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In this paper, we consider a mean-field stochastic differential equa-
tion, also called the McKean–Vlasov equation, with initial data (t, x) ∈
[0, T ] × R

d , whose coefficients depend on both the solution X
t,x
s and its

law. By considering square integrable random variables ξ as initial condi-
tion for this equation, we can easily show the flow property of the solution

X
t,ξ
s of this new equation. Associating it with a process X

t,x,Pξ
s which co-

incides with X
t,ξ
s , when one substitutes ξ for x, but which has the advan-

tage to depend on ξ only through its law Pξ , we characterize the function

V (t, x,Pξ ) = E[�(X
t,x,Pξ

T ,P
X

t,ξ
T

)] under appropriate regularity conditions

on the coefficients of the stochastic differential equation as the unique clas-
sical solution of a nonlocal partial differential equation of mean-field type,
involving the first- and the second-order derivatives of V with respect to its
space variable and the probability law. The proof bases heavily on a pre-
liminary study of the first- and second-order derivatives of the solution of
the mean-field stochastic differential equation with respect to the probabil-
ity law and a corresponding Itô formula. In our approach, we use the notion
of derivative with respect to a probability measure with finite second mo-
ment, introduced by Lions in [Cours au Collège de France: Théorie des jeu à
champs moyens (2013)], and we extend it in a direct way to the second-order
derivatives.
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1. Introduction. Given a complete probability space (�,F,P ) endowed
with a Brownian motion B = (Bt )t∈[0,T ] and its filtration F = (Ft )t∈[0,T ] aug-
mented by all P -null sets and a sufficiently rich sub-σ -algebra F0 independent
of B , we consider the mean-field stochastic differential equation (SDE), also
known under the name of McKean–Vlasov SDE,

dXt,x
s = σ

(
Xt,x

s ,PX
t,x
s

)
dBs + b

(
Xt,x

s ,PX
t,x
s

)
ds,

(1.1)
s ∈ [t, T ],Xt,x

t = x ∈R
d .

It is well known that under an appropriate Lipschitz assumption on the coeffi-
cients this equation possesses for all (t, x) ∈ [t, T ]×R

d a unique solution Xt,x
s , s ∈

[0, T ]. For the classical SDE whose coefficients σ(x,μ) = σ(x), b(x,μ) = b(x)

depend only on x ∈ R
d but not on the probability measure μ, it is well known

that the solution Xt,x
s ,0 ≤ t ≤ s ≤ T ,x ∈R

d , defines a flow and, if the coefficients
are regular enough, the unique classical solution of the partial differential equation
(PDE)

∂tV (t, x) + 1
2 tr

(
σσ ∗(x)D2

xV (t, x)
) + b(x)DxV (t, x) = 0,

(t, x) ∈ [0, T ] ×R
d,(1.2)

V (T , x) = �(x), x ∈ R
d,

is V (t, x) = E[�(X
t,x
T )], (t, x) ∈ [0, T ] × R

d . But how about the above SDE
whose coefficients depend on (x,μ) ∈ R

d × P2(R
d), where P2(R

d) denotes the
space of the probability measures over Rd with finite second moment? Of course,
for an SDE with coefficients depending on (x,μ) the solution Xt,x

s ,0 ≤ s ≤ t ≤
T ,x ∈ R

d , does obviously not define a flow. But we see easily that, if we replace
the deterministic initial condition X

t,x
t = x ∈ R

d by a square integrable random
variable X

t,ξ
t = ξ ∈ L2(Ft ;Rd)(:= L2(�,Ft , P ;Rd)) and consider the SDE

dXt,ξ
s = σ

(
Xt,ξ

s ,P
X

t,ξ
s

)
dBs + b

(
Xt,ξ

s ,P
X

t,ξ
s

)
ds,

(1.3)
s ∈ [t, T ],Xt,ξ

t = ξ ∈ R
d

(where, obviously, in general, Xt,ξ �= Xt,x |x=ξ ), then we have the flow property:

For all 0 ≤ t ≤ s ≤ T and ξ ∈ L2(Ft ;Rd) it holds X
s,η
r = X

t,ξ
r , r ∈ [s, T ], for

η = X
t,ξ
s . This flow property should give rise to a PDE with a solution V (t, ξ) =

E[�(X
t,ξ
T ,P

X
t,ξ
T

)], but the fact that ξ has to belong to L2(Ft ;Rd) has the conse-

quence that V (t, ξ) has to be considered over the Hilbert space L2(F;Rd), which
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because of the absence of second-order Fréchet differentiability even in simplest
examples makes such PDE difficult to handle. As an alternative, we associate with
the above SDE for Xt,ξ the equation

dXt,x,ξ
s = σ

(
Xt,x,ξ

s ,P
X

t,ξ
s

)
dBs + b

(
Xt,x,ξ

s ,P
X

t,ξ
s

)
ds,

(1.4)
s ∈ [t, T ],Xt,x,ξ

t = x ∈ R
d .

It turns out (see Lemma 3.1) that X
t,x,Pξ
s = X

t,x,ξ
s , s ∈ [t, T ], depends on ξ ∈

L2(Ft ;Rd) only through its law Pξ , X
t,ξ
s = X

t,x,Pξ
s |x=ξ , and (X

t,x,Pξ
s ,X

t,ξ
s ),0 ≤

t ≤ s ≤ T , ξ ∈ L2(Ft ;Rd), has the flow property.
The objective of our manuscript is to study under appropriate regularity as-

sumptions on the coefficients the second-order PDE which is associated with this
stochastic flow, that is, the PDE whose unique classical solution is given by the
function

V (t, x,Pξ ) = E
[
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)]
,

(1.5)
(t, x) ∈ [0, T ] ×R

d, ξ ∈ L2(
Ft ;Rd

)
.

The function V is defined over [0, T ] × R
d × P2(R

d), and so the study of the
first- and the second-order derivatives with respect to the probability law will play
a crucial role. In our work, we have based ourselves on the notion of derivative of
a function f : P2(R

d) → R with respect to a probability measure μ, which was
studied by Lions in his course at Collège de France [17] (the reader is also referred
to the notes on this course, redacted by Cardaliaguet [6]). The derivative of f with
respect to μ is a function ∂μf : P2(R

d) × R
d → R

d (see Section 2). The main
result of our work says that, if the coefficients b and σ are twice differentiable
in (x,μ) with bounded Lipschitz derivatives of first and second order, then the
function V (t, x,Pξ ) defined above is the unique classical solution of the following
nonlocal PDE of mean-field type (see Theorem 7.2):

∂tV (t, x,Pξ ) +
d∑

i=1

∂xi
V (t, x,Pξ )bi(x,Pξ )

+ 1

2

d∑
i,j,k=1

∂2
xixj

V (t, x,Pξ )(σi,kσj,k)(x,Pξ )

+ E

{
d∑

i=1

(∂μV )i(t, x,Pξ , ξ)bi(ξ,Pξ )(1.6)

+ 1

2

d∑
i,j,k=1

∂yi
(∂μV )j (t, x,Pξ , ξ)(σi,kσj,k)(ξ,Pξ )

}
= 0,

V (T , x,Pξ ) = �(x,Pξ ),
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with (t, x,Pξ ) ∈ [0, T ]×R
d ×P2(R

d). We see in particular that, in contrast to the
classical case, the derivative ∂μV (t, x,Pξ , y) and, as a second-order derivative, the
derivative of ∂μV (t, x,Pξ , y) with respect to y are involved.

Mean-field SDEs, also known as McKean–Vlasov equations, were discussed
the first time by Kac [13, 14] in the frame of his study of the Boltzman equa-
tion for the particle density in diluted monatomic gases as well as in that of the
stochastic toy model for the Vlasov kinetic equation of plasma. A by now classi-
cal method of solving mean-field SDEs by approximation consists in the use of
so-called N -particle systems with weak interaction, formed by N equations driven
by independent Brownian motions. The convergence of this system to the mean-
field SDE is called in the literature propagation of chaos for the McKean–Vlasov
equation.

The pioneering works by Kac, and in the aftermath by other authors, have at-
tracted a lot of researchers interested in the study of the chaos propagation and
the limit equations in different frameworks; for getting an impression we refer the
reader, for instance, to [1, 3, 10–12, 15, 18–20] and [21] as well as the references
therein. With the pioneering works on mean-field stochastic differential games by
Lasry and Lions (we refer to [16] and the papers cited therein, but also to [6]), new
impulses and new applications for mean-field problems were given. So recently,
Buckdahn, Djehiche, Li and Peng [4] studied a special mean field problem by a
purely stochastic approach and deduced a new kind of backward SDE (BSDE)
which they called mean-field BSDE; they showed that the BSDE can be obtained
by an approximation involving N -particle systems with weak interaction. They
completed these studies of the approximation with associating a kind of central
limit theorem for the approximating systems and obtained as limit some forward-
backward SDE of mean-field type, which is not only governed by a Brownian
motion but also by an independent Gaussian field. In [5], deepening the investi-
gation of mean-field SDEs and associated mean-field BSDEs, Buckdahn, Li and
Peng generalized their previous results on mean-field BSDEs, and in a “Marko-
vian” framework in which the initial data (t, x) were frozen in the law variable of
the coefficients; they investigated the associated nonlocal PDE. However, our ob-
jective has been to overcome this partial freezing of initial data in the mean-field
SDE and to study the associated PDE, and this is done in our present manuscript.
Our approach is highly inspired by the courses given by Lions [17] at Collège de
France (redacted by Cardaliaguet [6]) and by recent works of Bensoussan, Frehse,
Yam [2] and Carmona and Delarue, who directly inspired by the works of Lasry,
Lions [16] and the courses of Lions [17], translated his rather analytical approach
into a stochastic one; let us cite [8, 9] and the references indicated therein.

Let us describe the organization of our manuscript and link this description with
the explanation of the novelty in our approach:

In Section 2, “Preliminaries,” we introduce the framework of our study. Partic-
ular attention is paid to a recall of Lions’ definition of the derivative of a function
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defined over the space of probability measures over R
d with finite second mo-

ment. On the basis of this notion of first-order derivatives, we introduce in exactly
the same spirit the second-order derivatives of such a function. The first- and the
second-order differentiability of a function with respect to a probability measure
allows in the following to derive a second-order Taylor expansion (Lemma 2.1)
which is new and turns out to be crucial in our approach. We give an example
(Example 2.3) which shows that, in general, even in the most regular cases, the
functions lifted from the space of probability measures with finite second moment
to the space of square integrable random variables are not twice Fréchet differen-
tiable on L2, but well twice differentiable with respect to the probability measure.
To the best of our knowledge, the passage to higher order derivatives with respect
to the measure, the second-order Taylor expansion with respect to the measure and
Example 2.3 are new. They constitute the crucial paves in our approach, in par-
ticular also for the derivation of the Itô formula for mean-field Itô processes (see
Theorem 7.1 in Section 7).

In Section 3, we introduce our mean-field SDE with our standard assumptions
on its coefficients [their twice fold differentiability with respect to (x,μ) with
bounded Lipschitz derivatives of first and second order], and we study useful prop-
erties of the mean-field SDE. A crucial step in our approach constitutes the splitting
of mean-field SDE (1.1) into (1.3) and (1.4)—a system of mean-field SDEs which,
unlike (1.1), generates a flow. The flow concerns the couple formed by the state
and by the law of the process. Such a splitting for the study of mean-field SDEs is
novel.

A central property studied in Section 4 is the differentiability of its solution
process Xt,x,Pξ with respect to the probability law Pξ . The identification of the
derivative of Xt,x,Pξ with respect to the probability law and the equation satisfied
by it are new, to the best of our knowledge. The investigations of Section 4 are com-
pleted by Section 5, which is devoted to the study of the second-order derivatives
of Xt,x,Pξ , and so namely for that with respect to the probability law. The first- and
the second-order derivatives of Xt,x,Pξ are characterized as the unique solution of
associated SDEs which on their part allow to get estimates for the derivatives of
order 1 and 2 of Xt,x,Pξ . The results obtained for the process Xt,x,Pξ and so also
for Xt,ξ in the Sections 3–5 are used in Section 6 for the proof of the regularity of
the value function V (t, x,Pξ ). Finally, Section 7 is devoted to a novel Itô formula
associated with mean-field problems, and it gives our main result, Theorem 7.2,
stating that our value function V is the unique classical solution of the PDE (1.6)
of mean-field type given above.

2. Preliminaries. Let us begin with introducing some notation and con-
cepts, which we will need in our further computations. We shall in particular
introduce the notion of differentiability of a function f defined over the space
P2(R

d) of all probability measures μ over (Rd,B(Rd)) with finite second mo-
ment

∫
Rd |x|2μ(dx) < ∞ [B(Rd) denotes the Borel σ -field over Rd ]. The space
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P2(R
2d) is endowed with the 2-Wasserstein metric

W2(μ, ν) := inf
{(∫

Rd×Rd
|x − y|2ρ(dx dy)

)1/2

, ρ ∈ P2
(
R

2d)
(2.1)

with ρ
(· ×R

d) = μ,ρ
(
R

d × ·) = ν

}
, μ, ν ∈ P2

(
R

d)
.

Among the different notions of differentiability of a function f defined over
P2(R

d), we adopt for our approach that introduced by Lions [17] in his lectures at
Collège de France in Paris and revised in the notes by Cardaliaguet [6]; we refer
the reader also, for instance, to Carmona and Delarue [9]. Let us consider a proba-
bility space (�,F,P ) which is “rich enough” (the precise space we will work with
will be introduced later). “Rich enough” means that for every μ ∈ P2(R

d) there
is a random variable ϑ ∈ L2(F;Rd)(:= L2(�,F,P ;Rd)) such that Pϑ = μ. It is
well known that the probability space ([0,1],B([0,1]), dx) has this property.

Identifying the random variables in L2(F;Rd), which coincide P -a.s., we can
regard L2(F;Rd) as a Hilbert space with inner product (ξ, η)L2 = E[ξ · η], ξ, η ∈
L2(F;Rd), and norm |ξ |L2 = (ξ, ξ)

1/2
L2 . Recall that, due to the definition made

by Lions [6] (see Cardaliaguet [7]), a function f : P2(R
d) → R is said to be dif-

ferentiable in μ ∈ P2(R
d) if, for f̃ (ϑ) := f (Pϑ),ϑ ∈ L2(F;Rd), there is some

ϑ0 ∈ L2(F;Rd) with Pϑ0 = μ, such that the function f̃ : L2(F;Rd) → R is dif-
ferentiable (in Fréchet sense) in ϑ0, that is, there exists a linear continuous mapping
Df̃ (ϑ0) : L2(F;Rd) →R (Df̃ (ϑ0) ∈ L(L2(F;Rd);R)) such that

f̃ (ϑ0 + η) − f̃ (ϑ0) = Df̃ (ϑ0)(η) + o
(|η|L2

)
,(2.2)

with |η|L2 → 0 for η ∈ L2(F;Rd). Since Df̃ (ϑ0) ∈ L(L2(F;Rd);R), Riesz’ rep-
resentation theorem yields the existence of a (P -a.s.) unique random variable θ0 ∈
L2(F;Rd) such that Df̃ (ϑ0)(η) = (θ0, η)L2 = E[θ0η], for all η ∈ L2(F;Rd). In
[17] (see also [6]), it has been proved that there is a Borel function h0 : Rd → R

d

such that θ0 = h0(ϑ0),P -a.s. The function h0 only depends on the law Pϑ0 but not
on ϑ0 itself. Taking into account the definition of f̃ , this allows to write

f (Pϑ) − f (Pϑ0) = E
[
h0(ϑ0) · (ϑ − ϑ0)

] + o
(|ϑ − ϑ0|L2

)
,(2.3)

ϑ ∈ L2(F;Rd).
We call ∂μf (Pϑ0, y) := h0(y), y ∈ R

d , the derivative of f : P2(R
d) → R at

Pϑ0 . Note that ∂μf (Pϑ0, y) is only Pϑ0(dy)-a.e. uniquely determined.
However, in our approach we have to consider functions f : P2(R

d) →R which
are differentiable in all elements of P2(R

d). In order to simplify the argument,
we suppose that f̃ : L2(F;Rd) → R is Fréchet differential over the whole space
L2(F;Rd). This corresponds to a large class of important examples. In this case,
we have the derivative ∂μf (Pϑ, y), defined Pϑ(dy)-a.e., for all ϑ ∈ L2(F;Rd).
In Lemma 3.2 [9], it is shown that, if, furthermore, the Fréchet derivative Df̃ :
L2(F;Rd) → L(L2(F;Rd),R) is Lipschitz continuous (with a Lipschitz constant
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K ∈ R+), then there is for all ϑ ∈ L2(F;Rd) a Pϑ -version of ∂μf (Pϑ, ·) : Rd →
R

d such that∣∣∂μf (Pϑ, y) − ∂μf
(
Pϑ, y′)∣∣ ≤ K

∣∣y − y′∣∣, for all y, y′ ∈ R
d .

This motivates us to make the following definition.

DEFINITION 2.1. We say that f ∈ C
1,1
b (P2(R

d)) [continuously differentiable
over P2(R

d) with Lipschitz-continuous bounded derivative], if there exists for all
ϑ ∈ L2(F;Rd) a Pϑ -modification of ∂μf (Pϑ, ·), again denoted by ∂μf (Pϑ, ·),
such that ∂μf : P2(R

d) ×R
d → R

d is bounded and Lipschitz continuous, that is,
there is some real constant C such that:

(i) |∂μf (μ,x)| ≤ C,μ ∈ P2(R
d), x ∈ R

d ;
(ii) |∂μf (μ,x) − ∂μf (μ′, x′)| ≤ C(W2(μ,μ′) + |x − x′|),μ,μ′ ∈ P2(R

d), x,
x′ ∈ R

d ;

we consider this function ∂μf as the derivative of f .

REMARK 2.1. Let us point out that, if f ∈ C
1,1
b (P2(R

d)), the version of
∂μf (Pϑ, ·), ϑ ∈ L2(F;Rd), indicated in Definition 2.1 is unique. Indeed, given
ϑ ∈ L2(F;Rd), let θ be a d-dimensional vector of independent standard nor-
mally distributed random variables, which are independent of ϑ . Then, since
∂μf (Pϑ+εθ , ϑ + εθ) is only P -a.s. defined, ∂μf (Pϑ+εθ , y) is determined only
Pϑ+εθ (dy)-a.s. Observing that the random variable ϑ +εθ possesses a strictly pos-
itive density on R

d , it follows that Pϑ+εθ and the Lebesgue measure over Rd are
equivalent. Consequently, ∂μf (Pϑ+εθ , y) is defined dy-a.e. on R

d . From the Lip-
schitz continuity (ii) of ∂μf in Definition 2.1, it then follows that ∂μf (Pϑ+εθ , y)

is defined for all y ∈ R
d , and taking the limit 0 < ε ↓ 0 yields that ∂μf (Pϑ, y) is

uniquely defined for all y ∈ R
d .

Given now f ∈ C
1,1
b (P2(R

d)), for fixed y ∈ R
d the question of the differen-

tiability of its components (∂μf )j (·, y) : P2(R
d) → R,1 ≤ j ≤ d , raises, and

it can be discussed in the same way as the first-order derivative ∂μf above. If
(∂μf )j (·, y) : P2(R

d) → R belongs to C
1,1
b (P2(R

d)), we have that its derivative
∂μ((∂μf )j (·, y))(·, ·) : P2(R

d)×R
d →R

d is a Lipschitz-continuous function, for
every y ∈ R

d . Then

∂2
μf (μ,x, y) := (

∂μ

(
(∂μf )j (·, y)

)
(μ, x)

)
1≤j≤d,

(2.4)
(μ, x, y) ∈ P2

(
R

d
) ×R

d ×R
d,

defines a function ∂2
μf : P2(R

d) ×R
d ×R

d →R
d ⊗R

d .

DEFINITION 2.2. We say that f ∈ C
2,1
b (P2(R

d)), if f ∈ C
1,1
b (P2(R

d)) and:
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(i) (∂μf )j (·, y) ∈ C
1,1
b (P2(R

d)), for all y ∈ R
d,1 ≤ j ≤ d , and ∂2

μf :
P2(R

d) ×R
d ×R

d → R
d ⊗R

d is bounded and Lipschitz-continuous;
(ii) ∂μf (μ, ·) : Rd → R

d is differentiable, for every μ ∈ P2(R
d), and its

derivative ∂y∂μf : P2(R
d)×R

d → R
d ⊗R

d is bounded and Lipschitz-continuous.

