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FUSED KERNEL-SPLINE SMOOTHING FOR REPEATEDLY
MEASURED OUTCOMES IN A GENERALIZED PARTIALLY

LINEAR MODEL WITH FUNCTIONAL SINGLE INDEX1

BY FEI JIANG∗,†, YANYUAN MA† AND YUANJIA WANG‡

Harvard University∗, University of South Carolina† and Columbia University‡

We propose a generalized partially linear functional single index risk
score model for repeatedly measured outcomes where the index itself is a
function of time. We fuse the nonparametric kernel method and regression
spline method, and modify the generalized estimating equation to facilitate
estimation and inference. We use local smoothing kernel to estimate the un-
specified coefficient functions of time, and use B-splines to estimate the un-
specified function of the single index component. The covariance structure
is taken into account via a working model, which provides valid estimation
and inference procedure whether or not it captures the true covariance. The
estimation method is applicable to both continuous and discrete outcomes.
We derive large sample properties of the estimation procedure and show a
different convergence rate for each component of the model. The asymptotic
properties when the kernel and regression spline methods are combined in a
nested fashion has not been studied prior to this work, even in the independent
data case.

1. Introduction. As a semiparametric regression model, the single index
model is a popular way to accommodate multivariate covariates while retaining
model flexibility. For independent outcomes, Carroll et al. (1997) introduced a
generalized partially linear single index model, which enriches the family of sin-
gle index models by allowing an additional linear component. The goal of this
paper is to develop a class of generalized partially linear single index models with
functional covariate effect and explore the estimation and inference for repeatedly
measured dependent outcomes.

In the longitudinal data framework, let i denote the ith individual, and k be
the kth measurement, where i = 1, . . . , n and k = 1, . . . ,Mi . Here Mi is the total
number of observations available for the ith individual. Let Dik be the response
variable, Zik and Xik be dw- and dβ -dimensional covariate vectors. We assume
the observations from different individuals are independent, while the responses
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Di1, . . . ,DiMi
, assessed on the same individual at different time points, are corre-

lated, but we do not attempt to model such correlations. To model the relationship
between the conditional mean of the repeatedly measured outcomes Dik at time
Tik and covariates Zik,Xik , we propose a partially linear functional single index
model which models the mean of Dik given Zik,Xik at time Tik in the form of

E(Dik|Xik,Zik, Tik) = H
[
m
{
w(Tik)

TZik

}+ βTXik

]
,(1)

where H is a known differentiable monotone link function, w(t) ∈ Rdw at any t ,
β ∈ Rdβ . Such a model is useful when the time varying effect of Zik and the func-
tional combined score effect of w(Tik)

TZik , adjusted by the covariate vector Xik ,
are of main interest. Note that both Xik and Zik can contain components that do
not vary with k, such as gender, and the ones that vary with k such as age. Here,
m(0) serves as the intercept term; thus Xik does not contain the constant one. In
model (1), Zik includes the covariates of our main research interest whose effects
are usually time varying and modeled nonparametrically, and Xik contains addi-
tional covariates of secondary scientific interest and whose effects are only mod-
eled via a simple linear form. Here m is an unspecified smooth single index func-
tion. Further w is a dw-dimensional vector of smooth functions in L2, while w(t)

is w evaluated at t , hence a dw-dimensional vector. In addition, w(t) contributes to
form the argument of the function m, which yields a nested nonparametric func-
tional form. To ensure identifiability and to reflect the practical application that
motivated this example, we further require w(t) > 0 and ‖w(t)‖1 = 1 ∀t . Here
w(t) > 0 means that every component in w(t) is positive, and ‖ · ‖1 denotes the
vector l1-norm, that is, the sum of the absolute values of the components in the
vector. The choice of l1 norm incorporates the practical knowledge from our real
data example, described in Section 4, and is not critical. It can be modified to other
norms, such as the most often used l2 norm or the sup norm in our subsequent
development. We assume the observed data follow the model described above.
Throughout this paper, we use the subscript 0 to denote the true parameters. Be-
fore we can proceed, we will require the following proposition:

PROPOSITION 1. Assume m0 ∈ M, where M = {m ∈ C1([0,1]), m is one-
to-one, and m(0) = c0}. Here C1([0,1]) is the space of functions with continu-
ous derivatives on [0,1], and c0 is a finite constant. Assume w0(t) ∈ D, where
D = {w = (w1, . . . ,wdw)T :‖w0(t)‖1 = 1,wj > 0, and wj ∈ C1([0, τ ]) ∀j =
1, . . . , dw}. Here C1([0, τ ]) is the space of functions with continuous derivatives
on [0, τ ], and τ is a finite constant. Assume E(X⊗2

ik ) and E(Z⊗2
ik ) are both positive

definite, where we define a⊗2 = aaT for an arbitrary vector a. Then under these
assumptions, the parameter set (β0,m0,w0) in (1) is identifiable.

The proof of Proposition 1 can be found in Appendix A. Model (1) can be
viewed as a longitudinal extension of the generalized partially linear single index
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risk score model introduced in Carroll et al. (1997); that is,

E(Dik|Xik,Zik) = H
{
m
(
wTZik

)+ βTXik

}
,(2)

which is a popular way to increase flexibility when covariate dimension may be
high. This model was also discussed in Ma et al. (2015), while the function m was
estimated by using the B-spline technique. In the existing literature, many authors
explore the generalized partially linear single index model under the longitudinal
settings. Jiang and Wang (2011) consider the single index function in the form
of m(wTZik, t), which allows a time dependent function m, but w is time invari-
ant; hence it does not have the nesting structure in model (1) to capture the time
dependent effect of Zik . Furthermore, their method does not consider the within-
subject correlation. Xu and Zhu (2012) adopted model (2) as a marginal model in
the longitudinal data setting. Their method takes into account the within-subject
correlation, but similar to the approach of Jiang and Wang (2011), it does not al-
low w to vary with time and hence is not sufficient to describe the time varying
effect of Zik . We modify the models of Jiang and Wang (2011) and Xu and Zhu
(2012) to accommodate the time dependent score effect w(t). In Section 4, we
show that a time-dependent effect is essential to improve model fit in some prac-
tical situations. In addition, we retain the virtue of the models of Jiang and Wang
(2011) and Xu and Zhu (2012) by using the semiparametric functional single in-
dex model, which overcomes the curse of dimensionality and alleviates the risk of
model misspecification [Peng and Huang (2011)].

The estimation and inference for model (1) are challenging due to the nonpara-
metric form of m,w, and the complications from correlation between repeatedly
measured outcomes. The estimation for single index models has been discussed ex-
tensively in both the kernel and spline literatures. Carroll et al. (1997) proposed a
local kernel smoothing technique to estimate the unknown function m and the finite
dimensional parameters w,β in model (2) through iterative procedures. Later, Xia
and Härdle (2006) applied a kernel-based minimum average variance estimation
(MAVE) method for partially linear single index models, which was first proposed
by Xia et al. (2002) for dimension reduction. When Zik is continuous, MAVE re-
sults in consistent estimators for the single index function m without the root-n
assumption on w as in Carroll et al. (1997). Nevertheless, when Zik is discrete, the
method may fail to obtain consistent estimators without prior information about β
[Wang et al. (2010), Xia et al. (2002)]. Moreover, Wang and Yang (2009) showed
that MAVE is unreliable for estimating the single index coefficient w when Zik is
unbalanced and sparse, that is, when Zik is measured at different time points for
each subject, and each subject may have only a few measurements.

To overcome these limitations, we apply the B-spline method to estimate the
unknown function m, which is stable when the data set contains discrete or
sparse Zik . Although the B-spline method outperforms the kernel method in es-
timating m, problems arise if it is also used for estimating w(t) in our model set-
ting. If spline approximations are used for both m and w(t) with k knots, then we
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must simultaneously solve (dw + 1)k estimating equations to get the spline coeffi-
cients associated with the spline knots, which may cause numerical instability and
is computationally expensive when the parameter number increases with the sam-
ple size. To alleviate the computational burden and instability, we estimate w(t)

by using the kernel method. At different time points t , the procedure solves w(t)

independently, and in parallel, it hence does not suffer from the numerical insta-
bility and is computationally efficient. To handle longitudinal outcomes, we use
the idea from the generalized estimating equation (GEE) to combine a set of esti-
mating equations built from the marginal model. It is worth pointing out that the
GEE in its original form is only applicable when the index w does not change
along time. In conclusion, we combine the kernel and B-spline smoothing with the
GEE approach, and develop a fused kernel/B-spline procedure for estimation and
inference.

