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A GAUSSIAN UPPER BOUND FOR MARTINGALE
SMALL-BALL PROBABILITIES

BY JAMES R. LEE1, YUVAL PERES AND CHARLES K. SMART2

University of Washington, Microsoft Research and University of Chicago

Consider a discrete-time martingale {Xt } taking values in a Hilbert
space H. We show that if for some L ≥ 1, the bounds E[‖Xt+1 −
Xt‖2

H|Xt ] = 1 and ‖Xt+1 − Xt‖H ≤ L are satisfied for all times t ≥ 0,
then there is a constant c = c(L) such that for 1 ≤ R ≤ √

t ,

P
(‖Xt − X0‖H ≤ R

) ≤ c
R√
t
.

Following Lee and Peres [Ann. Probab. 41 (2013) 3392–3419], this estimate
has applications to small-ball estimates for random walks on vertex-transitive
graphs: We show that for every infinite, connected, vertex-transitive graph G

with bounded degree, there is a constant CG > 0 such that if {Zt } is the simple
random walk on G, then for every ε > 0 and t ≥ 1/ε2,

P
(
distG(Zt ,Z0) ≤ ε

√
t
) ≤ CGε,

where distG denotes the graph distance in G.

1. Introduction. Let H be a Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖, and let {Xn : n ≥ 0} denote a discrete-time H-valued martingale with respect
to a filtration {Fn}. Suppose that for some number L > 1 and all n ≥ 1, we have
‖Xn −Xn−1‖ ≤ L almost surely. In addition, suppose that the conditional variance
Vn = E[‖Xn − Xn−1‖2|Fn−1] satisfies Vn ≥ 1 almost surely. As discovered by
A. G. Èrshler, martingales satisfying these conditions arise in the study of random
walks on groups, as we discuss shortly.

Given these almost sure bounds on the conditional variances, one might ex-
pect some type of martingale central limit theorem to hold. In fact, this is hope-
lessly false. Such martingales can exhibit counterintuitive behavior even in the
one-dimensional case. This phenomenon is suggested by solutions to certain PDE
arising in nonlinear filtration [2].

The authors of [3] confirm this surprising behavior in the discrete setting: For
every t ≥ 1, there is a real-valued martingale {Xn} satisfying the above assump-
tions, the initial condition X0 = 0, and the estimate

P
(|Xt | ≤ 1

) ≥ ct−α,
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where the constants c > 0 and 0 < α < 1/2 are independent of t . In other words,
even under seemingly strong upper and lower bounds on the increments, Xt can
land near the origin with probability much greater than the order t−1/2 achieved
by simple random walk. The moral is that, by allowing the conditional variance
Vn to depend on the state (Xn−1, n), a clever controller can steer the random walk
closer to small sets.

Our primary goal is to prove that, for H-valued martingales, such “non-
Gaussian” behavior cannot happen if the sequence {Vn} is deterministic. We prove
the small-ball estimate

P
[‖Xn‖ ≤ R

] ≤ cLR√
n

for 1 ≤ R ≤ √
n,

when X0 = 0 and the Vn ≥ 1 are deterministic.
Note that even in this more restricted case, there is no central limit theorem.

Indeed, the increments Xn+1 −Xn can lie in different subspaces at different times.
Choosing the direction of Xn+1 −Xn allows one to control the conditional variance
of the martingale projected onto a fixed direction. One might suspect that this
gives a controller the ability to again substantially increase the probability of the
martingale to be near the origin at a target time t as in [3]. Our main result is that
this is not the case.

We use a coupling argument to reduce to the two-dimensional case, where the
ratio of area to perimeter is favorable, and then argue by induction. If one in-
stead takes a control-theoretic approach, optimizing the increments to minimize
the small-ball probability, this leads to the work of Armstrong and Zeitouni [1],
which we describe in more detail below.

Our main theorem includes off-diagonal estimates as well, and these are needed
in the induction step. Of course, when ‖x0‖ is large, this estimate is an easy con-
sequence of Azuma’s inequality.