Adopting the above introduced notation, we consider a function
f ∈ C

2,1
b (P2(R

d)) and discuss its second-order Taylor expansion. For this end,
we have still to introduce some notation. Let (�̃, F̃, P̃ ) be a copy of the prob-
ability space (�,F,P ). For any random variable (of arbitrary dimension) ϑ

over (�,F,P ), we denote by ϑ̃ a copy (of the same law as ϑ , but defined
over (�̃, F̃, P̃ ): P̃ϑ̃ = Pϑ . The expectation Ẽ[·] = ∫

�̃(·) dP̃ acts only over the
variables endowed with a tilde. This can be made rigorous by working with
the product space (�,F,P ) ⊗ (�̃, F̃, P̃ ) = (�,F,P ) ⊗ (�,F,P ) and putting
ϑ̃(ω̃,ω) := ϑ(ω̃), (ω̃,ω) ∈ �̃ × � = � × �, for ϑ random variable defined over
(�,F,P )). Of course, this formalism can be easily extended from random vari-
ables to stochastic processes.

With the above notation and writing a ⊗ b := (aibj )1≤i,j≤d , for a = (ai)1≤i≤d,

b = (bj )1≤j≤d ∈ R
d , we can state now the following result.

LEMMA 2.1. Let f ∈ C
2,1
b (P2(R

d)). Then, for any given ϑ0 ∈ L2(F;Rd) we
have the following second-order expansion:

f (Pϑ) − f (Pϑ0)

= E
[
∂μf (Pϑ0, ϑ0) · η] + 1

2E
[
Ẽ

[
tr

(
∂2
μf (Pϑ0, ϑ̃0, ϑ0) · η̃ ⊗ η

)]]
(2.5)

+ 1
2E

[
tr

(
∂y∂μf (Pϑ0, ϑ0) · η ⊗ η

)] + R(Pϑ,Pϑ0),

ϑ ∈ L2(
F;Rd

)
,

where η := ϑ − ϑ0, and for all ϑ ∈ L2(F;Rd) the remainder R(Pϑ,Pϑ0) satisfies
the estimate ∣∣R(Pϑ,Pϑ0)

∣∣ ≤ C
((

E
[|ϑ − ϑ0|2])3/2 + E

[|ϑ − ϑ0|3])
(2.6)

≤ CE
[|ϑ − ϑ0|3]

.

The constant C ∈ R+ only depends on the Lipschitz constants of ∂2
μf and ∂y∂μf .

We observe that the above second-order expansion does not constitute a second-
order Taylor expansion for the associated function f̃ : L2(F;Rd) → R, since the
remainder term E[|ϑ − ϑ0|3 ∧ |ϑ − ϑ0|2] is not of order o(|ϑ − ϑ0|2L2). Indeed, as
the following example shows, in general we only have E[|ϑ −ϑ0|3 ∧ |ϑ −ϑ0|2] =
O(|ϑ − ϑ0|2L2).
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EXAMPLE 2.1. Let ϑ� = IA�
, with A� ∈ F such that P(A�) → 0, as � → ∞.

Then ϑ� → 0 in L2(� → ∞), and E[|ϑ�|3 ∧ |ϑ�|2] = P(A�) = E[ϑ2
� ] = |ϑ�|2L2 →

0 (� → ∞).

If we had in Lemma 2.1 a remainder R(Pϑ,Pϑ0) = o(|ϑ − ϑ0|2L2), this would
suggest that f̃ (ζ ) = f (Pζ ) is twice Fréchet differentiable at ϑ0. But however, as
the following Example 2.3 shows, even in easiest cases f̃ is not twice Fréchet
differentiable.

However, for our purposes the above expansion is fine.

PROOF OF LEMMA 2.1. Let ϑ0 ∈ L2(F;Rd). Then, for all ϑ ∈ L2(F;Rd),
putting η := ϑ − ϑ0 and using the fact that f ∈ C

2,1
b (P2(R

d)), we have

f (Pϑ) − f (Pϑ0) =
∫ 1

0

d

dλ
f (Pϑ0+λη) dλ

(2.7)

=
∫ 1

0
E

[
∂μf (Pϑ0+λη,ϑ0 + λη) · η]

dλ.

Let us now compute d
dλ

∂μf (Pϑ0+λη,ϑ0 +λη). Since f ∈ C
2,1
b (P2(R

d)), the lifted
function ∂̃μf (ξ, y) = ∂μf (Pξ , y), ξ ∈ L2(F;Rd), is Fréchet differentiable in ξ ,
and

d

dλ
∂μf (Pϑ0+λη, y) = d

dλ
∂̃μf (ϑ0 + λη, y)

(2.8)
= E

[
∂2
μf (Pϑ0+λη,ϑ0 + λη, y) · η]

,

λ ∈ R, y ∈ R
d . Then, choosing an independent copy (ϑ̃, ϑ̃0) of (ϑ,ϑ0) defined

over (�̃, F̃, P̃ ) (i.e., in particular, P̃(ϑ̃,ϑ̃0)
= P(ϑ,ϑ0)), we have for η̃ := ϑ̃ − ϑ̃0,

d

dλ
∂μf (Pϑ0+λη, y) = Ẽ

[
∂2
μf (Pϑ0+λη, ϑ̃0 + λη̃, y) · η̃]

,

(2.9)
λ ∈ R, y ∈ R

d .

Consequently,

d

dλ
∂μf (Pϑ0+λη,ϑ0 + λη) = Ẽ

[
∂2
μf (Pϑ0+λη, ϑ̃0 + λη̃,ϑ0 + λη) · η̃]

(2.10)
+ ∂y∂μf (Pϑ0+λη,ϑ0 + λη) · η.

Thus,

f (Pϑ) − f (Pϑ0)

=
∫ 1

0
E

[
∂μf (Pϑ0+λη,ϑ0 + λη) · η]

dλ



MEAN-FIELD SDES AND ASSOCIATED PDES 833

= E
[
∂μf (Pϑ0, ϑ0) · η]

+
∫ 1

0

∫ λ

0
E

[
d

dρ
∂μf (Pϑ0+ρη,ϑ0 + ρη) · η

]
dρ dλ(2.11)

= E
[
∂μf (Pϑ0, ϑ0) · η]

+
∫ 1

0

∫ λ

0
E

[
tr

(
∂y∂μf (Pϑ0+ρη,ϑ0 + ρη) · η ⊗ η

)]
dρ dλ

+
∫ 1

0

∫ λ

0
E

[
Ẽ

[
tr

(
∂2
μf (Pϑ0+ρη, ϑ̃0 + ρη̃,ϑ0 + ρη) · η̃ ⊗ η

)]]
dρ dλ.

From this latter relation, we get

f (Pϑ) − f (Pϑ0)

= E
[
∂μf (Pϑ0, ϑ0) · η] + 1

2E
[
Ẽ

[
tr

(
∂2
μf (Pϑ0, ϑ̃0, ϑ0) · η̃ ⊗ η

)]]
(2.12)

+ 1
2E

[
tr

(
∂y∂μf (Pϑ0, ϑ0) · η ⊗ η

)] + R1(Pϑ,Pϑ0) + R2(Pϑ,Pϑ0),

with the remainders

R1(Pϑ,Pϑ0) =
∫ 1

0

∫ λ

0
E

[
Ẽ

[
tr

((
∂2
μf (Pϑ0+ρη, ϑ̃0 + ρη̃,ϑ0 + ρη)

(2.13)
− ∂2

μf (Pϑ0, ϑ̃0, ϑ0)
) · η̃ ⊗ η

)]]
dρ dλ

and

R2(Pϑ,Pϑ0) =
∫ 1

0

∫ λ

0
E

[
tr

((
∂y∂μf (Pϑ0+ρη,ϑ0 + ρη)

(2.14)
− ∂y∂μf (Pϑ0, ϑ0)

) · η ⊗ η
)]

dρ dλ.

Finally, from the boundedness and the Lipschitz continuity of the functions ∂2
μf

and ∂y∂μf we conclude that, for some C ∈ R+ only depending on ∂2
μf, ∂y∂μf ,

|R1(Pϑ,Pϑ0)| ≤ C(E[|η|2])3/2, while |R2(Pϑ,Pϑ0)| ≤ C(E|η|2)3/2 + CE|η|3.
This proves the statement. �

Let us finish our preliminary discussion with two illustrating examples.

EXAMPLE 2.2. Given two twice continuously differentiable functions h :
R

d → R and g : R → R with bounded derivatives, we consider f (Pϑ) :=
g(E[h(ϑ)]), ϑ ∈ L2(F;Rd). Then, given any ϑ0 ∈ L2(F;Rd), f̃ (ϑ) := f (Pϑ) =
g(E[h(ϑ)]) is Fréchet differentiable in ϑ0, and

f̃ (ϑ0 + η) − f̃ (ϑ0) =
∫ 1

0
g′(E[

h(ϑ0 + sη)
])

E
[
h′(ϑ0 + sη)η

]
ds

= g′(E[
h(ϑ0)

])
E

[
h′(ϑ0)η

] + o
(|η|L2

)
= E

[
g′(E[

h(ϑ0)
])

h′(ϑ0)η
] + o

(|η|L2
)
.
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Thus, Df̃ (ϑ0)(η) = E[g′(E[h(ϑ0)])∂yh(ϑ0)η], η ∈ L2(F;Rd), that is,

∂μf (Pϑ0, y) = g′(E[
h(ϑ0)

])
(∂yh)(y), y ∈ R

d .

With the same argument, we see that

∂2
μf (Pϑ0, x, y) = g′′(E[

h(ϑ0)
])

(∂xh)(x) ⊗ (∂yh)(y)

and

∂y∂μf (Pϑ0, y) = g′(E[
h(ϑ0)

])(
∂2
yh

)
(y).

Consequently, if g and h are three times continuously differentiable with bounded
derivatives of all order, then the second-order expansion stated in the above
Lemma 2.1 takes for this example the special form

g
(
E

[
h(ϑ)

]) − g
(
E

[
h(ϑ0)

])
= g′(E[

h(ϑ0)
])

E
[
∂yh(ϑ0) · (ϑ − ϑ0)

]
+ 1

2g′′(E[
h(ϑ0)

])(
E

[
∂yh(ϑ0) · (ϑ − ϑ0)

])2

+ 1
2g′(E[

h(ϑ0)
])

E
[
tr

(
∂2
yh(ϑ0) · (ϑ − ϑ0) ⊗ (ϑ − ϑ0)

)]
+ O

((
E

[|ϑ − ϑ0|2])3/2 + E
[|ϑ − ϑ0|3])

.

EXAMPLE 2.3. Let us consider a special case of Example 2.2. For d = 1, we
choose g(x) = x, x ∈ R, and h(x) = eix, x ∈ R. Then f̃ (ϑ) = f (Pϑ) = ϕϑ(1) =
E[eiϑ ] is just the characteristic function of ϑ at 1. Let ϑ0 ∈ L2(F;R) be arbitrary
and A ∈F independent of ϑ0. We put η = IA and ϑ = ϑ0 +η. Obviously, the first-
order Fréchet derivative of f̃ at ϑ0 is Dϑf̃ (ϑ0)(η) = iE[eiϑ0η], and if f̃ were
twice Fréchet differentiable we would have

D2
ϑ f̃ (ϑ0)(η, η) = Dϑ

[
Dϑf̃ (ϑ)

]
(η)|ϑ=ϑ0 = −E

[
eiϑ0

]
η2.

Then

R(Pϑ,Pϑ0) = f̃ (ϑ) − [
f̃ (ϑ0) + Dϑf̃ (ϑ0)(η) + 1

2D2
ϑf (ϑ0)(η, η)

]
= E

[
eiϑ0

(
eiη − [

1 + iη − 1
2η2])] = E

[
eiϑ0

(
ei − (1

2 + i
))

IA

]
= (

ei − (1
2 + i

))
ϕϑ0(1)P (A) = (

ei − (1
2 + i

))
ϕϑ0(1)|η|2

L2,

as |η|L2 = P(A)1/2 → 0. But this means that f̃ is not twice Fréchet differentiable
in ϑ0, and taking into account the arbitrariness of ϑ0 ∈ L2(F;R), we see that f̃ is
nowhere twice Fréchet differentiable.
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3. The mean-field stochastic differential equation. Let us now consider a
complete probability space (�,F,P ) on which is defined a d-dimensional Brow-
nian motion B(= (B1, . . . ,Bd)) = (Bt )t∈[0,T ], and T > 0 denotes an arbitrarily
fixed time horizon. We suppose that there is a sub-σ -field F0 ⊂ F such that:

(i) the Brownian motion B is independent of F0, and
(ii) F0 is “rich enough,” that is, P2(R

k) = {Pϑ,ϑ ∈ L2(F0;Rk)}, k ≥ 1.

By F = (Ft )t∈[0,T ] we denote the filtration generated by B , completed and aug-
mented by F0.

Given deterministic Lipschitz functions σ : Rd × P2(R
d) → R

d×d and b :
R

d × P2(R
d) → R

d , we consider for the initial data (t, x) ∈ [0, T ] × R
d and

ξ ∈ L2(Ft ;Rd) the stochastic differential equations (SDEs)

Xt,ξ
s = ξ +

∫ s

t
σ

(
Xt,ξ

r ,P
X

t,ξ
r

)
dBr +

∫ s

t
b
(
Xt,ξ

r ,P
X

t,ξ
r

)
dr,

(3.1)
s ∈ [t, T ],

and

Xt,x,ξ
s = x +

∫ s

t
σ

(
Xt,x,ξ

r ,P
X

t,ξ
r

)
dBr +

∫ s

t
b
(
Xt,x,ξ

r ,P
X

t,ξ
r

)
dr,

(3.2)
s ∈ [t, T ].

We observe that under our Lipschitz assumption on the coefficients the both SDEs
have a unique solution in S2([t, T ];Rd), the space of F-adapted continuous pro-
cesses Y = (Ys)s∈[t,T ] with the property E[sups∈[t,T ] |Ys |2] < +∞ (see, e.g., Car-
mona and Delarue [9]). We see, in particular, that the solution Xt,ξ of the first
equation allows to determine that of the second equation. As SDE standard esti-
mates show, we have for some C ∈ R+ depending only on the Lipschitz constants
of σ and b,

E
[

sup
s∈[t,T ]

∣∣Xt,x,ξ
s − Xt,x′,ξ

s

∣∣2]
≤ C

∣∣x − x′∣∣2,(3.3)

for all t ∈ [0, T ], x, x′ ∈ R
d, ξ ∈ L2(Ft ;Rd). This allows to substitute in the sec-

ond SDE for x the random variable ξ and shows that Xt,x,ξ |x=ξ solves the same
SDE as Xt,ξ . From the uniqueness of the solution, we conclude

Xt,x,ξ
s |x=ξ = Xt,ξ

s , s ∈ [t, T ].(3.4)

Moreover, from the uniqueness of the solution of the both equations we deduce the
following flow property:(

Xs,X
t,x,ξ
s ,X

t,ξ
s

r ,Xs,X
t,ξ
s

r

) = (
Xt,x,ξ

r ,Xt,ξ
r

)
, r ∈ [s, T ],(3.5)
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for all 0 ≤ t ≤ s ≤ T ,x ∈ R
d, ξ ∈ L2(Ft ;Rd). In fact, putting η = X

t,ξ
s ∈

L2(Fs;Rd), and considering the SDEs (3.1) and (3.2) with the initial data (s, y)

and (s, η), respectively,

Xs,η
r = η +

∫ r

s
σ

(
Xs,η

u ,PX
s,η
u

)
dBu +

∫ r

s
b
(
Xs,η

u ,PX
s,η
u

)
du, r ∈ [s, T ],

and

Xs,y,η
r = y +

∫ r

s
σ

(
Xs,y,η

u ,PX
s,η
u

)
dBu +

∫ r

s
b
(
Xs,y,η

u ,PX
s,η
u

)
du, r ∈ [s, T ],

we get from the uniqueness of the solution that X
s,η
r = X

t,ξ
r , r ∈ [s, T ], and, con-

sequently, X
s,X

t,x,ξ
s ,η

r = X
t,x,ξ
r , r ∈ [t, T ], that is, we have (3.5).

Having this flow property, it is natural to define for a sufficiently regular function
� :Rd ×P2(R

d) →R an associated value function

V (t, x, ξ) := E
[
�

(
X

t,x,ξ
T ,P

X
t,ξ
T

)]
,

(3.6)
(t, x) ∈ [0, T ] ×R

d, ξ ∈ L2(
Ft ;Rd

)
,

and to ask which PDE is satisfied by this function V . In order to be able to answer
this question in the frame of the concept, we have introduced above, we have to
show that the function V (t, x, ξ) does not depend on ξ itself but only on its law
Pξ , that is, that we have to do with a function V : [0, T ] ×R

d ×P2(R
d) →R. For

this, the following lemma is useful.

LEMMA 3.1. For all p ≥ 2, there is a constant Cp ∈ R+ only depending on
the Lipschitz constants of σ and b, such that we have the following estimate:

E
[

sup
s∈[t,T ]

∣∣Xt,x1,ξ1
s − Xt,x2,ξ2

s

∣∣p]
≤ Cp

(|x1 − x2|p + W2(Pξ1,Pξ2)
p)

,(3.7)

for all t ∈ [0, T ], x1, x2 ∈ R
d, ξ1, ξ2 ∈ L2(Ft ;Rd).

PROOF. Recall that for the 2-Wasserstein metric W2(·, ·) we have

W2(Pϑ,Pθ ) = inf
{(

E
[∣∣ϑ ′ − θ ′∣∣2])1/2

, for all ϑ ′, θ ′ ∈ L2(
F0;Rd)

with Pϑ ′ = Pϑ,Pθ ′ = Pθ

}
(3.8)

≤ (
E

[|ϑ − θ |2])1/2 for all ϑ, θ ∈ L2(
F;Rd)

,

because we have chosen F0 “rich enough”. Since our coefficients σ and b are
Lipschitz over Rd ×P2(R

d), this allows to get with the help of standard estimates
for the SDEs for Xt,ξ and Xt,x,ξ that, for some constant C ∈ R+ only depending
on the Lipschitz constants of σ and b,

E
[

sup
s∈[t,T ]

∣∣Xt,ξ1
s − Xt,ξ2

s

∣∣2]
≤ CE

[|ξ1 − ξ2|2]
,

(3.9)
ξ1, ξ2 ∈ L2(

Ft ;Rd
)
, t ∈ [0, T ],
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and, for some Cp ∈ R depending only on p and the Lipschitz constants of the
coefficients,

E
[

sup
s∈[t,v]

∣∣Xt,x1,ξ1
s − Xt,x2,ξ2

s

∣∣p]
(3.10)

≤ Cp

(
|x1 − x2|p +

∫ v

t
W2(P

X
t,ξ1
r

, P
X

t,ξ2
r

)p dr

)
,

for all x1, x2 ∈ R
d, ξ1, ξ2 ∈ L2(Ft ;Rd), 0 ≤ t ≤ v ≤ T . On the other hand, from

the SDE for Xt,x,ξ we derive easily that Xt,ξ ′,ξ (:= Xt,x,ξ |x=ξ ′) obeys the same
law as Xt,ξ (= Xt,x,ξ |x=ξ ), whenever ξ, ξ ′ ∈ L2(Ft ;Rd) have the same law. This
allows to deduce from the latter estimate, for p = 2,

sup
s∈[t,v]

W2(P
X

t,ξ1
s

, P
X

t,ξ2
s

)2

≤ sup
s∈[t,v]

E
[∣∣Xt,ξ ′

1,ξ1
s − X

t,ξ ′
2,ξ2

s

∣∣2] ≤ E
[

sup
s∈[t,v]

∣∣Xt,ξ ′
1,ξ1

s − X
t,ξ ′

2,ξ2
s

∣∣2]
(3.11)

≤ C

(
E

[∣∣ξ ′
1 − ξ ′

2
∣∣2] +

∫ v

t
W2(P

X
t,ξ1
r

, P
X

t,ξ2
r

)2 dr

)
, v ∈ [t, T ],

for all ξ ′
1, ξ

′
2 ∈ L2(Ft ;Rd) with Pξ ′

1
= Pξ1 and Pξ ′

2
= Pξ2 . Hence, taking at the

right-hand side of (3.11) the infimum over all such ξ ′
1, ξ

′
2 ∈ L2(Ft ;Rd) and con-

sidering the above characterization of the 2-Wasserstein metric, we get

sup
s∈[t,v]

W2(P
X

t,ξ1
s

, P
X

t,ξ2
s

)2

(3.12)

≤ C

(
W2(Pξ1,Pξ2)

2 +
∫ v

t
W2(P

X
t,ξ1
r

, P
X

t,ξ2
r

)2 dr

)
,

v ∈ [t, T ]. Then Gronwall’s inequality implies

sup
s∈[t,T ]

W2(P
X

t,ξ1
s

, P
X

t,ξ2
s

)2 ≤ CW2(Pξ1,Pξ2)
2,

(3.13)
t ∈ [0, T ], ξ1, ξ2 ∈ L2(

Ft ;Rd
)
,

which allows to deduce from the estimate (3.10)

E
[

sup
s∈[t,T ]

∣∣Xt,x1,ξ1
s − Xt,x2,ξ2

s

∣∣p]
≤ Cp

(|x1 − x2|p + W2(Pξ1,Pξ2)
p)

,(3.14)

for all t ∈ [0, T ], x1, x2 ∈ R
d, ξ1, ξ2 ∈ L2(Ft ;Rd). The proof is complete now. �

REMARK 3.1. An immediate consequence of the above Lemma 3.1 is that,
given (t, x) ∈ [0, T ] ×R

d , the processes Xt,x,ξ1 and Xt,x,ξ2 are indistinguishable,
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whenever the laws of ξ1 ∈ L2(Ft ;Rd) and ξ2 ∈ L2(Ft ;Rd) are the same. But this
means that we can define

Xt,x,Pξ := Xt,x,ξ , (t, x) ∈ [0, T ] ×R
d, ξ ∈ L2(

Ft ;Rd)
,(3.15)

and, extending the notation introduced in the preceding section for functions to
random variables and processes, we shall consider the lifted process X̃

t,x,ξ
s =

X
t,x,Pξ
s = X

t,x,ξ
s , s ∈ [t, T ], (t, x) ∈ [0, T ] × R

d, ξ ∈ L2(Ft ;Rd). However, we
prefer to continue to write Xt,x,ξ and reserve the notation X̃t,x,Pξ for an inde-
pendent copy of Xt,x,Pξ , which we will introduce later.