The fusion of kernel and B-spline poses theoretical challenges which we ad-
dress in this work. To the best of our knowledge, this is the first time kernel and
spline methods are jointly implemented in a nested function setting. We study con-
vergence properties, such as asymptotic bias and variance, for each component of
the model, show that the parametric component achieves the regular root-n con-
vergence rate and establish the relation of the nonparametric function convergence
rates to the number of B-spline basis functions and B-spline order, as well as their
relation to the kernel bandwidth. These results provide guidelines for choosing
the number of knots in association with spline order and bandwidth in order to
optimize performance. They also further facilitate inference, such as construct-
ing confidence intervals and performing hypothesis testing. Although theoretical
properties of kernel smoothing and spline smoothing are available separately, the
properties, when these two methods are combined in a nested fashion, have not
been studied in the literature, even for the independent data case prior to this work.
Because the vector function w appears inside the function m, the asymptotic anal-
ysis of the spline and kernel methods are not completely separable. This requires
a comprehensive analysis and integration of both methods instead of a mechanical
combination of two separate techniques.

The rest of the paper is structured as follows. In Section 2, we define some
notation and state assumptions in the model, introduce the fused kernel/B-spline
semiparametric estimating equation, illustrate the profiling estimation procedure
to obtain the estimators and study the asymptotic properties of the resulting esti-
mators. In Section 3, we evaluate the estimation procedure on simulated data sets.
In Section 4, we apply the model and estimation procedure on the Huntington’s
disease data set. We conclude the paper with some discussion in Section 5. We
present the technical proofs in the Appendices A and B and an online supplemen-
tary document [Jiang, Ma and Wang (2015)].

2. Estimating equations and profiling procedure. In this section, we con-
struct estimators for (β,m,w) in model (1). We first derive a set of estimating
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equations, through applying both B-spline and kernel methods. We then introduce
a profiling procedure to implement the estimation. Finally, we discuss the asymp-
totic properties of the estimators.

Many estimation procedures have been developed for the single index risk score
model. In addition to the methods describe in Section 1, for the models with un-
correlated responses, Cui, Härdle and Zhu (2011) illustrate an estimating function
method based on the kernel approach for the generalized single index risk score
model. Ma and Zhu (2013) discuss a doubly robust and efficient estimation pro-
cedure for the single index risk score model with high-dimensional covariates.
Ma and Song (2015) and Lu and Loomis (2013) propose B-spline methods for
estimating the unknown regression link functions in single index risk score mod-
els. However, these methods are not adequate for the parameter estimation in our
model. As shown in (1), in addition to an unknown link function m, our functional
single index model contains a nonparametric function w(t) which is multivariate
and appears inside m. Therefore, we develop a GEE-type method for the parameter
estimation in our model, which allows us to take into account the within patient
correlation. In conjunction with the kernel smoothing technique and B-spline basis
expansion, our fused method estimates both the coefficients as a function of time
and the unspecified regression function, and simultaneously handles the complex-
ities of repeated measurements and curses of dimensionality.

More specifically, let Br (u) = {Br1(u), . . . ,Brdλ(u)}T be the set of B-spline
basis functions of order r , and let λ = (λ1, . . . , λdλ)

T be the coefficients of the B-
spline approximation. Denoting m̃(u,λ) = Br (u)Tλ, de Boor (2001) has shown the
existence of a λ0 ∈ Rdλ so that m̃(u,λ0) = Br (u)Tλ0 converges to m0(u) uniformly
on (0,1) when the number of the B-spline inner knots goes to infinity; see Fact 1 in
Section S.2 in the supplementary article [Jiang, Ma and Wang (2015)]. A detailed
description of the B-spline functions and the properties of their derivatives can be
found in de Boor (2001).

The B-spline approximation greatly eases the parameter estimation procedure.
Operationally, for a given sample size n, the problem is reduced from estimating
the infinite dimensional m to estimating a finite dimensional vector λ. Since the
dimension of λ grows with the sample size, the estimation consistency can be
achieved when the sample size goes to infinity. Let θ = (βT,λT)T ∈ R

dθ , and the
approximated mean function can be written as

H
[
Br

{
w(Tik)

TZik

}T
λ + βTXik

]
.

We investigate the properties for estimating m0,w0,β0 through investigating
the properties of the estimators for λ0, w0 and β0.

2.1. Notation. We define some notation to present the estimation procedure.
To keep the main text concise, we illustrate the specific forms of notation in Ap-
pendix B. Generally, for a generic vector valued function a that depends on some
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additional parameters, we use â to denote the function with the estimated parame-
ter values plugged in. For example, this applies to Sw,Sβ, Ŝw, Ŝβ in the following
text. The specific forms of Sw,Sβ, Ŝw, Ŝβ are given in Appendix B.

In our profiling procedure, we estimate λ0 using λ̂, considered as a func-
tional of β0,w0. Then we estimate w0 using ŵ, considered as a function of
β0 at different time points. Finally, we estimate β0 using β̂ . We further define
Tik, k = 1, . . . ,Mi, i = 1, . . . , n to be the random measurement times which are
independent of Xik,Zik,Dik , w to be a function of t for t ∈ [0, τ ], where τ is a fi-
nite constant, and ŵ(β), ŵ(β, t), considered as functions of β , to be the estimators
for w and w(t), respectively.

Let Qβ(Xik) = Xik , Qλ{Zik;w(t)} = Br{w(t)TZik} and Qw{Zik;λ,w(t)} =
ZikB′

r{w(t)TZik}Tλ, be the partial derivatives of Br{w(t)TZik}Tλ + βTXik with
respect to β , λ, w(t). In the sequel, we will frequently use Qβik , Qλik{w(t)},
Qwik{λ,w(t)} as short forms for Qβ(Xik), Qλ{Zik;w(t)} and Qw{Zik;λ,w(t)},
respectively.

In general, to simplify the notation, we use subscripts to indicate the obser-
vations; that is, for a generic function a(·), we write ai(·) ≡ a(Oi; ·), where Oi

denotes the ith observed variables. For example, we write

Hik

{
β,λ,w(t)

}≡ H
[
Br

{
w(t)TZik

}T
λ + βTXik

]
.

Further, we indicate the use of the true function instead of its B-spline approxima-
tion by replacing the argument λ with m, for example,

Hik

{
β,m,w(t)

}≡ H
[
m
{
w(t)TZik

}+ βTXik

]
.

We also define �(u) = dH(u)/du and

�ik

{
β,λ,w(t)

}= �
[
Br

{
w(t)TZik

}T
λ + βTXik

]
and

�ik

{
β,m,w(t)

}= �
[
m
{
w(t)TZik

}+ βTXik

]
throughout the text.

The profiling procedure has three steps. We define the details of the notation
used in each step and the corresponding population forms in Appendix B.

2.2. Estimation procedure via profiling. In this section, we define the esti-
mation procedures for m, w0 and β0 via estimating equations which are solved
through a profiling procedure as we describe below. We first estimate the function
m through B-splines, by treating w and β as parameters that are held fixed. This
yields a set of estimating equations for the spline coefficients, as functions of w
and β . We then estimate the partially linear nonparametric component w(t) of the
cognitive score profiles through local kernel smoothing, while treating β as fixed
parameters. This further allows us to obtain a second set of estimating equations
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at each time point that the function w(t) needs to be estimated, as a function of β .
Finally, we estimate the parametric component coefficients β through solving its
own corresponding estimating equation set. The profiling procedure achieves a
certain separation by allowing us to treat only one of the three components in each
of the three nested steps; hence it eases the computational complexities. Because
the B-spline estimator λ̂, kernel estimator ŵ(t) and linear parametric estimator β̂
have different convergence rates, such separation also facilitates analysis of the
asymptotic properties, compared with a simultaneous estimation procedure.

Step 1. We obtain λ̂(β0,w0) by solving
n∑

i=1

Q̃λi

{
w0(Ti )

}T
�i

{
β0,λ,w0(Ti )

}
�−1

i

[
Di − Hi

{
β0,λ,w0(Ti )

}]= 0

with respect to λ, where �i is a working covariance matrix, and �i = diag{�ik},
k = 1, . . . ,Mi is a Mi × Mi diagonal matrix. From the first step, we obtain the
B-spline coefficients to estimate the function m.

Step 2. We obtain ŵ(β) in this step. Let Kh(Ti − t0) be a dwMi × dwMi di-
agonal matrix whose kth diagonal block is diag{Kh(Tik − t0)} where Kh(s) =
h−1K(s/h) is a Kernel function with bandwidth h.

To obtain ŵ(β0, t0), we solve the estimating equation
n∑

i=1

Âwi

{
β0, λ̂(β0,w),w(t0)

}
V̂wi

{
β0, λ̂(β0,w),w(t0)

}−1

(3)
× Kh(Ti − t0)̂Swi

{
β0, λ̂(β0,w),w(t0)

}
with respect to w. Recall that ‖w(t0)‖1 = 1. In the implementation, we pa-
rameterize wdw = 1 − ∑dw−1

j=1 wj , and derive the score functions for the vec-
tor (w1, . . . ,wdw−1). We then solve the estimating equation system which con-
tains the dw − 1 equations constructed from the score functions and the equation∑dw

j=1 wj − 1 = 0. The roots of the estimating equation system automatically sat-
isfy the l1 constraint. In all our experiments, the resulting ŵj (t) are nonnegative
automatically, and hence we did not particularly enforce the nonnegativity as a
constraint. If it is needed, one can further enforce the nonnegativity and perform a
constrained optimization.

