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First I would like to congratulate the three authors for a very nice paper. During
a visit to Eindhoven in 2010, Botond Szabó and Harry van Zanten mentioned the
first steps of this work to me, which concerned the understanding of certain empir-
ical Bayes procedures in the white noise L2-setting. Since then, together with Aad
van der Vaart, they have broadened their original goals and have produced an im-
pressive and very interesting series of papers on the subject. The present paper is
indeed one aspect of a larger body of work, and we will mention a few connections
with these related papers below.

The authors start from the signal in white noise model, that after projection in
L2 onto an appropriate basis, typically related to the SVD of the operator K of
the inverse problem, is translated into a sequence formulation. They choose a prior
distribution that makes coordinates independent:

�α ∼ ⊗
i≥1

N
(
0, i−1−2α)

.(1)

If the true parameter belongs to a regularity space defined from a decay of co-
efficients in the previous basis, the authors prove that certain credible sets con-
structed from the posterior distribution coupled with a (marginal-likelihood) em-
pirical Bayes (EB) procedure for α achieve excellent performance: they are honest
confidence sets with adaptive, optimal asymptotic diameter if one restricts to cer-
tain classes of “self-similar”-type true parameters. These are the first results of this
type in Bayesian nonparametrics.

We organize this discussion around two main themes:

1. Priors for Bayesian credible sets.
2. Bayesian credible regions and simulations.

1. Priors for Bayesian credible sets. Several aspects of the prior scheme (1)
are investigated by the authors in [10], [9] together with Bartek Knapik and in [14].
In [10], a fixed regularity parameter α is considered; in [9], adaptative contraction
rates are derived. In [14], the prior (1) is used for fixed α and the use of a different
empirical Bayes scheme is advocated.
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RELATED PRIORS. Staying with priors defined on the SVD of K , some other
adaptation schemes have been considered recently. One is (see [13])

�τ ∼ ⊗
i≥1

N
(
0, τ 2i−1−2α)

, τ > 0,(2)

and adaptation is made by empirical Bayes or full Bayes on τ .
Another prior is obtained by setting, for a sequence {λi}i≥1 of positive nonde-

creasing real numbers,

�t ∼ ⊗
i≥1

N
(
0, e−λi t

)
, t > 0.(3)

In the case where K is the identity and, for example, λi = i2, this falls into the
framework considered in [2], where a full Bayes method is considered by putting
a well-chosen hyperprior on t .

A natural question is whether the same construction as in the paper with a
slightly blown up L2-ball and regularity estimated by empirical or full Bayes
would work the same for the priors (2) or (3), with self-similarity constraints ex-
pressed in a similar way. One can conjecture that the answer is yes and that one
may study the empirical Bayes procedure from the explicit form of the marginal
likelihood.

RELATED PRIORS AND SHARP RATES. Rates of convergence for Bayes proce-
dures are sometimes shown to be optimal up to a slowly varying factor in n, for
instance, logarithmic. In some cases it is not so clear whether such a logarithmic
term should be present in the rate or not. The present work points to interesting
questions with this respect, with connections to the related prior schemes (2)–(3).

For prior (2), it is shown in [13] that the minimax rate n−β/(1+2β) in L2 over hy-
perrectangles is achieved by the marginal-likelihood-empirical Bayes procedure.
This comes, however, to a cost: one should assume that the true regularity β of the
signal satisfies β < 1/2 + α, for α the regularity parameter in (2), otherwise the
(uniform) rate can be shown to be suboptimal.

For prior (3), we obtained in [2] the rate (logn/n)β/(1+2β) in L2 over a class
containing hyperrectangles and for which the minimax rate is n−β/(1+2β), so with-
out the log-term, thus showing the unavoidable loss of a logarithmic factor when
using prior (3).

In [9], the authors obtain an upper-bound rate for prior (1) in L2 that con-
tains a logarithmic factor. However, Proposition 3.8 of the present paper shows
that the radius of the credible set is proportional to n−β/(1+2β), while Theo-
rem 3.6 implies coverage of the credible set for polished tail parameters. Combin-
ing these results, one deduces that the posterior mean θ̂n,α̂n

verifies ‖θ̂n,α̂n
−θ0‖2 =

OP (n−β/(1+2β)). This presumably implies that the posterior itself converges at the
minimax rate, without extra log-terms, if the true θ0 has polished tails. One may
conjecture that this is also true without the polished tail assumption. If so, it would
be interesting to better understand what makes that priors (1)–(3) behave differ-
ently.
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DIFFERENT PRIORS AND CONDITIONS. The prior scheme (1) is, by definition,
somewhat tied to the SVD of K . As this type of basis may not be well-localized,
this may cause some difficulties if the goal is a result in terms of a different loss
function than L2.