4. First-order derivatives of Xt,x,Pξ . Having now defined by the above rela-
tion the process Xt,x,μ for all μ ∈ P2(R

d), the question of its differentiability with
respect to μ raises; it will be studied through the Fréchet differentiability of the
mapping L2(Ft ;Rd) � ξ → X

t,x,ξ
s ∈ L2(Fs;Rd), s ∈ [t, T ]. For this we suppose

the following.
Hypothesis (H.1). The couple of coefficients (σ, b) belongs to C

1,1
b (Rd ×

P2(R
d) → R

d×d × R
d), that is, the components σi,j , bj , 1 ≤ i, j ≤ d , have the

following properties:

(i) σi,j (x, ·), bj (x, ·) belong to C
1,1
b (P2(R

d)), for all x ∈ R
d ;

(ii) σi,j (·,μ), bj (·,μ) belong to C1
b(Rd), for all μ ∈ P2(R

d);
(iii) The derivatives ∂xσi,j , ∂xbj :Rd ×P2(R

d) → R
d and ∂μσi,j , ∂μbj :Rd ×

P2(R
d) ×R

d → R
d are bounded and Lipschitz continuous.

Before discussing the differentiability of Xt,x,μ with respect to the probability
measure μ let us recall in a preparing step its L2-differentiability with respect to x.

LEMMA 4.1. Let (t, x) ∈ [0, T ] × R
d and ξ ∈ L2(Ft ;Rd). Under our above

Hypothesis (H.1), the process Xt,x,Pξ = (X
t,x,Pξ
s )s∈[t,T ] is L2-differentiable with

respect to x, for all s ∈ [t, T ]. More precisely, there is a (unique) process
∂xX

t,x,Pξ ∈ S2([t, T ];Rd×d) such that

E
[

sup
s∈[t,T ]

∣∣Xt,x+h,Pξ
s − X

t,x,Pξ
s − ∂xX

t,x,Pξ
s h

∣∣2]
= o

(|h|2)
, as Rd � h → 0.

[Recall that o(|h|) stands for an expression which tends quicker to zero than

h: o(|h|)/|h| → 0, as h → 0.] Moreover, ∂xX
t,x,Pξ = (∂xi

X
t,x,Pξ

s,j )1≤i,j≤d ∈
S2([t, T ];Rd×d) is the unique solution of the following SDE:

∂xi
X

t,x,Pξ

s,j = δi,j +
d∑

k=1

∫ s

t
∂xk

bj

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂xi

X
t,x,Pξ

r,k dr

+
d∑

k,�=1

∫ s

t
(∂xk

σj,�)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂xi

X
t,x,Pξ

r,k dB�
r ,(4.1)

s ∈ [t, T ],
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1 ≤ i, j ≤ d (here, δi,j denotes the Kronecker symbol: it equals 1, if i = j , and
is equal to zero, otherwise). Furthermore, we have the following estimates for the
process ∂xX

t,x,Pξ . For every p ≥ 2, there is some constant Cp ∈ R such that, for
all t ∈ [0, T ], x, x′ ∈ R

d and ξ, ξ ′ ∈ L2(Ft ;Rd):

(i) E
[

sup
s∈[t,T ]

∣∣∂xX
t,x,Pξ
s

∣∣p]
≤ Cp,

(4.2)
(ii) E

[
sup

s∈[t,T ]
∣∣∂xX

t,x,Pξ
s − ∂xX

t,x′,Pξ ′
s

∣∣p]
≤ Cp

(∣∣x − x′∣∣p + W2(Pξ ,Pξ ′)p
)
.

PROOF. Considering for fixed (t, ξ) the coefficients σ(s, x) := σ(x,P
X

t,ξ
s

)

and b(s, x) := b(x,P
X

t,ξ
s

), and taking into account that these coefficients are Lip-

schitz in x, uniformly with respect to s, we get the L2-differentiability of Xt,x,Pξ

and the SDE satisfied by its L2-derivative directly from the corresponding classi-
cal result. The proof for estimates for the L2-derivative combines standard SDE
estimates with the argument developed in the proof for the estimates for Xt,x,Pξ .

�

REMARK 4.1. From the above lemma, we see that, for given (t, ξ) ∈ [0, T ]×
L2(Ft ;Rd), the process ∂xX

t,ξ,Pξ
s := ∂xX

t,x,Pξ
s |x=ξ , s ∈ [t, T ] is the unique solu-

tion in S2([t, T ];Rd×d) of the SDE

∂xX
t,ξ,Pξ
s = I +

∫ s

t
(∂xσ )

(
Xt,ξ

r ,P
X

t,ξ
r

)
∂xX

t,ξ,Pξ
r dBr

(4.3)
+

∫ s

t
(∂xb)

(
Xt,ξ

r ,P
X

t,ξ
r

)
∂xX

t,ξ,Pξ
r dr, s ∈ [t, T ].

Moreover, it satisfies

E
[

sup
s∈[t,T ]

∣∣∂xX
t,ξ,Pξ
s

∣∣p|Ft

]
≤ sup

x∈R
E

[
sup

s∈[t,T ]
∣∣∂xX

t,x,Pξ
s

∣∣p]
≤ Cp, P -a.s.,(4.4)

for some real constant Cp only depending on p ≥ 2 and the bounds of ∂xσ and ∂xb.

Before giving the main statement of this section concerning the Fréchet deriva-
tive of L2(Ft ;Rd) � ξ → Xt,x,ξ = Xt,x,Pξ , and thus of the differentiability of the
process with respect to the probability law Pξ , let us begin with a heuristic com-
putation for the directional derivative. Subsequently, we will prove that it is indeed
the directional derivative and defines a Gâteaux derivative which, on its part, is
Lipschitz, and hence, a Fréchet derivative. We will make the computations for di-
mension d = 1; the case d ≥ 1 can be obtained by an easy extension.

Let (t, x) ∈ [0, T ] × R, ξ ∈ L2(Ft )(:= L2(Ft ;R)), and consider an arbitrary
“direction” η ∈ L2(Ft ). Then, supposing in a first attempt that the directional
derivative

Y t,x,ξ
s (η) = L2 − lim

h→0

1

h

(
Xt,x,ξ+hη

s − Xt,x,ξ
s

)
, s ∈ [t, T ],(4.5)
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exists, we consider the SDE

Xt,x,ξ+hη
s = x +

∫ s

t
σ

(
X

t,x,Pξ+hη
r ,P

X
t,ξ+hη
r

)
dBr

(4.6)
+

∫ s

t
b
(
X

t,x,Pξ+hη
r ,P

X
t,ξ+hη
r

)
dr,

s ∈ [t, T ], which, after lifting the process Xt,x,Pξ , and the coefficients from the
space R×P2(R) to R× L2(F), takes the form

Xt,x,ξ+hη
s = x +

∫ s

t
σ̃

(
Xt,x,ξ+hη

r ,Xt,ξ+hη
r

)
dBr

(4.7)
+

∫ s

t
b̃
(
Xt,x,ξ+hη

r ,Xt,ξ+hη
r

)
dr,

s ∈ [t, T ], and we derive formally this equation with respect to h at h = 0. For this
we denote the Fréchet derivatives of σ̃ and b̃ with respect to their second variable
by Dϑ and we note that, morally, the L2-derivative of X

t,ξ+hη
s is given by

∂hX
t,ξ+hη
s |h=0 = ∂xX

t,x,Pξ
s |x=ξ · η + Y t,x,ξ

s (η)|x=ξ .(4.8)

Recalling that, for some real C independent of (t, x,Pξ ),

E
[

sup
s∈[t,T ]

∣∣∂xX
t,x,P ξ
s

∣∣2]
≤ C,

we see that for ∂xX
t,ξ,Pξ
s := ∂xX

t,x,Pξ
s |x=ξ ,

E
[

sup
s∈[t,T ]

∣∣∂xX
t,ξ,Pξ
s

∣∣2|Ft

]
≤ C, P -a.s.(4.9)

Using the notation,

Y t,ξ
s (η) := Y t,x,ξ

s (η)|x=ξ ,(4.10)

we get by formal differentiation of the above equation

Y t,x,ξ
s (η) =

∫ s

t
(∂xσ̃ )

(
Xt,x,ξ

r ,Xt,ξ
r

)
Y t,x,ξ

s (η) dBr

+
∫ s

t
(∂xb̃)

(
Xt,x,ξ

r ,Xt,ξ
r

)
Y t,x,ξ

s (η) dr

(4.11)
+

∫ s

t
(Dϑσ̃ )

(
Xt,x,ξ

r ,Xt,ξ
r

)(
∂xX

t,ξ,Pξ
s η + Y t,ξ

s (η)
)
dBr

+
∫ s

t
(Dϑ b̃)

(
Xt,x,ξ

r ,Xt,ξ
r

)(
∂xX

t,ξ,Pξ
s η + Y t,ξ

s (η)
)
dr, s ∈ [t, T ].

As concerns the above term (Dϑσ̃ )(X
t,x,ξ
r ,X

t,ξ
r )(∂xX

t,ξ,Pξ
s η + Y

t,ξ
s (η)), we see

from the definition of the differentiability of σ with respect to the probability mea-
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sure, that

(Dϑσ̃ )
(
y,Xt,ξ

r

)(
∂xX

t,ξ,Pξ
s η + Y t,ξ

s (η)
)

(4.12)
= E

[
(∂μσ)

(
y,P

X
t,ξ
s

,Xt,ξ
s

) · (
∂xX

t,ξ,Pξ
s η + Y t,ξ

s (η)
)]

, y ∈R.

Now, for given ξ, η ∈ L2(Ft ) we denote by (̃ξ , η̃, B̃) a copy of (ξ, η,B) on
(�̃, F̃, P̃ ), while X̃t,̃ξ is the solution of the SDE for Xt,ξ , but driven by the Brow-

nian motion B̃ and with initial value ξ̃ . Moreover, X̃
t,x,P̃ξ̃ denotes the solution of

the SDE for Xt,x,Pξ , but governed by B̃ instead of B:

X̃t,̃ξ
s = ξ̃ +

∫ s

t
σ

(
X̃t,̃ξ

r , P̃
X̃

t,̃ξ
r

)
dB̃r +

∫ s

t
b
(
X̃t,̃ξ

r , P̃
X̃

t,̃ξ
r

)
dr,

X̃
t,x,P̃ξ̃
s = x +

∫ s

t
σ

(
X̃

t,x,P̃ξ̃
r , P̃

X̃
t,̃ξ
r

)
dB̃r +

∫ s

t
b
(
X̃

t,x,P̃ξ̃
r , P̃

X̃
t,̃ξ
r

)
dr, s ∈ [t, T ].

Obviously, X̃
t,x,P̃ξ̃ = X̃t,x,Pξ , x ∈ R, and (̃ξ , η̃, X̃t,x,Pξ , B̃) is an independent

copy of (ξ, η,Xt,x,Pξ ,B), defined over (�̃, F̃, P̃ ). Then, due to the notation al-

ready introduced, ∂xX̃
t,x,Pξ
r is the L2(P̃ )-derivative of X̃

t,x,Pξ
r with respect to x,

∂xX̃
t,̃ξ ,Pξ
r := ∂xX̃

t,x,Pξ
r |x=ξ̃ , and

Ỹ t,x,̃ξ
s (η̃) := L2(P̃ ) − lim

h→0

1

h

(
X̃t,x,̃ξ+hη̃

s − X̃t,x,̃ξ
s

)
, s ∈ [t, T ].(4.13)

Having these notation in mind as well as the fact that the expectation Ẽ[·] with
respect to P̃ applies only to variables endowed with a tilde, we see that

(Dϑσ̃ )
(
Xt,x,ξ

s ,Xt,ξ
r

) · (
∂xX

t,ξ,Pξ
s η + Y t,ξ

s (η)
)

= Ẽ
[
(∂μσ)

(
X

t,x,Pξ
s ,P

X
t,ξ
s

, X̃t ,̃ξ )
s

) · (
∂xX̃

t,̃ξ ,Pξ
s η̃ + Ỹ t ,̃ξ

s (η̃)
)]

,(4.14)

s ∈ [t, T ].
Using also the corresponding formula for (Dϑb̃)(X

t,x,ξ
s ,X

t,ξ
r )(∂xX

t,ξ,Pξ
s η +

Y
t,ξ
s (η)) and taking into account that ∂xσ̃ (x,ϑ) = ∂xσ (x,Pϑ) and ∂xb̃(x,ϑ) =

∂xb(x,Pϑ), (x,ϑ) ∈ R× L2(F), we obtain

Y t,x,ξ
s (η) =

∫ s

t
(∂xσ̃ )

(
Xt,x,ξ

r ,Xt,ξ
r

)
Y t,x,ξ

r (η) dBr

+
∫ s

t
(∂xb̃)

(
Xt,x,ξ

r ,Xt,ξ
r

)
Y t,x,ξ

r (η) dr

(4.15)
+

∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
)]

dBr

+
∫ s

t
Ẽ

[
(∂μb)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
)]

dr,
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s ∈ [t, T ]. Finally, recalling the definition of the process Y t,ξ (η), we see that
Y t,ξ (η) solves the SDE

Y t,ξ
s (η) =

∫ s

t
(∂xσ̃ )

(
Xt,ξ

r ,Xt,ξ
r

)
Y t,ξ

r (η) dBr +
∫ s

t
(∂xb̃)

(
Xt,ξ

r ,Xt,ξ
r

)
Y t,ξ

r (η) dr

+
∫ s

t
Ẽ

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
)]

dBr(4.16)

+
∫ s

t
Ẽ

[
(∂μb)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
)]

dr,

s ∈ [t, T ]. We remark that, thanks to the boundedness of the first-order derivatives
of the coefficients σ and b, the system formed of the both equations above has
a unique solution (Y t,x,ξ (η), Y t,ξ (η)) ∈ S2([t, T ];R2). Moreover, both processes
are linear in η ∈ L2(Ft ), and a standard estimate shows that

E
[

sup
s∈[t,T ]

∣∣Y t,x,ξ
s (η)

∣∣2]
≤ CE

[
η2]

, η ∈ L2(Ft ),(4.17)

for some constant C independent of (t, x,Pξ ). This shows, in particular, that

Y
t,x,ξ
s (·) is a bounded linear operator from L2(Ft ) to L2(Fs):

Y t,x,ξ
s (·) ∈ L

(
L2(Ft ),L

2(Fs)
)
, s ∈ [t, T ].

We are now able to show in a rigorous manner that our process Y
t,x,ξ
s (η) is the

directional derivative of X
t,x,ξ
s in direction η.

LEMMA 4.2. Under assumption (H.1), we have for all (t, x,Pξ ) ∈ [0, T ] ×
R× L2(Ft ),

Y t,x,ξ
s (η) = L2 − lim

h→0

1

h

(
Xt,x,ξ+hη

s − Xt,x,ξ
s

)
, s ∈ [t, T ],(4.18)

that is, Y
t,x,ξ
s (η) is the directional derivative of X

t,x,ξ
s in direction η ∈ L2(Ft ).

PROOF. The proof uses standard arguments. Let us sketch it, and without re-
stricting the generality of the argument we suppose b = 0. First, using the contin-
uous differentiability of σ , we see that

σ
(
Xt,x,ξ+hη

s ,P
X

t,ξ+hη
s

) − σ
(
Xt,x,ξ

s ,P
X

t,ξ
s

)
=

∫ 1

0
∂λ

(
σ

(
Xt,x,ξ

s + λ
(
Xt,x,ξ+hη

s − Xt,x,ξ
s

)
,P

X
t,ξ+hη
s

))
dλ

(4.19)

+
∫ 1

0
∂λ

(
σ

(
Xt,x,ξ

s ,P
X

t,ξ
s +λ(X

t,ξ+hη
s −X

t,ξ
s )

))
dλ

= αs(x,h)
(
Xt,x,ξ+hη

s − Xt,x,ξ
s

) + Ẽ
[
βs(x,h)

(
X̃t,̃ξ+hη̃

s − X̃t,̃ξ
s

)]
,
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where

αs(x,h) =
∫ 1

0
(∂xσ )

(
Xt,x,ξ

s + λ
(
Xt,x,ξ+hη

s − Xt,x,ξ
s

)
,P

X
t,ξ+hη
s

)
dλ,

βs(x,h) =
∫ 1

0
(∂μσ)

(
X

t,x,Pξ
s ,P

X
t,ξ
s +λ(X

t,ξ+hη
s −X

t,ξ
s )

,

X̃t ,̃ξ
s + λ

(
X̃t,̃ξ+hη̃

s − X̃t,̃ξ
s

))
dλ,

s ∈ [t, T ], x, h ∈R, are adapted, uniformly bounded processes which are indepen-
dent of Ft . Indeed, while for α(x,h) the statement is obvious, concerning β(x,h)

we have, for s ∈ [t, T ]:
∂λ

(
σ

(
Xt,x,ξ

s ,P
X

t,ξ
s +λ(X

t,ξ+hη
s −X

t,ξ
s )

))
= (Dϑσ̃ )

(
Xt,x,ξ

s ,Xt,ξ
s + λ

(
Xt,ξ+hη

s − Xt,ξ
s

))(
Xt,ξ+hη

s − Xt,ξ
s

)
(4.20)

= Ẽ
[
(∂μσ)

(
X

t,x,Pξ
s ,P

X
t,ξ
s +λ(X

t,ξ+hη
s −X

t,ξ
s )

, X̃t ,̃ξ
s + λ

(
X̃t,̃ξ+hη̃

s − X̃t,̃ξ
s

))
× (

X̃t,̃ξ+hη̃
s − X̃t,̃ξ

s

)]
.

Moreover, using the Lipschitz continuity of ∂μσ we see that, for some C ∈ R, only
depending on the Lipschitz constant of ∂μσ ,

Ẽ
[∣∣βs(x,h) − (∂μσ)

(
X

t,x,Pξ
s ,P

X
t,ξ
s

, X̃t ,̃ξ
s

)∣∣2]
≤ C

∫ 1

0

(
W2(PX

t,ξ
s +λ(X

t,ξ+hη
s −X

t,ξ
s )

, P
X

t,ξ
s

)2 + Ẽ
[∣∣X̃t,̃ξ+hη̃

s − X̃t,̃ξ
s

∣∣2])
dλ

≤ CE
[∣∣Xt,ξ+hη

s − Xt,ξ
s

∣∣2]
(4.21)

≤ CE
[
E

[∣∣Xt,y,Pξ+hη
s − X

t,y′Pξ
s

∣∣2]|y=ξ+hη,y′=ξ

]
≤ CE

[[∣∣y − y′∣∣2 + W2(Pξ+hη,Pξ )
2]|y=ξ+hη,y′=ξ

]
≤ Ch2E

[
η2]

, s ∈ [t, T ], x, h ∈R, ξ, η ∈ L2(Ft ).