Step 3. We obtain β̂ by solving
n∑

i=1

Âβi

[
β, λ̂

{
β, ŵ(β,Ti)

}
, ŵ(β)

]
V̂βi

[
β, λ̂

{
β, ŵ(β)

}
, ŵ(β,Ti )

]−1

(4)
× Ŝβi

[
β, λ̂

{
β, ŵ(β)

}
, ŵ(β,Ti)

]= 0.

In above steps, we approximate ∂ŵ(β,Ti)/∂βT, ∂λ̂(β,w)/∂βT and ∂λ̂(β0,

w0)/∂w by the leading terms in their expansions. Their explicit forms are shown
in (S.27) in the proofs of Lemma 6, (S.37) in the proofs of Lemma 11 and the
notation in step 2 in the Appendix B, respectively.
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2.3. Asymptotic properties of the estimators. The profiling estimator de-
scribed in Section 2.2 is quite complex, caused by the functional nature of w(t),
the unspecified forms of both w and m and their nested appearance in the model,
the correlation among different observations associated with the same individual
and the different numbers of observations for each individual. In addition, the
fused kernel/B-spline method requires careful joint consideration of both smooth-
ing techniques. As a consequence, the analysis to obtain the asymptotic properties
of the estimator described in Section 2.2 is very challenging and involved. We first
list the regularity conditions under which we perform our theoretical analysis:

(A1) The kernel function K(·) is nonnegative, has compact support and satis-
fies

∫
K(s) ds = 1,

∫
K(s)s ds = 0 and

∫
K(s)s2 ds < ∞, and

∫
K2(s)s ds < ∞.

(A2) The bandwidth h in the kernel smoothing satisfies nh2 → ∞ and nh4 → 0
when n → ∞.

(A3) The density function of w(t)TZ for each t ∈ [0, τ ] is bounded away from 0
on Sw(t) and satisfies the Lipschitz condition of order 1 on Sw(t), where w is in a
neighborhood of w0, and Sw(t) = {w(t)TZ,Z ∈ S} and S is a compact support of
Z and τ < ∞ is a finite constant. Without loss of generality, we assume Sw(t) =
[0,1].

(A4) Assume m0 ∈ {m ∈ Cq([0,1]), m is one-to-one and m(0) = c0}. Here
Cq([0,1]) is the space of functions with first q continuous derivatives on [0,1].
The spline order is r ≥ q . The cluster size Mi is a fixed finite number that does not
diverge with the sample size, that is, Mi < ∞ for all i.

(A5) Let hp be the distance between the (p + 1)th and pth interior knots of the
order r B-spline functions. And hb = maxr≤p≤N+r hp . There exists 0 < chb

< ∞,
such that

max
r≤p≤N+r

hp+1 = o
(
N−1) and hb/ min

r≤p≤N+r
hp < chb

,

where N is the number of knots which satisfies N → ∞ as n → ∞, and
N−1n(logn)−1 → ∞ and Nn−1/(2q+1) → ∞, further assuming q > 3 and
N−3n → ∞.

(A6) The matrices E(X⊗2
ik ), E([Xik − E{Xik|w(t)TZik}]⊗2), E([Zik −

E{Zik|w(t)TZik}m′
0{w(t)TZik}]⊗2) and E([XikZT

ik − E{XikZT
ik|w(t)TZik} ×

m′
0{w(t)TZik}]⊗2) are finite and positive definite for any t ∈ [0, τ ].
The requirements nh4 → 0 in (A2) and Nn−1/(2q+1) → ∞ in (A5) are under-

smoothing requirements on the kernel approximation and on the spline approxi-
mation, respectively. They are required to ensure that the biases, E(ŵ) − w and
E(BT

r λ̂) − m0 are ignorable compared to other terms left in the final analysis.
These kinds of undersmoothing conditions are commonly required in semipara-
metric models.

Theorems 1–3 describe the asymptotic properties for the estimators of w0(t),
β0 and m0, respectively.
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THEOREM 1. Assume conditions (A1)–(A6) and the identifiability conditions
stated in Proposition 1 hold. Let Âwi , V̂wi , Ŝwi and their population forms Awi ,
Vwi and Swi be as defined in the notation of step 2 in Appendix B. Let ŵ(β0, t0)

solve (3) and fT be the probability density function of Tik with support [0, τ ].
Define

�w = (nh)−1{B(t0)fT (t0)
}−1

× E

(
fT (t0)

[
Awi

{
β0,m0,w0(t0)

}
Vwi

{
β0,m0,w0(t0)

}−1]
×
∫

K(s)V∗
wi

{
β0,m0,w0(t0)

}
K(s) ds

× [
Awi

{
β0,m0,w0(t0)

}
Vwi

{
β0,m0,w0(t0)

}−1]T)
× {

B(t0)fT (t0)
}−1

.

Then
�−1/2

w

{
ŵ(β0, t0) − w0(t0)

} d→ N(0, I),

where B are defined in the notation of step 3 in Appendix B.

Theorem 1 establishes the large sample properties of the estimation of the mul-
tivariate weight function w0(t). It shows that our method achieves the usual non-
parametric convengence rate of root-nh under the conditions given.

THEOREM 2. Assume conditions (A1)–(A6) and the identifiability conditions
stated in Proposition 1 hold. Let Ŝβik , Âβik , V̂βikl and their population forms Sβik ,
Aβik , Vβikl be as defined in the notation of step 3 in Appendix B, and ŵ(β), w(β)

be as defined in Section 2.1. Let β̂ solve (4), then√
n(β̂ − β0)

= F(m0)
−1

(
1√
n

n∑
i=1

Aβi

{
β0,m0,w0(Ti )

}
Vβi

{
β0,m0,w0(Ti )

}−1

× Sβi

{
β0,m0,w0(Ti )

}
− 1√

n

n∑
j=1

E
(
Aβi

{
β0,m0,w0(Tj )

}
× Vβi

{
β0,m0,w0(Ti )

}−1K(Tj )|Oj

)
B(Tj )

−1

× [
Awj

{
β0,m0,w0(Tj )

}
× Vwj

{
β0,m0,w0(Tj )

}−1

× Swj

{
β0,m0,w0(Tj )

}])
(5)
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− G(m0)V−1 1√
n

n∑
i=1

Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
× �−1

i

[
Di − Hi

{
β0,m0,w0(Ti )

}]{
1 + op(1)

}
,

where K(Ti ) = diag{κ(Tik), k = 1, . . . ,Mi} a dβMi × dwMi matrix and κ(Tik) is{
Qβik − δ

{
w0(Tik)

TZik

}
−
(

B(Tik)
−1E

[
Awj

{
β0,m0,w0(Tik)

}
Vwj

{
β0,m0,w0(Tik)

}−1

× ∂Swj {β0,m0,w0(Tik)}
∂βT

∣∣∣Oi

])T

Zik

× m′
0
{
w0(Tik)

TZik

}+ γ
{
w0(Tik)

TZik

}}
× Qwik

{
m0,w0(Tik)

}T
�ik

{
β0,m0,w0(Tik)

}
.

F(m0) = −E

{
Aβi

{
β0,m0,w0(Ti )

}
Vβi

{
β0,m0,w0(Ti )

}−1

× ∂Sβi{β0,m0,w0(Ti )}
∂βT

}
and

G(m0) = E
[
Aβi

{
β0,m0,w0(Ti )

}
Vβi

{
β0,λ0,w0(Ti )

}−1Ci

× �∗
i

{
β0,m0,w0(Ti )

}
Q∗

λi

{
w0(Ti )

}]
.

Here Ci is a dβMi × dβMi with the kth block having the form{
Qβik − δ

{
w0(Tik)

TZik

}
−
(

B(Tik)
−1E

[
Awj

{
β0,m0,w0(Tik)

}
Vwj

{
β0,m0,w0(Tik)

}−1

× ∂Swj {β0,m0,w0(Tik)}
∂βT

∣∣∣Oi

])T

× Zikm
′
0
{
w0(Tik)

TZik

}+ γ
{
w0(Tik)

TZik

}}
.

Here �∗
i {β0,m0,w0(Ti )} is a dβMi ×dβMi matrix with the kth block being a dβ ×

dβ diagonal matrix with the element �ik{β0,m0,w0(Tik)}. And Q∗
λi{w0(Ti )} is a

dβMi × dλ matrix with kth row block being a dβ × dλ matrix, where dβ replicates
of the row vector Qλik{w0(Tik)}T. B, δ, γ are functions defined in the notation of
step 3 in Appendix B.
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Consequently, we have
√

n(β̂ − β0)
d→ N(0,�),

where

� = F(m0)
−1E

[([
Aβi

{
β0,m0,w0(Ti )

}
Vβi

{
β0,m0,w0(Ti )

}−1

× Sβi

{
β0,m0,w0(Ti )

}]⊗2)
+ {(

E
(
Aβi

{
β0,m0,w0(Tj )

}
Vβi

{
β0,m0,w0(Ti )

}−1K(Tj )|Oj

)
× B(Tj )

−1[Awj

{
β0,m0,w0(Tj )

}
× Vwj

{
β0,m0,w0(Tj )

}−1

× Swj

{
β0,m0,w0(Tj )

}])⊗2}
+ {(

G(m0)V−1Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
× �−1

i

[
Di − Hi

{
β0,m0,w0(Ti )

}])⊗2}]
× F(m0)

−1.

