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BANDWIDTH SELECTION IN KERNEL EMPIRICAL RISK
MINIMIZATION VIA THE GRADIENT

BY MICHAËL CHICHIGNOUD1 AND SÉBASTIEN LOUSTAU

ETH Zürich and University of Angers

In this paper, we deal with the data-driven selection of multidimensional
and possibly anisotropic bandwidths in the general framework of kernel em-
pirical risk minimization. We propose a universal selection rule, which leads
to optimal adaptive results in a large variety of statistical models such as
nonparametric robust regression and statistical learning with errors in vari-
ables. These results are stated in the context of smooth loss functions, where
the gradient of the risk appears as a good criterion to measure the perfor-
mance of our estimators. The selection rule consists of a comparison of
gradient empirical risks. It can be viewed as a nontrivial improvement of
the so-called Goldenshluger–Lepski method to nonlinear estimators. Further-
more, one main advantage of our selection rule is the nondependency on the
Hessian matrix of the risk, usually involved in standard adaptive procedures.

1. Introduction. We consider the minimization problem of an unknown risk
function R :Rm → R, where m ≥ 1 is the dimension of the statistical model. We
assume the existence of a risk minimizer

θ� ∈ arg min
θ∈Rm

R(θ),(1.1)

where the risk function corresponds to the expectation of an appropriate loss func-
tion w.r.t. an unknown distribution. In empirical risk minimization, this quantity
is usually estimated by its empirical version from an i.i.d. sample. However, in
many problems such as local M-estimation or errors-in-variables models, a nui-
sance parameter can be involved in the empirical version. This parameter most
often coincides with some bandwidth related to a kernel that gives rise to “kernel
empirical risk minimization.” One typically deals with this issue in pointwise esti-
mation, as, for example, in Polzehl and Spokoiny [41] with localized likelihoods or
in Chichignoud and Lederer [9] with local M-estimators. In learning theory, many
authors have recently investigated supervised and unsupervised learning with er-
rors in variables. As a rule, such matters require one to plug deconvolution kernels
into the empirical risk, as Loustau and Marteau [32] in noisy discriminant analysis
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or Hall and Lahiri [17] in quantile and moment estimation; see also Dattner, Reiss
and Trabs [12].

In the above papers, the authors studied the theoretical properties of kernel em-
pirical risk minimizers and proposed deterministic choices of bandwidths to de-
duce optimal minimax results. As usual, these optimal bandwidths are related to
the smoothness of the target function or the underlying density and are not achiev-
able in practice. Adaptivity is therefore one of the biggest challenges. In this re-
spect, data-driven bandwidth selections have been already proposed in [9, 10, 12,
41], which are all based on Lepski-type procedures.

Lepski-type procedures are rather appropriate to construct data-driven band-
widths involved in kernels; for further details, see, for example, [21, 28, 29].
It is well known that they suffer from the restriction to isotropic bandwidths
with multidimensional data, which is the consideration of nested neighborhoods
(hyper-cube). Many improvements were made by Kerkyacharian, Lepski and Pi-
card [24] and more recently by Goldenshluger and Lepski [15] to select anisotropic
bandwidths (hyper-rectangle). Nevertheless, their approach still does not provide
anisotropic bandwidth selection for nonlinear estimators, which is the scope of this
paper. The only work we can mention is [9] in a restrictive case, which is point-
wise estimation in nonparametric regression. Therefore, the study of data-driven
selection of anisotropic bandwidths is still an open issue. Moreover, this field is of
great interest in practice, especially in image denoising; see, for example, [2, 22].

The main contribution of our paper is to bring new insights to the problem of
bandwidth selection in kernel empirical risk minimization in a possible anisotropic
framework. To this end, we first introduce a new criterion called gradient excess
risk, which makes the anisotropic bandwidth selection possible. We then provide a
novel data-driven selection based on the comparison of “Gradient empirical risks.”
That can be viewed as an extension of the so-called Goldenshluger–Lepski method
(GL method; see [15]) and of the empirical risk comparison method (ERC method;
see [10]). Eventually, we derive an upper bound for the gradient excess risk (called
gradient inequality) and optimal results in many settings, such as pointwise and
global estimation in nonparametric regression and clustering with errors in vari-
ables.

Note that we consider the risk minimization over the finite dimensional set Rm.
In statistical learning or nonparametric estimation, one usually aims at estimating
a functional object belonging to some Hilbert space. However, in many examples,
the target function can be approximated by a finite object, thanks, for instance, to a
suitable decomposition in a basis of the Hilbert space. This is typically the case in
local M-estimation, where the target function is assumed to be locally polynomial
(and even constant in many cases). Moreover, in statistical learning, one is often
interested in the estimation of a finite number of parameters, as in clustering. The
extension to the infinite-dimensional case is discussed in Section 5.

The structure of this paper is as follows: the main ideas behind the gradient ex-
cess risk are introduced in the remainder of this section. An upper bound for the
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gradient excess risk of the data-driven procedure is presented in Section 2. This
procedure is applied to clustering in Section 3 and to robust nonparametric regres-
sion in Section 4. Additionally, a discussion of our assumptions and an outlook
are given in Section 5, and Section 6 illustrates the behavior of the method with
numerical results. The proofs are finally conducted in the Appendix.

1.1. The gradient excess risk approach. In the literature, such as in statistical
learning, the excess risk R(θ̂) − R(θ�) is the main criterion to measure the perfor-
mance of some estimator θ̂ . Originally, Vapnik and Chervonenkis [46] proposed
to control this quantity via the empirical process theory, which gives rise to slow
rates O(n−1/2) for the excess risk; see also [45]. In the last decade, many authors
have improved such a bound by giving fast rates O(n−1) using the so-called local-
ization technique; see [4, 26, 34, 36, 37, 43] and Boucheron, Bousquet and Lugosi
[5] for an overview in classification. This technique consists of studying the incre-
ments of an empirical process in the neighborhood of the target θ�. In particular, it
requires a variance-risk correspondence, equivalent to the eminent margin assump-
tion. As far as we know, this complicated modus operandi is the major obstacle to
the anisotropic bandwidth selection issue. In what follows, we introduce an alter-
native criterion to solve this issue, namely the gradient excess risk (G-excess risk,
for short, in the sequel). This quantity is defined as∣∣G(θ̂ , θ�)∣∣

2 := ∣∣G(θ̂) − G
(
θ�)∣∣

2 where G := ∇R,(1.2)

whereas | · |2 denotes the Euclidean norm on Rm and ∇R :Rm → Rm denotes the
gradient of the risk R. With a slight abuse of notation, G denotes the gradient,
whereas G(·, θ�) denotes the G-excess risk. Under regularity assumptions on R(·),
the G-excess risk is linked with the excess risk, thanks to the following lemma.

LEMMA 1. Let θ�, defined as in (1.1), and U be the Euclidean ball of Rm

centered at θ�, with radius δ > 0. Assume θ �→ R(θ) is C2(U), each second partial
derivative of R is bounded on U by a constant κ1 and the Hessian matrix HR(·) is
positive definite at θ�. Then, for δ > 0 small enough, we have√

R(θ) − R
(
θ�
)≤ 2

√
mκ1

λmin

∣∣G(θ, θ�)∣∣
2 ∀θ ∈ U,

where λmin is the smallest eigenvalue of HR(θ�).

The proof is based on the inverse function theorem and a Taylor expansion of the
function R(·). Let us explain how this lemma, together with standard probabilistic
tools, leads to fast rates for the excess risk. In this section, R̂ denotes the usual
empirical risk with associated gradient Ĝ := ∇R̂ and associated ERM θ̂ for ease
of exposition. Under the assumptions of Lemma 1, G(θ�) = Ĝ(θ̂) = (0, . . . ,0)
,
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and we have the following heuristic:√
R(θ̂) − R

(
θ�
)
�
∣∣G(θ̂ , θ�)∣∣

2 = ∣∣G(θ̂) − Ĝ(θ̂)
∣∣
2

(1.3)
≤ sup

θ∈Rm

∣∣G(θ) − Ĝ(θ)
∣∣
2 � n−1/2,

where � denotes the inequality up to some positive constant. The last bound only
requires a concentration inequality applied to the empirical process Ĝ(·) − G(·).
Therefore, this heuristic provides fast rates for the excess risk without any local-
ization technique. Furthermore, similar bounds can be obtained for the �2-norm
|θ̂ − θ�|2 using the same path. Indeed, under the same assumptions, the assertion
of Lemma 1 holds, replacing the square root of the excess risk by |θ̂ − θ�|2 (see
the proof of Lemma 1), and then optimal rates are deduced.

From the model selection point of view, standard penalization techniques—
based on localization—suffer from the dependency on parameters involved in the
margin assumption. More precisely, in the strong margin assumption framework,
the construction of the penalty requires the knowledge of λmin, related to the Hes-
sian matrix of the risk. Although many authors have recently investigated the adap-
tivity w.r.t. these parameters, by proposing “margin-adaptive” procedures (see [41]
for the propagation method, [27] for aggregation and [3] for the slope heuristic),
the theory is not completed and remains a hard issue; see the related discussion
in Section 5. As an alternative, our data-driven procedure does not suffer from the
dependency on λmin since we focus on a gradient inequality in Section 2.