Similarly, for ∂xσ , from its Lipschitz continuity and our estimates for the process
Xt,x,Pξ , we have for all p ≥ 2, there is some constant Cp such that

E
[∣∣αs(x,h) − (∂xσ )

(
X

t,x,Pξ
s ,P

X
t,ξ
s

)∣∣p]
≤ Cp

(
E

[∣∣Xt,x,Pξ+hη
s − X

t,x,Pξ
s

∣∣p] + W2(PX
t,ξ+hη
s

, P
X

t,ξ
s

)p
)

(4.22)
≤ CpW2(Pξ+hη,Pξ )

p + C|h|pE
[
η2]p/2

≤ Cp|h|pE
[
η2]p/2

, s ∈ [t, T ], x, h ∈ R, ξ, η ∈ L2(Ft ).



844 BUCKDAHN, LI, PENG AND RAINER

Recall that with the processes α(x,h) and β(x,h), the difference between

X
t,x,Pξ+hη
s and X

t,x,Pξ
s writes, for all s ∈ [t, T ], as follows:

X
t,x,Pξ+hη
s − X

t,x,Pξ
s =

∫ s

t
αr(x, h)

(
X

t,x,Pξ+hη
r − Xt,x,Pξ

)
dBr

(4.23)
+

∫ s

t
Ẽ

[
βr(x,h)

(
X̃t,̃ξ+hη̃

r − X̃t,̃ξ
r

)]
dBr.

Consequently, using the equation for Y t,x,ξ (η), we have

X
t,x,Pξ+hη
s − X

t,x,Pξ
s − hY

t,x,Pξ
s (η)

=
∫ s

t
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)(
X

t,x,Pξ+hη
r − X

t,x,Pξ
r − hY t,x,ξ

r (η)
)
dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
(4.24)

× (
X̃t,̃ξ+hη̃

r − X̃t,̃ξ
r − h

(
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
))]

dBr

+ R1(s, x, h),

with

R1(s, x,h)

=
∫ s

t

(
αr(x,h) − (∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)) · (
X

t,x,Pξ+hη
r − X

t,x,Pξ
r

)
dBr

+
∫ s

t
Ẽ

[(
βr(x,h) − (∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)) · (
X̃t,̃ξ+hη̃

r − X̃t,̃ξ
r

)]
dBr.

From Hölder’s inequality, (4.22) and our estimates for Xt,x,Pξ we obtain

E
[∣∣αr(x,h) − (∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)∣∣2∣∣Xt,x,Pξ+hη
r − X

t,x,Pξ
r

∣∣2]
(4.25)

≤ Ch2E
[
η2]

W2(Pξ+hη,Pξ )
2 ≤ Ch4E

[
η2]2

,

and (4.21) yields

E
[∣∣Ẽ[(

βr(h, x) − (∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)) · (
X̃t,̃ξ+hη̃

r − X̃t,̃ξ
r

)]∣∣2]
≤ E

[
Ẽ

[∣∣βr(h, x) − (∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)∣∣2]
(4.26)

× Ẽ
[∣∣X̃t,̃ξ+hη̃

r − X̃t,̃ξ
r

∣∣2]]
≤ Ch4E

[
η2]2

, r ∈ [t, T ], h, x ∈ R, ξ, η ∈ L2(Ft ).

Consequently, the remainder R1(s, x,h) can be estimated as follows:

E
[

sup
s∈[t,T ]

∣∣R1(s, x,h)
∣∣2]

≤ Ch4E
[
η2]2

, h, x ∈ R, ξ, η ∈ L2(Ft ),
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and, using Gronwall’s inequality, we obtain, for a suitable constant C not depend-
ing on (t, x, ξ, η), that for all u ∈ [t, T ],

sup
x∈R

E
[

sup
s∈[t,u]

∣∣Xt,x,Pξ+hη
s − X

t,x,Pξ
s − hY t,x,ξ

s (η)
∣∣2]

≤ Ch4E
[
η2]2(4.27)

+ C

∫ u

t
E

[
Ẽ

[∣∣X̃t,̃ξ+hη̃
r − X̃t,̃ξ

r − h
(
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
)∣∣]2]

dr.

In order to conclude, let us now estimate

Ẽ
[∣∣X̃t,̃ξ+hη̃

r − X̃t,̃ξ
r − h

(
∂xX̃

t,̃ξ ,Pξ
r η̃ + Ỹ t ,̃ξ

r (η̃)
)∣∣]

= E
[∣∣Xt,ξ+hη

r − Xt,ξ
r − h

(
∂xX

t,ξ,Pξ
r η + Y t,ξ

r (η)
)∣∣].

For this, we observe that

Xt,ξ+hη
r − Xt,ξ

r − h
(
∂xX

t,ξ,Pξ
r η + Y t,ξ

r (η)
) = I1(r, h) + I2(r, h),

where I1(r, h) = {(Xt,x,Pξ+hη
r − X

t,x,Pξ
r − hY

t,x,ξ
r (η))}|x=ξ satisfies

E
[∣∣I1(r, h)

∣∣]2 ≤ sup
x∈R

E
[∣∣Xt,x,Pξ+hη

r − X
t,x,Pξ
r − hY t,x,ξ

r (η)
∣∣2]

and for I2(r, h) = X
t,ξ+hη,Pξ+hη
r − X

t,ξ,Pξ+hη
r − h∂xX

t,ξ,Pξ
r η we have

E
[∣∣I2(r, h)

∣∣]2 ≤ h2E
[
η2] ∫ 1

0
E

[∣∣∂xX
t,ξ+λhη,Pξ+hη
r − ∂xX

t,ξ,Pξ
r

∣∣2]
dλ

≤ h2E
[
η2] ∫ 1

0
E

[
E

[∣∣∂xX
t,y,Pξ+hη
r − ∂xX

t,y′,Pξ
r

∣∣2]|y=ξ+λhη,y′=ξ

]
dλ

≤ Ch4E
[
η2]2

.

Therefore, combining these three latter estimates, we obtain

E
[

sup
s∈[t,T ]

∣∣Xt,x,Pξ+hη
s − X

t,x,Pξ
s − hY t,x,ξ

s (η)
∣∣2]

≤ Ch4E
[
η2]2

,

for all h ∈ R, η ∈ L2(Ft ), for some constant C independent of t ∈ [0, T ], x ∈ R

and ξ ∈ L2(Ft ). The proof is complete now. �

PROPOSITION 4.1. For any given t ∈ [0, T ], ξ ∈ L2(Ft ), x, y ∈ R, let(
Ut,x,ξ (y),Ut,ξ (y)

) = (
Ut,x,ξ

s (y),Ut,ξ
s (y)

)
s∈[t,T ] ∈ S

([t, T ];R2)
(4.28)
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be the unique solution of the system of (uncoupled) SDEs

Ut,x,ξ
s (y) =

∫ s

t
∂xσ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
Ut,x,ξ

r (y) dBr

+
∫ s

t
∂xb

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
Ut,x,ξ

r (y) dr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

(4.29)
+ (∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
Ũ t ,̃ξ

r (y)
]
dBr

+
∫ s

t
Ẽ

[
(∂μb)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

+ (∂μb)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
Ũ t ,̃ξ

r (y)
]
dr,

Ut,ξ
s (y) =

∫ s

t
∂xσ

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ut,ξ

r (y) dBr

+
∫ s

t
∂xb

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ut,ξ

r (y) dr

+
∫ s

t
Ẽ

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

(4.30)
+ (∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y)

]
dBr

+
∫ s

t
Ẽ

[
(∂μb)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

+ (∂μb)
(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y)

]
dr,

s ∈ [t, T ], where (Ũ t,̃ξ (y), B̃) is supposed to follow under P̃ exactly the same
law as (Ut,ξ (y),B) under P . Then, for all η ∈ L2(Ft ), the directional derivative

Y
t,x,ξ
s (η) of ξ → X

t,x,ξ
s = X

t,x,Pξ
s satisfies

Y t,x,ξ
s (η) = Ẽ

[
Ut,x,ξ

s (̃ξ ) · η̃]
, s ∈ [t, T ], P -a.s.(4.31)

REMARK 4.2. (1) One can consider Ũ t ,̃ξ (y) as the unique solution of the SDE
for Ut,ξ (y), but with the data (̃ξ , B̃) instead of (ξ,B).

(2) Since the derivatives ∂xσ, ∂xb, ∂μσ and ∂μb are bounded and the process
∂xX

t,y,Pξ is bounded in L2 by a constant independent of y ∈ R, it is easy to prove
the existence of the solution Ut,ξ (y) for the above SDE (4.30) and to show that
it is bounded in L2 by a constant independent of y ∈ R. Once having the process
Ut,ξ (y), the existence of the solution Ut,x,ξ (y) of (4.29) is immediate.

Before proving the above proposition, let us state the following lemma.
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LEMMA 4.3. Assume (H.1). Then, for all p ≥ 2 there is some constant Cp ∈ R

such that, for all t ∈ [0, T ], x, x′, y, y′ ∈ R
d and ξ, ξ ′ ∈ L2(Ft ;Rd):

(i) E
[

sup
s∈[t,T ]

∣∣Ut,x,ξ
s (y)

∣∣p]
≤ Cp,

(ii) E
[

sup
s∈[t,T ]

∣∣Ut,x,ξ
s (y) − Ut,x′,ξ ′

s

(
y′)∣∣p]

(4.32)

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)
.

REMARK 4.3. From estimate (ii) of the above lemma, we see that Ut,x,ξ (y)

depends on ξ ∈ L2(Ft ) only through its law Pξ . This allows, in analogy to Xt,x,Pξ ,
to write Ut,x,Pξ (y) := Ut,x,ξ (y).

Moreover, it is easy to verify that the solution Ut,x,Pξ (y) is (σ {Br − Bt, r ∈
[t, s]} ∨NP )-adapted and, hence, independent of Ft and, in particular, of ξ . Sub-
stituting in Ut,x,Pξ (y) the random variable ξ for x, we deduce from the uniqueness
of the solution of the equation for Ut,ξ (y) that

Ut,ξ
s (y) = U

t,x,Pξ
s (y)|x=ξ , s ∈ [t, T ], P -a.s.(4.33)

The same argument allows also to substitute Ft -measurable random variables for
y in U

t,ξ
s (y).

PROOF OF LEMMA 4.3. We continue to restrict ourselves to the one-
dimensional case d = 1, and to simplify a bit more we suppose also that b = 0.
By standard arguments already used in the proof of the estimates for Xt,x;Pξ ,
which we combine with our estimates for Xt,x;Pξ and ∂xX

t,x;Pξ we see that, for
all t ∈ [0, T ], x, x′, y, y′ ∈ R and ξ, ξ ′ ∈ L2(Ft ),

E
[

sup
s∈[t,T ]

(∣∣Ut,x,ξ
s (y)

∣∣p + ∣∣Ut,ξ
s (y)

∣∣p)] ≤ Cp.(4.34)

As concern the proof of the estimate

E
[

sup
s∈[t,T ]

(∣∣Ut,x,ξ
s (y) − Ut,x′,ξ ′

s

(
y′)∣∣p + ∣∣Ut,ξ

s (y) − Ut,ξ ′
s

(
y′)∣∣p)]

(4.35) ≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)
,

we notice that its central ingredient is the following estimate, which uses the Lip-
schitz property of ∂μσ with respect to all its variables as well as the boundedness
of ∂μσ :

E
[∣∣Ẽ[

(∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

− (∂μσ)
(
X

t,x′,Pξ ′
r ,P

X
t,ξ ′
r

, X̃
t,y′,Pξ ′
r

) · ∂xX̃
t,y′,Pξ ′
r

]∣∣p]
(4.36)

≤ Cp

(
E

[∣∣Xt,x,Pξ
r − X

t,x′,Pξ ′
r

∣∣2p + (
Ẽ

[∣∣X̃t,y,Pξ
r − X̃

t,y′,Pξ ′
r

∣∣2])p]
+ W2(PX

t,ξ
r

, P
X

t,ξ ′
r

)2p)1/2 + Cp

(
Ẽ

[∣∣∂xX̃
t,y,Pξ
s − ∂xX̃

t,y′,Pξ ′
s

∣∣2])p/2
.
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Once having the above estimate, we can use our estimates for Xt,x,Pξ and
∂xX

t,x,Pξ , in order to deduce that

E
[∣∣Ẽ[

(∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

− (∂μσ)
(
X

t,x′,Pξ ′
r ,P

X
t,ξ ′
r

, X̃
t,y′,Pξ ′
r

) · ∂xX̃
t,y′,Pξ ′
r

]∣∣p]
(4.37)

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)

and

E
[∣∣Ẽ[

(∂μσ)
(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

− (∂μσ)
(
Xt,ξ ′

r ,P
X

t,ξ ′
r

, X̃t,ξ ′
r

) · ∂xX̃
t,y′,Pξ ′
r

]∣∣p]
(4.38)

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)
.

Consequently, from the equations for Ut,x,ξ (y),Ut,x′,ξ ′
(y′), the above estimates

and Gronwall’s inequality we see that for all p ≥ 2, there is some constant Cp

such that, for all t ∈ [0, T ], x, x′, y, y′ ∈ R and ξ, ξ ′ ∈ L2(Ft ),

E
[

sup
r∈[t,s]

∣∣Ut,x,ξ
r (y) − Ut,x′,ξ ′

r

(
y′)∣∣p]

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)

(4.39)

+ E

[∫ s

t

∣∣Ẽ[∣∣Ũ t ,̃ξ
r (y) − Ũ t ,̃ξ ′

r

(
y′)∣∣2]∣∣p/2

dr

]
, s ∈ [t, T ].

Then, from this estimate, for p = 2,

E
[

sup
r∈[t,s]

∣∣Ut,ξ
r (y) − Ut,ξ ′

r

(
y′)∣∣2]

= E
[
E

[
sup

r∈[t,s]
∣∣Ut,x,ξ

r (y) − Ut,x′,ξ ′
r

(
y′)∣∣2]

|x=ξ,x′=ξ ′
]

(4.40)
≤ C

(
E

[∣∣ξ − ξ ′∣∣2] + ∣∣y − y′∣∣2)
+ E

[∫ s

t
Ẽ

[∣∣Ũ t ,̃ξ
r (y) − Ũ t ,̃ξ ′

r

(
y′)∣∣2]

dr

]
,

s ∈ [t, T ]. Applying Gronwall’s inequality to (4.40) and substituting the obtained
relation in (4.39), we obtain (ii) of the lemma. This completes the proof. �

We are now able to give the proof of Proposition 4.1.

PROOF PROPOSITION 4.1. Let now (̂ξ , η̂, B̂) be a copy of (ξ, η,B), indepen-
dent of (ξ, η,B) and (̃ξ , η̃, B̃), and defined over a new probability space (�̂, F̂, P̂ )
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which is different from (�,F,P ) and (�̃, F̃, P̃ ); the expectation Ê[·] applies only
to random variables over (�̂, F̂, P̂ ). This extension to (̂ξ , η̂, Ê[·]) here is done in
the same spirit as that from (ξ, η,B) to (̃ξ , η̃, B̃).

In order to obtain the wished relation, we substitute in the equation for Ut,ξ (y)

for y the random variable ξ̂ and we multiply both sides of the such obtained equa-
tion by η̂ [observe that ξ̂ and η̂ are independent of all terms in the equation for
Ut,ξ (y)]. Then we take the expectation Ê[·] on both sides of the new equation.
This yields

Ê
[
Ut,ξ

s (̂ξ ) · η̂]
=

∫ s

t
∂xσ

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ê

[
Ut,ξ

r (̂ξ ) · η̂]
dBr

+
∫ s

t
∂xb

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ê

[
Ut,ξ

r (̂ξ ) · η̂]
dr

+
∫ s

t
Ẽ

[
Ê

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t ,̂ξ ,Pξ
r

) · ∂xX̃
t,̂ξ ,Pξ
r · η̂]]

dBr(4.41)

+
∫ s

t
Ẽ

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · Ê[
Ũ t ,̃ξ

r (̂ξ ) · η̂]]
dBr

+
∫ s

t
Ẽ

[
Ê

[
(∂μb)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t ,̂ξ ,Pξ
r

) · ∂xX̃
t,̂ξ ,Pξ
r · η̂]]

dr

+
∫ s

t
Ẽ

[
(∂μb)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · Ê[
Ũ t ,̃ξ

r (̂ξ ) · η̂]]
dr, s ∈ [t, T ].

Taking into account that (̂ξ , η̂) is independent of (ξ, η,B) and (̃ξ , η̃, B̃), and of the
same law under P̂ as (̃ξ , η̃) under P̃ , we see that

Ẽ
[
Ê

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t ,̂ξ ,Pξ
r

) · ∂xX̃
t,̂ξ ,Pξ
r · η̂]]

= Ẽ
[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · ∂xX̃
t,̃ξ ,Pξ
r · η̃]

,

and the same relation also holds true for ∂μb instead of ∂μσ . Thus, the above
equation takes the form

Ê
[
Ut,ξ

s (̂ξ ) · η̂]
=

∫ s

t
∂xσ

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ê

[
Ut,ξ

r (̂ξ ) · η̂]
dBr

+
∫ s

t
∂xb

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ê

[
Ut,ξ

r (̂ξ ) · η̂]
dr

+
∫ s

t
Ẽ

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r · η̃ + Ê

[
Ũ t ,̃ξ

r (̂ξ ) · η̂])]
dBr

+
∫ s

t
Ẽ

[
(∂μb)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r · η̃

+ Ê
[
Ũ t ,̃ξ

r (̂ξ ) · η̂])]
dr, s ∈ [t, T ].
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But this latter SDE is just equation (4.16) for Y t,ξ (η), and from the uniqueness of
the solution of this equation it follows that

Y t,ξ
s (η) = Ê

[
Ut,ξ

s (̂ξ ) · η̂]
, s ∈ [t, T ].(4.42)

Finally, we substitute ξ̂ for y in the SDE for Ut,x,Pξ (y), we multiply both sides of
the such obtained equation by η̂ and take after the expectation Ê[·] at both sides
of the relation. Using the results of the above discussion, we see that this yields

Ê
[
U

t,x,Pξ
s (̂ξ ) · η̂]
=

∫ s

t
∂xσ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
Ê

[
U

t,x,Pξ
r (̂ξ ) · η̂]

dBr

+
∫ s

t
∂xb

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
Ê

[
U

t,x,Pξ
r (̂ξ ) · η̂]

dr

(4.43)
+

∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r · η̃ + Ỹ t ,̃ξ

r (η̃)
)]

dBr

+
∫ s

t
Ẽ

[
(∂μb)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · (
∂xX̃

t,̃ξ ,Pξ
r · η̃ + Ỹ t ,̃ξ

r (η̃)
)]

dr,

s ∈ [t, T ].
But this latter SDE is just that (4.15) satisfied by Y t,x,Pξ (η). Therefore, from the
uniqueness of the solution of this SDE it follows that

Y
t,x,Pξ
s (η) = Ê

[
U

t,x,Pξ
s (̂ξ ) · η̂]

, s ∈ [t, T ], η ∈ L2(Ft ).(4.44)

The proof is complete now. �

The preceding both statements allow to derive our main result. We first derive it
for the one-dimensional case before stating it for the general case.

