λmin

4
C2

1s logn − Op(s logn)C1 ≥ 0,

where t = C1
√

s logn/n, with a sufficiently large C1.
Since Qn(β; τ) is a convex function with respect to β , then β̂

o

λn
(τ ), the

minimizer of (2.2) over Rs , must locate within {β ∈ Rp : ‖β − β0(τ )‖ ≤
C1

√
s logn/n}. This completes our proof of Theorem 3.1. �

PROOF OF THEOREM 3.2. According to Theorem 3.1, we know that

Pr
(∥∥β̂o

λn
(τ ) − β0(τ )

∥∥> B

√
s log2 n/n

)→ 0,

for some B > 0. Therefore, minimizing the objective function Qn(β; τ) from (2.2)
over Rs is equivalent to minimizing n−1/2[Qn(β0(τ )+δ; τ)−Qn(β0(τ ); τ)] over
Rs(B) with probability approaching 1.

Given any δ ∈ Rs(B), we have

n−1/2[Qn

(
β0(τ ) + δ; τ )− Qn

(
β0(τ ); τ )]

=Gn

[
ρτ

(
Yi − XT

i

(
β0(τ ) + δ

))− ρτ

(
Yi − XT

i β0(τ )
)]

+ n1/2E
[
ρτ

(
Yi − XT

i

(
β0(τ ) + δ

))− ρτ

(
Yi − XT

i β0(τ )
)]

+ n−1/2λn

∑
j≤s

ωj (τ )
(∣∣β(j)

0 (τ ) + δ(j)
∣∣− ∣∣β(j)

0 (τ )
∣∣)

=Gn

[(
Yi − XT

i β0(τ )
){

ψτ

(
Yi − XT

i β0(τ )
)− ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))}]
− δT [Mn(τ, δ) − E

[
Mn(τ, δ)

]− Mn(τ,0) + E
[
Mn(τ,0)

]]
− δT [Mn(τ,0) − E

[
Mn(τ,0)

]]
+ n1/2E

[
ρτ

(
Yi − XT

i

(
β0(τ ) + δ

))− ρτ

(
Yi − XT

i β0(τ )
)]

+ n−1/2λn

∑
j≤s

ωj (τ )
(∣∣β(j)

0 (τ ) + δ(j)
∣∣− ∣∣β(j)

0 (τ )
∣∣)

:= II1 + II2 + II3 + II4 + II5.
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We consider II2 first. By Lemma 7.4, we have uniformly for δ ∈ Rs(B) and τ ∈ �,

|II2| = op

(‖δa‖).(7.6)

Next we deal with II4. From the proof of Lemma 7.1, it is easy to observe uni-
formly for δ ∈ Rs(B) and τ ∈ �,

∣∣II4 − n1/2δT Hτ δ
∣∣≤ n1/2 f λ

3/2
max

4q
‖δa‖3 = O

(
s log2 n√

n
‖δa‖

)
.(7.7)

Now we deal with II1. Note that(
Yi − XT

i β0(τ )
){

ψτ

(
Yi − XT

i β0(τ )
)− ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))}

=
⎧⎪⎨
⎪⎩

Yi − XT
i β0(τ ) if XT

i δ < Yi − XT
i β0(τ ) < 0

−[Yi − XT
i β0(τ )

]
if 0 < Yi − XT

i β0(τ ) < XT
i δ

0 otherwise

⎫⎪⎬
⎪⎭ ,

and then we obtain that

Yi − XT
i β0(τ )

XT
i δ

{
ψτ

(
Yi − XT

i β0(τ )
)− ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))}
is a bounded function. Applying arguments similar to those in Lemma 7.4, we have
uniformly for δ ∈ Rs(B) and τ ∈ �,

|II1| = op

(‖δa‖).(7.8)

For II3, since E[Mn(τ,0)] = 0, we have

II3 = −δT Mn(τ,0).(7.9)

Now we consider II5. On one hand, if
√

n/(s logn) infτ∈�,j≤s |β(j)
0 | → ∞, then

n−1/2λn

s∑
j=2

ωj (τ)
(∣∣β(j)

0 (τ ) + δ(j)
∣∣− ∣∣β(j)

0 (τ )
∣∣)

(7.10)
= n−1/2λn

[
ω(τ ) ◦ sgn

(
β0(τ )

)]T
δ.