1.2. Kernel empirical risk minimization. In this section, the kernel empir-
ical risk minimization is properly defined and illustrated with two examples:
local M-estimators and deconvolution k-means. For some p ∈ N�, consider a
Rp-random variable Z distributed according to P , absolutely continuous w.r.t. the
Lebesgue measure. In what follows, we observe a sample Zn := {Z1, . . . ,Zn} of
independent and identically distributed (i.i.d.) random variables according to P .
Moreover, we call a kernel of order r ∈ N� a symmetric function K :Rd → R,
d ≥ 1, which satisfies the following properties:

• ∫Rd K(x) dx = 1,
• ∫Rd K(x)xk

j dx = 0 ∀k ≤ r,∀j ∈ {1, . . . , d},
• ∫Rd |K(x)||xj |r dx < ∞, ∀j ∈ {1, . . . , d}.
For any h ∈ H ⊂ Rd+, the dilation Kh is defined as

Kh(x) = �−1
h K(x1/h1, . . . , xd/hd) ∀x ∈Rd,

where �h :=∏d
j=1 hj . For a given kernel K , we define the kernel empirical risk

indexed by an anisotropic bandwidth h ∈ H ⊂ (0,1]d as

R̂h(θ) := 1

n

n∑
i=1

�Kh
(Zi, θ),(1.4)
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and an associated kernel empirical risk minimizer (kernel ERM) as

θ̂h ∈ arg min
θ∈Rm

R̂h(θ).(1.5)

The function �Kh
:Rp × Rm → R+ is a loss function associated to a kernel Kh

such that θ �→ �Kh
(Z, θ) is twice differentiable P -almost surely and such that the

limit of its expectation coincides with the risk, that is,

lim
h→(0,...,0)

ER̂h(θ) = R(θ) ∀θ ∈Rm,(1.6)

where E denotes the expectation w.r.t. the distribution of the sample Zn.
The agenda is the data-driven selection of the “best” estimator in the family

{θ̂h, h ∈ H}. This issue arises in many examples, such as local fitted likelihood
(Polzehl and Spokoiny [41]), image denoising (Astola et al. [22]) and robust non-
parametric regression; see Chichignoud and Lederer [9]. In such a framework, we
observe a sample of i.i.d. pairs Zi = (Wi, Yi)

n
i=1, and the kernel empirical risk has

the following general form:

1

n

n∑
i=1

�Kh
(Zi, θ) = 1

n

n∑
i=1

ρ(Zi, θ)Kh(Wi − x0),

where ρ(·, ·) is some likelihood and x0 ∈ Rd . Another example arises when we
observe a contaminated sample Zi = Xi + εi , i = 1, . . . , n in the problem of clus-
tering. In this case, the kernel empirical risk is defined according to

1

n

n∑
i=1

�Kh
(Zi, c) = 1

n

n∑
i=1

∫
Rd

min
j=1,...,k

|x − cj |22K̃h(Zi − x)dx,

where K̃h(·) is a deconvolution kernel and c = (c1, . . . , ck) ∈ Rdk is a codebook.
In the next section, we present the bandwidth selection rule in the general con-

text of kernel empirical risk minimization. We especially deal with clustering with
errors in variables and robust nonparametric regression in Sections 3 and 4, re-
spectively.

2. Selection rule and gradient inequality. The anisotropic bandwidth se-
lection issue has been recently investigated in Goldenshluger and Lepski [15]
(GL method) in density estimation; see also [11] for deconvolution estimation and
[13, 14] for the white noise model. This method, based on the comparison of esti-
mators, requires some “linearity” property, which is trivially satisfied by kernel es-
timators. However, kernel ERMs are usually nonlinear (except for the least square
estimator), and the GL method cannot be directly applied to such estimators.

To tackle this issue, we introduce a new selection rule based on the comparison
of gradient empirical risks instead of estimators (i.e., kernel ERM). To that end,
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we first introduce some notations. For any h ∈ H and any θ ∈ Rm, the gradient
empirical risk (G-empirical risk) is defined as

Ĝh(θ) := 1

n

n∑
i=1

∇�Kh
(Zi, θ) =

(
1

n

n∑
i=1

∂

∂θj

�Kh
(Zi, θ)

)
j=1,...,m

.(2.1)

Note that we have coarsely Ĝh(θ̂h) = (0, . . . ,0)
 since �Kh
(Zi, ·) is twice dif-

ferentiable almost surely. According to (1.6), we also notice that the limit of the
expectation of the G-empirical risk coincides with the gradient of the risk.

Following Goldenshluger and Lepski [15], we introduce an auxiliary G-empiri-
cal risk in the comparison. For any couple of bandwidths (h, η) ∈ H2 and any
θ ∈ Rm, the auxiliary G-empirical risk is defined as

Ĝh,η(θ) := 1

n

n∑
i=1

∇�Kh∗Kη(Zi, θ),(2.2)

where Kh ∗ Kη(·) := ∫Rd Kh(· − x)Kη(x) dx stands for the convolution between
Kh and Kη. The gradient inequality stated in Theorem 1 is based on the control of
some random processes as follows.

DEFINITION 1 (Majorant). For any integer l > 0, we call majorant a function
Ml :H2 →R+ such that

P
(

sup
λ,η∈H

{|Ĝλ,η −EĜλ,η|2,∞ + |Ĝη −EĜη|2,∞ −Ml(λ, η)
}
+ > 0

)
≤ n−l ,

where |T |2,∞ := supθ∈Rm |T (θ)|2 for all T :Rm → Rm with | · |2 the Euclidean
norm on Rm, and E is understood coordinatewise.

The main issue for applications is to compute right order majorants. It follows
from classical tools such as Talagrand’s inequalities (Talagrand [42], Boucheron,
Lugosi and Massart [6], Bousquet [7]; see also [16]). In Sections 3 and 4 such
majorant functions are computed in clustering and in robust nonparametric regres-
sion.

We are now ready to define the selection rule as

ĥ ∈ arg min
h∈H

B̂V(h),(2.3)

where B̂V(h) is an estimate of the bias–variance decomposition at a given band-
width h ∈ H. It is explicitly defined as

B̂V(h) := sup
η∈H
{|Ĝh,η − Ĝη|2,∞ −Ml(h, η)

}+M∞
l (h)

with M∞
l (h) := sup

λ∈H
Ml(λ, h).

The kernel ERM θ̂ĥ, defined in (1.5), with bandwidth ĥ, selected in (2.3), satisfies
the following bound.
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THEOREM 1 (Gradient inequality). For any n ∈ N� and for any l ∈ N�, we
have with probability 1 − n−l ,∣∣G(θ̂ĥ, θ

�)∣∣
2 ≤ 3 inf

h∈H
{
B(h) +M∞

l (h)
}
,

where B :H →R+ is a bias function defined as

B(h) := max
(
|EĜh − G|2,∞, sup

η∈H
|EĜh,η −EĜη|2,∞

)
∀h ∈H.(2.4)

Theorem 1 is the main result of this paper. The G-excess risk of the data-driven
estimator θ̂ĥ is bounded with high probability. The RHS in the gradient inequal-
ity can be viewed as the minimization of a usual bias–variance trade-off. Indeed,
the bias term B(h) is deterministic and tends to 0 as h → (0, . . . ,0). The majo-
rant M∞

l (h) upper bounds the stochastic part of the G-empirical risk and can be
viewed as a variance term.

The gradient inequality of Theorem 1 is sufficient to establish adaptive fast rates
in noisy clustering and adaptive minimax rates in nonparametric estimation; see
Sections 3 and 4. Moreover, the construction of the selection rule (2.3), as well as
the upper bound in Theorem 1, does not suffer from the dependency on λmin related
to the smallest eigenvalue of the Hessian matrix of the risk; see Lemma 1. In other
words, the method is robust w.r.t. this parameter, which is a major improvement in
comparison with other adaptive or model selection methods of the literature cited
in the Introduction.

PROOF OF THEOREM 1. For some h ∈H, we start with the following decom-
position:∣∣G(θ̂ĥ, θ

�)∣∣
2 = ∣∣(Ĝĥ − G)(θ̂ĥ)

∣∣
2 ≤ |Ĝĥ − G|2,∞

(2.5)
≤ |Ĝĥ − Ĝĥ,h|2,∞ + |Ĝĥ,h − Ĝh|2,∞ + |Ĝh − G|2,∞.

By definition of ĥ in (2.3), the first two terms in the RHS of (2.5) are bounded as
follows:

|Ĝĥ − Ĝĥ,h|2,∞ + |Ĝĥ,h − Ĝh|2,∞
= |Ĝh,ĥ − Ĝĥ|2,∞ −M�(h, ĥ) +M�(h, ĥ)

+ |Ĝĥ,h − Ĝh|2,∞ −M�(ĥ, h) +M�(ĥ, h)
(2.6)

≤ sup
η∈H
{|Ĝh,η − Ĝη|2,∞ −M�(h, η)

}+M∞
� (h)

+ sup
η∈H
{|Ĝĥ,η − Ĝη|2,∞ −M�(ĥ, η)

}+M∞
� (ĥ)

= B̂V(h) + B̂V(ĥ) ≤ 2B̂V(h).
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Besides, the last term in (2.5) is controlled as follows:

|Ĝh − G|2,∞ ≤ |Ĝh −EĜh|2,∞ + |EĜh − G|2,∞
≤ |Ĝh −EĜh|2,∞ −Ml(λ, h) +Ml(λ, h) + |EĜh − G|2,∞
≤ sup

λ,η

{|Ĝλ,η −EĜλ,η|2,∞ + |Ĝη −EĜη|2,∞ −Ml(λ, η)
}

+M∞
l (h) + |EĜh − G|2,∞

=: ζ +M∞
l (h) + |EĜh − G|2,∞.