PROPOSITION 4.2. Under the assumption (H.1), for any (t, x) ∈ [0, T ] ×
R, s ∈ [t, T ], the mapping

L2(Ft ) � ξ → Xt,x,ξ
s := X

t,x,Pξ
s ∈ L2(Fs)

is Fréchet differentiable. Its Fréchet derivative DξX
t,x,ξ
s satisfies

DξX
t,x,ξ
s (η) = Y t,x,ξ

s (η) = Ê
[
U

t,x,Pξ
s (̂ξ ) · η̂]

, η ∈ L2(Ft ).(4.45)

REMARK 4.4. We observe that the latter relation satisfied by DξX
t,x,ξ
s (η) ex-

tends that for the derivative of deterministic functions with respect to a probability
law to stochastic processes. In this sense, it is natural to define the derivative of

X
t,x,Pξ
s with respect to the probability law Pξ by putting

∂μX
t,x,Pξ
s (y) := U

t,x,Pξ
s (y), s ∈ [t, T ], x, y ∈R.
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We observe that, with this definition, for any (t, x) ∈ [0, T ] ×R, s ∈ [t, T ],
DξX

t,x,ξ
s (η) = Y t,x,ξ

s (η) = Ê
[
∂μX

t,x,Pξ
s (̂ξ ) · η̂]

, η ∈ L2(Ft ).(4.46)

PROOF OF PROPOSITION 4.2. Let (t, x) ∈ [0, T ] × R, ξ ∈ L2(Ft ) and
s ∈ [t, T ]. We recall that the directional derivative Y

t,x,ξ
s (η) of L2(Ft ) � ξ →

X
t,x,ξ
s ∈ L2(Fs) in direction η ∈ L2(Fs) has the property that Y

t,x,ξ
s (·) ∈

L(L2(Ft ),L
2(Fs)). Let us denote the operator norm ‖ · ‖L(L2,L2) in L(L2(Ft ),

L2(Fs)). Then, using the preceding lemma, since

E
[∣∣Y t,x,ξ

s (η)
∣∣2] = E

[∣∣Ê[
U

t,x,Pξ
s (̂ξ ) · η̂]∣∣2]

≤ E
[
Ê

[
U

t,x,Pξ
s (̂ξ )2]

Ê
[
η̂2]] ≤ C2E

[
η2]

, η ∈ L2(Ft ),

for some positive constant C depending only on the coefficients b and σ , we have∥∥Y t,x,ξ
s

∥∥2
L(L2,L2) = sup

{
E

[∣∣Y t,x,ξ
s (η)

∣∣2] : η ∈ L2(Ft ) with E
[
η2] ≤ 1

} ≤ C.

Moreover, for all (t, x) ∈ [0, T ] ×R, ξ, ξ ′ ∈ L2(Ft ), s ∈ [t, T ],

E
[∣∣Y t,x,ξ

s (η) − Y t,x,ξ ′
s (η)

∣∣2] = E
[∣∣Ê[(

U
t,x,Pξ
s (̂ξ ) − U

t,x,Pξ ′
s (̂ξ )

) · η̂]∣∣2]
≤ E

[
Ê

[∣∣Ut,x,Pξ
s (̂ξ ) − U

t,x,Pξ ′
s (̂ξ )

∣∣2]
Ê

[
η̂2]]

≤ C2W2(Pξ ,Pξ ′)2E
[
η2]

, η ∈ L2(Ft ),

that is,∥∥Y t,x,ξ
s − Y t,x,ξ ′

s

∥∥2
L(L2,L2)

= sup
{
E

[∣∣Y t,x,ξ
s (η) − Y t,x,ξ ′

s (η)
∣∣2] : η ∈ L2(Ft ) with E[η2] ≤ 1

}
≤ CW2(Pξ ,Pξ ′)2 ≤ CE

[∣∣ξ − ξ ′∣∣2]
, ξ, ξ ′ ∈ L2(Ft ).

This proves that the directional derivative Y
t,x,ξ
s is a bounded operator (and, hence,

a Gâteaux derivative), which, moreover, is continuous in ξ , which proves that it is
even the Fréchet derivative of X

t,x,ξ
s with respect to ξ . The proof is complete. �

A direct generalization of our preceding computations from the one-dimen-
sional to the multi-dimensional case allows to establish the following general re-
sult.

THEOREM 4.1. Let (σ, b) ∈ C
1,1
b (Rd × P2(R

d) → R
d×d × R

d) satisfy
assumption (H.1). Then, for all 0 ≤ t ≤ s ≤ T and x ∈ R

d , the mapping
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L2(Ft ;Rd) � ξ �→ X
t,x,ξ
s = X

t,x,Pξ
s ∈ L2(Fs;Rd) is Fréchet differentiable, with

Fréchet derivative

DξX
t,x,ξ
s (η) = Ẽ

[
U

t,x,Pξ
s (̃ξ ) · η̃] =

(
Ẽ

[
d∑

j=1

U
t,x,Pξ

s,i,j (̃ξ ) · η̃j

])
1≤i≤d

,(4.47)

for all η = (η1, . . . , ηd) ∈ L2(Ft ;Rd), where, for all y ∈ R
d , Ut,x,Pξ (y) =

((U
t,x,Pξ

s,i,j (y))s∈[t,T ])1≤i,j≤d ∈ S2
F
(t, T ;Rd×d) is the unique solution of the SDE

U
t,x,Pξ

s,i,j (y) =
d∑

k,�=1

∫ s

t
∂xk

σi,�

(
X

t,x,Pξ
r ,P

X
t,ξ
r

) · Ut,x,Pξ

r,k,j (y) dB�
r

+
d∑

k=1

∫ s

t
∂xk

bi

(
X

t,x,Pξ
r ,P

X
t,ξ
r

) · Ut,x,Pξ

r,k,j (y) dr

+
d∑

k,�=1

∫ s

t
E

[
(∂μσi,�)k

(
z,P

X
t,ξ
r

,X
t,y,Pξ
r

) · ∂xj
X

t,y,Pξ

r,k

(4.48)
+ (∂μσi,�)k

(
z,P

X
t,ξ
r

,Xt,ξ
r

) · Ut,ξ
r,k,j (y)

]∣∣∣
z=X

t,x,Pξ
r

dB�
r

+
d∑

k=1

∫ s

t
E

[
(∂μbi)k

(
z,P

X
t,ξ
r

,X
t,y,Pξ
r

) · ∂xj
X

t,y,Pξ

r,k

+ (∂μbi)k
(
z,P

X
t,ξ
r

,Xt,ξ
r

) · Ut,ξ
r,k,j (y)

]∣∣∣
z=X

t,x,Pξ
r

dr,

s ∈ [t, T ],1 ≤ i, j ≤ d , and Ut,ξ (y) = ((U
t,ξ
s,i,j (y))s∈[t,T ])1≤i,j≤d ∈ S2

F
(t, T ;

R
d×d) is that of the SDE

U
t,ξ
s,i,j (y) =

d∑
k,�=1

∫ s

t
∂xk

σi,�

(
Xt,ξ

r ,P
X

t,ξ
r

) · Ut,ξ
r,k,j (y) dB�

r

+
d∑

k=1

∫ s

t
∂xk

bi

(
Xt,ξ

r ,P
X

t,ξ
r

) · Ut,ξ
r,k,j (y) dr

+
d∑

k,�=1

∫ s

t
E

[
(∂μσi,�)k

(
z,P

X
t,ξ
r

,X
t,y,Pξ
r

) · ∂xj
X

t,y,Pξ

r,k

(4.49)
+ (∂μσi,�)k

(
z,P

X
t,ξ
r

,Xt,ξ
r

) · Ut,ξ
r,k,j (y)

]∣∣∣
z=X

t,ξ
r

dB�
r

+
d∑

k=1

∫ s

t
E

[
(∂μbi)k

(
z,P

X
t,ξ
r

,X
t,y,Pξ
r

) · ∂xj
X

t,y,Pξ

r,k

+ (∂μbi)k
(
z,P

X
t,ξ
r

,Xt,ξ
r

) · Ut,ξ
r,k,j (y)

]∣∣∣
z=X

t,ξ
r

dr,

s ∈ [t, T ],1 ≤ i, j ≤ d .
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REMARK 4.5. As for the one-dimensional case, following the definition of
the derivative of a function f : P2(R

d) → R explained in Section 2, we con-

sider U
t,x,Pξ
s (y) = (U

t,x,Pξ

s,i,j (y))1≤i,j≤d as derivative over P2(R
d) of X

t,x,Pξ
s =

(X
t,x,Pξ

s,i )1≤i≤d with respect to Pξ . As notation for this derivative we use that al-
ready introduced for functions: s ∈ [t, T ],

∂μX
t,x,Pξ
s (y) = (

∂μX
t,x,Pξ

s,i,j (y)
)
1≤i,j≤d := U

t,x,Pξ
s (y)

(4.50)
= (

U
t,x,Pξ

s,i,j (y)
)
1≤i,j≤d .

5. Second-order derivatives of Xt,x,Pξ . Let us come now to the study of
the second-order derivatives of the process Xt,x,Pξ . For this, we shall suppose the
following Hypothesis for the remaining part of the paper:

Hypothesis (H.2). Let (σ, b) belong to C
2,1
b (Rd ×P2(R

d) →R
d×d ×R

d), that

is, (σ, b) ∈ C
1,1
b (Rd × P2(R

d) → R
d×d × R

d) [see Hypothesis (H.1)] and the
derivatives of the components σi,j , bj , 1 ≤ i, j ≤ d , have the following proper-
ties:

(i) ∂kσi,j (·, ·), ∂kbj (·, ·) belong to C1,1(Rd ×P2(R
d)), for all 1 ≤ k ≤ d;

(ii) ∂μσi,j (·, ·, ·), ∂μbj (·, ·, ·) belong to C1,1(Rd ×P2(R
d) ×R

d);
(iii) All the derivatives of σi,j , bj up to order 2 are bounded and Lipschitz.

REMARK 5.1. With the existence of the second-order mixed derivatives,
∂xl

(∂μσi,j (x,μ, y)) and ∂μ(∂xl
σi,j (x,μ))(y), (x,μ, y) ∈ R

d ×P2(R
d) ×R

d , the
question of their equality raises. Indeed, under Hypothesis (H.2) they coincide,
and the same holds true for those for b. More precisely, we have the following
statement.

LEMMA 5.1. Let g ∈ C
2,1
b (Rd ×P2(R

d) →R
d×d ×R

d) [in the sense of Hy-
pothesis (H.2)]. Then, for all 1 ≤ l ≤ d ,

∂xl

(
∂μg(x,μ,y)

) = ∂μ

(
∂xl

g(x,μ)
)
(y), (x,μ, y) ∈ R

d ×P2
(
R

d) ×R
d .

PROOF. Let us restrict to d = 1. Following the argument of Clairaut’s theo-
rem, we have, for all (x, ξ), (z, η) ∈ R× L2(F),

I := (
g(x + z,Pξ+η) − g(x + z,Pξ )

) − (
g(x,Pξ+η) − g(x,Pξ )

)
=

∫ 1

0
E

[(
(∂μg)(x + z,Pξ+sη, ξ + sη) − (∂μg)(x,Pξ+sη, ξ + sη)

)
η
]
ds

=
∫ 1

0

∫ 1

0
E

[
∂x(∂μg)(x + tz,Pξ+sη, ξ + sη)ηz

]
ds dt

= E
[
∂x(∂μg)(x,Pξ , ξ)ηz

] + R1
(
(x, ξ), (z, η)

)
,
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with |R1((x, ξ), (z, η))| ≤ C(|η|L2 · |z|2 + |η|2
L2 · |z|), and at the same time

I = (
g(x + z,Pξ+η) − g(x,Pξ+η)

) − (
g(x + z,Pξ ) − g(x,Pξ )

)
=

∫ 1

0

(
(∂xg)(x + tz,Pξ+η) − (∂xg)(x + tz,Pξ )

)
dt · z

=
∫ 1

0

∫ 1

0
E

[
∂μ

(
(∂xg)(x + tz,Pξ+sη)

)
(ξ + sη)η

]
ds dt · z

= E
[
∂μ

(
(∂xg)(x,Pξ )

)
(ξ)η

]
z + R2

(
(x, ξ), (z, η)

)
,

with |R2((x, ξ), (z, η))| ≤ C(|η|L2 · |z|2 + |η|2
L2 · |z|), where C is the Lips-

chitz constant of ∂μ(∂xg) and ∂x(∂μg). It follows that ∂x(∂μg)(x,Pξ , ξ) =
∂μ((∂xg)(x,Pξ ))(ξ), P -a.s., and hence,

∂x(∂μg)(x,Pξ , y) = ∂μ

(
(∂xg)(x,Pξ )

)
(y) ,Pξ (dy)-a.e.

Letting ε > 0 and θ be a standard normally distributed random variable, which
is independent of ξ , and taking ξ + εθ instead of ξ , we have

∂x(∂μg)(x,Pξ+εθ , y) = ∂μ

(
(∂xg)(x,Pξ+εθ )

)
(y), Pξ+εθ (dy)-a.e.,

and thus, dy-a.s. on R. Taking into account that ∂x(∂μg), ∂μ(∂xg) are Lipschitz,
this yields

∂x(∂μg)(x,Pξ+εθ , y) = ∂μ

(
(∂xg)(x,Pξ+εθ )

)
(y), for all y ∈ R.

Finally, using W2(Pξ+εθ ,Pξ ) ≤ ε(E[θ2])1/2 = Cε and again the Lipschitz prop-
erty of ∂x(∂μg) and ∂μ(∂xg), we obtain by taking the limit as ε ↓ 0,

∂x(∂μg)(x,Pξ , y) = ∂μ

(
(∂xg)(x,Pξ )

)
(y), for all x, y ∈R, ξ ∈ L2(F).

The proof is complete. �

After the above preparing discussion, let us study now the second-order deriva-
tives. Following the approach for the first-order derivatives, we restrict here our-
selves to the one-dimensional, and to shorten the formulas let us put b = 0. We
emphasize that the general case with dimension d ≥ 1 and a drift b not identically
equal to zero can be obtained with a straight-forward extension. For the purpose of
better comprehension, the main result in this section, concerning the general case,
will be given only after our computations.

We begin with recalling that the process ∂xX
t,x,Pξ ∈ S([t, T ];R) is the unique

solution of the SDE

∂xX
t,x,Pξ
s = 1 +

∫ s

t
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂xX

t,x,Pξ
r dBr, s ∈ [t, T ].(5.1)

(Recall that b = 0 in our computations.) With the same classical arguments which
have shown the existence of this first-order derivative in L2-sense with respect
to x, we can prove the existence of the second-order L2-derivative ∂2

xXt,x,Pξ with
respect to x and we can characterize it as the unique solution in S([t, T ];R) of
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the SDE

∂2
xX

t,x,Pξ
s =

∫ s

t

(
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂2
xX

t,x,Pξ
r

(5.2)
+ (

∂2
xσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

)(
∂xX

t,x,Pξ
r

)2)
dBr, s ∈ [t, T ].

We also notice that, with standard arguments we obtain the following lemma.

LEMMA 5.2. Under Hypothesis (H.2), for all p ≥ 2, there is some con-
stant Cp only depending on p and the coefficients σ and b, such that, for all
t ∈ [0, T ], x, x′ ∈R, ξ, ξ ′ ∈ L2(Ft ):

(i) E
[

sup
s∈[t,T ]

∣∣∂2
xX

t,x,Pξ
s

∣∣p]
≤ Cp;

(5.3)
(ii) E

[
sup

s∈[t,T ]
∣∣∂2

xX
t,x,Pξ
s − ∂2

xX
t,x′,Pξ ′
s

∣∣p]
≤ Cp

(∣∣x − x′∣∣p + W2(Pξ ,Pξ ′)p
)
.

In the same manner as one proves the L2-differentiability of x → X
t,x,Pξ
s ,

s ∈ [t, T ], one proves that for ξ → ∂μX
t,x,Pξ
s (y) and y → ∂μX

t,x,Pξ
s (y), s ∈ [t, T ].

Standard arguments give the following result.

LEMMA 5.3. Under Hypothesis (H.2), for all t ∈ [0, T ], ξ ∈ L2(Ft ), the
process ∂μXt,x,Pξ (y) is L2-differentiable in x, y ∈ R, and its derivatives
∂x(∂μXt,x,Pξ (y)), ∂y(∂μXt,x,Pξ (y)) ∈ S2([t, T ];R) are the unique solutions of
the SDE

∂x

(
∂μXt,x,Pξ (y)

) =
∫ s

t
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂x

(
∂μX

t,x,Pξ
r (y)

)
dBr

+
∫ s

t

(
∂2
xσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂μX

t,x,Pξ
r (y) · ∂xX

t,x,Pξ
r dBr

(5.4)
+

∫ s

t
Ẽ

[
∂x(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

+ ∂x(∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
Ũ t ,̃ξ

r (y)
]
∂xX

t,x,Pξ
r dBr

and

∂y

(
∂μXt,x,Pξ (y)

) =
∫ s

t
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂y

(
∂μX

t,x,Pξ
r (y)

)
dBr

+
∫ s

t
Ẽ

[
∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · (
∂xX̃

t,y,Pξ
r

)2]
dBr

(5.5)
+

∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

)
∂2
x X̃

t,y,Pξ
r

+ (∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
∂yŨ

t,̃ξ
r (y)

]
dBr,
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respectively, where the latter equation is coupled with the SDE

∂yU
t,ξ
s (y) =

∫ s

t
(∂xσ )

(
Xt,ξ

r ,P
X

t,ξ
r

)
∂yU

t,ξ
r (y) dBr

+
∫ s

t
Ẽ

[
∂y(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t,y,Pξ
r

)
× (

∂xX̃
t,y,Pξ
r

)2]
dBr(5.6)

+
∫ s

t
Ẽ

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t,y,Pξ
r

)
∂2
x X̃

t,y,Pξ
r

+ (∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
∂yŨ

t,̃ξ
r (y)

]
dBr, s ∈ [t, T ],

which solution ∂yU
t,ξ (y) ∈ S([t, T ];R) is the L2-derivative with respect to y ∈R

of Ut,ξ (y) = ∂μXt,x,Pξ (y)|x=ξ . Moreover, the techniques of estimate explained in
the preceding section yield that for all p ≥ 2, there is some Cp ∈ R such that, for

all t ∈ [0, T ], x, x′, y, y′ ∈R, ξ, ξ ′ ∈ L2(Ft ):

(i) E
[

sup
s∈[t,T ]

(∣∣∂x

(
∂μXt,x,Pξ (y)

)∣∣p + ∣∣∂y

(
∂μXt,x,Pξ (y)

)∣∣p)] ≤ Cp,

(ii) E
[

sup
s∈[t,T ]

(∣∣∂x

(
∂μXt,x,Pξ (y)

) − ∂x

(
∂μXt,x′,Pξ ′ (y′))∣∣p

(5.7)
+ ∣∣∂y

(
∂μXt,x,Pξ (y)

) − ∂y

(
∂μXt,x′,Pξ ′ (y′))∣∣p)]

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)
.

Let us now consider the derivative of the process ∂xX
t,x,Pξ with respect to the

probability law. Knowing already that the mixed second-order derivatives ∂x∂μ

and ∂μ∂x coincide for all functions from C1,1(Rd ×P2(R)), we guess the follow-
ing.

LEMMA 5.4. Under Hypothesis (H.2), for all (t, x) ∈ [0, T ]×R, ξ ∈ L2(Ft ),

∂μ∂xX
t,x,Pξ
s (y) = ∂x∂μX

t,x,Pξ
s (y), s ∈ [t, T ].

PROOF. Recall that we have put b = 0. Then, using the fact that ∂xσ and ∂2
xσ

are bounded, a standard estimate involving the SDEs for Xt,x,Pξ and ∂xX
t,x,Pξ

shows that there is some constant C ∈ R such that, for all (t, x) ∈ [0, T ] ×R, ξ ∈
L2(Ft ) and all s ∈ [t, T ], h ∈ R \ {0},

E

[∣∣∣∣1

h

(
X

t,x+h,Pξ
s − X

t,x,Pξ
s

) − ∂xX
t,x,Pξ
s

∣∣∣∣2]
≤ Ch2.(5.8)
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Then, for all direction η ∈ L2(Ft ) and all λ ∈ R \ {0}, we have, for arbitrary h ∈
R \ {0},

E

[∣∣∣∣1

λ

(
∂xX

t,x,Pξ+λη
s − ∂xX

t,x,Pξ
s

) − Ẽ
[
∂x

(
∂μX

t,x,Pξ
s (̃ξ )

) · η̃]∣∣∣∣2]

≤ C
h2

λ2 + E

[∣∣∣∣ 1

hλ

((
X

t,x+h,Pξ+λη
s − X

t,x+h,Pξ
s

) − (
X

t,x,Pξ+λη
s − X

t,x,Pξ
s

))
− Ẽ

[
∂x

(
∂μX

t,x,Pξ
s (̃ξ )

) · η̃]∣∣∣∣2]

≤ C
h2

λ2 + E

[∣∣∣∣ 1

hλ

∫ λ

0
Ẽ

[(
∂μX

t,x+h,Pξ+vη
s (̃ξ + vη̃)

− ∂μX
t,x,Pξ+vη
s (̃ξ + vη̃)

) · η̃]
dv − Ẽ

[
∂x

(
∂μX

t,x,Pξ
s (̃ξ )

) · η̃]∣∣∣∣2]

≤ C
h2

λ2 + E

[∣∣∣∣ 1

hλ

∫ λ

0

∫ h

0
Ẽ

[
∂x

(
∂μX

t,x+u,Pξ+vη
s (̃ξ + vη̃)

) · η̃]
dudv

− Ẽ
[
∂x

(
∂μX

t,x,Pξ
s (̃ξ )

) · η̃]∣∣∣∣2]

≤ C
h2

λ2 + E

[∣∣∣∣ 1

hλ

∫ λ

0

∫ h

0
Ẽ

[∣∣∂x

(
∂μX

t,x+u,Pξ+vη
s (̃ξ + vη̃)

)
− ∂x

(
∂μX

t,x,Pξ
s (̃ξ )

)∣∣ · |η̃∣∣]dudv

∣∣∣∣2]
.