THEOREM 1.1. Let {Xn} be an H-valued martingale with respect to the
filtration {Fn} and suppose there exists a sequence of numbers {vn ≥ 1 : n ≥
1} such that for each n ≥ 1, almost surely E[‖Xn − Xn−1‖2|Fn−1] = vn and
‖Xn − Xn−1‖ ≤ L. Then for every n ≥ 1 and 1 ≤ R ≤ √

n, we have

P
(‖Xn‖ ≤ R|X0 = x0

) ≤ cLR√
n

e−‖x0‖2/(6L2n),

where cL > 0 is a constant depending only on L.

REMARKS ON THE PROOF. The delicacy required to prove Theorem 1.1 lies
in the fact that one cannot uniformly dominate ‖Xn‖ by a Gaussian in order to
apply the natural induction. Here, uniformly refers to a bound that holds simulta-
neously for all martingales satisfying the Lipschitz and conditional variance con-
ditions. For instance, consider the two-dimensional martingale such that X0 = 0,
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and for n ≥ 0, it holds that ‖Xn+1 − Xn‖ = 1 and Xn+1 − Xn is orthogonal to Xn.
In that case, ‖Xn‖2 = n (with probability one) for all n ≥ 0.

Instead, our proof proceeds in two steps. First, we prove that a martingale cannot
aim for the origin at time n using a controlled trajectory, for example, such that
‖Xn−t‖ ≤ t5/8 +O(1) for all 1 ≤ t ≤ n. Given an uncontrolled trajectory, we break
it the union of a smaller trajectory (with fewer time steps) and an uncontrolled
piece. The smaller trajectory is bounded by induction, and the uncontrolled piece
by large deviation bounds.

The final step is to take a union bound over a discretization of the space of
all possible trajectories. Since we have no a priori bound on the dimension of H,
this seems infeasible. Here is where we employ martingale dimension reduction:
We couple our H-valued martingale to an R

2-valued martingale with the same
Lipschitz and conditional variance conditions. The union bounds thus becomes
possible.

Using the methods of [6], Theorem 1.1 can be used to obtain a diffusive esti-
mate for random walks on finitely-generated groups and, more generally, vertex-
transitive graphs. In particular, the following result is proved in Section 3 using
Theorem 1.1.

THEOREM 1.2. For every infinite, locally-finite, connected, vertex-transitive
graph G, there is a constant CG > 0 such that if {Zt } is the simple random walk
on G, then for every ε > 0 and every t ≥ 1/ε2,

P
(
distG(Zt ,Z0) ≤ ε

√
t
) ≤ CGε,

where distG denotes the graph distance in G.

For the preceding theorem, one only requires the case v1 = v2 = · · · = 1 in
Theorem 1.1. We also prove a related theorem for finite vertex-transitive graphs;
see Theorem 3.3 below. In that setting, one needs more general deterministic se-
quences {vn}.

Finally, we remark that Theorem 1.1 is a corollary of the main theorem of the
independent and concurrent work of Armstrong and Zeitouni [1]. As written, their
result only applies to the case R = 1, v1 = v2 = · · · = 1, and x0 = 0, but one
expects that they can obtain the general case by straightforward modification.

2. Martingale small-ball probabilities. We recall the setup of the introduc-
tion, where H is a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. The
process {Xn : n ≥ 0} will denote a discrete-time H-valued martingale with respect
to a filtration {Fn}. We use the notation En[·] = E[·|Fn] and Pn[·] = P[·|Fn]. For
the remainder of the section, we will assume that {Xn} satisfies the following two
properties:

(M1) There is a (deterministic) sequence of numbers {vn : n ≥ 1} such that for
all n ≥ 1, we have vn ≥ 1 and En−1‖Xn − Xn−1‖2 = vn.
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(M2) For all n ≥ 1, ‖Xn − Xn−1‖ ≤ L almost surely.

Note that the conjunction of (M1) and (M2) imply that L ≥ 1.
We first prove an estimate assuming a martingale approaches the origin in a

controlled manner.