Theorem 2 establishes the usual parametric convergence rate for β̂ , even though
the estimation relies on multiple nonparametric estimates as well. The form of (5)
in Theorem 2 indicates that the variance of estimating β0 is inflated by the estima-
tion ŵ, as given in

1√
n

n∑
j=1

E
(
Aβi

{
β0,m0,w0(Tj )

}
Vβi

{
β0,m0,w0(Ti )

}−1K(Tj )|Oj

)
× B(Tj )

−1[Awj

{
β0,m0,w0(Tj )

}
Vwj

{
β0,m0,w0(Tj )

}−1

× Swj

{
β0,m0,w0(Tj )

}]
and is also inflated by the estimation λ̂, as given in

G(m0)V−1 1√
n

n∑
i=1

Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
× �−1

i

[
Di − Hi

{
β0,m0,w0(Ti )

}]
.

See Lemmas 9, 11 and the proofs of Theorem 2 in the supplementary article [Jiang,
Ma and Wang (2015)] for a more detailed discussion.

The asymptotic normality of β̂ established in Theorem 2 further facilitates in-
ference on β such as constructing confidence intervals or performing hypothe-
sis testing. In implementing these inference procedures, we replace the variance–
covariance matrix � with its estimate, where we use empirical sample mean over
the observed samples to replace the expectations in Theorem 2, and plug in the es-
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timates of the corresponding parameter and function values. This is the procedure
adopted in all our numerical implementation.

THEOREM 3. Assume conditions (A1)–(A6) and the identifiability conditions
stated in Proposition 1 hold. Let m̂{u, λ̂(β,w)} = Br (u)Tλ̂(β,w), m̃{u,λ0} =
Br (u)Tλ0, where λ̂(β0,w0) solves (3), and define

σ 2(u,w0) ≡ 1

n
Br (u)TE

([
Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
�−1

i

× �i

{
β0,m0,w0(Ti )

}
Q̃λi

{
w0(Ti )

}])−1

× E
([

Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
�−1

i �∗
i �

−1
i

× �i

{
β0,m0,w0(Ti )

}
Q̃λi

{
w0(Ti )

}])
× E

([
Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
× �−1

i �i

{
β0,m0,w0(Ti )

}
Q̃λi

{
w0(Ti )

}])−1Br (u),

where �∗
i = E{(Di − Hi )

⊗2|Xi ,Zi} is the true covariance matrix, and

σ 2
w ≡ 1

n
BT

r (u)E

{(
V−1E

[
Mi∑
k=1

Mi∑
v=1

E
{
Cikv�ik

{
β0,m0,w0(Tik)

}
× �iv

{
β0,m0,w0(Tiv)

}
Br

{
w0(Tiv)

TZiv

}
× m′

0
(
w0(Tik)

TZik

)
× ZT

ik

({
B(Tik)fT (Tik)

}−1

× [
Awj

{
β0,m0,w0(Tik)

}
× Vwj

{
β0,m0,w0(Tik)

}−1

× Kh(Tj − Tik)

× Swj

{
β0,m0,w0(Tik)

}])|
Mi,Oj

}|Oj

])⊗2}
Br (u).

Here V is as defined in the notation of step 1 in Appendix B, and Cikv is the
(k, v)th entry of the matrix �−1

i . Then we have{
σ 2(u,w0) + σ 2

w

}−1/2(
m̂
[
u, λ̂

{
β̂, ŵ(β̂)

}]− m0(u)
) d→ N(0,1).

Further because the order of σ 2 and σ 2
λ are both (nhb)

−1, together with Fact 1 in
Section S.2, we have∣∣m̂[u, λ̂

{
β̂, ŵ(β̂)

}]− m0(u)
∣∣= Op

{
(nhb)

−1/2 + h
q
b

}
,∣∣m̂′[u, λ̂

{
β̂, ŵ(β̂)

}]− m′
0(u)

∣∣= Op

{
n−1/2h

−3/2
b + h

q−1
b

}
uniformly for u ∈ (0,1).



FUSED SMOOTHING FOR CORRELATED DATA IN SINGLE INDEX MODEL 1941

Theorem 3 shows that the estimation error of m̂[u, λ̂{β̂, ŵ(β̂)}] consists of two
components, the approximation error of m̂[u, λ̂{β̂, ŵ(β̂)}] and the approximation
error of m̃(u,λ0), from their respective true functions. The errors of m̂ and m̂′ go
to zero with the rates of Op{(nhb)

−1/2} and Op(n−1/2h
−3/2
b ), respectively. Un-

der condition (A5), m̂ and m̂′ are both consistent, and they approach the truths
with the standard B-spline convergence rate. We provide an outline of the proofs
for Theorems 1–3 in the supplementary article [Jiang, Ma and Wang (2015)]. The
proofs are highly technical and lengthy, and they require several preliminary re-
sults, which we summarize as lemmas. We present and prove these lemmas in the
supplementary article [Jiang, Ma and Wang (2015)].

3. Numeric evaluation via simulations. We now evaluate the finite sam-
ple performance of the proposed estimation procedure on simulated data sets.
We simulate 1000 data sets from model (1) under three settings. In Settings 1
and 2, we consider binary response and use logit link function for H , while in
Setting 3, we consider continuous normal response and use an identity H func-
tion. In Setting 1, we choose m as a polynomial function with degree two. We
generate w initially as positive linear functions on t , and then normalize the vec-
tor to have summation one. Note that the normalization function modifies the
structure of w(t) and results in a nonlinear vector-valued function in t . Addi-
tionally, we generate Zik from the Poisson distribution and normalize the vec-
tors by the sample standard deviations. Furthermore, we generate Tik from the
exponential distribution and the covariate Xik from the univariate normal dis-
tribution. In Settings 2 and 3, we use the sine function for m, and generate
w as power functions on t and then normalize the vector to have summation
one. We generate covariate vector Xi from a three-dimensional multivariate nor-
mal distribution. In order to stabilize the computation and control numerical er-
rors, in both settings, we transform the function w(Tik)

TZik to F {w(Tik)
TZik} =


([w(Tik)
TZik − E{w0(Tik)

TZik}]/
√

var{w0(Tik)TZik}), where w0 is the initial

value of w, and E{w0(Tik)
TZik} and var{w0(Tik)

TZik} are approximated by the
sample mean and the sample variance. We then use B-spline to approximate
m ◦ F−1 instead of m, where ◦ denotes composite. All other operations remain
the same, and the estimation and inference of the functional single index risk score
m{w(Tik)

TZik}, our main research interest, is carried out as described before. To
recover information regarding m, one can use the Delta method to obtain the esti-
mate and the variance of estimating m from that of estimating m ◦ F−1.

In all the implementations, we use the third order quadratic spline. We select
the number of internal knots N = {n1/5(logn)2/5}, which satisfies condition (A5)
in Section 2.3. We choose the Gaussian kernel with bandwidth h = n−2/15hs ,
where hs is Silverman’s rule-of-thumb bandwidth [Silverman (1986)]. Because
hs = O(n−1/5), the bandwidth selection satisfies condition (A2) in Section 2.3.
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Table 1 shows the averaged point estimators of β , the empirical standard devi-
ations calculated from the sample variances, the averages of the estimated asymp-
totic standard deviation (�1/2 in Theorem 2) over the simulated samples and the
mean squared errors (MSE) when the sample sizes are 100, 500, 800, respectively.
The conclusions are similar under the three settings. To sum up, the estimation
biases are consistently small across all samples sizes, the empirical standard devi-
ations and the estimated asymptotic standard deviations are decreasing when the
sample size increases. The MSE decreases as the sample size increases as well,
mainly due to the declining variations. Further, the empirical standard deviation of
the estimators and average of the estimated standard deviations calculated from the
asymptotic results are close. In addition, the coverage probabilities of the empiri-
cal confidence intervals are close to the normal level of 95%. This suggests that we
can use the asymptotic properties to perform inference and can obtain sufficiently
reliable results under moderate sample sizes.