Using (2.5) and (2.6), together with the last inequality, we have for all h ∈ H,∣∣G(θ̂ĥ, θ
�)∣∣

2 ≤ 2B̂V(h) + ζ +M∞
l (h) + |EĜh − G|2,∞.(2.7)

It then remains to control the term B̂V(h). We have

B̂V(h) −M∞
l (h)

≤ sup
λ,η

{|Ĝλ,η −EĜλ,η|2,∞ + |Ĝη −EĜη|2,∞ −Ml(λ, η)
}

+ sup
η

|EĜh,η −EĜη|2,∞

= ζ + sup
η

|EĜh,η −EĜη|2,∞.

The gradient inequality follows directly from (2.7), Definition 1 and the definition
of ζ . �

3. Application to noisy clustering. Let us consider an integer k ≥ 1 and
a Rd -random variable X with law P with density f w.r.t. the Lebesgue mea-
sure on Rd satisfying EP |X|22 < ∞, where | · |2 stands for the Euclidean norm
in Rd . Moreover, we restrict the study to the compact set [0,1]d , assuming that
X ∈ [0,1]d almost surely. We want to construct k centroids minimizing some dis-
tortion,

W(c) := EP w(c,X),(3.1)

where c = (c1, . . . , ck) ∈ Rd×k is a candidate codebook of k centroids. For ease
of exposition, we study this quantization problem with the Euclidean distance, by
choosing the standard k-means loss function, namely,

w(c, x) = min
j=1,...,k

|x − cj |22, x ∈Rd .

In this section, we are interested in the inverse statistical learning context
(see [31]), which corresponds to the minimization of (3.1), thanks to a noisy set of
observations,

Zi = Xi + εi, i = 1, . . . , n,
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where (εi)
n
i=1 are i.i.d. with density g w.r.t. the Lebesgue measure on Rd and mu-

tually independent of the original sample (Xi)
n
i=1. This topic was first considered

in [8], where general oracle inequalities are proposed. Let us fix a kernel Kh of
order r ∈ N� with h ∈ H and consider K̃h a deconvolution kernel defined such that
F[K̃h] = F[Kh]/F[g], where F stands for the usual Fourier transform. As intro-
duced in Section 1.2, we have at our disposal the family of kernel ERM defined
as

ĉh ∈ arg min
c∈Rdk

Ŵh(c) where Ŵh(c) := 1

n

n∑
i=1

w(c, ·) ∗ K̃h(Zi − ·),(3.2)

where f ∗ g(·) := ∫[0,1]d f (x)g(· − x)dx stands for the convolution product (re-
stricted to the compact [0,1]d for simplicity). From an adaptive point of view,
Chichignoud and Loustau [10] have recently investigated the problem of choos-
ing the bandwidth in (3.2). They established fast rates of convergence—up to a
logarithmic term—for a data-driven selection of h, based on a comparison of ker-
nel empirical risks. However, their approach is restricted to isotropic bandwidth
selection and depends on the parameters involved in the margin assumption (in
particular on λmin in Lemma 1).

In the following, adaptive fast rates of convergence for the excess risk are ob-
tained via the gradient approach. For this purpose, we assume that the Hessian ma-
trix HW is positive definite. This assumption was considered for the first time in
Pollard [39] and is often referred as Pollard’s regularity assumptions; see also [30].
Under these assumptions, we can state the same kind of result as Lemma 1 in the
framework of clustering with k-means.

LEMMA 2. Let c� be a minimizer of (3.1), and assume f is continuous and
HW(c�) is positive definite. Let U be the Euclidean ball center at c� with radius
δ > 0. Then, for δ sufficiently small,√

W(c) −W
(
c�
)≤ C

∣∣∇W(c) − ∇W
(
c�)∣∣

2 ∀c ∈ U,

where C > 0 is a constant which depends on HW(c�), k and d .

We have at our disposal a family of kernel ERM {̂ch, h ∈ H} with associated
kernel empirical risk Ŵh(·) defined in (3.2). We propose to apply the selection
rule (2.3) to choose the bandwidth h ∈ H. In this problem as well, we first consider
the G-excess risk approach to establish adaptive fast rates of convergence for the
excess risk. For any h ∈ H, the G-empirical risk vector of Rdk is given by

∇Ŵh(c) :=
(

1

n

n∑
i=1

∂

∂cu
j

∫
[0,1]d

w(c, x)K̃h(Zi − x)dx

)
(u,j)∈{1,...,d}×{1,...,k}

=
(
−1

n

n∑
i=1

2
∫
Vj (c)

(
xu − cu

j

)
K̃h(Zi − x)dx

)
(u,j)∈{1,...,d}×{1,...,k}

,
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where xu denotes the uth coordinate of x ∈ Rd and Vj (c), j = 1, . . . , k are open
Voronoï cells associated to c, defined as Vj (c) = {x ∈ [0,1]d :∀u �= j, |x − cj |2 <

|x −cu|2}. Note that ∇Ŵh(̂ch) = (0, . . . ,0)
 a.s. by smoothness. The construction
of the rule follows the general case of Section 2, which requires the introduction
of an auxiliary G-empirical risk. For any couple of bandwidths (h, η) ∈ H2, the
auxiliary G-empirical risk is defined as

∇Ŵh,η(c) :=
(
−1

n

n∑
i=1

2
∫
Vj

(
xu−cu

j

)
K̃h,η(Zi −x)dx

)
(u,j)∈{1,...,d}×{1,...,k}

∈ Rdk,

where K̃h,η = K̃h ∗ Kη is the auxiliary deconvolution kernel as in Comte and La-
cour [11].

The statement of the oracle inequality is based on the computation of a majorant
function. For this purpose, we need the following additional assumptions on the
kernel K ∈ L2(R

d).
(K1) There exists S = (S1, . . . , Sd) ∈ Rd+ such that the kernel K satisfies

suppF[K] ⊂ [−S,S] and sup
t∈Rd

∣∣F[K](t)∣∣< ∞,

where suppg = {x :g(x) �= 0} and [−S,S] =⊗d
v=1[−Sv, Sv].

This assumption is standard in deconvolution estimation and is satisfied by
many standard kernels, such as the sinc kernel.

We also consider a kernel K of order r ∈ N�, according to the definition of
Section 1.2. Kernels of order r satisfying (K1) could be constructed by using the
so-called Meyer wavelet; see [33]. Additionally, we need an assumption on the
noise distribution g:

Noise assumption NA(ρ,β). There exist a vector β = (β1, . . . , βd) ∈
(0,∞)d and a positive constant ρ such that for all t ∈Rd ,

∣∣F[g](t)∣∣≥ ρ

d∏
j=1

( t2
j + 1

2

)−βj /2

.

NA(ρ,β) deals with a polynomial behavior of the Fourier transform of the noise
density g. An exponential decreasing of the characteristic function of g is not
considered in this paper for simplicity; see [11] in multivariate deconvolution for
such a study.

We are now ready to compute some majorant functions in our context. For some
s+ > 0, let H := [h−, h+]d be the bandwidth set such that 0 < h− < h+ < 1,

h− :=
(

log6(n)

n

)1/(2∨2
∑d

j=1 βj )

and h+ := (1/ log(n)
)1/(2s+)

.(3.3)
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LEMMA 3. Assume (K1) and NA(ρ,β) hold for some ρ > 0 and some
β ∈ Rd+. Let a ∈ (0,1), and consider Ha := {(h−, . . . , h−)} ∪ {h ∈ H :∀j =
1, . . . , d ∃mj ∈ N :hj = h+amj } an exponential net of H = [h−, h+]d , such that
|Ha| ≤ n. For any integer l > 0, let us introduce the function Mk

l :H2 → R+ de-
fined as

Mk
l (h, η) := b′

1

√
kd

(∏d
i=1 η

−βi

i√
n

+
∏d

i=1(hi ∨ ηi)
−βi

√
n

)
,

where b′
1 := b′

1(l) > 0 is linear in l and independent of n; see the Appendix for
details.

Then, for n sufficiently large, the function Mk
l (·, ·) is a majorant, that is,

P
(

sup
h,η∈Ha

{|∇Ŵh,η −E∇Ŵh,η|2,∞ + |∇Ŵη −E∇Ŵη|2,∞ −Mk
l (h, η)

}
+ > 0

)
≤ n−l ,

where E denotes the expectation w.r.t. to the sample and |T |2,∞ =
supc∈[0,1]dk |T (c)|2 for all T :Rdk →Rdk with | · |2 the Euclidean norm on Rdk .

The proof is based on a Talagrand inequality; see the Appendix. This lemma is
the cornerstone and gives the order of the variance term in such a problem.

We are now ready to define the selection rule in this setting as

ĥ ∈ arg min
h∈Ha

{
sup

η∈Ha

{|∇Ŵh,η − ∇Ŵη|2,∞ −Mk
l (h, η)

}+Mk,∞
l (h)

}
,(3.4)

where Mk,∞
l (h) := supλ∈Ha

Mk
l (λ, h) and Ha is defined in Lemma 3. Eventually,

we need an additional assumption on the regularity of the density f to control
the bias term in Theorem 2. The regularity is expressed in terms of anisotropic
Nikol’skii class.