Combining (7.6), (7.7), (7.8), (7.9) and (7.10) together, we have

n−1/2[Qn

(
β0(τ ) + δ; τ )− Qn

(
β0(τ ); τ )]

= n1/2δT Hτ δ − δT Mn(τ,0) + n−1/2λn

[
ω(τ ) ◦ sgn

(
β0(τ )

)]T
δ + op

(‖δa‖).
Let δ̂ be the minimizer of L(δ; τ) := n1/2δT Hτ δ − δT Mn,τ (0) + n−1/2λn[ω(τ ) ◦
sgn(β0(τ ))]T δ + op(‖δa‖) over Rs(B). Then we have

2n1/2Hτ

(
δ̂ + λn

2n
H−1

τ

[
ω(τ ) ◦ sgn

(
β0(τ )

)]T )= Mn(τ,0).
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Given any α ∈ Rp,‖α‖ = 1, applying Lemma 7.5 yields

2n1/2αT Hτ

(
β̂

o

λn
(τ ) − β0(τ ) + λn

2n
H−1

τ

[
ω(τ ) ◦ sgn

(
β0(τ )

)]T )

converges weakly to a mean zero Gaussian process with covariance �(τ, τ ′).
On other hand, if n−1/2λn‖ωa‖ = op(1), then

II5 ≤ n−1/2λn

∥∥ω(τ )
∥∥‖δ‖ = op

(‖δa‖).(7.11)

Consequently,

n−1/2[Qn

(
β0(τ ) + δ; τ )− Qn

(
β0(τ ); τ )]

= n1/2δT Hτ δ − δT Mn,τ (0) + op

(‖δa‖).
With similar arguments, we can show that 2n1/2αT Hτ (β̂

o

λn
(τ )−β0(τ )) converges

weakly to a mean zero Gaussian process with covariance �(τ, τ ′). This completes
the proof of Theorem 3.2. �

PROOF OF THEOREM 3.3. According to KKT conditions, to show that β̂
o

λn
(τ )

is a global minimizer of Qn(β; τ) over Rp , we only need to check the following
condition:

sup
τ∈�

{∣∣∣∣∣
n∑

i=1

X
(j)
i ψτ

(
Yi − XT

i β̂
o
(τ )
)∣∣∣∣∣− λnωj (τ )

}
< 0 for j > s.(7.12)

By Theorem 3.1, we know that Pr(supτ∈� ‖β̂o
(τ )−β0(τ )‖ ∈ Rs(B)) → 1. There-

fore, if we can we can show that

sup
s<j≤p,τ∈�,δ∈Rs(B)

{∣∣∣∣∣
n∑

i=1

X
(j)
i ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))∣∣∣∣∣− λnωj (τ )

}
< 0,(7.13)

then (7.12) follows immediately, and the probability that β̂
o

λn
(τ ) is also the global

minimizer of (2.2) over Rp is approaching 1.
We first state some results which will be used in the following proof. Suppose

condition (C5) holds. Then ∀δ ∈ Rs(B), and we have∣∣E[X(j)
i

(
1
{
Yi − XT

i

(
β0(τ ) + δ

)≤ 0
}− 1

{
Yi − XT

i β0(τ ) ≤ 0
})]∣∣

≤ f̄ E
[∣∣X(j)

i XT
i δ
∣∣]≤ f̄

(
E
[(

X
(j)
i XT

i δ
)2])1/2 = o

((
logp

s logn

)1/2

‖δ‖
)

(7.14)

= o(
√

logp/n),

where the first inequality follows from the condition expectation on Xi and condi-
tion (C1), and the second inequality follows from the Cauchy–Schwarz inequality.
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Moreover, we have

Var
[
X

(j)
i

(
1
{
Yi − XT

i

(
β0(τ ) + δ

)≤ 0
}− 1

{
Yi − XT

i β0(τ ) ≤ 0
})]

≤ E
[(

X
(j)
i

)2(1{Yi − XT
i

(
β0(τ ) + δ

)≤ 0
}− 1

{
Yi − XT

i β0(τ ) ≤ 0
})2]

(7.15)
≤ f̄ E

[(
X

(j)
i

)2∣∣XT
i δ
∣∣]≤ f̄

(
E
[(

X
(j)
i

)2])1/2(
E
[(

X
(j)
i XT

i δ
)2])1/2

= o(
√

logp/n).