Also, smoothness classes for f0 are defined in terms of this basis and thus con-
nected to K . This may not always correspond to natural assumptions of the practi-
cal problem at hand; see, for instance, [6]. The same can probably be said about the
polished tail or self-similarity conditions. As they stand, they refer to coefficients
in the basis associated to K , which may not always be canonical.

For these reasons, it would probably be interesting for future works to consider
different types of priors. It is unclear whether in general a direct analysis of the ex-
plicit expression of the likelihood (and marginal likelihood for the EB approach)
will be possible. It would certainly be desirable, if possible, to develop some gen-
eral understanding of empirical Bayes methods. On the other hand, it would also
be interesting to develop indirect (or qualitative) techniques, similar to those of the
meta-theorem of [7] for these problems. Although this may not be easy for inverse
problems, some recent work for these include [11] and [8]. Other recent results
on functionals using arguments allowing implicit expressions can be found in [5]
and [1].

DIFFERENT APPROACHES TO NONPARAMETRIC CREDIBLE SETS. As the au-
thors mention at the end of their introduction, for parametric models the Bernstein–
von Mises (BvM) theorem is a canonical tool to justify that Bayesian credible sets
are frequentist confidence sets. In [3] and [4], R. Nickl and myself proposed a pos-
sible approach for the nonparametric BvM and showed that it could be applied to
the construction of fixed-regularity nonparametric confidence sets. I am not sure
I understand the authors’ sentence “no method that avoids dealing with the bias–
variance trade-off will properly quantify the uncertainty. . . current practice.” In
[3] and [4], no adaptation claims were made, and the confidence sets there are
for fixed regularity, although the proposed methodology to build such sets does
not per se exclude adaptive priors. Recently, a first application of this programme
with adaptive priors in white noise was carried out in [12], leading to L2 and L∞
adaptive confidence sets computable in practice, under appropriate self-similarity
conditions. The “bias–variance” trade-off mentioned by the authors I guess typ-
ically appears when estimating the “regularity” of the signal, for instance, by an
empirical Bayes technique.

BIAS–VARIANCE TRADE-OFF AND CHOICE OF THE PRIOR. There are several
interesting questions mentioned by the authors beyond the L2-results of the paper.
One is obtaining Bayesian confidence sets for other norms, related to the problem
of estimating certain functionals, such as the value of the function at a point; see the
discussion on these in [9] for the prior (1). Another question is building different
types of adaptive L2-confidence sets, where the regularity is assumed to belong to
an interval [α,2α], as considered in [14], again with the scheme (1).
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In both cases the authors seem to conclude that marginal likelihood empirical
Bayes or full Bayes methods have some trouble, related to the choice of the reg-
ularity parameter: for instance, the marginal-likelihood EB method does not seem
to perform the correct bias–variance trade-off in the two problems. The proposed
solution is then to choose the tuning parameter α̂n independently, by a possibly
non-Bayes method. We agree, but one may note that all these results are for the
given prior scheme (1). Is it not conceivable that, for a given problem (e.g., adap-
tive estimation of a functional), there exists a prior for which the two steps are
performed optimally? Perhaps this is too much to ask in general, but, after all,
this is the remarkable result that the authors show in the present paper: at least
for the present problem, the Bayes method performs well in (1) rate-adaptation
and (2) providing an (EB-)estimate α̂n so that the confidence set has the desired
coverage.

2. Bayesian credible sets and simulations. The authors present interesting
simulations and a representation of the credible sets in the case of the Volterra
operator.

WHAT IS EXACTLY A PLOT OF A CREDIBLE SET? The credible ball consid-
ered in the paper is, with L = 1,

Ĉn = {
θ ∈ �2,‖θ − θ̂n,α̂n

‖2 ≤ rn,γ (α̂n)
}
.(4)

In their Figure 1, the authors plot random draws from the posterior distribution.
The idea is that all (but possibly a few) of these draws belong to the credible ball.
From this definition, we can make two comments:

1. Curves that are not typical posterior draws belong to Ĉn.
2. There is typically much more “information” in the posterior (coming from

the prior) than the fact of belonging to such an �2-ball.

To illustrate the fact that Ĉn is in some sense larger than the “support” of the pos-
terior distribution, we have generated random draws within Ĉn using a distribution
different from the posterior. First, consider the sequence, given the data,

μ = (μk)k≥1 ∼
(
θ̂n,α̂n

+ a
ξk

(k log2 k)1/2

)
k≥1

,

for a > 0 some small constant and ξk i.i.d. N(0,1) variables. Consider the law

L(μ|μ ∈ Ĉn),(5)

the distribution of μ conditioned to belong to the set Ĉn. Curves whose coefficients
are sampled from this law are represented in the left column of Figure 1, where we
took a = rn,γ (α̂n), while the right column corresponds to posterior draws. One
notices that the typical curves on the left are more “wiggly” than those from the
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FIG. 1. In gray, on each plot, N = 50 sampled curves from the posterior distribution (right column)
and the law induced by (5) (left column), for n = 103 (top) and n = 106 (bottom). Posterior mean
and true function are in blue and black, respectively.

posterior distribution and also tend to spread more, depending on how much curves
N are simulated, here N = 50.