DEFINITION 2 (Anisotropic Nikol’skii space). Let s = (s1, s2, . . . , sd) ∈ Rd+,
q ∈ [1,∞[ and L > 0 be fixed. We say that f : [0,1]d → [−L,L] belongs to the
anisotropic Nikol’skii class Nq,d(s,L) if for all j = 1, . . . , d , z ∈ R and for all
x ∈ (0,1]d ,(∫ ∣∣∣∣ ∂�sj �

∂x
�sj �
j

f (x1, . . . , xj + z, . . . , xd) − ∂�sj �

∂x
�sj �
j

f (x1, . . . , xj , . . . , xd)

∣∣∣∣q dx

)1/q

≤ L|z|sj−�sj �,

and ‖ ∂l

∂xl
j

f ‖q ≤ L, for any l = 0, . . . , �sj�, where �sj� is the largest integer strictly

less than sj .
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Nikol’skii classes were introduced in approximation theory by Nikol’skii; see
[38], for example. We also refer to [15, 24] where the problem of adaptive estima-
tion has been treated for the Gaussian white noise model and for density estima-
tion, respectively.

In the sequel, we assume that the multivariate density f belongs to the
anisotropic Nikol’skii class N2,d (s,L), for some s ∈ Rd+ and some L > 0. In other
words, the density has possible different regularities in all directions. The state-
ment of a nonadaptive upper bound for the excess risk in the anisotropic case has
been already investigated in [10]. In the following theorem, we propose the adap-
tive version of the previous cited result, where the bandwidth ĥ is chosen via the
selection rule (3.4).

THEOREM 2. Assume (K1) and NA(ρ,β) hold for some ρ > 0 and some
β ∈ Rd+. Assume the Hessian matrix of W is positive definite for any c� ∈ M.
Then, for any s ∈ (0, s+]d , any L > 0, we have

lim sup
n→∞

n
1/(1+∑d

j=1 βj /sj ) sup
f ∈N2,d (s,L)

[
EW (̂cĥ) −W

(
c�)]< ∞,

where ĥ is driven in (3.4).

This theorem is a direct application of Theorem 1, Lemma 2 and the majorant
construction. It gives adaptive fast rates of convergence for the excess risk of ĉĥ and
significantly improves the result stated in [10] for two reasons: first, the selection
rule allows the extension to the anisotropic case; besides, there is no logarithmic
term in the adaptive rate. In our opinion, the localization technique used in [10]
seems to be the major obstacle to avoid the extra logn term.

4. Application to robust nonparametric regression. In this section, we ap-
ply the gradient inequality to the framework of local M-estimation in nonparamet-
ric robust regression. It will give adaptive minimax results for nonlinear estimators
for both pointwise and global estimation.

Let us specify the model beforehand. For some n ∈ N�, we observe a training
set Zn := {(Wi, Yi), i = 1, . . . , n} of i.i.d. pairs, distributed according to the prob-
ability measure P on [0,1]d ×R satisfying the set of equations

Yi = f �(Wi) + ξi, i = 1, . . . , n.(4.1)

We aim at estimating the target function f � : [0,1]d → [−B,B], B > 0. The noise
variables (ξi)i∈1,...,n are assumed to be i.i.d. with symmetric density gξ w.r.t. the
Lebesgue measure. We also assume gξ is continuous at 0 and gξ (0) > 0. For sim-
plicity, the design points (Wi)

n
i=1 are assumed to be i.i.d. according to the uniform

law on [0,1]d (extension to a more general design is straightforward), and we as-
sume that (Wi)

n
i=1 and (ξi)

n
i=1 are mutually independent for ease of exposition.
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Eventually, we restrict the estimation of f � to the closed set T ⊂ [0,1]d to avoid
discussion on boundary effects. We will consider a point x0 ∈ T for pointwise
estimation and the Lq(T )-risk for global estimation, for q ∈ [1,+∞).

Next, we introduce an estimate of f �(x0) at any x0 ∈ T with the local constant
approach (LCA). The key idea of LCA, as described, for example, in [44], Chap-
ter 1, is to approximate the target function by a constant in a neighborhood of size
h ∈ (0,1)d of a given point x0, which corresponds to a model of dimension m = 1.
To deal with heavy-tailed noises, we especially employ the Huber loss (see [19])
defined as follows. For any scale γ > 0 and z ∈ R,

ργ (z) :=
{

z2/2, if |z| ≤ γ ,
γ
(|z| − γ /2

)
, otherwise.

The parameter γ selects the level of robustness of the Huber loss between the
square loss (large value of γ ) and the absolute loss (small value of γ ). Let H :=
[h−, h+]d be the bandwidth set such that 0 < h− < h+ < 1,

h− := log6/d(n)

n1/d
and h+ := 1

log2(n)
.

For any x0 ∈ T , the local estimator f̂h(x0) of f �(x0) is defined as

f̂h(x0) := arg min
t∈[−B,B]

R̂loc
h (t), h ∈ H,(4.2)

where R̂loc
h (·) := 1

n

∑n
i=1 ργ (Yi −·)Kh(Wi −x0) is the local empirical risk, and Kh

is a 1-Lipschitz kernel of order 1. We notice that the local empirical risk estimates
the local risk Rloc(·) := EY |W=x0ργ (Y − ·) whose f �(x0) is its unique minimizer.

In nonparametric estimation, one is usually interested in pointwise or global risk
instead of excess risk. Since Theorem 1 controls the G-excess risk of the adaptive
estimator, we present the following lemma that links the pointwise risk with the
G-excess risk.

LEMMA 4. Assume that suph∈H |f̂h(x0) − f �(x0)| ≤ Eρ′′
γ (ξ1)/4 holds. Then,

for all h ∈ H,∣∣f̂h(x0) − f �(x0)
∣∣≤ 2

Eρ′′
γ (ξ1)

∣∣Gloc(f̂h(x0)
)− Gloc(f �(x0)

)∣∣,
where Gloc (and, resp., ρ′′

γ ) denotes the derivative of Rloc (resp., the second deriva-
tive of ργ ).

The proof is given in the Appendix. We can also deduce the same inequality
with the Lq(T )-norm. The assumption suph∈H |f̂h(x0) − f �(x0)| ≤ Eρ′′

γ (ξ1)/4 is
necessary to use the theory of differential calculus and can be satisfied by using
the consistency of f̂h. In this respect, the definitions of h− and h+ above imply
the consistency of all estimators f̂h, h ∈ H; for further details, see below as well
as [9], Theorem 1.
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4.1. The selection rule in pointwise estimation. We now present the applica-
tion of the selection rule for pointwise estimation. To compute the procedure, we
define the G-empirical risk as

Ĝloc
h (t) := ∂R̂loc

h

∂t
(t) = −1

n

n∑
i=1

ρ′
γ (Yi − t)Kh(Wi − x0).(4.3)

For two bandwidths h,λ, we introduce the auxiliary G-empirical risk as

Ĝloc
h,η(t) := −1

n

n∑
i=1

ρ′
γ (Yi − t)Kh,η(Wi − x0),

where Kh,η := Kh ∗ Kη, as before.
To apply the results of Section 2, we need to compute optimal majorants of the

associated empirical processes. The construction of such bounds for the pointwise
case has already received attention in the literature; see [9], Proposition 2. For any
integer l ∈N�, let us introduce the function Mloc

l :H2 →R+ defined as

Mloc
l (h, η) := C0‖K‖2

√
E
[
ρ′

γ (ξ1)
]2(√√√√ l log(n)

n
∏d

j=1 hj ∨ ηj

+
√√√√ l log(n)

n
∏d

j=1 ηj

)
,

where C0 > 0 is an absolute constant which does not depend on the model. Then
if we set Ha := {(h−, . . . , h−)} ∪ {h ∈ H :∀j = 1, . . . , d ∃mj ∈ N :hj = h+amj },
a ∈ (0,1), an exponential net of H = [h−, h+]d , such that |Ha| ≤ n, for any l > 0,
the function Mloc

l (·, ·) is a majorant according to Definition 1.
Eventually, we introduce the data-driven bandwidth following the schema of the

selection rule in Section 2,

ĥloc ∈ arg min
h∈Ha

{
sup

η∈Ha

{∣∣Ĝloc
h,η − Ĝloc

η

∣∣∞ −Mloc
l (h, η)

}+Mloc,∞
l (h)

}
,(4.4)

where Mloc,∞
l (h) := suph′∈Ha

Mloc
l (h′, h). To derive minimax adaptive rates for

local estimation, we start with the definition of the anisotropic Hölder class.

DEFINITION 3 (Anisotropic Hölder class). Let s = (s1, s2, . . . , sd) ∈ Rd+ and
L > 0 be fixed. We say that f : [0,1]d → [−L,L] belongs to the anisotropic
Hölder class �(s,L) of functions if for all j = 1, . . . , d and for all x ∈ (0,1]d ,∣∣∣∣ ∂�sj �

∂x
�sj �
j

f (x1, . . . , xj + z, . . . , xd) − ∂�sj �

∂x
�sj �
j

f (x1, . . . , xj , . . . , xd)

∣∣∣∣
≤ L|z|sj−�sj � ∀z ∈R,

and

sup
x∈[0,1]d

∣∣∣∣ ∂l

∂xl
j

f (x)

∣∣∣∣≤ L ∀l = 0, . . . , �sj�,

where �sj� is the largest integer strictly less than sj .
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THEOREM 3. For any s ∈ (0,1]d , any L > 0 and any q ≥ 1, it holds for all
x0 ∈ T ,

lim sup
n→∞

(
n/ log(n)

)qs̄/(2s̄+1) sup
f ∈�(s,L)

E
∣∣f̂ĥloc(x0) − f �(x0)

∣∣q < ∞,

where s̄ := (
∑d

j=1 s−1
j )−1 denotes the harmonic average.