LEMMA 2.1. There is a universal constant c > 0 such that for every λ ≥ 1
and all n ≥ 1, the following holds: If {Xn} is any martingale satisfying (M1) and
(M2) and X0 = x0, then

P
[‖Xn‖ ≤ 1 and ‖Xn−t‖ ≤ t5/8 + λ for all 0 ≤ t ≤ n

]
(1)

≤ cL13λ4/5
√

n
exp

(−‖x0‖2

2L2n

)
.

PROOF. Fix n ≥ 1, and for 1 ≤ k ≤ n, define the random variable

�k = Pn−k

[‖Xn‖ ≤ 1 and ‖Xn−t‖ ≤ t5/8 + λ for all 0 ≤ t ≤ k
]
.

Let k0 = �30L24λ8/5	. Now define, for 1 ≤ k ≤ n, the sequence

sk = L2 min(k, k0) +
k−1∑
j=k0

vn−j .(2)

We will prove by induction on k that for all 1 ≤ k ≤ n, the following bound
holds almost surely:

�k ≤ e−‖Xn−k‖2/(2sk)βk,(3)

where

βk = e2
k∏

j=k0+1

(
1 − sj − sj−1

2sj
+ 77L3j−9/8

)
.(4)

We take the product to be 1 if k ≤ k0.
Clearly, βk = e for k ≤ k0. For k > k0, using the fact that log(1 + x) ≤ x for

x > −1, we will have

logβk ≤ 2 − 1

2

k∑
j=k0+1

sj − sj−1

sj
+ 77L3

k∑
j=k0+1

j−9/8

≤ 2 − 1

2

k∑
j=k0+1

∫ sj

sj−1

1

x + L2 dx + O(1)L3k
−1/8
0

≤ O(1) − 1

2
log

(
sk + L2

sk0 + L2

)
,
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where we have used the fact that k0 is chosen large enough so that L3k
−1/8
0 is

bounded above by a universal constant.
From (2), we know that sk0 = k0L

2 and from (M1), we have

sk ≥ L2 min(k, k0) + k − k0 ≥ k,

hence we conclude that for all 1 ≤ k ≤ n,

βk ≤ O(1)

√
k0 + 1 · L√

k
≤ O(1)

L13λ4/5
√

k
.

Combining this with (3) and using the fact that sn ≤ L2n yields (1). [Observe that
�n is precisely what we are trying to bound in (1).]

Thus, we are now left to prove (3) by induction on k. First, consider the case
1 ≤ k ≤ k0. If ‖Xn−k‖ > kL+ 1, then �k = 0 almost surely, because the Lipschitz
bound (M2) implies that the chain can move at most kL distance in k steps. We
may also assume that ‖Xn−k‖ > 1, else the bound is trivially true. In particular, if
we define the event

E = {
1 < ‖Xn−k‖ ≤ kL + 1

}
,

then

P
(
�k|Ec) ≤ e2 · e−‖Xn−k‖2/(2kL2).

On the event E , we can apply Azuma’s inequality to the one-dimensional mar-
tingale {〈

Xn−k − Xt,
Xn−k

‖Xn−k‖
〉
: t = n − k,n − k + 1, . . . , n

}

to conclude that almost surely,

P(�k|E) ≤ P
(‖Xn‖ ≤ 1|E)

≤ P

(〈
Xn−k

‖Xn−k‖ ,Xn−k − Xn

〉
> ‖Xn−k‖ − 1|E

)

≤ e−(‖Xn−k‖−1)2/(2kL2) = e−‖Xn−k‖2/(2kL2)e(‖Xn−k‖−1/2)/(nL2)

≤ e2 · e−‖Xn−k‖2/(2kL2),

where the last inequality uses our assumption that ‖Xn−k‖ ≤ kL + 1 and the fact
that L ≥ 1. Thus, the bound (3) is satisfied since for k ≤ k0, we have βk = e2 and
sk = kL2 [recalling (2)].