Thus, taking into account that

Ẽ
[∣∣∂x

(
∂μX

t,x+u,Pξ+vη
s (̃ξ + vη̃)

) − ∂x

(
∂μX

t,x,Pξ
s (̃ξ )

)∣∣ · |η̃|]
(5.9)

≤ C
(|u| + W2(Pξ+vη,Pξ )

)
E

[
η2]1/2 + C|v|E[

η2]
,

we obtain

E

[∣∣∣∣1

λ

(
∂xX

t,x,Pξ+λη
s − ∂xX

t,x,Pξ
s

) − Ẽ
[
∂x

(
∂μX

t,x,Pξ
s (̃ξ )

) · η̃]∣∣∣∣2]
(5.10)

≤ C

(
h2

λ2 + λ2E
[
η2]2

)
−→ Cλ2E

[
η2]2

, as h → 0.

But this proves that Ẽ[∂x(∂μX
t,x,Pξ
s (̃ξ )) · η̃] is the directional derivative of

∂xX
t,x,Pξ in direction η. Using the SDE for ∂x(∂μXt,x,Pξ (y)), we show like in

the preceding section that this directional derivative is in fact a Fréchet derivative:

Dξ

(
∂xX

t,x,ξ )
(η) = Ẽ

[
∂x

(
∂μX

t,x,Pξ
s (̃ξ )

) · η̃]
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of the lifted mapping L2(Ft ) � ξ �→ ∂xX
t,x,ξ
s := ∂xX

t,x,Pξ
s , s ∈ [t, T ]. The state-

ment of the lemma follows directly. �

It remains to study the second-order derivative of Xt,x,Pξ with respect to the
probability law, that is, the derivative of ∂μXt,x,Pξ (y) in Pξ . Recall that, using
that b = 0, we have that ∂μXt,x,Pξ (y) = Ut,x,Pξ (y) is the unique solution in
S2([t, T ];R) of the following (uncoupled) SDE:

Ut,x,ξ
s (y) =

∫ s

t
∂xσ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
Ut,x,ξ

r (y) dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r(5.11)

+ (∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
Ũ t ,̃ξ

r (y)
]
dBr,

Ut,ξ
s (y) =

∫ s

t
∂xσ

(
Xt,ξ

r ,P
X

t,ξ
r

)
Ut,ξ

r (y) dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
Xt,ξ

r ,P
X

t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r(5.12)

+ (∂μσ)
(
Xt,ξ

r ,P
X

t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y)

]
dBr.

Arguing similarly as in the preceding section in the proof of the Fréchet differ-
entiability of the lifted process Xt,x,ξ := Xt,x,Pξ , we derive formally the lifted

process U
t,x,ξ
s (y) := U

t,x,Pξ
s (y) for fixed (t, x) ∈ [0, T ] × R, y ∈ R, in direction

η ∈ L2(Ft ). This gives for the formal directional derivative

Zt,x,ξ
s (y, η) = L2 − lim

h→0

1

h

(
Ut,x,ξ+hη

s (y) − Ut,x,ξ
s (y)

)
, s ∈ [t, T ],

the following SDE:

Zt,x,ξ
s (y, η)

=
∫ s

t
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
Zt,x,ξ

r (y, η) dBr

+
∫ s

t

(
∂2
xσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
U

t,x,Pξ
r (y)Ê

[
U

t,x,Pξ
r (̂ξ ) · η̂]

dBr

+
∫ s

t
Ẽ

[
∂μ(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
U

t,x,Pξ
r (y)

(
∂xX̃

t,̃ξ ,Pξ
r · η̃

+ Ê
[
Ũ t ,̃ξ

r (̂ξ ) · η̂])]
dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · Ê[
∂μ∂xX̃

t,y,Pξ
r (̂ξ ) · η̂]]

dBr

+
∫ s

t
Ẽ

[
∂x(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

]
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× Ê
[
U

t,x,Pξ
r (̂ξ ) · η̂]

dBr

+
∫ s

t
Ẽ

[
E

[(
∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r ,X

t,ξ

r

) · ∂xX̃
t,y,Pξ
r

(
∂xX

t,ξ,Pξ

r · η

+ Ê
[
U

t,ξ

r (̂ξ ) · η̂])]]
dBr(5.13)

+
∫ s

t
Ẽ

[
∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

× Ê
[
Ũ

t,y,Pξ
r (̂ξ ) · η̂]]

dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · (
∂x

(
∂μX̃

t,̃ξ ,Pξ
r (y)

) · η̃

+ Z̃t ,̃ξ
r (y, η̃)

)]
dBr

+
∫ s

t
Ẽ

[
∂x(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y)

] · Ê[
U

t,x,Pξ
r (̂ξ ) · η̂]

dBr

+
∫ s

t
Ẽ

[
E

[(
∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r ,X

t,ξ

r

) · Ũ t ,̃ξ
r (y)

(
∂xX

t,ξ,Pξ

r · η

+ Ê
[
U

t,ξ

r (̂ξ ) · η̂])]]
dBr

+
∫ s

t
Ẽ

[
∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y) · (

∂xX̃
t,̃ξ ,Pξ
r · η̃

+ Ê
[
Ũ t ,̃ξ

r (̂ξ ) · η̂])]
dBr,

s ∈ [t, T ], where Zt,ξ (y, η) := Zt,x,Pξ (y, η)|x=ξ ∈ S2([t, T ];R) is the unique so-
lution of the above equation after substituting everywhere x = ξ . Let us also point

out that in the above equation we have used the notation (X
t,ξ

,U
t,ξ

(y)); it is used
in the same sense as the corresponding processes endowed with ˜ or ̂: We con-
sider a copy (ξ , η,B) independent of (ξ, η,B), (̃ξ , η̃, B̃) and (̂ξ , η̂, B̂), and the

process X
t,ξ

is the solution of the SDE for Xt,ξ and U
t,ξ

that of the SDE for Ut,ξ ,
but both with the data (ξ,B) instead of (ξ,B).

Let us comment also the expression ∂2
μσ(x,Pϑ, y, z) = ∂μ(∂μσ(x,Pϑ, y))(z)

in the above formula. Recalling that ∂2
μσ(x,Pϑ, y, z) = ∂μ(∂μσ(x,Pϑ, y))(z) is

defined through the relation Dϑ [∂̃μσ (x,ϑ, y)](θ) = E[∂2
μσ(x,Pϑ, y,ϑ) · θ ], for

ϑ, θ ∈ L2(F), x, y ∈ R, where Dϑ denotes the Fréchet derivative with respect to
ϑ , we have namely for the Fréchet derivative of L2(F) � ϑ �→ ∂̃μσ (x,ϑ, y) :=
(∂μσ)(x,Pϑ, y) in direction θ ∈ L2(F),

Dϑ

[
∂̃μσ (x,ϑ, y)

]
(θ) = E

[(
∂2
μσ

)
(x,Pϑ, y,ϑ) · θ]

.
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Then, of course, the Fréchet derivative of ξ → ∂̃μσ (X
t,x,Pξ
r ,X

t,ξ
r , X̃t,y,Pξ ) is

given by

Dξ

[
∂̃μσ

(
X

t,x,Pξ
r ,Xt,ξ

r , X̃t,y,Pξ
)]

(η)

= ∂x(∂μσ)
(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · Ê[
U

t,x,Pξ
r (̂ξ ) · η̂]

+ E
[(

∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t,y,Pξ ,X
t,ξ

r

)
(5.14)

× (
∂xX

t,ξ,Pξ

r · η + Ê
[
U

t,ξ

r (̂ξ ) · η̂])]
+ ∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · Ê[
Ũ

t,y,Pξ
r (̂ξ ) · η̂]

,

η ∈ L2(Ft ),

r ∈ [t, T ], but this is just, what has been used for the above formula in combination
with arguments already developed in the preceding section.

Let us now compare the solution Zt,x,ξ (y, η) of the above SDE with the process
Ut,x,Pξ (y, z) ∈ S2

F
(t, T ) defined as the unique solution of the following SDE:

U
t,x,Pξ
s (y, z)

=
∫ s

t
(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
U

t,x,Pξ
r (y, z) dBr

+
∫ s

t

(
∂2
xσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
U

t,x,Pξ
r (y) · Ut,x,Pξ

r (z) dBr

+
∫ s

t
Ẽ

[
∂μ(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,z,Pξ
r

)
U

t,x,Pξ
r (y) · ∂xX̃

t,z,Pξ
r

]
dBr

+
∫ s

t
Ẽ

[
∂μ(∂xσ )

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
U

t,x,Pξ
r (y)Ũ t,̃ξ

r (z)
]
dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂μ

(
∂xX̃

t,y,Pξ
r

)
(z)

]
dBr

+
∫ s

t
Ẽ

[
∂x(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r

] · Ut,x,Pξ
r (z) dBr

+
∫ s

t
Ẽ

[
E

[(
∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r ,X

t,z,Pξ

r

)
× ∂xX̃

t,y,Pξ
r · ∂xX

t,z,Pξ

r

]]
dBr

+
∫ s

t
Ẽ

[
E

[(
∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r ,X

t,ξ

r

) · ∂xX̃
t,y,Pξ
r U

t,ξ

r (z)
]]

dBr

(5.15)
+

∫ s

t
Ẽ

[
∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,y,Pξ
r

) · ∂xX̃
t,y,Pξ
r Ũ

t,y,Pξ
r (z)

]
dBr
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+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y, z)

]
dBr

+
∫ s

t
Ẽ

[
(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,z,Pξ
r

) · ∂x

(
∂μX̃

t,z,Pξ
r (y)

)]
dBr

+
∫ s

t
Ẽ

[
∂x(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y)

] · Ut,x,Pξ
r (z) dBr

+
∫ s

t
Ẽ

[
E

[(
∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r ,X

t,z,Pξ

r

)
× Ũ t ,̃ξ

r (y) · ∂xX
t,z,Pξ

r

]]
dBr

+
∫ s

t
Ẽ

[
E

[(
∂2
μσ

)(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r ,X

t,ξ

r

) · Ũ t ,̃ξ
r (y) · Ut,ξ

r (z)
]]

dBr

+
∫ s

t
Ẽ

[
∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃
t,z,Pξ
r

) · Ũ t ,̃ξ
r (y) · ∂xX̃

t,z,Pξ
r

]
dBr

+
∫ s

t
Ẽ

[
∂y(∂μσ)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

) · Ũ t ,̃ξ
r (y) · Ũ t ,̃ξ

r (z)
]
dBr,

s ∈ [0, T ],
combined with the SDE for Ut,ξ (y, z) = (U

t,ξ
s (y, z))s∈[t,T ], obtained by sub-

stituting x = ξ in the equation for Ut,x,Pξ (y, z) (recall namely that Xt,ξ =
Xt,x,Pξ |x=ξ ,U

t,ξ = Ut,x,Pξ |x=ξ ). We consider now the processes Ê[Ut,x,Pξ (y, ξ̂ ) ·
η̂] and Ê[Ut,ξ (y, ξ̂ ) · η̂]. Substituting first z = ξ̂ in the SDE for Ut,x,Pξ (y, z) and
that for Ut,ξ (y, z), then multiplying the both sides of these SDEs with η̂ and taking

the expectation Ê[·] of this product, we get just the SDEs solved by Z
t,x,Pξ
s (y, η)

and Z
t,ξ
s (y, η) (see also the corresponding proof for the first-order derivatives in

the preceding section), and from the uniqueness of the solution of these SDEs we
conclude that

Zt,x,ξ
s (y, η) = Ê

[
U

t,x,Pξ
s (y, ξ̂ ) · η̂]

, s ∈ [t, T ], y ∈ R.(5.16)

We also observe that the SDEs for Ut,x,Pξ (y, z) and Ut,ξ (y, z) allow to make the
following estimates.

LEMMA 5.5. Under Hypothesis (H.2), for all p ≥ 2, there is some constant
Cp ∈R such that, for all t ∈ [0, T ], x, x′, y, y′, z, z′ ∈ R and ξ, ξ ′ ∈ L2(Ft ):

(i) E
[

sup
s∈[t,T ]

∣∣Ut,x,Pξ
s (y, z)

∣∣p]
≤ Cp,

(ii) E
[

sup
s∈[t,T ]

∣∣Ut,x,Pξ
s (y, z) − U

t,x′,Pξ ′
s

(
y′, z′)∣∣p]

(5.17)

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + ∣∣z − z′∣∣p + W2(Pξ ,Pξ ′)p
)
.
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The estimates of Lemma 5.5 allow to show in analogy to the argument devel-

oped for the proof of the Fréchet differentiability of ξ �→ X
t,x,ξ
s := X

t,x,Pξ
s that

the mappings L2(Ft ) � ξ �→ U
t,x,Pξ
s (y) ∈ L2(Fs) and L2(Ft ) � ξ �→ U

t,ξ
s (y) ∈

L2(Fs) are Fréchet differentiable, and

Dξ

[
∂μX

t,x,Pξ
s (y)

]
(η) = Dξ

[
U

t,x,Pξ
s (y)

]
(η) = Ê

[
U

t,x,Pξ
s (y, ξ̂ ) · η̂]

,

Dξ

[
∂μXt,ξ

s (y)
]
(η) = Dξ

[
Ut,ξ

s (y)
]
(η)

= ∂xU
t,x,Pξ
s (y)|x=ξ · η + Ê

[
Ut,ξ

s (y, ξ̂ ) · η̂]
.

But this means that

∂2
μX

t,x,Pξ
s (y, z) = U

t,x,Pξ
s (y, z), s ∈ [0, T ],(5.18)

for all t ∈ [0, T ], x, y, z ∈ R, ξ ∈ L2(Ft ).
Let us now summarize the above results concerning the second-order derivatives

and formulate the main result concerning them, but for dimension d ≥ 1 and b not
necessarily equal to zero. It can be proved by a straight forward extension of the
preceding computations.

THEOREM 5.1. Under Hypothesis (H.2) the first-order derivatives ∂xi
X

t,x,Pξ
s ,

1 ≤ i ≤ d and ∂μX
t,x,Pξ
s (y) are in L2-sense differentiable with respect to x and

y, and interpreted as functional of ξ ∈ L2(Ft ;Rd) they are also Fréchet dif-
ferentiable with respect to ξ . Moreover, for all t ∈ [0, T ], x, y, z ∈ R and ξ ∈
L2(Ft ;Rd), there are stochastic processes ∂μ(∂xi

Xt,x,Pξ )(y) ∈ S2([t, T ];Rd),
1 ≤ i ≤ d , and ∂2

μXt,x,Pξ (y, z) = ∂μ(∂μXt,x,Pξ (y))(z) in S2([t, T ];Rd×d) such

that, for all η ∈ L2(Ft ;Rd), the Fréchet derivatives in ξ , Dξ [∂xX
t,x,Pξ
s ](·) and

Dξ [∂μX
t,x,Pξ
s (y)](·) satisfy

(i) Dξ

[
∂xi

X
t,x,Pξ
s

]
(η) = Ê

[
∂μ

(
∂xi

X
t,x,Pξ
s

)
(̂ξ ) · η̂]

,

(ii) Dξ

[
∂μX

t,x,Pξ
s (y)

]
(η) = Ê

[
∂2
μX

t,x,Pξ
s (y, ξ̂ ) · η̂]

,(5.19)

s ∈ [t, T ], y ∈ R
d .

Furthermore, the mixed derivatives ∂xi
(∂μXt,x,Pξ (y)) and ∂μ(∂xi

Xt,x,Pξ )(y) coin-
cide, that is,

∂xi

(
∂μX

t,x,Pξ
s (y)

) = ∂μ

(
∂xi

X
t,x,Pξ
s

)
(y), s ∈ [t, T ], P -a.s.,

and for

M
t,x,Pξ
s (y, z)

:= (
∂2
xixj

X
t,x,Pξ
s , ∂μ

(
∂xi

X
t,x,Pξ
s

)
(y), ∂2

μX
t,x,Pξ
s (y, z), ∂yi

(
∂μX

t,x,Pξ
s (y)

))
,
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1 ≤ i ≤ d , we have that, for all p ≥ 2, there is some constant Cp ∈ R, such that,
for all t ∈ [0, T ], x, x′, y, y′, z, z′ and ξ, ξ ′ ∈ L2(Ft ;Rd):

(iii) E
[

sup
s∈[t,T ]

∣∣Mt,x,Pξ
s (y, z)

∣∣p]
≤ Cp,

(iv) E
[

sup
s∈[t,T ]

∣∣Mt,x,Pξ
s (y, z) − M

t,x′,Pξ ′
s

(
y′, z′)∣∣p]

(5.20)

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + ∣∣z − z′∣∣p + W2(Pξ ,Pξ ′)p
)
.

6. Regularity of the value function. Given a function � ∈ C
2,1
b (Rd ×

P2(R
d)), the objective of this section is to study the regularity of the function

V : [0, T ] ×R
d ×P2(R

d) → R,

V (t, x,Pξ ) = E
[
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)]
,

(6.1)
(t, x, ξ) ∈ [0, T ] ×R

d × L2(
Ft ;Rd

)
.

LEMMA 6.1. Suppose that � ∈ C
1,1
b (Rd ×P2(R

d)). Then, under our Hypoth-

esis (H.1), V (t, ·, ·) ∈ C
1,1
b (Rd × P2(R

d)), for all t ∈ [0, T ], and the derivatives
∂xV (t, x,Pξ ) = (∂xi

V (t, x,Pξ , y))1≤i≤d and ∂μV (t, x,Pξ , y) = ((∂μV )i(t, x,

Pξ , y))1≤i≤d are of the form

∂xi
V (t, x,Pξ ) =

d∑
j=1

E
[
(∂xj

�)
(
X

t,x,Pξ

T ,P
X

t,ξ
T

) · ∂xi
X

t,x,Pξ

T ,j

]
,(6.2)

(∂μV )i(t, x,Pξ , y) =
d∑

j=1

E
[
(∂xj

�)
(
X

t,x,Pξ

T ,P
X

t,ξ
T

)(
∂μX

t,x,Pξ

T ,j

)
i (y)

+ Ẽ
[
(∂μ�)j

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t,y,Pξ

T

) · ∂xi
X̃

t,y,Pξ

T ,j(6.3)

+ (∂μ�)j
(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T ,j

)
i (y)

]]
.

Moreover, there is some constant C ∈ R such that, for all t, t ′ ∈ [0, T ], x, x′, y,
y′ ∈ R

d , and ξ, ξ ′ ∈ L2(Ft ;Rd):

(i)
∣∣∂xi

V (t, x,Pξ )
∣∣ + ∣∣(∂μV )i(t, x,Pξ , y)

∣∣ ≤ C,

(ii)
∣∣∂xi

V (t, x,Pξ ) − ∂xi
V

(
t, x′,Pξ ′

)∣∣
+ ∣∣(∂μV )i(t, x,Pξ , y) − (∂μV )i

(
t, x′,Pξ ′, y′)∣∣

(6.4)
≤ C

(∣∣x − x′∣∣ + ∣∣y − y′∣∣ + W2(Pξ ,Pξ ′)
)
,

(iii)
∣∣V (t, x,Pξ ) − V

(
t ′, x,Pξ

)∣∣ + ∣∣∂xi
V (t, x,Pξ ) − ∂xi

V
(
t ′, x,Pξ

)∣∣
+ ∣∣(∂μV )i(t, x,Pξ , y) − (∂μV )i

(
t ′, x,Pξ , y

)∣∣ ≤ C
∣∣t − t ′

∣∣1/2
.
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PROOF. In order to simplify the presentation, we consider again the case of
dimension d = 1, but without restricting the generality of the argument we use.