The proposed estimator f̂ĥ is then adaptive minimax over anisotropic Hölder
classes in pointwise estimation. The minimax optimality of this rate [with the
log(n) factor] has been stated by [25] in the white noise model for pointwise esti-
mation; see also [13]. For simplicity, we did not study the case of locally polyno-
mial functions [i.e., s ∈ (0,∞)d ].

Chichignoud and Lederer [9], Theorem 2, have shown that the variance of local
M-estimators is of order E[ρ′

γ (ξ1)]2/n(Eρ′′
γ (ξ1))

2, and therefore their Lepski-type
procedure depends on this quantity. Thanks to the gradient approach, we obtain the
same result without the dependency on the parameter Eρ′′

γ (ξ1), which corresponds
to λmin in the general setting. The selection rule is therefore robust w.r.t. to the
fluctuations of this parameter, in particular when γ is small (median estimator).

4.2. The selection rule in global estimation. The aim of this section is to de-
rive adaptive minimax results for f̂h for the Lq -risk. To this end, we need to modify
the selection rule (4.4) including a global (Lq -norm) comparison of G-empirical
risks. For this purpose, for all t ∈ R, we denote the G-empirical risks at a given
point x0 ∈ T as

Ĝloc
h (t, x0) = −1

n

n∑
i=1

ρ′
γ (Yi − t)Kh(Wi − x0)

and

Ĝloc
h,η(t, x0) = −1

n

n∑
i=1

ρ′
γ (Yi − t)Kh,η(Wi − x0),

where the dependence in x0 is explicitly written. Then we define, for q ∈ [1,∞[
and for any function ω :R× T →R, the Lq -norm and Lq,∞-semi-norm

∥∥ω(t, ·)∥∥q :=
(∫

T

∣∣ω(t, x)
∣∣q dx

)1/q

and ‖ω‖q,∞ := sup
t∈[−B,B]

∥∥ω(t, ·)∥∥q .

The construction of majorants is based on uniform bounds for Lq -norms of
empirical processes. Recently, Goldenshluger and Lepski investigated this topic
[16], Theorem 2. For any integer l ∈ N�, let us introduce the function �l,q :H →
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R+ defined as

�l,q(h) := Cq

∥∥ρ′
γ

∥∥∞√
1 + l

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
4‖K‖q

(
n

d∏
j=1

hj

)−(q−1)/q

, if q ∈ [1,2[,

30q

log(q)

(‖K‖2 ∨ ‖K‖q

)(
n

d∏
j=1

hj

)−1/2

, if q ∈ [2,∞[,

where Cq > 0 is an absolute constant which does not depend on n. Then, for any

l > 0, the function Mglo
l,q (λ, η) := �l,q(λ ∨ η) + �l,q(η) is a majorant according to

Definition 1.
We finally select the bandwidth according to

ĥglo
q ∈ arg min

h∈H

{
sup
η∈H
{∥∥Ĝloc

h,η − Ĝloc
η

∥∥
q,∞ −Mglo

l,q (h, η)
}+ 2�l,q(h)

}
.

The above choice of the bandwidth leads to the estimator f̂
ĥ

glo
q

with the follow-

ing adaptive minimax properties for the Lq -risk over anisotropic Nikol’skii classes;
see Definition 2.

THEOREM 4. For any s ∈ (0,1]d , any L > 0 and any q ≥ 1, it holds that

lim sup
n→∞

ψ−1
n,q(s) sup

f ∈Nq,d (s,L)

E‖f̂
ĥ

glo
q

− f ‖q
q < ∞,

where s̄ := (
∑d

j=1 s−1
j )−1 denotes the harmonic average and

ψn,q(s) =
{

(1/n)q(q−1)s̄/(qs̄+q−1), if q ∈ [1,2[,
(1/n)qs̄/(2s̄+1), if q ≥ 2.

We refer to [18, 20] for the minimax optimality of these rates over Nikol’skii
classes. The proposed estimate f̂

ĥ
glo
q

is then adaptive minimax. To the best of our

knowledge, the minimax adaptivity over anisotropic Nikol’skii classes has never
been studied in regression with possible heavy-tailed noises. We finally refer to the
remarks after Theorem 3.

5. Discussion. Our paper solves the general bandwidth selection issue in ker-
nel ERM by using a novel selection rule, based on the minimization of an estimate
of the bias–variance decomposition of the gradient excess risk. This new criterion
simultaneously upper bounds the estimation error (�2-norm) and the prediction
error (excess risk) with optimal rates.

One of the key messages we would like to highlight is the following: if we
consider smooth loss functions and a family of consistent ERM, fast rates of con-
vergence are automatically reached, provided that the Hessian matrix of the risk
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function is positive definite. This statement is based on the key Lemma 1 in Sec-
tion 1.1, where the square root of the excess risk is controlled by the G-excess
risk.

From an adaptive point of view, one can take another look at Lemma 1. On the
RHS of Lemma 1, the G-excess risk is multiplied by the constant λ−1

min, that is, the
smallest eigenvalue of the Hessian matrix at θ�. This parameter is also involved
in the margin assumption. As a result, our selection rule does not depend on this
parameter since the margin assumption is not required to obtain slow rates for
the G-excess risk. This fact partially solves an issue highlighted by Massart [35],
Section 8.5.2, in the model selection framework:

It is indeed a really hard work in this context to design margin adaptive penalties. Of course
recent works on the topic, involving local Rademacher penalties, for instance, provide at least
some theoretical solution to the problem but still if one carefully looks at the penalties which are
proposed in these works, they systematically involve constants which are typically unknown. In
some cases, these constants are absolute constants which should nevertheless considered as un-
known just because the numerical values coming from the theory are obviously over pessimistic.
In some other cases, it is even worse since they also depend on nuisance parameters related to
the unknown distribution.

In Section 6 below, we also illustrate the robustness of the method with numerical
results. An interesting and challenging open problem would be to employ the gra-
dient approach in the model selection framework in order to propose a more robust
penalization technique (i.e., which does not depend on the parameter λmin).

The gradient approach requires two main ingredients: the first one concerns
the smoothness of the loss function in terms of differentiability; the second one
affects the dimension of the statistical model that we have at hand, which has to
be parametric, that is, of finite dimension m ∈ N�. From our point of view, the
smoothness of the loss function is not a restriction, since modern algorithms are
usually based—in order to reduce computational complexity—on some kind of
gradient descent methods in practice. On the other hand, the second ingredient
might be more restrictive from the model selection point of view. An interesting
open problem would be to employ the same path when the dimension m ≥ 1 is
possibly larger than n, that is, in a high-dimensional setting.

6. Numerical results. For completeness, we illustrate the performance of our
selection rule in the context of clustering with errors in variables, and compare it
to the most recent bandwidth selection procedure in that framework: ERC method,
recently evolved in [10]. This method has both theoretical and computational ad-
vantages (see also [23]); however, it only provides isotropic bandwidth selection.
For this reason, our anisotropic selection rule may outperform ERC method.

The computation of the selection rule (3.4) requires many optimization steps.
We first compute a family of codebooks {̂ch, h ∈ H} according to (3.2), by using
a noisy version of the vanilla k-means algorithm. This technique gives an approx-
imation of the optimal solution (3.2) thanks to an iterative procedure based on
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Newton optimization. More theoretical foundations are detailed in [8]. Second, we
use parallel execution in order to compute the comparison of gradient empirical
risks.

Experiments. We generate an i.i.d. noisy sample Dn = {Z1, . . . ,Zn} such that
for any i = 1, . . . , n,

Zi =
{

X
(1)
i + εi(u), if Yi = 1,

X
(2)
i + εi(u), if Yi = 2,

(6.1)

where (X
(1)
i )ni=1 [resp., (X

(2)
i )ni=1] are i.i.d. Gaussian with density fN (02,I2) (resp.,

fN ((5,0)T ,I2)
) and (Yi)

n
i=1 are i.i.d. such that P(Yi = 1) = P(Yi = 2) = 1/2. Here,

(εi(u))ni=1 are i.i.d. with Gaussian noise with zero mean (0,0)T and covariance
matrix �(u) = (1 0

0 u

)
for u ∈ {1, . . . ,10}. In this setting, we compare both adaptive

procedures [our selection rule (3.2) and ERC method] to the standard k-means
with Lloyd’s algorithm by computing the empirical clustering error according to

In(ĉ1, ĉ2) := min
ĉ=(ĉ1 ,̂c2),(ĉ2 ,̂c1)

1

n

n∑
i=1

1
(
Yi �= f̂c(Xi)

)
,(6.2)

where f̂c(x) ∈ arg minj=1,2 |x − ĉj |22 and Yi ∈ {1,2}, i = 1, . . . , n correspond to
the latent class labels defined in (6.1).