We also examined the performances of ŵ and m̂ to assess the properties of the
estimated functional single index risk score. Under the first setting, because the
functional single index risk score is fixed with respect to β , we only evaluate the
settings with β = −0.4. To evaluate the combined score ŵ(t)TZ as a function of t ,
we fix Z at Z∗ = (1,2,3,4) and plot the averages of the estimated combined score
ŵ(t)TZ∗ over the 1000 simulations around the true scores w0(t)

TZ∗ in the upper
panels of Figures 1, 2 and 3 for Settings 1, 2 and 3, respectively. Additionally,
we present the 95% pointwise confidence band. The results show that the esti-
mates are close to the true function. Further, the 95% confidence band becomes
narrower when the sample size increases, which indicates that the estimation vari-
ation decreases with increased sample size. Moreover, we evaluated the coverage
probabilities of the empirical pointwise confidence bands of w, by computing the
coverage probabilities at a set of fixed points across t and taking their average.
The average coverage probabilities for n = 100,500,800 are 0.934,0.936,0.939
in Setting 1, 0.939,0.940,0.941 in Setting 2 and 0.931,0.934,0.936 in Setting 3,
respectively. All are reasonably close to the nominal level of 95%.

To evaluate the performance of m̂, we plot the average of m̂(u) based on the
1000 simulations, as well as the 95% pointwise confidence band in the bottom
panels of Figures 1, 2 and 3 for Settings 1, 2 and 3, respectively. The plots show
that the estimators are close to the true functions except on the boundary when
the sample size is relatively small. In addition, when the sample size increases, the
confidence band becomes narrower, benefiting from the smaller estimation varia-
tion. Note that because of the additional transformation on w(t)TZ, it is expected
that the true m function does not appear to be periodic sine function on w(t)TZ.
Moreover, we evaluate the converge probability of the empirical pointwise confi-
dence bands of m. The average coverage probabilities are 0.943,0.947,0.948 in
Setting 1, 0.957,0.960,0.951 in Setting 2 and 0.939,0.947,0.946 in Setting 3,
respectively. Again, they are all fairly close to the nominal level of 95%.
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TABLE 1
Simulation results in Settings 1, 2 and 3, based on 1000 data sets. The true parameter β0, mean (E), empirical standard deviation [sd(β̂)] and average

of the estimated standard deviations [ŝd(β̂)] MSE = {sd(β̂)}2 + {E(β̂) − β}2, the coverage probabilities (CP) of the 95% empirical
confidence intervals are reported

Setting 1 Setting 2 Setting 3

β0 E(̂β) sd(̂β) ̂sd(̂β) MSE CP β0 E(̂β) sd(̂β) ̂sd(̂β) MSE CP β0 E(̂β) sd(̂β) ̂sd(̂β) MSE CP

n = 100
β1 −0.2 −0.202 0.157 0.113 0.0247 0.957 −0.5 −0.505 0.131 0.116 0.0171 0.908 −0.5 −0.501 0.062 0.052 3.85e–3 0.938
β2 −0.4 −0.398 0.119 0.115 0.0142 0.940 0.2 −0.200 0.122 0.112 0.0147 0.923 0.2 −0.200 0.060 0.053 3.60e–3 0.932
β3 −0.6 −0.601 0.124 0.118 0.0153 0.957 0.5 −0.515 0.125 0.116 0.0159 0.927 0.5 −0.503 0.061 0.053 3.73e–3 0.932

n = 500
β1 −0.2 −0.198 0.052 0.050 0.0027 0.954 −0.5 −0.507 0.056 0.053 0.0032 0.946 −0.5 −0.500 0.025 0.024 6.25e–4 0.966
β2 −0.4 −0.398 0.053 0.051 0.0028 0.947 0.2 −0.198 0.053 0.052 0.0028 0.951 0.2 −0.200 0.024 0.024 5.76e–4 0.945
β3 −0.6 −0.601 0.056 0.053 0.0031 0.939 0.5 −0.508 0.054 0.053 0.0031 0.944 0.5 −0.502 0.025 0.024 6.29e–4 0.963

n = 800
β1 −0.2 −0.197 0.041 0.040 0.0017 0.951 −0.5 −0.504 0.043 0.042 0.0019 0.953 −0.5 −0.500 0.020 0.019 4.00e–4 0.949
β2 −0.4 −0.398 0.041 0.040 0.0017 0.949 0.2 −0.202 0.041 0.041 0.0017 0.962 0.2 −0.200 0.019 0.019 3.61e–4 0.949
β3 −0.6 −0.602 0.044 0.042 0.0019 0.946 0.5 −0.505 0.043 0.042 0.0019 0.951 0.5 −0.501 0.020 0.019 4.01e–4 0.952
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FIG. 1. Estimation of w(t)Tz (upper) and m(u) (bottom) as a function of t and u, respectively,
in Setting 1 with sample sizes 100 (left), 500 (middle) and 800 (right). True function (solid line),
average of 1000 estimated functions (dashed lines) and 95% pointwise confidence band (dash-doted
lines) are provided.

FIG. 2. Estimation of w(t)Tz (upper) and m(u) (bottom) as a function of t and u, respectively,
in Setting 2 with sample sizes 100 (left), 500 (middle) and 800 (right). True function (solid line),
average of 1000 estimated functions (dashed lines), and 95% pointwise confidence band (dash-doted
lines) are provided.
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FIG. 3. Estimation of w(t)Tz (upper) and m(u) (bottom) as a function of t and u, respectively,
in Setting 3 with sample sizes 100 (left), 500 (middle) and 800 (right). True function (solid line),
average of 1000 estimated functions (dashed lines) and 95% pointwise confidence band (dash-doted
lines) are provided.

In summary, Table 1, Figures 1, 2, 3 illustrate the desirable finite sample perfor-
mance of the fused kernel/B-spline combination method in estimating β,m and w.
In terms of parameter estimation and function estimation in the nonboundary re-
gion, the estimators show very small biases across all sample sizes, and decreasing
variability as the sample size increases. The asymptotic variance and sample em-
pirical variance in estimating β are close. Furthermore, the coverage probability
of the empirical confidence intervals for β and the coverage probability of the em-
pirical pointwise confidence bands for w and m are close to the nominal levels,
which supports using the asymptotic results for the subsequent inferences.

4. Application. We apply the functional single index risk score model and
the fused kernel/B-spline semiparametric estimation method to analyze a real data
set from a Huntington’s disease (HD) study. Current research in HD aims to find
reliable prodromes to enable early detection of HD. The joint effect of the cog-
nitive scores on odds of HD diagnosis is shown to change with time. In addition,
the relationship between the cognitive symptoms and the log-odds of the disease
diagnosis is shown to be nonlinear [Paulsen et al. (2008)]. Our goal is to study the
nonlinear time dependent cognitive effects so as to facilitate the early detection
of HD.

Specifically, let Dik , Zik and Xik represent the binary disease indicator, the cog-
nitive score vector and the additional covariate vector for the ith individual at the
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j th measurement time, respectively. The cognitive scores include SDMT [Smith
(1982)], Stroop color, Stroop word and Stroop interference tests [Stroop (1935)].
They are denoted by Zi1, . . . ,Zi4, respectively. The covariates of interest are gen-
der, education, CAP score [Zhang et al. (2011)]. They are denoted by Xi1, . . . ,Xi3,
respectively. The subject’s age at the visiting time serves as the time variable Tik .
We normalize the continuous variables to the interval (0,1) to alleviate numerical
instability. Without changing notation, we transform Zi1, . . . ,Zi4, Xi3, Tik by the
normal distribution functions with means and variances estimated from the sample.

We use logit link function to model the binary outcomes; that is, we assume

H
[
m
{
w(Tik)

TZik

}+ βTXik

]= exp[m{w(Tik)
TZik} + βTXik]

1 + exp[m{w(Tik)TZik} + βTXik]
.(6)

We obtain the initial estimates and a working correlation matrix using the GEE
method with exchangeable covariance assumption. We choose the exchange-
able covariance structure because in our setting, it facilitates computation and
accounts for the longitudinal correlations. Let the working correlation coeffi-
cient matrix be Ri , the working covariance matrix be �̂

1/2
i Ri�̂

1/2
i , where �̂i is

Hi(1 − Hi) with estimated λ̂, ŵ, β̂ plugged in. We implement the profiling pro-
cedure described in Section 2.2 in the subsequent estimation. The kernel and
B-spline functions are defined in the same way as described in Section 3. We
obtain the point estimators β̂ = (−0.34,−0.89,2.31)T and the asymptotic vari-
ances var(β̂) = (0.0035,0.00044,0.011)T. Consequently, the 95% asymptotic
confidence intervals are {(−0.46,−0.23), (−0.93,−0.85), (2.09,2.52)}, which
demonstrate the significant effect of gender, education level and CAP score on the
disease risk. Specifically, females (Xi1 = 0) tend to have higher disease risk than
males (Xi1 = 1). In addition, patients with lower education levels and higher CAP
scores are more likely to develop Huntington’s disease, which is consistent with
the clinical literature [Zhang et al. (2011)].