In accordance with the notation introduced in Section 2, we put Ṽ (t, x, ξ) :=
V (t, x,Pξ ), and �̃(z,ϑ) := �(z,Pϑ), (z,ϑ) ∈ R× L2(F). Recall also that, in the

same sense, Xt,x,ξ = Xt,x,Pξ . Then �̃(X
t,x,ξ
T ,X

t,ξ
T ) = �(X

t,x,Pξ

T ,P
X

t,ξ
T

).

As � ∈ C
1,1
b (R × P2(R)), its first-order derivatives are bounded and Lipschitz

continuous. Thus, standard arguments combined with the results from the preced-
ing section show the existence of the Fréchet derivative Dξ(�̃(X

t,x,ξ
T ,X

t,ξ
T )) of the

mapping L2(Ft ) � ξ → �̃(X
t,x,ξ
T ,X

t,ξ
T ) ∈ L2(FT ), and for all η ∈ L2(Ft ) we have

Dξ

(
�̃

(
X

t,x,ξ
T ,X

t,ξ
T

))
(η)

= ∂x�̃
(
X

t,x,ξ
T ,X

t,ξ
T

)
DξX

t,x,ξ
T (η) + (D�̃)

(
X

t,x,ξ
T ,X

t,ξ
T

)(
Dξ

[
X

t,ξ
T

]
(η)

)
= ∂x�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)
Ê

[
∂μX

t,x,Pξ

T (̂ξ ) · η̂]
(6.5)

+ Ẽ
[
∂μ�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

)
Dξ̃

[
X̃

t,̃ξ
T (η̃)

]]
= ∂x�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)
Ê

[
∂μX

t,x,Pξ

T (̂ξ ) · η̂]
+ Ẽ

[
∂μ�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂xX̃

t,̃ξ ,Pξ

T · η̃ + Ê
[
∂μX̃

t,̃ξ
T (̂ξ ) · η̂])]

.

(For the notation used here, the reader is referred to the previous sections.) With
the argument developed in the study of the first-order derivatives for Xt,x,Pξ , we
conclude that the derivative of �(X

t,x,ξ
T ,P

X
t,ξ
T

) with respect to the measure in Pξ

is given by

∂μ

(
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

))
(y)

= ∂x�
(
X

t,x,Pξ

T ,P
X

t,ξ
T

)
∂μX

t,x,Pξ

T (y)

(6.6)
+ Ẽ

[
∂μ�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t,y,Pξ

T

) · ∂xX̃
t,y,Pξ

T

+ ∂μ�
(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · ∂μX̃
t,̃ξ ,Pξ

T (y)
]
, y ∈ R.

In particular, we can deduce from this latter formula and the estimates from the
preceding section that, for all p ≥ 2, there is a constant Cp ∈ R such that, for all
x, x′, y, y′ ∈ R, ξ, ξ ′ ∈ L2(Ft ),

E
[∣∣∂μ

(
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

))
(y)

∣∣p] ≤ Cp,

E
[∣∣∂μ

(
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

))
(y) − ∂μ

(
�

(
X

t,x′,Pξ ′
T ,P

X
t,ξ ′
T

))(
y′)∣∣p]

(6.7)

≤ Cp

(∣∣x − x′∣∣p + ∣∣y − y′∣∣p + W2(Pξ ,Pξ ′)p
)
.
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As the expectation E[·] : L2(F) → R is a bounded linear operator, it follows
from (6.5) and (6.6) that L2(Ft ) � ξ �→ Ṽ (t, x, ξ) := V (t, x,Pξ ) =
E[�(X

t,x,Pξ

T ,P
X

t,ξ
T

)] is Fréchet differentiable and, for all η ∈ L2(Ft ),

Dξ

[
Ṽ (t, x, ξ)

]
(η) = E

[
Dξ

(
�̃

(
X

t,x,ξ
T ,X

t,ξ
T

))
(η)

]
= E

[
Ẽ

[
∂μ

(
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

))
(̃ξ ) · η̃]]

(6.8)

= Ẽ
[
E

[
∂μ

(
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

))
(̃ξ )

] · η̃]
,

that is,

∂μV (t, x,Pξ , y) = E
[
∂μ

(
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

))
(y)

]
, y ∈ R.(6.9)

But then from (6.7), we obtain (6.4)(i) and (ii) for ∂μV (t, x,Pξ , y).

As concerns the derivative of V (t, x,Pξ ) = E[�(X
t,x,Pξ

T ,P
X

t,ξ
T

)] with respect

to x, since z �→ �(z,P
X

t,ξ
T

), is a (deterministic) function with a bounded, Lipschitz

continuous derivative of first order, the computation of ∂xV (t, x,Pξ ) is standard.
Concerning the estimates (i) and (ii) for the derivative ∂xV stated in Lemma 6.1,
they are a direct consequence of the assumption on � as well as the estimates for
the involved processes, studied in the preceding sections.

In order to complete the proof, it remains still to prove (iii). For this end, we
observe that due to Lemma 3.1, for arbitrarily given (t, x) ∈ [0, T ] × R and ξ ∈
L2(Ft ), Xt,x,Pξ = Xt,x,Pξ ′ , for all ξ ′ ∈ L2(Ft ) with Pξ ′ = Pξ . Since due to our
assumption L2(F0) is rich enough, we can find some ξ ′ ∈ L2(F0) with Pξ ′ = Pξ ,
which is independent of the driving Brownian motion B . Using the time-shifted
Brownian motion Bt

s := Bt+s −Bt, s ≥ 0 (where we consider the Brownian motion
B extended beyond the time horizon T ), we see that Xt,x,Pξ ′ and Xt,ξ ′

solve the
following SDEs (for simplicity, we put b = 0 again):

X
t,ξ ′
s+t = ξ ′ +

∫ s

0
σ

(
X

t,ξ ′
r+t , PX

t,ξ ′
r+t

)
dBt

r ,(6.10)

X
t,x,Pξ ′
s+t = x +

∫ s

0
σ

(
X

t,x,Pξ ′
r+t , P

X
t,ξ ′
r+t

)
dBt

r , s ∈ [0, T − t].(6.11)

Consequently, (X
t,x,Pξ ′
·+t ,X

t,ξ ′
·+t ) and (X0,x,Pξ ′ ,X0,ξ ′

) are solutions of the same sys-
tem of SDEs, only driven by different Brownian motions, Bt and B , respec-

tively, both independent of ξ ′. It follows that the laws of (X
t,x,Pξ ′
·+t ,X

t,ξ ′
·+t ) and

(X0,x,Pξ ′ ,X0,ξ ′
) coincide, and hence,

V (t, x,Pξ ) = V (t, x,Pξ ′) = E
[
�

(
X

t,x,Pξ ′
T ,P

X
t,ξ ′
T

)]
(6.12)

= E
[
�

(
X

0,x,Pξ ′
T −t , P

X
0,ξ ′
T −t

)]
.
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Thus, for two different initial times t, t ′ ∈ [0, T ], using the fact that the derivatives
of � are bounded, that is, � is Lipschitz over R×P2(R), we obtain∣∣V (t, x,Pξ ) − V

(
t ′, x,Pξ

)∣∣
≤ E

[∣∣�(
X

0,x,Pξ ′
T −t , P

X
0,ξ ′
T −t

) − �
(
X

0,x,Pξ ′
T −t ′ ,P

X
0,ξ ′
T −t ′

)∣∣]
(6.13)

≤ C
(
E

[∣∣X0,x,Pξ ′
T −t − X

0,x,Pξ ′
T −t ′

∣∣] + W2(P
X

0,ξ ′
T −t

, P
X

0,ξ ′
T −t ′

)
)

≤ C
(
E

[∣∣X0,x,Pξ ′
T −t − X

0,x,Pξ ′
T −t ′

∣∣2 + ∣∣X0,ξ ′
T −t − X

0,ξ ′
T −t ′

∣∣2])1/2
.

But, taking into account the boundedness of the coefficient σ of the SDEs for
X0,x,Pξ ′ and X0,ξ ′

, we get∣∣V (t, x,Pξ ) − V
(
t ′, x,Pξ

)∣∣ ≤ C
∣∣t − t ′

∣∣1/2
.(6.14)

The proof of the remaining estimate (iii) for the derivatives of V is carried out
by using the same kind of argument. Indeed, considering ξ ′ ∈ L2(F0) the sys-
tem of equations for Nt,x,Pξ ′ (y) := (Xt,x,Pξ ′ , ∂xX

t,x,Pξ ′ ,Ut,x,Pξ ′ (y)), x, y ∈ R,
and Nt,ξ ′

(y) := (Xt,ξ ′
, ∂xX

t,ξ ′
,Ut,ξ ′

(y)), y ∈ R [see (3.2), (5.1), (4.29)], we see
again that ((

N
t,x,Pξ ′
·+t (y)

)
x,y∈R,

(
N

t,ξ ′
·+t (y)y∈R

))
and ((

N0,x,Pξ ′ (y)
)
x,y∈R,

(
N0,ξ ′

(y)y∈R
))

are equal in law.
Hence, from (6.9) we deduce

∂μV (t, x,Pξ , y) = E
[
∂μ

(
�

(
X

t,x,Pξ ′
T ,P

X
t,ξ ′
T

))
(y)

]
(6.15)

= E
[
∂μ

(
�

(
X

0,x,Pξ ′
T −t , P

X
0,ξ ′
T −t

))
(y)

]
.

Consequently, using the Lipschitz continuity and the boundedness of ∂x� : R ×
P2(R) → R and ∂μ� : R× P2(R) ×R → R as well as the uniform boundedness
in Lp (p ≥ 2) of the first-order derivatives ∂xX

0,x,Pξ ′ , ∂μX0,x,Pξ ′ (y), we get from
(6.6) with (0, x, ξ ′, T − t) and (0, x, ξ ′, T − t ′) instead of (t, x, ξ, T ),∣∣∂μV (t, x,Pξ , y) − ∂μV

(
t ′, x,Pξ , y

)∣∣
≤ C

(
E

[∣∣X0,x,Pξ ′
T −t − X

0,x,Pξ ′
T −t ′

∣∣ + ∣∣X0,y,Pξ ′
T −t − X

0,y,Pξ ′
T −t ′

∣∣ + ∣∣X0,ξ ′
T −t − X

0,ξ ′
T −t ′

∣∣
(6.16)

+ ∣∣∂xX
0,y,Pξ ′
T −t − ∂xX

0,y,Pξ ′
T −t ′

∣∣ + ∣∣∂μX
0,x,Pξ ′
T −t (y) − ∂μX

0,x,Pξ ′
T −t ′ (y)

∣∣
+ ∣∣∂μX

0,ξ ′,Pξ ′
T −t (y) − ∂μX

0,ξ ′,Pξ ′
T −t ′ (y)

∣∣] + W2(P
X

0,ξ ′
T −t

, P
X

0,ξ ′
T −t ′

)
)
.
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Thus, since ξ ′ is independent of X0,x,Pξ ′ , ∂xX
0,y,Pξ ′ and ∂μX0,x′,Pξ ′ (y),∣∣∂μV (t, x,Pξ , y) − ∂μV

(
t ′, x,Pξ , y

)∣∣
≤ C · sup

x,y∈R
(
E

[∣∣X0,x,Pξ ′
T −t − X

0,x,Pξ ′
T −t ′

∣∣2 + ∣∣∂xX
0,x,Pξ ′
T −t − ∂xX

0,x,Pξ ′
T −t ′ (y)

∣∣2(6.17)

+ ∣∣∂μX
0,x,Pξ ′
T −t (y) − ∂μX

0,x,Pξ ′
T −t ′ (y)

∣∣2])1/2
,

and the uniform boundedness in L2 of the derivatives of X0,x,Pξ ′ allows to deduce
from the SDEs for X0,x,Pξ ′ , ∂xX

0,x,Pξ ′ and ∂μX
0,x,Pξ ′
T −t ′ (y) [(3.2), (5.1), (4.29)] that∣∣∂μV (t, x,Pξ , y) − ∂μV

(
t ′, x,Pξ , y

)∣∣ ≤ C
∣∣t − t ′

∣∣1/2
.(6.18)

The proof of the corresponding estimate for ∂xV (t, x,Pξ ) is similar, and hence,
omitted here. �

Let us come now to the discussion of the second-order derivatives of our value
function V (t, x,Pξ ).

LEMMA 6.2. We suppose that Hypothesis (H.2) is satisfied by the coefficients
σ and b, and we suppose that � ∈ C

2,1
b (Rd × P2(R

d)). Then, for all t ∈ [0, T ],
V (t, ·, ·) ∈ C

2,1
b (Rd × P2(R

d)), and the mixed second-order derivatives are sym-
metric:

∂xi

(
∂μV (t, x,Pξ , y)

) = ∂μ

(
∂xi

V (t, x,Pξ )
)
(y),

(t, x, y) ∈ [0, T ] ×R
d ×R

d, ξ ∈ L2(
Ft ;Rd

)
,1 ≤ i ≤ d

and, for

U
(
t, x,Pξ , y, z

) = (
∂2
xixj

V (t, x,Pξ ), ∂xi

(
∂μV (t, x,Pξ , y)

)
,

∂2
μV (t, x,Pξ , y, z), ∂y

(
∂μV (t, x,Pξ , y)

))
,

there is some constant C ∈ R such that, for all t, t ′ ∈ [0, T ], x, x′, y, y′, z, z′ ∈ R
d ,

ξ, ξ ′ ∈ L2(Ft ,R
d):

(i)
∣∣U(t, x,Pξ , y, z)

∣∣ ≤ C,

(ii)
∣∣U(t, x,Pξ , y, z) − U

(
t, x′,Pξ ′, y′, z′)∣∣

(6.19)
≤ C

(∣∣x − x′∣∣ + ∣∣y − y′∣∣ + ∣∣z − z′∣∣ + W2(Pξ ,Pξ ′)
)
,

(iii)
∣∣U(t, x,Pξ , y, z) − U

(
t ′, x,Pξ , y, z

)∣∣ ≤ C
∣∣t − t ′

∣∣1/2
.

PROOF. As in the preceding proofs, we make our computations for the case
of dimension d = 1. Moreover, in our proof we concentrate on the computation
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for the second-order derivative with respect to the measure ∂2
μV (t, x,Pξ , y, z) and

to its estimates; using the preceding lemma on the derivatives of first order, the
computation of the second-order derivatives ∂2

xV (t, x,Pξ ), ∂x(∂μV (t, x,Pξ )(y)),
∂μ(∂xV (t, x,Pξ ))(y), ∂y(∂μV (t, x,Pξ )(y)) and their estimates are rather direct
and left to the interested reader. On the other hand, a direct computation based on
(6.6) and (6.9) and using the symmetry of the mixed second-order derivatives of �

and of the processes Xt,x,Pξ and Xt,ξ shows that

∂x

(
∂μV (t, x,Pξ , y)

) = ∂μ

(
∂xV (t, x,Pξ )

)
(y),

(t, x, y) ∈ [0, T ] ×R×R, ξ ∈ L2(Ft ).

For the computation of ∂2
μV (t, x,Pξ , y, z), we use the formula for ∂μV (t, x,Pξ , y)

in Lemma 6.1 as well as (6.9) and (6.6). We observe that

∂μV (t, x,Pξ , y) = V1(t, x,Pξ , y) + V2(t, x,Pξ , y) + V3(t, x,Pξ , y),(6.20)

with

V1(t, x,Pξ , y) = E
[
(∂x�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

) · (
∂μX

t,x,Pξ

T

)
(y)

]
,

V2(t, x,Pξ , y) = E
[
Ẽ

[
(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t,y,Pξ

T

) · ∂xX̃
t,y,Pξ

T

]]
,

V3(t, x,Pξ , y) = E
[
Ẽ

[
(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

]]
.

Let us consider V3(t, x,Pξ , y), the discussion for V1(t, x,Pξ , y) and V2(t, x,

Pξ , y) is analogous. Using the Fréchet differentiability of the terms involved in
the definition of V3, we obtain for the Fréchet derivative of

ξ �→ Ṽ3(t, x, ξ, y) := V3(t, x,Pξ , y),
(6.21)

(t, x, ξ) ∈ [0, T ] ×R× L2(Ft ),

that, for all η ∈ L2(Ft ),

DξṼ3(t, x, ξ, y)(η)

= E
[
Ẽ

[
(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · Dξ̃

[(
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

]
(η̃)

+ ∂x(∂μ�)
(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y) · Dξ

[
X

t,x,Pξ

T

]
(η)(6.22)

+ E
[(

∂2
μ�

)(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T ,X

t,ξ

T

) · Dξ

[
X

t,ξ

T

]
(η)

] · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

+ ∂y(∂μ�)
(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y) · Dξ̃

[
X̃

t,̃ξ
T

]
(η̃)

]]
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(recall the notation introduced in Section 4). On the other hand, we know already
that:

(i) Dξ

[
X

t,x,Pξ

T

]
(η) = Ê

[
∂μX

t,x,Pξ

T (̂ξ ) · η̂]
,

(ii) Dξ

[
X

t,ξ

T

]
(η) = ∂xX

t,ξ,Pξ

T · η + Ê
[
∂μX

t,ξ,Pξ

T (̂ξ ) · η̂]
,

(iii) Dξ̃

[
X̃

t,̃ξ
T

]
(η̃) = ∂xX̃

t,̃ξ ,Pξ

T · η̃ + Ê
[
∂μX̃

t,̃ξ ,Pξ

T (̂ξ ) · η̂]
,(6.23)

(iv) Dξ̃

[(
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

]
(η̃)

= ∂x

(
∂μX̃

t,̃ξ ,Pξ

T (y)
) · η̃ + Ê

[(
∂2
μX̃

t,̃ξ ,Pξ

T

)
(y, ξ̂ ) · η̂]

.

Consequently, we have

DξṼ3(t, x, ξ, y)(η)

= Ê
[
E

[
Ẽ

[
(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂x

(
∂μX̃

t,̂ξ ,Pξ

T (y)
)

+ (
∂2
μX̃

t,̃ξ ,Pξ

T

)
(y, ξ̂ )

)
+ ∂x(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y) · ∂μX

t,x,Pξ

T (̂ξ )

(6.24)
+ E

[(
∂2
μ�

)(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T ,X

t,ξ

T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

× (
∂xX

t,̂ξ ,Pξ

T + ∂μX
t,ξ,Pξ

T (̂ξ )
)]

+ ∂y(∂μ�)
(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

× (
∂xX̃

t,̂ξ ,Pξ

T + ∂μX̃
t,̃ξ ,Pξ

T (̂ξ )
)]] · η̂]

.