Similar to many adaptive methods, Lepki-type procedures suffer from a depen-
dency on a tuning parameter. In particular, in ERC method, a constant governs
the variance threshold (see [21] or [10]), and in our selection rule as well, a con-
stant b′

1 > 0 appears in the majorant function of Lemma 3. As discussed earlier,
the choice of this constant remains an hard issue for application. In the sequel, we
illustrate the behavior of both adaptive methods w.r.t. 3 constants: 0.1, 1 and 10.

Figure 1(a)–(b) illustrates the evolution of the clustering risk (6.2) when u ∈
{1, . . . ,10} in model (6.1) for k-means (red curve) versus both adaptive proce-
dures.

(a) k-means vs ERC method (b) k-means vs Gradient

FIG. 1. Clustering risk averaged over 100 replications with n = 200 for k-means versus ERC (a)
and the gradient (b).
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In Figure 1(a), we compare the clustering risk (6.2) of k-means (red curve) with
ERC with 3 different constants (ERC1, ERC2 and ERC3). The methods are com-
parable, and we observe that ERC performance is sensitive to the choice of the
constant. Nevertheless, a good calibration of this constant gives slightly better re-
sults than k-means. In Figure 1(b), the gradient approach with three different con-
stants (G1, G2 and G3) gives a clustering risk less than 5% for any u ∈ {1, . . . ,10}.
In comparison, standard k-means completely fails when u is increasing. As a con-
clusion, our selection rule significantly outperforms k-means and ERC for any
constant. This highlights the importance in practice to choose two different band-
widths in each direction in this model, that is, an anisotropic bandwidth. Our selec-
tion rule is also robust to the choice of the constant, which confirms the theoretical
study.

APPENDIX

A.1. Proof of Lemma 1. The proof is based on standard tools from differen-
tial calculus applied to the multivariate risk function R ∈ C2(U), where U is an
open ball centered at θ�. The first step is to apply a Taylor expansion of first order
which gives, for all θ ∈ U ,

R(θ) − R
(
θ�)

= (θ − θ�)
∇R
(
θ�)

+ ∑
k∈Nm : |k|=2

2(θ − θ�)k

k1! · · ·km!
∫ 1

0
(1 − t)

∂2

∂θk
R
(
θ� + t

(
θ − θ�))dt,

where ∂2

∂θk R = ∂2

∂θ
k1
1 ···∂θ

km
m

R, |k| = k1 + · · ·+ km and (θ − θ�)k =∏m
j=1(θj − θ�

j )kj .

Now, by the property ∇R(θ�) = 0 and the boundedness of the second partial
derivatives, we can write

R(θ) − R
(
θ�)≤ κ1

∑
k∈Nm : |k|=2

∣∣θ − θ�
∣∣k ≤ κ1

m∑
i,j=1

∣∣θi − θ�
i

∣∣× ∣∣θj − θ�
j

∣∣
≤ mκ1

∣∣θ − θ�
∣∣2
2.

It then remains to show the inequality∣∣θ − θ�
∣∣
2 ≤ 2

∣∣G(θ, θ�)∣∣
2/λmin,(A.1)

where λmin is defined in the lemma. This can be done by using standard inverse
function theorem and the mean value theorem for multi-dimensional functions.
Indeed, since the Hessian matrix of R—also viewed as the Jacobian matrix of
G—is positive definite at θ�, and since R ∈ C2(U), the inverse function theorem
shows the existence of a bijective function G−1 ∈ C1(G(U)) such that∣∣θ − θ�

∣∣
2 = ∣∣G−1 ◦ G(θ) − G−1 ◦ G

(
θ�)∣∣

2 for any θ ∈ U.
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We can then apply a vector-valued version of the mean value theorem to obtain∣∣θ − θ�
∣∣
2 ≤ sup

u∈[G(θ),G(θ�)]
∣∣∣∣∣∣JG−1(u)

∣∣∣∣∣∣
2

∣∣G(θ�)− G(θ)
∣∣
2

(A.2)
for any θ ∈ U,

where [G(θ),G(θ�)] denotes the multi-dimensional bracket between G(θ) and
G(θ�), and ||| · |||2 denotes the operator norm associated to the Euclidean norm
| · |2. Since |θ − θ�|2 ≤ δ and G is continuous, we now have

lim
δ→0

sup
u∈[G(θ),G(θ�)]

∣∣∣∣∣∣JG−1(u)
∣∣∣∣∣∣

2 = ∣∣∣∣∣∣JG−1
(
G
(
θ�))∣∣∣∣∣∣

2.

Then, for δ > 0 small enough, we have with (A.2)∣∣θ − θ�
∣∣
2 ≤ 2

∣∣∣∣∣∣JG−1
(
G
(
θ�))∣∣∣∣∣∣

2

∣∣G(θ�)− G(θ)
∣∣
2

= 2
∣∣∣∣∣∣J−1

G

(
θ�)∣∣∣∣∣∣

2

∣∣G(θ�)− G(θ)
∣∣
2

= 2
∣∣∣∣∣∣H−1

R

(
θ�)∣∣∣∣∣∣

2

∣∣G(θ�)− G(θ)
∣∣
2,

where HR is the Hessian matrix of R. (A.1) follows easily, and the proof is com-
plete.

A.2. Proofs of Section 3.

PROOF OF LEMMA 2. The Hessian matrix of W(·) involves integrals over
faces of the Voronoï diagram (Vj (c))kj=1. For i �= j , let us denote the face (possi-
bly empty) common to Vi(c) and Vj (c) as Fij . Moreover, denote σ(·) the (d − 1)-
dimensional Lebesgue measure. Then, since f is continuous and X ∈ [0,1]d , uni-
form continuity arguments ensure that the integral

∫
Fij

|x − m|22f (x)σ (dx) exists
and depends continuously on the location of the center m, for any i, j and for any
m ∈ Rd . Then we can use the following lemma due to [40].

LEMMA 5 ([40]). Suppose EP |X|2 < ∞ and P has a continuous density f

w.r.t. Lebesgue measure. Assume integral
∫
Fij

|x − m|22f (x)σ (dx) exists and de-

pends continuously on the location of the centers, for any i, j and for any m ∈ Rd .
Then if centers ci , i = 1, . . . , d are all distinct, W(·) has a Hessian matrix HW(·)
made up of d × d blocks,

HW(c)(i, j)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2P
(
X ∈ Vi(c)

)− 2
∑
u�=i

δ−1
iu

∫
Fiu

f (x)|x − ci |22σ(dx), if i = j ,

−2δ−1
ij

∫
Fij

f (x)(x − ci)(x − cj )

σ(dx), otherwise,

where δij = |ci − cj |2 and c ∈ Rdk .
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Hence there exists δ > 0 such that W(·) ∈ C2(U), and Lemma 1 with R = W
completes the proof. �

PROOF OF LEMMA 3. We start with the study of |∇Ŵh − E∇Ŵh|2,∞. For
ease of exposition, we denote by P Z

n the empirical measure with respect to Zi ,
i = 1, . . . , n and by P Z the expectation w.r.t. the law of Z. Then we have

|∇Ŵh −E∇Ŵh|2,∞
= sup

c∈[0,1]dk

∣∣∇Ŵh(c) −E∇Ŵh(c)
∣∣
2(A.3)

≤ √
kd sup

c,i,j

∣∣∣∣(P Z
n − P Z)(∫

Vj

2
(
xi − ci

j

)
K̃h(Z − x)dx

)∣∣∣∣.
The cornerstone of the proof is to apply a concentration inequality to this supre-
mum of empirical process. We use in the sequel the following Talagrand-type in-
equality; see, for example, [11].

LEMMA 6. Let X1, . . . ,Xn be i.i.d. random variables, and let S be a count-
able subset of Rm. Consider the random variable

Un(S) := sup
c∈S

∣∣∣∣∣1n
n∑

l=1

ψc(Xl) −Eψc(Xl)

∣∣∣∣∣,
where ψc is such that supc∈S |ψc|∞ ≤ M , EUn(S) ≤ E and supc∈S E[ψc(Z)2] ≤
v. Then, for any δ > 0, we have

P
(
Un(S) ≥ (1 + 2δ)E

)≤ exp
(
−δ2nE

6v

)
∨ exp

(
−(δ ∧ 1)δnE

21M

)
.

The proof of Lemma 6 is omitted; see [11]. We hence have to compile the quan-
tities E,v and M associated with the random variable

ζ̃n = sup
c,i,j

∣∣∣∣(P Z
n − P Z)(∫

Vj

2
(
xi − ci

j

)
K̃h(Z − x)dx

)∣∣∣∣.
The compilation of E := E(h) > 0 uses the same path as [10], Lemma 3. More
precisely, we can apply a chaining argument to the function

∫
Vj

2(xi − u)K̃h(Z −
x)dx, for any u ∈ (0,1). Then we have, together with a maximum inequality due
to [35], Chapter 6,

Eζ̃n ≤ b3

2
√

n�h(β)
+ b4

2
√

n�h(β + 1/2)
≤ b5√

n�h(β)
:= E(h),(A.4)

where �h(β) :=∏d
i=1 h

βi

i for β ∈ Rd+ provided that
∏d

i=1 h
−1/2
i ≥ b1/b

′
1 (thanks

to the definition of Ha and n sufficiently large). The constant b3, b4, b5 > 0 can
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be explicitly computed. This calculation is omitted for simplicity. Besides, using
[10], Lemma 1, with ψc,i,j (Z) := ∫Vj

2(xi − ci
j )K̃h(Z − x)dx, we have

sup
c,i,j

E
[
ψc,i,j (Z)2]≤ b6

�h(2β)
:= v(h),(A.5)

whereas [10], Lemma 2, allows us to write

sup
c,i,j

|ψc,i,j |∞ ≤ b7

�h(β + 1/2)
:= M(h),(A.6)

where b6, b7 are absolute constants. Hence, Lemma 6, together with (A.3)–(A.6),
gives us, for all δ > 0,

P
(|∇Ŵh −E∇Ŵh|2,∞ ≥ √

kd(1 + 2δ)E(h)
)

≤ exp
(
−δ2nE(h)

6v(h)

)
∨ exp

(
−(δ ∧ 1)δnE(h)

21M(h)

)
.