We also plot ŵ(t) to show the variation patterns of the effect of the four cogni-
tive scores over time. Figure 4 shows that the Stroop interference score has a more
important effect than all the others after age 30. The 95% pointwise confidence
interval remains above the 0.25 level after age 27, and the Stroop interference
score effect largely dominates all the other effects during that period. This domi-
nating effect indicates that the Stroop inference score has the closest relationship
with the onset of HD, and in turn could be used to predict HD most effectively
among the four. Further, Stroop color has a large effect at earlier ages (before 30
or at early 30’s), while the SDMT has a reasonably large effect at later ages (75 or
above). Moreover, Stroop word has relatively small predicative effects (<0.25) on
the disease risk across all ages. The plots clearly show the time dependent nature
of the cognitive score effects. More specifically, Stroop color effect is decreasing
over times, Stroop interference effect is a concave function of time, while SDMT,
Stroop word effects are convex functions of time. The last three nonmonotone
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FIG. 4. Estimation of the weight function w(t)’s and the 95% asymptotic confidence bands in
Huntington’s disease data. The reference line is 0.25.

effects reach their extreme values around the ages of 40 to 50. In summary, the
results show that the Stroop interference is more relevant to the disease risk than
the other scores. Further, the relative magnitude of the score effects clearly change
over time, which suggests the need to closely monitor specific cognitive scores
for different age groups. This illustrates the importance of modeling w as a func-
tion of age, and the convenience of using a weighted score w(t)TZ as a combined
cognitive profile in practice.

The form of the function m̂ is shown in the left panel of Figure 5. We also plot
the 95% pointwise asymptotic confidence band of m̂ in the range of the combined
scores U . The plot shows that the functional single index risk score is a decreasing
function of the index. The upper confidence interval does not include 0, which
shows that the functional single index risk score is significantly smaller than 0 at
any age and cognitive score values in this population.

In the right panel of Figure 5, we plot the disease risk (the estimated probability
of D = 1) and the 95% pointwise asymptotic confidence band, where the confi-
dence band is based on estimated variance, calculated using the Delta method and
the estimated variance of m̂. The results show that the disease risk decreases with
the combined cognitive score value U . The 95% confidence interval does not in-
clude the 0.5 line, which shows that the disease risk in the population is smaller
than 0.5 across all age and cognitive score values. Combining the two plots, Fig-
ure 5 shows that a higher value of the combined score U = w(t)TZ, which implies
better cognitive functioning, tends to lower functional single index risk score and



1948 F. JIANG, Y. MA AND Y. WANG

FIG. 5. Function m̂(u) (left) and the estimated disease risk as a function of u (right) in Hunting-
ton’s disease data.

in turn lower the risk of HD. The effect of the functional single index cognitive
risk score on HD diagnosis is approximately quadratic for a standardized score
U < 0.6, and is approximately a constant for U > 0.6. The flattening of the effect
reflects a ceiling effect for subjects with better cognitive performance.

Next, we perform two sensitivity analyses to justify using a more flexible gener-
alized partially linear functional single index model as shown in (6). We compare
model (6) with two simpler models. The first assumes the function m is linear,
hence

H
{
Xik,Zik; θ,w(Tik)

}= exp{αc + α1w(Tik)
TZik + βTXik}

1 + exp{αc + α1w(Tik)TZik + βTXik}
,(7)

where αc,α1 are unknown parameters. The second assumes the weight function w
is time-invariant, hence

H(Xik,Zik; θ ,w) = exp{m(wTZik) + βTXik}
1 + exp{m(wTZik) + βTXik}

,(8)

where w is an unknown parameter vector. We carried out the estimation of w(t) in
the first model using kernel method and the estimation for m in the second model
via B-spline method. We implemented 1000 5-fold cross validation analysis. We
evaluated models by the mean squared predictive error (i.e., the mean squared dif-
ferences between Di and the predicted probability of Di = 1 on the test set) as a
function of the average of the four standardized cognitive scores

∑4
j Zj/4, which

we named the standardized score. In Figure 6, we plot the mean squared predictive
error curves obtained under the proposed model (6) and two simpler models. The
results show that our original generalized partially linear model with functional
single index outperforms model (8) uniformly across the range of the standardized
scores in terms of a lower mean squared error. We also plot the empirical 95%
confidence intervals of the squared predictive errors under the proposed model.
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FIG. 6. The mean squared predictive errors versus the standardized averaged score
∑4

j=1 Zik/4
in Huntington’s disease data. The gray lines are the 95% confidence intervals for the fused ker-
nel/B-spline method.

Compared with the simpler model (7), our model gives significant smaller predic-
tive errors when the standardized score is smaller than 0.36. The medians of the
squared predicative errors in this range are 0.040 and 0.049 for models (6) and (7),
respectively. When the standardized score is greater than 0.5, model (7) performs
slightly, but not significantly better than model (6). Overall, the total mean squared
error summarized by the area under the predictive error curves for models (6), (7)
and (8) are, respectively, 0.022, 0.028 and 0.057, which justifies using the more
flexible model in (6) to fit the Huntington’s disease data. The results also demon-
strate the potential of using our method as an exploratory tool to assess general
patterns of data.

5. Conclusion and discussions. We have developed a generalized partially
linear functional single index risk score model in the longitudinal data framework.
We explore the relationship between the cognitive scores and the disease risk so as
to predict HD diagnosis early, and in turn to intervene with the disease progression
in a timely manner.

We introduce a framework of jointly using the B-spline and kernel methods in
semiparametric estimation. We use B-spline to approximate the functional single
index risk score function m, and use a kernel smoothing technique for estimating
the cognitive weight functions of time w(t). We integrate B-spline basis expansion,
kernel smoothing and longitudinal analysis, and have proven the consistency and
asymptotic normalities of the covariate coefficient estimators, the time dependent
weight function estimators and the single index risk score function estimators. The
derivation relies on the assumption that the iteration procedure converges to a pa-
rameter vector value that is in a small neighborhood of the truth, which generally
requires the estimating equation to have a unique zero. The unique zero property
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is difficult to guarantee in theory and is less likely to hold when sample size is
small or moderate. To this end, empirical knowledge is usually used to select a
suitable root. In our simulations, multiple roots issues did not occur, and the nu-
merical results show desirable finite sample properties of the estimators. The real
data analysis yields results which are interpretable and useful in practice. In sum-
mary, the functional single index model provides rich and meaningful information
regarding the association between the disease risk and the cognitive score profiles.
It is of course also possible to use B-spline or kernel methods to estimate both m

and w(t), and research along this line can also be interesting.
Our method accommodates both continuous and categorical response variables

as long as the link function H is continuously differentiable and has finite second
derivative. One outstanding research question in these models, even in the context
when the marginal model is completely parametric (e.g., both m and w are known),
is the estimation efficiency. As far as we are aware, there is no guarantee that
GEE family contains the efficient estimator, and how to obtain an asymptotically
efficient estimator is certainly worth further research.

The proposed generalized partially linear functional single index model can be
used to incorporate high-dimensional data, since the single index risk score is a
natural method of alleviating the curse of the dimensionality. For example, the sin-
gle index score could be a combination of gene expression covariates to facilitate
the genetic association study. Furthermore, the generalized partially linear func-
tional single index risk score can be used in an adaptive randomization clinical
trial study to improve study efficiency. For example, we can use a single index risk
score to summarize some disease related biomarkers, which provide early infor-
mation about the primary endpoints in adaptive trials. When a trial progresses, the
information can be used to make certain intermediate decisions, such as treatment
assignments among the patients, and stopping or continuation of the trial.

APPENDIX A: PROOF OF PROPOSITION 1

Assume there exist m1 ∈ M,w1(t) ∈ D and β1 ∈ R
dβ , such that

m1
{
wT

1 (t)Z
}+ βT

1 X = m0
{
wT

0 (t)Z
}+ βT

0 X,(9)

where m0,w0(t) and β0 are the true parameter values. Taking derivative with re-
spect to Z and t on both sides of the equation, we obtain

m′
1
{
wT

1 (t)Z
}
w1(t) = m′

0
{
wT

0 (t)Z
}
w0(t),

(10)
m′

1
{
wT

1 (t)Z
}
w′

1(t)
TZ = m′

0
{
wT

0 (t)Z
}
w′

0(t)
TZ.