We are thus left to prove (3) by induction for k > k0. We may assume that

‖Xn−k‖ ≤ k5/8 + λ,(5)

since otherwise �k = 0.
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Now we will use the inductive hypothesis to calculate

�k = En−kPn−k+1
[‖Xn‖ ≤ 1 and ‖Xn−t‖ ≤ t5/8 + λ for all 0 ≤ t ≤ k

]
≤ En−kPn−k+1

[‖Xn‖ ≤ 1 and ‖Xn−t‖ ≤ t5/8 + λ for all 0 ≤ t ≤ k − 1
]

= En−k[�k−1]
≤ βk−1En−k

[
e−‖Xn−k+1‖2/(2sk−1)

]
,

where in the final line we have employed the inductive hypothesis. Observe that
here we have used the fact that βk−1 is a constant; indeed, this is where we employ
our assumption that the sequence {vn} is deterministic.

Letting D = Xn−k+1 − Xn−k and using the preceding inequality, we have

�k ≤ βk−1En−k

[
e−‖Xn−k+D‖2/(2sk−1)

]
= βk−1e

−‖Xn−k‖2/(2sk)(6)

×En−k

[
exp

(−‖D‖2

2sk−1
− 〈Xn−k,D〉

sk−1
+ ‖Xn−k‖2

2

sk−1 − sk

sk−1sk

)]
.

Observe that, by (5), and assumptions (M1) and (M2), the three terms inside the
exponential (almost surely) have their respective magnitudes bounded by

L2

2(k − 1)
,

(k5/8 + λ)L

k − 1
,

(k5/8 + λ)2L2

2k(k − 1)
.(7)

For k ≥ k0 ≥ 30L24λ8/5, each of these terms is bounded by min(1/3,2Lk−3/8).
We require the following basic approximation.

LEMMA 2.2. If y ≤ 1, then

ey − (
1 + y + y2/2

) ≤ |y|3.
Using (M2), we have ‖D‖ ≤ L almost surely. In conjunction with (5) and the

bounds (7), we may apply Lemma 2.2 to write

En−k

[
exp

(−‖D‖2

2sk−1
− 〈Xn−k,D〉

sk−1
+ ‖Xn−k‖2

2

sk−1 − sk

sk−1sk

)]

≤ 1 −En−k

‖D‖2

2sk−1
+ ‖Xn−k‖2

2

sk−1 − sk

sk−1sk
(8)

+En−k

〈Xn−k,D〉2

2s2
k−1

+ (4 + 72)L3k−9/8,

where we have also used the martingale property En−kD = 0. The error term mul-
tiplied by 4 comes from bounding the remaining quadratic terms using (7), and the
term multiplied by 72 arises from the cubic error in Lemma 2.2.
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Now using the fact that En−k‖D‖2 = sk − sk−1 [which follows from (M1) and
the definition (2)], along with Cauchy–Schwarz, we can bound (8) by

1 − sk − sk−1

2sk−1
+ ‖Xn−k‖2

2

sk−1 − sk

sk−1sk
+ ‖Xn−k‖2

2

sk − sk−1

s2
k−1

+ 76L3k−9/8

= 1 − sk − sk−1

2sk−1
+ ‖Xn−k‖2

2

(sk − sk−1)
2

s2
k−1sk

+ 76L3k−9/8(9)

≤ 1 − sk − sk−1

2sk−1
+ 77L3k−9/8,

where in the final line we have used (5), the fact that sk − sk−1 ≤ L by (M2), the
fact that sks

2
k−1 ≥ k(k−1)2 by (M1), and our assumption that k ≥ k0 ≥ 30L24λ8/5.

Recalling (6), we have verified that almost surely

�k ≤ βk−1e
−‖Xn−k‖2/(2sk)

(
1 − sk − sk−1

2sk−1
+ 77L3k−9/8

)
= βke

−‖Xn−k‖2/(2sk).

This completes the proof of (3) by induction. �

We will use the preceding estimate to control the small-ball probability. Be-
fore that, we observe that it suffices to prove a bound for R2-valued martingales.
The following dimension reduction lemma is a special case of the continuous-time
version proved in [4]. We include a proof here for the convenience of the reader.
A similar exposition of the discrete case appears in [5], Proposition 5.8.3.