Moreover, note that from the previous calculations, we have nE(h)/v(h) =
c
√

n/�h(β) and nE(h)/M(h) = c′√n
√

�h(1/2), where c, c′ > 0 depend on
b5, b6 and b5, b7, respectively. Provided that

√
n(c�h(β) ∧ c′√�h(1/2)) ≥

(logn)2 (thanks to the definition of Ha and n sufficiently large), we come up
with

P
(|∇Ŵh −E∇Ŵh|2,∞ ≥ √

kd(1 + 2δ)E(h)
)

≤ exp
{
−
(

δ2

6
∧ (δ ∧ 1)δ

21

)
(logn)2

}
.

This gives us the first part of the majorant of Lemma 3.
The last step is to show a similar bound for the auxiliary empirical process

|∇Ŵh,η −E∇Ŵh,η|2,∞. This can be easily done by using Lemma 6 together with
the previous results. Then we have for any h,η ∈ Ha ,

P
(|∇Ŵh,η −E∇Ŵh,η|2,∞ ≥ √

kd(1 + 2δ)E(h ∨ η)
)

≤ exp
{
−
(

δ2

6
∧ (δ ∧ 1)δ

21

)
(logn)2

}
,

where with a slight abuse of notation, the maximum ∨ is understood coordinate-
wise. Using the union bound, the definition of Mk

l (·, ·) allows us to write

P
(
sup
h,η

{|∇Ŵh,η −E∇Ŵh,η|2,∞ + |∇Ŵh −E∇Ŵh|2,∞ −Mk
l (h, η)

}
> 0
)

≤ (cardHa)
2 sup

h,η

P
(|∇Ŵh,η −E∇Ŵh,η|2,∞

+ |∇Ŵh −E∇Ŵh|2,∞ −Mk
l (h, η) > 0

)
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≤ (cardHa)
2 sup

h,η

{
P
(|∇Ŵh −E∇Ŵh|2,∞ − √

kd(1 + 2δ)E(h) > 0
)

+ P
(|∇Ŵh,η −E∇Ŵh,η|2,∞

− √
kd(1 + 2δ)E(h ∨ η) > 0

)}
≤ 2(cardHa)

2 exp
(
−δ2

6
∧ (δ ∧ 1)δ

21
(logn)2

)
≤ n−l ,

where we choose b′
1 = b5(1 + 2δ) with δ := δ(l) = 1 ∨ (21(l + 2)/(logn)). �

PROOF OF THEOREM 2. The proof of Theorem 2 is a direct application of
Theorem 1 and Lemma 3. Indeed, for any l ∈ N�, for n large enough, we have with
probability 1 − n−l ,∣∣∇W

(̂
cĥ, c�)∣∣

2 ≤ 3 inf
h∈Ha

{
B(h) +Mk,∞

l (h)
}
,

where B(h) is defined as

B(h) := max
(
|E∇Ŵh − ∇W|2,∞, sup

η
|E∇Ŵh,η −E∇Ŵη|2,∞

)
∀h ∈Ha.

The control of the bias function is as follows:

|E∇Ŵh,η −E∇Ŵη|22,∞

= sup
c∈[0,1]dk

∑
i,j

{∫
Vj

2
(
xi − ci

j

)(
EP ZK̃h,η(Z − x) −EP ZK̃η(Z − x)

)
dx

}2

= sup
c∈[0,1]dk

∑
i,j

{∫
Vj

2
(
xi − ci

j

)(
EP XKh,η(X − x) −EP XKη(X − x)

)
dx

}2

≤ 4 sup
c∈[0,1]dk

∑
i,j

∫
Vj

(
xi − ci

j

)2
dx
∣∣Kη ∗ (Kh ∗ f − f )

∣∣2
2

≤ 4k
∣∣F[K]∣∣∞|fh − f |22,

where |fh − f |2 := |Kh ∗ f − f |2 is the usual nonparametric bias term in decon-
volution estimation. Besides, note that

|E∇Ŵh − ∇W|22,∞

= sup
c∈[0,1]dk

∑
i,j

{∫
Vj

2
(
xi − ci

j

)(
EP XKh(X − x) − f (x)

)
dx

}2

≤ 4 sup
c∈[0,1]dk

∑
i,j

∫
Vj

(
xi − ci

j

)2
dx|Kh ∗ f − f |22.
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Then we need a control of the bias function,

Bk(h) := 2
√

k
(
1 ∨ ∣∣F[K]∣∣∞)|Kh ∗ f − f |2 ∀h ∈ H.

By using Comte and Lacour [11], Proposition 3, we directly have for all f ∈
N2,d(s,L),

Bk(h) ≤ 2
√

k
(
1 ∨ ∣∣F[K]∣∣∞)L d∑

j=1

h
sj
j ∀h ∈ H.(A.7)

Now, we have to use a result such as Lemma 2, for our family of estimators {̂ch, h ∈
Ha}. In other words, we need to check that this family of estimators is consistent
with respect to the Euclidean norm in Rdk .

LEMMA 7. Assume f is continuous, X ∈ [0,1]d a.s. and the Hessian matrix
of W is positive definite on M. Consider the family {̂ch, h ∈ Ha} with Ha defined
in Lemma 3. Then, for any δ > 0, for any l ∈ N�, for any ĉh ∈ Ha , there exists
c� ∈ M such that for n great enough, with probability 1 − n−l ,∣∣̂ch − c�

∣∣
2 ≤ δ.

PROOF. Using [1], the positive definiteness of the Hessian matrix on M and
the continuity of f , we have, for any ĉh ∈ Ha , for some constant A1 > 0, |̂ch −
c�|2 ≤ A1(W (̂ch) −W(c�)), where c� ∈ arg minc∈M |̂ch − c|2. It remains to show
that by definition of Ha in Lemma 3, with high probability, W (̂ch) −W(c�) → 0
as n tends to infinity. This can be seen easily from Chichignoud and Loustau [10],
which gives the order of the bias term and the variance term for such a problem. At
this stage, we can notice that localization is used in [10], and appears to be neces-
sary here. However, using a global approach (i.e., a simple Hoeffding inequality to
the family of kernel ERM), we can have, for any l ∈ N�, with probability 1 − n−l ,

W (̂ch) −W
(
c�)� �h(−β)√

n
+

d∑
j=1

h
sj
j ∀h ∈ Ha.

By definition of Ha , the RHS tends to zero as n → ∞, and then for n great enough,
this term is controlled by δ. �

Then, for any h ∈ Ha and n great enough, Lemma 2 allows us to write with
probability 1 − n−l ,√

W (̂ch) −W
(
c�
)≤ 2

√
kd

λmin

∣∣∇W
(̂
ch, c�)∣∣

2.

Using Theorem 1 with l = q , bias control (A.7) and the last inequality, there exists
an absolute constant b8 > 0 such that

sup
f ∈N2(s,L)

E
[
W (̂cĥ) −W

(
c�)]≤ b8 inf

h∈Ha

{
d∑

j=1

h
sj
j + �h(−β)

n

}2

+ b8n
−q.
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Let h� denote the oracle bandwidth as h� := arg infh∈H{∑d
j=1 h

sj
j + �h(−β)

n
}, and

define the oracle bandwidth h�
a on the net Ha such that ah�

a,j ≤ h�
j ≤ h�

a,j , for all
j = 1, . . . , d . Eventually, we have

sup
f ∈N2(s,L)

E
[
W (̂cĥ) −W

(
c�)]≤ b8a

−qd/2 inf
h∈H

{
d∑

j=1

h
sj
j + �h(−β)

n

}2

+ b8n
−q.

By a standard bias variance trade-off, we obtain the assertion of the theorem, pro-
vided that q ≥ 1. �

A.3. Proofs of Section 4.

PROOF OF LEMMA 4. By definition, we first note that∣∣Gloc(f̂h(x0)
)− Gloc(f �(x0)

)∣∣= ∣∣Eρ′
γ

(
ξ1 + f �(x0) − f̂h(x0)

)−Eρ′
γ (ξ1)

∣∣.
Using the mean value theorem and the assumption suph∈H |f̂h(x0) − f �(x0)| ≤
Eρ′′

γ (ξ)/4, there exists c ∈ [−Eρ′′
γ (ξ1)/4,Eρ′′

γ (ξ1)/4] such that∣∣Gloc(f̂h(x0)
)− Gloc(f �(x0)

)∣∣= Eρ′′
γ (ξ1 + c)

∣∣f �(x0) − f̂h(x0)
∣∣.