Because m1,m0 are one-to-one, m′
1{wT

1 (t)Z} = m′
0{wT

0 (t)Z} = 0 can hold only
for a set of discrete set of wT

1 (t)Z and wT
0 (t)Z values, hence a discrete set

of t values. Thus due to the continuity of m′
1,m

′
0,w1 and w0, (10) implies

w′
1(t)

TZ/w1j (t) = w′
0(t)

TZ/w0j (t) for all j = 1, . . . , dw , all Z and all t ∈ [0, τ ].
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Thus w′
1(t)

TE(Z⊗2)/w1j (t) = w′
0(t)

TE(Z⊗2)/w0j (t). Furthermore, E(Z⊗2)

is positive definite, and in turn it is invertible and leads to w′
1(t)/w1j (t) =

w′
0(t)/w0j (t). In particular, we have w′

1j (t)/w1j (t) = w′
0j (t)/w0j (t) for all

j = 1, . . . , dw . This gives w1j (t) = w0j (t)cj for some constant cj , or equivalently,
w1(t) = Cw0(t) where C is a diagonal matrix with cj ’s on the diagonal. Taking
derivative with respect to t , we further have w′

1(t) = Cw′
0(t). Dividing w1j (t) on

both sides, we have w′
1(t)/w1j (t) = (C/cj )w′

0(t)/w0j (t). Therefore, C/cj is the
identity matrix. In other words, cj , j = 1, . . . , dw are identical. Since ‖w1(t)‖1 =
‖w0(t)‖1 = 1 and w1(t), w0(t) are positive, this further implies w1(t) = w0(t).
Therefore, (10) reduces to m′

1{wT
0 (t)Z} − m′

0{wT
0 (t)Z} = 0. This further implies

m1{wT
0 (t)Z} = m0{wT

0 (t)Z}+C1 for a constant C1. Because m1(0) = m0(0) = c0,
C1 = 0, that is, m1 = m0. Model (9) now leads to βT

1 X = βT
0 X. The equality holds

for any X, which implies βT
1E(X⊗2) = βT

0E(X⊗2). Since E(X⊗2) is positive def-
inite, and in turn is invertible, we have β1 = β0. Therefore, we have β1 = β0,
w1(t) = w0(t) and m1 = m0, and hence the problem is identifiable.

APPENDIX B: NOTATION IN ESTIMATION STEP

Notation in step 1. We define an Mi × dλ matrix

Q̃λi

{
w(Ti )

}=
⎡⎢⎣ Br1

{
w(Ti1)

TZi1
}

. . . Brdλ

{
w(Ti1)

TZi1
}

...
...

...

Br1
{
w(TiMi

)TZiMi

}
. . . Brdλ

{
w(TiMi

)TZiMi

}
⎤⎥⎦ ,

and define Q̃λi{w(t0)} to be the same as Q̃λi{w(Ti )}, except we replace Tik, k =
1, . . . ,Mi with t0. Here and throughout the text, replacing Ti by t0 means that we
replace Tik = t0 for each k, k =,1, . . . ,Mi . Let

Vn = n−1
n∑

i=1

[
Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
�−1

i

× �i

{
β0,m0,w0(Ti )

}
Q̃λi

{
w0(Ti )

}]
,

V = E
([

Q̃λi

{
w0(Ti )

}T
�i

{
β0,m0,w0(Ti )

}
�−1

i

× �i

{
β0,m0,w0(Ti )

}
Q̃λi

{
w0(Ti )

}])
.

Notation in step 2. We define Ŝwik{β0, λ̂(β0,w),w(t0)} as[
Qwik

{
λ̂(β0,w),w(t0)

}+ Qλik

{
w(t0)

}T
{
∂λ̂(β0,w)

∂w

}]
× [

Dik − Hik

{
β0, λ̂(β0,w),w(t0)

}]
,

and Ŝwi{β0, λ̂(β0,w),w(t0)} = [̂Swik{β0, λ̂(β0,w),w(t0)}T, k = 1, . . . ,Mi]T.
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We now define a functional from D to R
dw , so that this functional evalu-

ated at wh is Qwik{λ̂(β0,w),w(t0)}Twh(t0). For notational brevity, we still use
Qwik{λ̂(β0,w),w(t0)} to denote this functional, that is,

Qwik

{
λ̂(β0,w),w(t0)

}
(wh) ≡ Qwik

{
λ̂(β0,w),w(t0)

}Twh(t0).

Let Âwi{β0, λ̂(β0,w),w(t0)} be a dw × dwMi matrix, with the kth size dw × dw

column block Âwik{β0, λ̂(β0,w),w(t0)} being[
Qwik

{
λ̂(β0,w),w(t0)

}+ Qλik

{
w(t0)

}T
{
∂λ̂(β0,w)

∂w

}]⊗2

× �ik

{
β0, λ̂(β0,w),w(t0)

}
.

Let V̂wi{β0, λ̂(β0,w),w(t0)} be a dwMi × dwMi matrix with the (p, q)th block
V̂wipq{β0, λ̂(β0,w),w(t0)} being[

Qwip

{
λ̂(β0,w),w(t0)

}+ Qλip

{
w(t0)

}T
{
∂λ̂(β0,w)

∂w

}]

×
[
Qwiq

{
λ̂(β0,w),w(t0)

}+ Qλiq

{
w(t0)

}T
{
∂λ̂(β0,w)

∂w

}]T

�ipq,

where �ipq is the (p, q)th element of the working covariance matrix �i .
We further define the population level quantities Swik{β0,m0,w0(t0)} to be[

Zikm
′
0
{
w0(t0)

TZik

}− η
{
w0(t0)

TZik

}][
Dik − Hik

{
β0,m0,w0(t0)

}]
and Swi{β0,m0,w0(t0)} = [Swik{β0,m0,w0(t0)}T, k = 1, . . . ,Mi]T. Let Awi{β0,

m0,w0(t0)} be a dw × dwMi matrix, with the kth column block Awik{β0,m0,

w0(t0)} being a dw × dw matrix[
Zikm

′
0
{
w0(t0)

TZik

}− η
{
w0(t0)

TZik

}]⊗2
�ik

{
β0,m0,w0(t0)

}
.

Let Vwi{β0,m0,w0(t0)} be a dwMi × dwMi matrix with the (p, q)th block
Vwipq{β0,m0,w0(t0)} being[

Zipm′
0
{
w0(t0)

TZip

}− η
{
w0(t0)

TZip

}]
× [

Ziqm
′
0
{
w0(t0)

TZiq

}− η
{
w0(t0)

TZiq

}]T
�ipq .

Let V∗
wi{β0,m0,w0(t0)} be a dwMi × dwMi matrix. The (p, q)th block is ob-

tained by replacing �ipq in Vwipq{β0,m0,w0(t0)} with[
E(DipDiq) − Hip

{
β0,m0,w0(t0)

}
Hiq

{
β0,m0,w0(t0)

}]
.

Here η is an operator that maps functions in C1([0, τ ]) to functionals from D
to R

dw . Specifically, η minimizes

sup
wh∈D

∥∥E([Q̃wi

{
m0,wh(Ti )

}− η
{
Ui(Ti )

}
(wh)

]T
�i

{
β0,m0,w0(Ti )

}
× �−1

i �i

{
β0,m0,w0(Ti )

}[
Q̃wi

{
m0,wh(Ti )

}− η
{
Ui(Ti )

}
(wh)

])∥∥
2,
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where

Q̃wi

{
m0,wh(Ti )

}= [
m′

0
{
w0(Ti1)

TZi1
}
wh(Ti1)

TZi1, . . . ,

m′
0
{
w0(TiMi

)TZiMi

}
wh(TiMi

)TZiMi

]T
and η{Ui (Ti )}(wh) = [η{w(Tik)

TZik}(wh), k = 1, . . . ,Mi]T are Mi vectors. We
can also write

η
(
w0(Tik)

TZik

)= E
[
Zikm

′
0
{
w0(Tik)

TZik

}|w0(Tik)
TZik

]
.

Further, we define Q̃wi{λ̂{β̂, ŵ(β̂)}, ·} as a Mi × dw matrix, with row j as
B′

r{ŵ(β̂, Tik)
TZik}λ̂{β̂, ŵ(β̂)}ZT

ik . In the estimation, we use the asymptotic form
in Lemma 4 in the supplementary article in place of ∂λ̂(β0,w)/∂w for computa-
tion.

Notation in step 3. We define

Ŝβik

[
β, λ̂

{
β, ŵ(β, Tik)

}
, ŵ(β)

]
=
(

Qβik +
[
∂λ̂{β, ŵ(β)}

∂βT + ∂λ̂{β, ŵ(β)}
ŵ(β)

∂ŵ(β)

∂βT

]T

Qλik

{
ŵ(β, Tik)

}
+
{
∂ŵ(β, Tik)

∂βT

}T

Qwik

[̂
λ
{
β, ŵ(β)

}
, ŵ(β, Tik)

])
× (

Dik − Hik

[
β, λ̂

{
β, ŵ(β)

}
, ŵ(β, Tik)

])
,

and Ŝβi[β, λ̂{β, ŵ(β)}, ŵ(β,Ti)] = (Ŝβik[β, λ̂{β, ŵ(β, Tik)}T, ŵ(β)], k = 1, . . . ,

Mi)
T. Let Âβi[β, λ̂{β, ŵ(β,Ti)}, ŵ(β)] be a dβ × dβMi matrix with the kth size

dβ × dβ column block Âβik[β, λ̂{β, ŵ(β)}, ŵ(β, Tik)] being(
Qβik +

[
∂λ̂{β, ŵ(β)}

∂βT + ∂λ̂{β, ŵ(β)}
ŵ(β)

∂ŵ(β)

∂βT

]T

Qλik

{
ŵ(β, Tik)

}
+
{
∂ŵ(β, Tik)

∂βT

}T

Qwik

[̂
λ
{
β, ŵ(β)

}
, ŵ(β, Tik)

])⊗2

× �i

[
β, λ̂

{
β, ŵ(β)

}
, ŵ(β, Tik)

]
.