Therefore,

∂μV3(t, x,Pξ , y, z)

= E
[
Ẽ

[
(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂x

(
∂μX̃

t,z,Pξ

T (y)
) + (

∂2
μX̃

t,̃ξ ,Pξ

T

)
(y, z)

)
+ ∂x(∂μ�)

(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · ∂μX̃
t,̃ξ ,Pξ

T (y) · ∂μX
t,x,Pξ

T (z)

+ E
[(

∂2
μ�

)(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T ,X

t,ξ

T

) · ∂μX̃
t,̃ξ ,Pξ

T (y)(6.25)

× (
∂xX

t,z,Pξ

T + ∂μX
t,ξ,Pξ

T (z)
)]

+ ∂y(∂μ�)
(
X

t,x,Pξ

T ,P
X

t,ξ
T

, X̃
t ,̃ξ
T

) · (
∂μX̃

t,̃ξ ,Pξ

T

)
(y)

× (
∂xX̃

t,z,Pξ

T + ∂μX̃
t,̃ξ ,Pξ

T (z)
)]]

,
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t ∈ [0, T ], x, y, z ∈ R, ξ ∈ L2(Ft ), satisfies the relation

DṼ3(t, x, ξ, y)(η) = Ê
[
∂μV3(t, x,Pξ , y, ξ̂ ) · η̂]

,(6.26)

that is, the function ∂μV3(t, x,Pξ , y, z) is the derivative of V3(t, x,Pξ , y) with re-
spect to the measure at Pξ . Moreover, the above expression for ∂μV3(t, x,Pξ , y, z)

combined with the estimates for the process Xt,x,Pξ and those of its first- and
second-order derivatives studied in the preceding sections allows to obtain after a
direct computation∣∣∂μV3(t, x,Pξ , y, z) − ∂μV3

(
t, x′,P ′

ξ , y
′, z′)∣∣

(6.27)
≤ C

(∣∣x − x′∣∣ + ∣∣y − y′∣∣ + ∣∣z − z′∣∣ + W2(Pξ ,Pξ ′)
)
,

for all t ∈ [0, T ], x, x′, y, y′, z, z′ ∈ R and ξ, ξ ′ ∈ L2(Ft ). Furthermore, extending
in a direct way the corresponding argument for the estimate of the difference for the
first-order derivatives of V (t, x,Pξ ) at different time points [see (6.16)], we deduce
from the explicit expression for ∂μV3(t, x,Pξ , y, z) that, for some real C ∈ R,∣∣∂μV3(t, x,Pξ , y, z) − ∂μV3

(
t ′, x,Pξ , y, z

)∣∣ ≤ C
∣∣t − t ′

∣∣1/2
,(6.28)

for all t, t ′ ∈ [0, T ], x, y, z ∈ R and ξ ∈ L2(Ft ).
In the same manner as we obtained the wished results for ∂μV3(t, x,Pξ , y, z),

we can investigate ∂μV1(t, x,Pξ , y, z) and ∂μV2(t, x,Pξ , y, z). This yields the
wished results for ∂2

μV (t, x,Pξ , y, z). The proof is complete. �

7. Itô formula and PDE associated with mean-field SDE. Let us begin with
establishing the Itô formula which will be applied after for the study of the PDE
associated with our mean-field SDE.

THEOREM 7.1. Let F : [0, T ] × R
d × P(Rd) → R be such that F(t, ·, ·) ∈

C
2,1
b (Rd × P(Rd)), for all t ∈ [0, T ], F(·, x,μ) ∈ C1([0, T ]), for all (x,μ) ∈

R
d × P2(R

d), and all derivatives, with respect to t of first order, and with re-
spect to (x,μ) of first and of second order, are uniformly bounded over [0, T ] ×
R

d × P(Rd) (for short: F ∈ C
1,(2,1)
b ([0, T ] × R

d × P2(R
d))). Then, under Hy-

pothesis (H.2), for all 0 ≤ t ≤ s ≤ T ,x ∈ R
d, ξ ∈ L2(Ft ;Rd), the following Itô

formula is satisfied:

F
(
s,X

t,x,Pξ
s ,P

X
t,ξ
s

) − F(t, x,Pξ )

=
∫ s

t

(
∂rF

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

) +
d∑

i=1

∂xi
F

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
bi

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)

+ 1

2

d∑
i,j,k=1

∂2
xixj

F
(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
(σi,kσj,k)

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
(7.1)
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+ Ẽ

[
d∑

i=1

(∂μF )i
(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
bi

(
X̃t,̃ξ

r ,P
X

t,ξ
r

)

+ 1

2

d∑
i,j,k=1

∂yi
(∂μF )j

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
(σi,kσj,k)

(
X̃t,̃ξ

r ,P
X

t,ξ
r

)])
dr

+
∫ s

t

d∑
i,j=1

∂xi
F

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
σi,j

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
dBj

r , s ∈ [t, T ].

PROOF. As already before in other proofs, let us again restrict ourselves to
dimension d = 1. The general case is got by a straight-forward extension.

Step 1. Let us begin with considering a function f ∈ C
2,1
b (P2(R)), let ξ ∈

L2(Ft ) and 0 ≤ t < sz ≤ T . We put tni := t + i(s − t)2−n,0 ≤ i ≤ 2n, n ≥ 1.
Due to Lemma 2.1, we have

f (P
X

t,ξ
s

) − f (Pξ )

=
2n−1∑
i=0

(
f (P

X
t,ξ

tn
i+1

) − f (P
X

t,ξ

tn
i

)
)

=
2n−1∑
i=0

(
Ẽ

[
∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

)(
X̃

t,̃ξ

tni+1
− X̃

t,̃ξ

tni

)]
(7.2)

+ 1

2
Ẽ

[
E

[
∂2
μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni
,X

t,ξ

tni

)(
X̃

t,̃ξ

tni+1
− X̃

t,̃ξ

tni

)(
X

t,ξ

tni+1
− X

t,ξ

tni

)]]
+ 1

2
Ẽ

[
∂y∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

)(
X̃

t,̃ξ

tni+1
− X̃

t,̃ξ

tni

)2] + Rtni
(P

X
t,ξ

tn
i+1

,P
X

t,ξ

tn
i

)

)
(for the notation we refer to the preceding sections), where, for some C ∈ R+
depending only on the Lipschitz constants of ∂2

μf and ∂y∂μf ,

∣∣Rtni
(P

X
t,ξ

tn
i+1

,P
X

t,ξ

tn
i

)
∣∣ ≤ CE

[∣∣Xt,ξ

tni+1
− X

t,ξ

tni

∣∣3]
≤ C

(
E

[(∫ tni+1

tni

∣∣b(
X

t,x,Pξ
r ,P

X
t,ξ
r

)∣∣dr

)3]
(7.3)

+ E

[(∫ tni+1

tni

∣∣σ (
X

t,x,Pξ
r ,P

X
t,ξ
r

)∣∣2 dr

)3/2])
≤ C

(
tni+1 − tni

)3/2
, 0 ≤ i ≤ 2n − 1.
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Thus, taking into account the relations (recall that B and B̃ are independent Brow-
nian motions)

(i) Ẽ
[
∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

)(
X̃

t,̃ξ

tni+1
− X̃

t,̃ξ

tni

)]
= Ẽ

[
∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

) ·
(∫ tni+1

tni

σ
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dB̃r

+
∫ tni+1

tni

b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dr

)]

= Ẽ

[
∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

) ·
∫ tni+1

tni

b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dr

]
,

(ii) Ẽ
[
E

[
∂2
μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni
,X

t,ξ

tni

)(
X̃

t,̃ξ

tni+1
− X̃

t,̃ξ

tni

)(
X

t,ξ

tni+1
− X

t,ξ

tni

)]]
= Ẽ

[
E

[
∂2
μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni
,X

t,ξ

tni

) ·
(∫ tni+1

tni

σ
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dB̃r

+
∫ tni+1

tni

b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dr

)

×
(∫ tni+1

tni

σ
(
X

t,ξ

r ,P
X

t,ξ
r

)
dBr +

∫ tni+1

tni

b
(
X

t,ξ

r ,P
X

t,ξ
r

)
dr

)]]

= Ẽ

[
E

[
∂2
μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni
,X

t,ξ

tni

) ·
(∫ tni+1

tni

b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dr

)

×
(∫ tni+1

tni

b
(
X

t,ξ

r ,P
X

t,ξ
r

)
dr

)]]
,

(iii) Ẽ
[
∂y∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

)(
X̃

t,̃ξ

tni+1
− X̃

t,̃ξ

tni

)2]
= Ẽ

[
∂y∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

)(∫ tni+1

tni

σ
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dB̃r

+
∫ tni+1

tni

b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
dr

)2]

= Ẽ

[
∂y∂μf

(
P

X
t,ξ

tn
i

, X̃
t ,̃ξ

tni

) ·
∫ tni+1

tni

∣∣σ (
X̃t,̃ξ

r ,P
X

t,ξ
r

)∣∣2 dr

]
+ Qtni

,

with |Qtni
| ≤ C(tni+1 − tni )3/2, 0 ≤ i ≤ 2n − 1, as well as the continuity of r �→

(X
t,x,Pξ
r ,P

X
t,ξ
r

) ∈ L2(F;R×P2(R)), we get from the above sum over the second-
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order Taylor expansion, as n → +∞,

f (P
X

t,ξ
s

) − f (Pξ )

=
∫ s

t
Ẽ

[
b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
∂μf

(
P

X
t,ξ
r

, X̃t ,̃ξ
r

)]
dr(7.4)

+ 1

2

∫ s

t
Ẽ

[
σ 2(

X̃t,̃ξ
r ,P

X
t,ξ
r

)
(∂y∂μf )

(
P

X
t,ξ
r

, X̃t ,̃ξ
r

)]
dr, s ∈ [t, T ].

From this latter relation, we see that, for fixed (t, ξ), the function s �→ f (P
X

t,ξ
s

), s ∈
[t, T ], is continuously differentiable in s and twice continuously differentiable, and
in particular,

∂sf (P
X

t,ξ
s

) = Ẽ
[
b
(
X̃t,̃ξ

s ,P
X

t,ξ
s

)
∂μf

(
P

X
t,ξ
s

, X̃t ,̃ξ
s

)
(7.5)

+ 1
2σ 2(

X̃t,̃ξ
s ,P

X
t,ξ
s

)
(∂y∂μf )

(
P

X
t,ξ
s

, X̃t ,̃ξ
s

)]
, s ∈ [t, T ].

Step 2. From the preceding step, we can derive that, for F ∈ C
1,(2,1)
b ([0, T ] ×

R×P2(R)) also �(s, x) := F(s, x,P
X

t,ξ
s

) is continuously differentiable,

∂s�(s, x) = (∂sF )(s, x,P
X

t,ξ
s

) + Ẽ
[
b
(
X̃t,̃ξ

s ,P
X

t,ξ
s

)
∂μF

(
s, x,P

X
t,ξ
s

, X̃t ,̃ξ
s

)
+ 1

2σ 2(
X̃t,̃ξ

s ,P
X

t,ξ
s

)
(∂y∂μF )

(
s, x,P

X
t,ξ
s

, X̃t ,̃ξ
s

)]
,

and twice continuously differentiable with respect to x. Hence, we can apply to

�(s,X
t,x,Pξ
s )(= F(s,X

t,x,Pξ
s ,P

X
t,ξ
s

)) the classical Itô formula. This yields

F
(
s,X

t,x,Pξ
s ,P

X
t,ξ
s

) − F(t, x,Pξ )

= �
(
s,X

t,x,Pξ
s

) − �(t, x)

=
∫ s

t

(
∂r�

(
r,X

t,x,Pξ
r

) + b
(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂x�

(
r,X

t,x,Pξ
r

)
+ 1

2
σ 2(

X
t,x,Pξ
r ,P

X
t,ξ
r

)
∂2
x�

(
r,X

t,x,Pξ
r

))
dr

+
∫ s

t
σ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂x�

(
r,X

t,x,Pξ
r

)
dBr

=
∫ s

t

(
∂rF

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
(7.6)

+ Ẽ

[
b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
∂μF

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
+ 1

2
σ 2(

X̃t,̃ξ
r ,P

X
t,ξ
r

)
(∂y∂μF )

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)]
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+ b
(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂x�

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
+ 1

2
σ 2(

X
t,x,Pξ
r ,P

X
t,ξ
r

)
∂2
xF

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

))
dr

+
∫ s

t
σ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
∂x�

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
dBr, s ∈ [t, T ].

The proof is complete. �

The above Itô formula allows now to show that our value function V (t, x,Pξ ) is
continuously differentiable with respect to t , with a derivative ∂tV bounded over
[0, T ] ×R

d ×P2(R
d).

LEMMA 7.1. Assume that � ∈ C2,1(Rd × P2(R
d)). Then, under Hypothe-

sis (H.2), V ∈ C1,(2,1)([0, T ] × R
d × P2(R

d)), and its derivative ∂tV (t, x,Pξ )

with respect to t verifies, for some constant C ∈ R:

(i)
∣∣∂tV (t, x,Pξ )

∣∣ ≤ C,

(ii)
∣∣∂tV (t, x,Pξ ) − ∂tV

(
t, x′,Pξ ′

)∣∣ ≤ C
(∣∣x − x′∣∣ + W2(Pξ ,Pξ ′)

)
,(7.7)

(iii)
∣∣∂tV (t, x,Pξ ) − ∂tV

(
t ′, x,Pξ

)∣∣ ≤ C
∣∣t − t ′

∣∣1/2
,

for all t, t ′ ∈ [0, T ], x, x′ ∈ R
d, ξ, ξ ′ ∈ L2(Ft ;Rd).

PROOF. Recall that, for t ∈ [0, T ], x ∈ R
d , and ξ [which can be supposed

without loss of generality to belong to L2(F0); see our previous discussion in the
proof of Lemma 6.1], we have

V (t, x,Pξ ) = E
[
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)] = E
[
�

(
X

0,x,Pξ

T −t , P
X

0,ξ
T −t

)]
.(7.8)

Hence, taking the expectation over the Itô formula in the preceding theorem for
F(s, x,Pξ ) = �(x,Pξ ), s = T − t and initial time 0, we get with, for simplicity,
d = 1 again,

V (t, x,Pξ ) − V (T , x,Pξ )

=
∫ T −t

0
E

[(
∂x�

(
X

0,x,Pξ
r ,P

X
0,ξ
r

)
b
(
X

0,x,Pξ
r ,P

X
0,ξ
r

)
+ 1

2
∂2
x�

(
X

0,x,Pξ
r ,P

X
0,ξ
r

)
σ 2(

X
0,x,Pξ
r ,P

X
0,ξ
r

)
(7.9)

+ Ẽ

[
(∂μ�)

(
X

0,x,Pξ
r ,P

X
0,ξ
s

, X̃0,̃ξ
r

)
b
(
X̃0,̃ξ

r , P
X

0,ξ
r

)
+ 1

2
∂y(∂μ�)

(
X

0,x,Pξ
r ,P

X
0,ξ
r

, X̃0,̃ξ
r

)
σ 2(

X̃0,̃ξ
r , P

X
0,ξ
r

)])]
dr.
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Then it is evident that V (t, x,Pξ ) is continuously differentiable with respect to t ,

∂tV (t, x,Pξ ) = −E
[
∂x�

(
X

0,x,Pξ

T −t , P
X

0,ξ
T −t

)
b
(
X

0,x,Pξ

T −t , P
X

0,ξ
T −t

)
+ 1

2∂2
x�

(
X

0,x,Pξ

T −t , P
X

0,ξ
T −t

)
σ 2(

X
0,x,Pξ

T −t , P
X

0,ξ
T −t

)
(7.10)

+ Ẽ
[
(∂μ�)

(
X

0,x,Pξ

T −t , P
X

0,ξ
T −t

, X̃
0,̃ξ
T −t

)
b
(
X̃

0,̃ξ
T −t , PX

0,ξ
T −t

)
+ 1

2∂y(∂μ�)
(
X

0,x,Pξ

T −t , P
X

0,ξ
T −t

, X̃
0,̃ξ
T −t

)
σ 2(

X̃
0,̃ξ
T −t , PX

0,ξ
T −t

)]]
.

Moreover, using this latter formula, we can now prove in analogy to the other
derivatives of V that ∂tV satisfies the estimates stated in this lemma. The proof is
complete. �

Now we are able to establish and to prove our main result.

THEOREM 7.2. We suppose that � ∈ C
2,1
b (Rd × P2(R

d)). Then, under

Hypothesis (H.2), the function V (t, x,Pξ ) = E[�(X
t,x,Pξ

T ,P
X

t,ξ
T

)], (t, x, ξ) ∈
[0, T ]×R

d ×L2(Ft ;Rd), is the unique solution in C1,(2,1)([0, T ]×R
d ×P2(R

d))

of the PDE

0 = ∂tV (t, x,Pξ ) +
d∑

i=1

∂xi
V (t, x,Pξ )bi(x,Pξ )

+ 1

2

d∑
i,j,k=1

∂2
xixj

V (t, x,Pξ )(σi,kσj,k)(x,Pξ )

+ E

[
d∑

i=1

(∂μV )i(t, x,Pξ , ξ)bi(ξ,Pξ )

(7.11)

+ 1

2

d∑
i,j,k=1

∂yi
(∂μV )j (t, x,Pξ , ξ)(σi,kσj,k)(ξ,Pξ )

]
,

(t, x, ξ) ∈ [0, T ] ×R
d × L2(

Ft ;Rd
)
,

V (T , x,Pξ ) = �(x,Pξ ), (x, ξ) ∈ R
d × L2(

F;Rd)
.

PROOF. As before we restrict ourselves in this proof to the one-dimensional
case d = 1. Recalling the flow property

(
X

s,X
t,x,Pξ
s ,P

X
t,ξ
s

r ,Xs,X
t,ξ
s

r

) = (
X

t,x,Pξ
r ,Xt,ξ

r

)
,

(7.12)
0 ≤ t ≤ s ≤ r ≤ T , x ∈ R, ξ ∈ L2(Ft ),
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of our dynamics as well as

V (s, y,Pϑ) = E
[
�

(
X

s,y,Pϑ

T ,P
X

s,ϑ
T

)] = E
[
�

(
X

s,y,Pϑ

T ,P
X

s,ϑ
T

)|Fs

]
,(7.13)

s ∈ [0, T ], y ∈R, ϑ ∈ L2(Fs), we deduce that

V
(
s,X

t,x,Pξ
s ,P

X
t,ξ
s

) = E
[
�

(
X

s,y,Pϑ

T ,P
X

s,ϑ
T

)|Fs

]|
(y,ϑ)=(X

t,x,Pξ
s ,X

t,ξ
s )

= E
[
�

(
X

s,X
t,x,Pξ
s ,P

X
t,ξ
s

T ,P
X

s,X
t,ξ
s

T

)|Fs

]
(7.14)

= E
[
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)|Fs

]
, s ∈ [t, T ],

that is, V (s,X
t,x,Pξ
s ,P

X
t,ξ
s

), s ∈ [t, T ], is a martingale. On the other hand, since

due to Lemma 7.1 the function V ∈ C
1,(2,1)
b ([0, T ] × R

d × P2(R
d)) satisfies the

regularity assumptions for the Itô formula, we know that

V
(
s,X

t,x,Pξ
s ,P

X
t,ξ
s

) − V (t, x,Pξ )

=
∫ s

t

(
∂rV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

) + ∂xV
(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
b
(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
+ 1

2
∂2
xV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
σ 2(

X
t,x,Pξ
r ,P

X
t,ξ
r

)
(7.15)

+ Ẽ

[
∂μV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
+ 1

2
∂y(∂μV )

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
σ 2(

X̃t,̃ξ
r ,P

X
t,ξ
r

)])
dr

+
∫ s

t
∂xV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
σ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
dBr, s ∈ [t, T ].

Consequently,

V
(
s,X

t,x,Pξ
s ,P

X
t,ξ
s

) − V (t, x,Pξ )
(7.16)

=
∫ s

t
∂xV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
σ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
dBr, s ∈ [t, T ],

and

0 =
∫ s

t

(
∂rV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

) + ∂xV
(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
b
(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
+ 1

2
∂2
xV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
σ 2(

X
t,x,Pξ
r ,P

X
t,ξ
r

)
(7.17)

+ Ẽ

[
∂μV

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
b
(
X̃t,̃ξ

r ,P
X

t,ξ
r

)
+ 1

2
∂y(∂μV )

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

, X̃t ,̃ξ
r

)
σ 2(

X̃t,̃ξ
r ,P

X
t,ξ
r

)])
dr, s ∈ [t, T ],
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from where we obtain easily the wished PDE.
Thus, it only still remains to prove the uniqueness of the solution of the PDE in

the class C
1,(2,1)
b ([0, T ]×R

d ×P2(R
d)). Let U ∈ C

1,(2,1)
b ([0, T ]×R

d ×P2(R
d))

be a solution of PDE (7.11). Then, from the Itô formula we have that

U
(
s,X

t,x,Pξ
s ,P

X
t,ξ
s

) − U(t, x,Pξ )

(7.18)
=

∫ s

t
∂xU

(
r,X

t,x,Pξ
r ,P

X
t,ξ
r

)
σ

(
X

t,x,Pξ
r ,P

X
t,ξ
r

)
dBr,

s ∈ [t, T ], is a martingale. Thus, for all t ∈ [0, T ], x ∈ R and ξ ∈ L2(Ft ),

U(t, x,Pξ ) = E
[
U

(
T ,X

t,x,Pξ

T ,P
X

t,ξ
T

)|Ft

]
(7.19)

= E
[
�

(
X

t,x,Pξ

T ,P
X

t,ξ
T

)] = V (t, x,Pξ ).

This proves that the functions U and V coincide, that is, the solution is unique in
C

1,(2,1)
b ([0, T ] ×R

d ×P2(R
d)). The proof is complete. �
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