Since Eρ′′
γ (ξ1 + ·) is a 2-Lipschitz function, it yields

∣∣Gloc(f̂h(x0)
)− Gloc(f �(x0)

)∣∣≥ Eρ′′
γ (ξ1)

2

∣∣f �(x0) − f̂h(x0)
∣∣.

The proof is complete. �

PROOF OF THEOREM 3. From [9], Theorem 1, we notice that all estimators
{f̂h(x0), h ∈H} are consistent, and thus, for n sufficiently large, the assumption of
Lemma 4 holds for all x0 ∈ T . Using Theorem 1 with l > 0 and Lemma 4, we get∣∣f̂ĥloc(x0) − f �(x0)

∣∣≤ 6

Eρ′′
γ (ξ1)

inf
h∈Ha

{
B(h) + 2Mloc,∞

l (h)
}
,

with B(h) = max(|EĜloc
h − Gloc|∞, supη∈H |EĜloc

h,η − EĜloc
η |∞). The control of

B(·) over Hölder classes is based on the same schema as in [13], applied to the
function Ft(·) := Eρ′

γ (f �(·) − t + ξ1). For any f ∈ �(s,L) and any h ∈ H, we
then want to show

B loc(h) ≤ sup
t∈[−B,B]

sup
y∈T

∣∣∣∣∫ Kh(x − y)
[
Ft(x) − Ft(y)

]
dx

∣∣∣∣
(A.8)

≤ L|K|∞
d∑

j=1

h
sj
j .
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By definition, we see that |EĜloc
h −Gloc|∞ = supt∈[−B,B] |EKh(W −x0)[Ft(W)−

Ft(x0)]| and by definition of EĜloc
h,η and Ft , we have

−EĜloc
h,η(t) =

∫
Ft(x)Kh,η(x − x0) dx

=
∫

Ft(x)

(∫
Kh(x − y)Kη(y − x0) dy

)
dx.

Using Fubini’s theorem and the equation
∫

Kh(x − y)dx = 1 for all y ∈ T , we get

−EĜloc
h,η(t) =

∫
Kη(y − x0)Ft (y) dy

+
∫

Kη(y − x0)

(∫
Kh(x − y)

[
Ft(x) − Ft(y)

]
dx

)
dy

=
∫

Kη(y − x0)Ft (y) dy

+
∫

Kη(y − x0)

∫
Kh(x − y)

[
Ft(x) − Ft(y)

]
dx dy.

Then it holds for any x0 ∈ T ,∣∣EĜloc
h,η(t) −EĜloc

η (t)
∣∣

=
∣∣∣∣∫ Kη(y − x0)

∫
Kh(x − y)

[
Ft(x) − Ft(y)

]
dx dy

∣∣∣∣
≤ ∥∥Kη(· − x0)

∥∥
1 sup

y∈T

∣∣∣∣∫ Kh(x − y)
[
Ft(x) − Ft(y)

]
dx

∣∣∣∣
= sup

y∈T

∣∣∣∣∫ Kh(x − y)
[
Ft(x) − Ft(y)

]
dx

∣∣∣∣.
We have then shown the first inequality in (A.8). Using the smoothness of ρ′

γ , we
have for all f ∈ �(s,L),∣∣∣∣∫ Kh(x − y)

[
Ft(x) − Ft(y)

]
dx

∣∣∣∣
=
∣∣∣∣∫ Kh(x − y)E

[
ρ′

γ

(
f (x) − t + ξ1

)− ρ′
γ

(
f (y) − t + ξ1

)]
dx

∣∣∣∣
≤
∣∣∣∣∫ Kh(x − y)

(
f (x) − f (y)

)
dx

∣∣∣∣
≤ L‖K‖∞

d∑
j=1

h
sj
j .
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Therefore, (A.8) holds. Then, using Theorem 1 with l = q , Lemma 4 and (A.8),
there exists an absolute constant T1 > 0 such that

sup
f ∈�(s,L)

E
∣∣f̂ĥ(x0) − f (x0)

∣∣q ≤ T1 inf
h∈Ha

{
d∑

j=1

h
sj
j +

√
log(n)

n�h

}q

+ T1n
−q .

Let h� denote the oracle bandwidth as h� := arg infh∈H{∑d
j=1 h

sj
j +

√
log(n)
n�h

}, and
define the oracle bandwidth h�

a such that ah�
a,j ≤ h�

j ≤ h�
a,j , for all j = 1, . . . , d .

Then we get

sup
f ∈�(s,L)

E
∣∣f̂ĥ(x0) − f (x0)

∣∣q ≤ T1a
−qd/2 inf

h∈H

{
d∑

j=1

h
sj
j +

√
log(n)

n�h

}q

+ T1n
−q.

By a standard bias variance trade-off, we obtain the assertion of the theorem. �

PROOF OF THEOREM 4. Here again, the assumption of Lemma 4 holds for
n sufficiently large for all x0 ∈ T . Using Theorem 1 with l > 0 and adding the
Lq -norm, we have

‖f̂
ĥ

glo
q

− f ‖q ≤ 6

Eρ′′
γ (ξ1)

inf
h∈H
{
B(h) + 2�

glo
l,q (h)

}
,

where B(h) = max(‖EĜloc
h − Gloc‖q,∞, supη∈H ‖EĜloc

h,η −EĜloc
η ‖q,∞). The con-

trol of the bias term is based on the schema of [15] for linear estimates. For any
h ∈H, we want to show that

B(h) ≤ sup
t∈[−B,B]

∥∥∥∥∫ Kh(x − ·)[Ft(x) − Ft(·)]dx

∥∥∥∥
q

≤ L

d∑
j=1

h
sj
j ,(A.9)

where we recall Ft(x) := Eρ′
γ (f (x) − ft (x) + ξ1). By definition, one has∥∥EĜloc

h − Gloc∥∥
q,∞ = sup

t∈[−B,B]
∥∥EKh(W − ·)[Ft(W) − Ft(·)]∥∥q .

Moreover, in the proof of Theorem 3, we have shown that for any x0 ∈ T ,

EĜloc
η (t, x0) −EĜloc

h,η(t, x0)

=
∫

Kη(y − x0)

∫
Kh(x − y)

[
Ft(x) − Ft(y)

]
dx dy.

By Young’s inequality and the definition of the kernel in Section 1.2, it yields∥∥EĜloc
η −EĜloc

h,η

∥∥
q,∞

= sup
t∈[−B,B]

∥∥∥∥∫ Kη(y − ·)
∫

Kh(x − y)
[
Ft(x) − Ft(y)

]
dx dy

∥∥∥∥
q,∞

≤ sup
t∈[−B,B]

∥∥∥∥∫ Kh(x − ·)∣∣Ft(x) − Ft(·)
∣∣dx

∥∥∥∥
q,∞

.
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Using the smoothness of ρ′
γ , we have for any x, y ∈ T and any t ∈ [−B,B],

Ft(x) − Ft(y) = E
[
ρ′

γ

(
f (x) − t + ξ1

)− ρ′
γ

(
f (y) − t + ξ1

)]≤ ∣∣f (x) − f (y)
∣∣.

Therefore, (A.9) holds for all f ∈ Nq,d(s,L). Then, using Theorem 1 with l = q ,
Lemma 4 and (A.9), there exists an absolute constant T2 > 0 such that

sup
f ∈Nq,d (s,L)

E‖f̂
ĥ

glo
q

− f ‖q
q

≤ T2 ×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
inf
h∈H

{
d∑

j=1

h
sj
j + (n�h)

−(q−1)/q

}q

+ n−q, if q ∈ [1,2[,

inf
h∈H

{
d∑

j=1

h
sj
j + (n�h)

−1/2

}q

+ n−q, if q ∈ [2,∞[.

Computing these infimums, we obtain the assertion of the theorem. �
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[20] IBRAGIMOV, I. A. and HAS’MINSKIĬ, R. Z. (1981). Statistical Estimation: Asymptotic Theory.
Applications of Mathematics 16. Springer, New York. MR0620321

[21] KATKOVNIK, V. (1999). A new method for varying adaptive bandwidth selection. IEEE Trans.
Image Process. 47 2567–2571.

[22] KATKOVNIK, V., FOI, A., EGIAZARIAN, K. and ASTOLA, J. (2010). From local kernel to
nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86 1–32. MR2683762

[23] KATKOVNIK, V. and SPOKOINY, V. (2008). Spatially adaptive estimation via fitted local like-
lihood techniques. IEEE Trans. Signal Process. 56 873–886. MR2518663

[24] KERKYACHARIAN, G., LEPSKI, O. and PICARD, D. (2001). Nonlinear estimation in
anisotropic multi-index denoising. Probab. Theory Related Fields 121 137–170.
MR1863916

[25] KLUTCHNIKOFF, N. (2005). On the adaptive estimation of anisotropic functions. Ph.D. thesis,
Aix-Masrseille 1.

[26] KOLTCHINSKII, V. (2006). Local Rademacher complexities and oracle inequalities in risk min-
imization. Ann. Statist. 34 2593–2656. MR2329442

[27] LECUÉ, G. (2007). Simultaneous adaptation to the margin and to complexity in classification.
Ann. Statist. 35 1698–1721. MR2351102

[28] LEPSKI, O. V., MAMMEN, E. and SPOKOINY, V. G. (1997). Optimal spatial adaptation to
inhomogeneous smoothness: An approach based on kernel estimates with variable band-
width selectors. Ann. Statist. 25 929–947. MR1447734
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