LEMMA 2.3. Let {Nt } be an H-valued martingale. Then there exists an R
2-

valued martingale {Mt } such that for any time t ≥ 0, ‖Mt‖2 = ‖Nt‖2 and ‖Mt+1 −
Mt‖2 = ‖Nt+1 − Nt‖2.

PROOF. We prove the claim by induction on n. The case n = 0 is trivial. Sup-
pose now we can construct {Mt }t≤n successfully based on {Nt }t≤n. We wish to
specify the value of Mn+1 given {Nt }t≤n+1 and {Mt }t≤n such that the required
conditions hold.

In the generic case, there exist two distinct points in x1, x2 ∈ R
2 satisfying

‖Nn+1‖ = ‖xi‖ and 〈Nn,Nn+1〉 = 〈Mn,xi〉,(10)

for i = 1,2. (One can see them as the intersections of a circle and a line.) Denoting
these two points by M

(1)
n+1 and M

(2)
n+1, we now let Mn+1 be M

(1)
n+1 (resp., M

(2)
n+1)

with probability 1
2 . It is clear that ‖Nn+1‖ = ‖Mn+1‖. Recalling (10) and using the

induction hypothesis ‖Nn‖ = ‖Mn‖, we also infer that

‖Mn+1 − Mn‖2 = ‖Mn+1‖2 − 2〈Mn+1,Mn〉 + ‖Mn‖2

= ‖Nn+1‖2 − 2〈Nn+1,Nn〉 + ‖Nn‖2

= ‖Nn+1 − Nn‖2.
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It remains to prove that E[Mn+1|M1, . . . ,Mn] = Mn. To this end, it suffices to
show

E
[〈
Mn+1,M

⊥
n

〉|M1, . . . ,Mn

] = 0,(11)

E
[〈Mn+1,Mn〉|M1, . . . ,Mn

] = ‖Mn‖2,(12)

where M⊥
n is a unit vector with 〈M⊥

n ,Mn〉 = 0. Equality (11) follows by our
uniform random choice of Mn over {M(1)

n+1,M
(2)
n+1}. Since {Nt } is a martingale,

we have that E{〈Nn+1,Nn〉|N1, . . . ,Nn} = ‖Nn‖2. Combined with (10) and our
choice of Mn+1, we obtain (12) as required.

In the degenerate case when Nn and Nn+1 are proportional, there is a unique
solution to (10), and we just let Mn+1 be that unique point. In the case when
Nn = 0 but Nn+1 �= 0, there are infinitely many solutions, one can pick out two
symmetric ones and let Mn+1 be uniformly random over those two points. �

We now proceed to our first small-ball estimate.

THEOREM 2.4. Assume that {Xn} is an H-valued martingale satisfying (M1)
and (M2). If X0 = x0, then for any n ≥ 1,

P
(‖Xn‖ ≤ 1

) ≤ O(L20)√
n

e−‖x0‖2/(3L2n).

PROOF. By Lemma 2.3, we may assume that {Xn} takes values in R
2. By

induction on n, we will prove that

P
(‖Xn‖ ≤ 1

) ≤ B√
n
e−‖x0‖2/(3L2n)(13)

for some number B ≤ O(L20) to be chosen later. The case n = 1 is trivial as long
as B ≥ e, since the left-hand side is 0 for ‖x0‖ > L + 1 [by (M2)].

Also observe that Azuma’s inequality applied to the one-dimensional martingale
{〈x0, x0 − Xt 〉} implies that

P
(‖Xn‖ ≤ 1

) ≤ e−max(0,‖x0‖−1)2/(2L2n).