On the other hand, the posterior distribution itself admits a series of features
that are not necessarily present in a typical element of the L2-ball. For instance,
if f is a draw from the posterior on the signal function, and is α̂n concentrates,
which is the case for self-similar-type truths, the supremum norm ‖f − f̂n,α̂n

‖∞
is a stochastically bounded quantity that only depends on the data via α̂n, as can
be seen from equation (6) below. So with high probability the posterior draws stay
within a tube centered at the posterior mean. If α > 1/2, one could presumably
also prove at least some supremum-norm consistency of the posterior around f0,
following, for example, [5].

Given that the mathematical definition of the credible set is (4), it seems natu-
ral to ask whether one should report draws from posterior or from (5). Or rather,
would it be possible to define a credible set directly from the posterior draws them-
selves, instead of reporting a full L2-ball, while still retaining the desired coverage
properties?

IMPROVING ON THE ESTIMATE OF THE RADIUS. The authors simulate N =
2000 draws from the empirical Bayes posterior and retain the 1−γ = 95% closest
to the posterior mean. This means that an implicit “built-in” estimator of the ra-
dius of the credible set is used. More precisely, if R1, . . . ,RN denote the observed
L2-radii of N draws under the posterior �α̂n

[·|X], only the curves with radius, re-
spectively, R(1) ≤ · · · ≤ R(�0.95·N	) are retained. In other words, R(�0.95·N	) is used
as an estimator of rn,γ (α̂n).
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This methodology is simple and certainly reasonable for relatively large N , the
precision of the “built-in” quantile estimator being of order N−1/2. In case one
likes to be precise about the (1 − γ )-coverage or, in cases where the posterior can
only be approximated, if one wants to detect possible outliers, one may suggest an
improvement based on a separate estimation of rn,γ (α̂n). First, one may note that,
in general, the posterior distribution of the radius could be more easily accessible
(or sampling from it could require less computing time) than the full posterior. In
the considered white noise model example, computing a precise approximation of
rn,γ (α̂n) is simple, as the posterior distribution re-centered at the posterior mean
has distribution, if τn is the map θ → θ − θ̂n,α̂n

,

�α̂n
[·|X] ◦ τ−1

n
L= ⊗

i≥1

N

(
0,

1

i1+2α̂n + nκ2
i

)
.(6)

It is then straightforward to simulate the random variable ‖ζ‖2, where ζ is a draw
from the distribution in the last display, and then estimate rn,γ (α̂n) based, for ex-
ample, on a quantile as before, but this time using a much larger sample size (not
necessarily N = 2000 as before). This can be made before running the program
simulating the posterior draws of the function f . For instance, in the Volterra ex-
ample with n = 1000, one obtains the estimate r̄n,γ (1) := 0.42 ≈ rn,γ (1) using a
sample of size 105 [we set α = 1 for simplicity, but an approximation of rn,γ (α̂n)

is obtained similarly, as soon as α̂n has been computed].
We have run a few iterations of the algorithm proposed by the authors, with the

previous slight modification and setting α = 1 for simplicity. As the estimate of the
radius is improved, the rule for discarding draws is more precise. For the results in
Table 1, we have taken the precise estimate r̄n,γ (1) as “true.”

As shown in Table 1, a few curves per experiment typically were either incor-
rectly included or excluded. Quantitatively, the number of such curves is not very
high, but, on the other hand, these are the curves the farthest away from the pos-
terior mean, so visually this has (sometimes) some impact on the pictures. This

TABLE 1
Experiment using the original algorithm compared to a program with separate precise estimation

r̄n,γ (1) (taken as “true”) of rn,γ (1). After 10 repetitions, Nfp is the mean number of “incorrectly”
retained curves (false positive) by original algorithm and Nf n of “incorrectly” discarded curves

(false negative). In parenthesis percentage of occurrence

n 1000 106 108

N 500 2000 500 2000 500 2000

Nfp 6 (40%) 5 (70%) 4 (50%) 6 (40%) 6 (50%) 4 (20%)
Nf n 3 (50%) 14 (20%) 6 (50%) 12 (50%) 3 (50%) 8 (80%)
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observation can be applied as well for pictures of credible bands, as recently con-
sidered, for example, in [12].

Congratulations again to the authors for their inspiring series of works. Devel-
oping tools to build Bayesian credible sets for other models and priors is a very
interesting topic, and we expect to see more on the subject soon.
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