In the following, we restrict our attention on �0. Let αj denote the vector where

the j th component is 1, and all other components are 0. Then
∑n

i=1 X
(j)
i ψτ (Yi −

XT
i (β0(τ ) + δ)) = n1/2αjMn(τ, δ),

n1/2αjMn(τ, δ) = n1/2αj

{
Mn(τ, δ) − E

[
Mn(τ, δ)

]− Mn(τ,0) + E
[
Mn(τ,0)

]}
+ n1/2αj

{
E
[
Mn(τ, δ)

]− E
[
Mn(τ,0)

]}
+ n1/2αjMn,τ (0)

:= III1 + III2 + III3.

First, we evaluate III2. By (7.14), we have

sup
τ∈�,δ∈Rs(B)

|III2| ≤
√

n logp.(7.16)

Next, we consider III3,

n1/2αjMn(τ,0) =
n∑

i=1

X
(j)
i

(
τ − 1

{
Yi − XT

i β0(τ ) < 0
})

.

Applying Lemma 2.3.7 in van der Vaart and Wellner (1996) yields

Pr

(
n−1/2 sup

τ∈�

∣∣∣∣∣
n∑

i=1

X
(j)
i

(
τ − 1

{
Yi − XT

i β0(τ ) < 0
})∣∣∣∣∣> M

)

≤ 2 Pr(n−1/2 supτ∈� |∑n
i=1 X

(j)
i Vi(τ − 1{Yi − XT

i β0(τ ) < 0})| > M/4)

1 − 1/M2

for M > 1.

We have

Pr

(
τ

∣∣∣∣∣
n∑

i=1

X
(j)
i Vi

∣∣∣∣∣>
√

6n logp

)
≤ Pr

(∣∣∣∣∣
n∑

i=1

X
(j)
i Vi

∣∣∣∣∣>
√

6n logp

)

≤ Pr

(∣∣∣∣∣
n∑

i=1

X
(j)
i Vi

∣∣∣∣∣>
√

6n logp|�0

)
+ Pr

(
�c

0
)

(7.17)

≤ 2 exp
(
−1

2

6n logp∑n
i=1(X

(j)
i )2

∣∣�0

)
+ γ0n ≤ 2

p2 + γ0n,
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where the first two inequalities are elementary, the third inequality follows from
Lemma 1.5 in Ledoux and Talagrand (1991) and the last inequality follows from
condition (C2).

Conditional on (Xi , Yi), i = 1, . . . , n, we can partition � with a grid {τ0, τ1,

τ2, . . . , τn} such that for each 1 ≤ i ≤ n, there is only one observation (X(i), Y(i))

that satisfies XT
(i)β0(τi−1) < Y(i) ≤ XT

(i)β0(τi). Here, τ0 = 0. Then we have

n−1/2 sup
τ∈�

∣∣∣∣∣
n∑

i=1

X
(j)
i Vi1

{
Yi − XT

i β0(τ ) < 0
}∣∣∣∣∣

= n−1/2 sup
τ∈(τi−1,τi ),1≤i≤n

∣∣∣∣∣
n∑

i=1

X
(j)
(i) V(i)1

{
Y(i) − XT

(i)β0(τ ) < 0
}∣∣∣∣∣.