If ‖x0‖ > 3L
√

n logn, then

e−max(0,‖x0‖−1)2/(2L2n) ≤ B√
n
e−‖x0‖2/(3L2n),

as long as B > 0 is a sufficiently large constant. Thus, we may assume that

‖x0‖ ≤ 3L
√

n logn.(14)
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Let k0 ≥ 1 be a number to be chosen later and put λ = k0L. We may decompose

P
(‖Xn‖ ≤ 1

) ≤ P
(‖Xn‖ ≤ 1 and ‖Xn−t‖ ≤ t5/8 + λ for 0 ≤ t ≤ n

)
+

n∑
k=k0

P
(‖Xn‖ ≤ 1 and ‖Xn−k‖ > k5/8 + 1

)
(15)

≤ cL64/5k
4/5
0√

n
e−‖x0‖2/(2L2n)

+
n∑

k=k0

P
(‖Xn‖ ≤ 1 and ‖Xn−k‖ > k5/8 + 1

)
,

where we have bounded the first term using Lemma 2.1.
Note that if ‖Xn‖ ≤ 1 then by (M2), we must have ‖Xn−k‖ ≤ kL + 1. Let Nk

denote a 1-net in the Euclidean disk of radius kL + 1 about 0, and observe that
|Nk| ≤ 4(kL + 1)2. Thus, we have

P
(‖Xn‖ ≤ 1 and ‖Xn−k‖ > k5/8 + 1

)
= P

(‖Xn‖ ≤ 1 and kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1
)

≤ P
(‖Xn‖ ≤ 1|kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1

)
P

(‖Xn−k‖ ≤ kL + 1
)

≤ P
(‖Xn‖ ≤ 1|kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1

) ∑
y∈Nk

P
(‖Xn−k − y‖ ≤ 1

)
(16)

≤ P
(‖Xn‖ ≤ 1|kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1

)
× ∑

y∈Nk

B√
n − k

e−‖x0−y‖2/(3L2(n−k))

≤ P
(‖Xn‖ ≤ 1|kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1

)
× B|Nk|√

n − k
e−max(0,‖x0‖−(kL+1))2/(3L2(n−k)),

where in the third line we have used the inductive hypothesis, and in the final line
a union bound.

We may then apply Azuma’s inequality to the one-dimensional martingale{〈
Xt − Xn−k,

Xn−k

‖Xn−k‖
〉
: t = n − k,n − k + 1, . . . , n

}

to conclude that

P
(‖Xn‖ ≤ 1|kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1

)
≤ P

(〈
Xn − Xn−k,

Xn−k

‖Xn−k‖
〉
≥ k5/8

∣∣∣kL + 1 ≥ ‖Xn−k‖ > k5/8 + 1
)

(17)
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≤ P

(〈
Xn − Xn−k,

Xn−k

‖Xn−k‖
〉
≥ k5/8

∣∣∣Xn−k

)

≤ e−k1/4/(2L2).

Combining (15)–(17) and using |Nk| ≤ 4(kL + 1)2 yields

P
(‖Xn‖ ≤ 1

) ≤ cL64/5k
4/5
0√

n
e−‖x0‖2/(2L2n)

+ B

n∑
k=k0

4(kL + 1)2
√

n − k
exp

(−k1/4

2L2 − max(0,‖x0‖ − (kL + 1))2

3L2(n − k)

)
.

Our goal is now to prove that there is a universal constant α > 0 (in particular,
α will not depend on B) such that

exp
(−k1/4

4L2 − max(0,‖x0‖ − (kL + 1))2

3L2(n − k)

)
≤ α exp

(−‖x0‖2

3L2n

)
.(18)

Plugging this estimate into the preceding inequality yields

P
(‖Xn‖ ≤ 1

) ≤ cL64/5k
4/5
0√

n
e−‖x0‖2/(2L2n)

+ B exp
(−‖x0‖2

3L2n

)[
α

n∑
k=k0

4(kL + 1)2
√

n − k
exp

(−k1/4

4L2

)]
.

By choosing k0  L9 large enough (depending on α), the sum in brackets is at
most 1

2
√

n
. Indeed, one can choose k0 such that the value is at most

α

n∑
k=k0

e−k1/36/8
√

n − k
.

This sum is dominated by its first term which can be made arbitrarily small by an
appropriate choice of k0.