Let V̂βi[β, λ̂{β, ŵ(β)}, ŵ(β,Ti)]−1 be a dβMi × dβMi matrix with the (p, q)th
block V̂βip[β, λ̂{β, ŵ(β)}, ŵ(β, Tip)] being(

Qβip +
[
∂λ̂{β, ŵ(β)}

∂βT + ∂λ̂{β, ŵ(β)}
ŵ(β)

∂ŵ(β)

∂βT

]T

Qλip

{
ŵ(β, Tip)

}
+
{
∂ŵ(β, Tip)

∂βT

}T

Qwip

[̂
λ
{
β, ŵ(β)

}
, ŵ(β, Tip)

])
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×
(

Qβiq +
[
∂λ̂{β, ŵ(β)}

∂βT + ∂λ̂{β, ŵ(β)}
ŵ(β)

∂ŵ(β)

∂βT

]T

Qλiq

{
ŵ(β, Tiq)

}
+
{
∂ŵ(β, Tiq)

∂βT

}T

Qwiq

[̂
λ
{
β, ŵ(β)

}
, ŵ(β, Tiq)

])T

× �ipq .

Additionally, let δu ∈ Cq([0,1]), and we define δ{w(Tik)
TZik} = [δu{w(Tik)

TZik},
u = 1, . . . , dβ] ∈ Rdβ which minimizes

1T
dβ

E
([

Q̃βi − δ
{
Ui (Ti )

}]T
�i

{
β0,m0,w0(Ti )

}
�−1

i �i

{
β0,m0,w0(Ti )

}
× [

Q̃βi − δ
{
Ui(Ti )

}])
1dβ ,

where Q̃βi = (Xi1, . . . ,XiMi
)T is a Mi ×dβ matrix, and δ{Ui (Ti )} = [δ{w(Tik)

T ×
Zik}, k = 1, . . . ,Mi]T is a Mi × dβ matrix. We can also write δ{w0(Tik)

TZik} as
E{X|w0(Tik)

TZik}. Further, we define

B(t0) = E
(
Awi

{
β0,m0,w0(t0)

}
Vwi

{
β0,m0,w0(t0)

}−1

× [
Qwi

{
m0,w0(t0)

}− η
{
Ui (t0)

}]
× �∗

i

{
β0,m0,w0(t0)

}
Q∗

wi

{
m0,w0(t0)

})
,

where �∗
i {β0,m0,w(t0)} is a dwMi × dwMi diagonal matrix with the kth diag-

onal block being a dw × dw diagonal with the element �ik{β0,m0,w(t0)}, and
Qwi{m0,w(t0)} is a dwMi × dwMi diagonal matrix with the kth diagonal block
being diag[Zikm

′
0{w(t0)

TZik}]. Moreover Q∗
wi{m0,w(t0)} is a dwMi × dw ma-

trix with the kth row block being a dw × dw matrix with dw replications of
ZT

ikm
′
0{w(t0)

TZik}, and η{Ui (t0)} = [η{w(t0)Zi1}T, . . . , η{w(t0)ZiMi
}T]T. Also let

B(Ti ) be the dwMi ×dwMi block diagonal matrix with the kth block as B(Tik) and
fT(Ti ) be the dwMi × dwMi block diagonal matrix with the kth block as fT (Tik).

Let γu ∈ Cq([0,1]), and we define γ {w(Tik)
TZik} = [γu{w(Tik)

TZik}, u =
1, . . . , dβ] ∈ Rdβ , which minimize

1T
βE

[{
Q̃wi

(
m0,B(Ti)

−1E

[
Awj

{
β0,m0,w0(Ti )

}
Vwj

{
β0,m0,w0(Ti )

}−1

× ∂Swj {β0,m0,w0(Ti )}
∂βT

∣∣∣Oi

])

− γ
{
Ui(Ti )

}}T

× �i

{
β0,m0,w0(Ti )

}
�−1

i �i

{
β0,m0,w0(Ti )

}
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×
{

Q̃wi

(
m0,B(Ti)

−1E

[
Awj

{
β0,m0,w0(Ti )

}
Vwj

{
β0,m0,w0(Ti )

}−1

× ∂Swj {β0,m0,w0(Ti )}
∂βT

∣∣∣Oi

])
− γ

{
Ui (Ti )

}}]
1β,

where γ {Ui(Ti )} = [γ {w(Tik)
TZik}, k = 1, . . . ,Mi]T is a Mi × dβ , and

Q̃wi

(
m0,B(Ti )

−1E

[
Awj

{
β0,m0,w0(Ti )

}
Vwj

{
β0,m0,w0(Ti )

}−1

× ∂Swj {β0,m0,w0(Ti )}
∂βT

∣∣∣Oi

])
is a Mi × β matrix with kth row as(

B(Tik)
−1E

[
Awj

{
β0,m0,w0(Tik)

}
Vwj

{
β0,m0,w0(Tik)

}−1

× ∂Swj {β0,m0,w0(Tik)}
∂βT

∣∣∣Oi

])T

× Zikm
′
0
{
w0(Tik)

TZik

}
.

We can also write

γ
(
w0(Tik)

TZik

)
= E

{(
B(Tik)

−1E

[
Awj

{
β0,m0,w0(Tik)

}
Vwj

{
β0,m0,w0(Tik)

}−1

× ∂Swj {β0,m0,w0(Tik)}
∂βT

∣∣∣Oi

])T

Zik

× m′
0
{
w0(Tik)

TZik

}|w0(Tik)
TZik

}
.

We also define the population forms Sβik{β0,m0,w0(Tik)} as{
Qβik − δ

{
w0(Tik)

TZik

}
−
(

B(Tik)
−1E

[
Awj

{
β0,m0,w0(Tik)

}
× Vwj

{
β0,m0,w0(Tik)

}−1 ∂Swj {β0,m0,w0(Tik)}
∂βT

∣∣∣Oi

])T

Zik

× m′
0
{
w0(Tik)

TZik

}+ γ
{
w0(Tik)

TZik

}}
× [

Dik − Hik

{
β0,m0,w0(Tik)

}]
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and Sβi{β0,m0,w0(Ti )} = [Sβik{β0,m0,w0(Tik)}T, k = 1, . . . ,Mi]T. Let
Aβi{β0,m0,w0(Ti )} be a dβ ×dβMi be the matrix with the kth block Aβik{β0,m0,

w0(Tik)} being a dβ × dβ matrix{
Qβik − δ

{
w0(Tik)

TZik

}
−
(

B(Tik)
−1E

[
Awj

{
β0,m0,w0(Tik)

}
× Vwj

{
β0,m0,w0(Tik)

}−1

× ∂Swj {β0,m0,w0(Tik)}
∂βT

∣∣∣Oi

])T

Zik

× m′
0
{
w0(Tik)

TZik

}+ γ
{
w0(Tik)

TZik

}}⊗2

× �ik

[
β0,m0,w0(Tik)

]
.

Let Vβi{β0,m0,w0(Ti )} be a dβMi ×dβMi with the (p, q)th block Vβipq{β0,m0,

w0(Tip)} being{
Qβip − δ

{
w0(Tip)TZip

}
−
(

B(Tip)−1E

[
Awj

{
β0,m0,w0(Tip)

}
× Vwj

{
β0,m0,w0(Tip)

}−1

× ∂Swj {β0,m0,w0(Tip)}
∂βT

∣∣∣Oi

])T

Zip

× m′
0
{
w0(Tip)TZip

}}
+ γ

{
w0(Tip)TZip

}{
Qβiq − δ

{
w0(Tiq)

TZiq

}
−
(

B(Tiq)
−1E

[
Awj

{
β0,m0,w0(Tiq)

}
× Vwj

{
β0,m0,w0(Tiq)

}−1

× ∂Swj {β0,m0,w0(Tiq)}
∂βT

∣∣∣Oi

])T

× Ziqm
′
0
{
w0(Tiq)

TZiq

}+ γ
{
w0(Tiq)

TZiq

}}T

�ipq .
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Let V∗
βi{β0,m0,w0(Ti )} be a dβMi ×dβMi matrix. The (p, q)th block is obtained

by replacing �ipq in Vβi{β0,m0,w0(Ti )} with[
E(DipDiq) − Hip

{
β0,m0,w(Tip)

}
Hiq

{
β0,m0,w(Tiq)

}]
.
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SUPPLEMENTARY MATERIAL

Supplement to “Fused kernel-spline smoothing for repeatedly measured
outcomes in a generalized partially linear model with functional single index”
(DOI: 10.1214/15-AOS1330SUPP; .pdf). We provide the comprehensive proofs of
Theorems 1, 2 and 3 and additional lemmas which support the results.
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