As τ move from τ0 to τn, we observe

sup
τ∈(τi−1,τi ),1≤i≤n

∣∣∣∣∣
n∑

i=1

X
(j)
(i) V(i)1

{
Y(i) − XT

(i)β0(τ ) < 0
}∣∣∣∣∣= max

1≤k≤n
|Sk|,

where Sk = ∑k
i=1 X

(j)
(i) V(i). Since V(i)’s are independent and X

(j)
(i) V(i)1{Y(i) −

XT
(i)β0(τ ) < 0}’s are symmetric about 0, according to Lévy’s inequality, we have

P(max1≤k≤n |Sk| ≥ u) ≤ 2P(|Sn| ≥ u). Therefore, we have

Pr

(
n−1/2 sup

τ∈�

∣∣∣∣∣
n∑

i=1

X
(j)
i Vi1

{
Yi − XT

i β0(τ ) < 0
}∣∣∣∣∣> M/4

)

=
∫

Pr

(
n−1/2 sup

τ∈�

∣∣∣∣∣
n∑

i=1

X
(j)
i Vi1

{
Yi − XT

i β0(τ ) < 0
}∣∣∣∣∣> M/4|Xi , Yi

)
dP

=
∫

Pr
(

max
1≤k≤n

|Sk| > √
nM/4|Xi , Yi

)
dP

≤
∫

2 Pr
(|Sn| > √

nM/4|Xi , Yi

)
dP

= 2 Pr
(|Sn| > √

nM/4
)
.

Choosing M = √
96 logp, we obtain

Pr

(
sup
τ∈�

∣∣∣∣∣
n∑

i=1

X
(j)
i Vi1

{
Yi − XT

i β0(τ ) < 0
}∣∣∣∣∣>

√
96n logp

)
≤ 4

p2 + γ0n,

where the last inequality follows the arguments in (7.17). The above inequality
and (7.17) together imply

Pr
(

sup
τ∈�

III3 > 20
√

n logp
)

≤ 12

p2 + γ0n.(7.18)
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Now we consider III1. By Lemma 7.11, we can show

Pr
(

sup
τ∈�,δ∈Rs(B)

|III1| > 32C3

√
n logp|�2

)
(7.19)

≤ 8 exp
[
−1

2
C3s logp + 4s logn

]
.

Let K̃ = 160
√

n logp. Then (7.16), (7.18) and (7.19) together yield

Pr

(
sup

τ∈�,δ∈Rs(B)

∣∣∣∣∣
n∑

i=1

X
(j)
i ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))∣∣∣∣∣> K̃

)

≤ Pr

(
sup

τ∈�,δ∈Rs(B)

∣∣∣∣∣
n∑

i=1

X
(j)
i ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))∣∣∣∣∣> K̃|�0 ∩ �2

)

+ γ0n + γ2n

≤ 20

p2 + γ0n + γ2n,

which implies

Pr

(
max
j>s

sup
τ∈�,δ∈Rs(B)

∣∣∣∣∣
n∑

i=1

X
(j)
i ψτ

(
Yi − XT

i

(
β0(τ ) + δ

))∣∣∣∣∣> K̃

)

(7.20)

≤ 20

p
+ γ0n + γ2n

(infj>s,τ∈� ωj (τ ))−1√n/
√

s logp = Op(1), coupled with λn/(
√

s logp) → ∞
implies that with probability approaching 1, λnωj (τ ) > K̃ . This, (7.20) and con-
dition (C5) together infer that (7.13) holds with probability tending to 1, and so
does (7.12). Therefore, β̂

o

λn
(τ ) is a global minimizer of (2.2) with probability ap-

proaching 1. This completes the proof of Theorem 3.3. �

PROOF OF THEOREM 3.4. Theorem 3.4 is a direct implication of Lemmas
7.8 and 7.9. �
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SUPPLEMENTARY MATERIAL

Supplement to “Globally adaptive quantile regression with ultra-high di-
mensional data” (DOI: 10.1214/15-AOS1340SUPP; .pdf). Due to space con-
straints, additional simulation results, the proofs of technical lemmas and corol-
laries, justification for the proposed grid approximation, and sample codes are
relegated to the supplement [Zheng, Peng and He (2015)].

http://dx.doi.org/10.1214/15-AOS1340SUPP
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