Fixing this value of k0 and setting B = 2cL64/5k
4/5
0 ≤ O(L20) shows that

P
(‖Xn‖ ≤ 1

) ≤ B√
n
e−‖x0‖2/(3L2n),

completing the proof of (13) by induction. Thus, we are left to prove (18) for
k ≥ k0.

Case I: ‖x0‖ ≤ kL + 1.

In this case, we need to show that exp(−k1/4

4L2 ) ≤ α exp(
−‖x0‖2

3L2n
). We may assume

that ‖x0‖ > L
√

n + 1, else the inequality holds trivially for some α = O(1). In
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particular, we may assume that k >
√

n. But then our assumption (14) that ‖x0‖ ≤
3L

√
n logn shows that the inequality holds for some α = O(1) (with room to

spare).
Case II: ‖x0‖ > kL + 1.
In this case, it suffices to argue that

exp
(−k1/4

4L2 − (‖x0‖ − (kL + 1))2

3L2(n − k)
+ ‖x0‖2

3L2n

)
≤ O(1).

Expanding the square, we see that it is enough to show

exp
(−k1/4

4L2 + 2(kL + 1)‖x0‖
3L2(n − k)

)
≤ O(1).(19)

Recalling (14) that ‖x0‖ ≤ 3L
√

n logn, we have k ≤ 3
√

n logn. Thus, the positive
term in (19) is O(1) unless k ≥ √

n/ logn. But if
√

n/ logn ≤ k ≤ 3
√

n logn, then
we have

k1/4

4L2 ≥ 2(kL + 1)3L
√

n logn

3L2n
≥ 2(kL + 1)‖x0‖

3L2(n − k)
,

where we have additionally used the fact that k ≥ k0 and k0  L9 is chosen large
enough. We have thus verified (19), completing the proof. �

Finally, we extend Theorem 2.4 to larger radii.

THEOREM 2.5. Assume that {Xn} is an H-valued martingale satisfying (M1)
and (M2), with X0 = x0. Then for any n ≥ 1 and 1 ≤ R ≤ √

n, we have

P
(‖Xn‖ ≤ R

) ≤ O
(
L20) R√

n
e−‖x0‖2/(6L2n).

PROOF. Consider a martingale {Yt } defined as follows. For 1 ≤ t ≤ n, we set
Yt = Xt . Let m = �R2�. For n < t ≤ n + m, put

Yt = Xn + Xn

‖Xn‖
t−n∑
j=1

εj ,

were {εj } are i.i.d. signs independent of {Xn}. Then the martingale {Yt }n+m
t=0 satis-

fies assumptions (M1) and (M2) hence by Theorem 2.4,

P
(‖Yn+m‖ ≤ 1

) ≤ O(L20)√
n + m

e−‖x0‖2/(3L2(n+m)).(20)

On the other hand, since simple random walk satisfies a local CLT, there is a con-
stant c > 0 such that

P
(‖Yn+m‖ ≤ 1

) ≥ c

R
P

(‖Xn‖ ≤ R
)
.

Combining this with (20) yields the desired result. �
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3. Random walks on vertex-transitive graphs. A primary application of our
small-ball estimate is to random walks on vertex-transitive graphs. We will use
distG to denote the shortest-path metric on a graph G.

THEOREM 3.1 (Diffusive random walks). For every infinite, locally finite,
connected, vertex-transitive graph G, there is a constant CG > 0 such that if {Zt }
is the random walk on G, then for every ε > 0 and every t ≥ 1/ε2,

P
(
distG(Zt ,Z0) ≤ ε

√
t
) ≤ CGε.

This should be compared to the result of the first two authors [6] which shows
that this property holds for an average t , that is,

1

t

t∑
s=0

P
(
distG(Z0,Zs) ≤ ε

√
t
) ≤ CGε.

If G is non-amenable, then the random walk has spectral radius ρ < 1, so

P
(
distG(Z0,Zt ) ≤ ε

√
t
) ≤ dε

√
t ρt .

(See, e.g., [7].) The latter quantity is at most Cρ,dε for t ≥ 1/ε2. Thus, Theorem 3.1
follows from an analysis of the amenable case.

THEOREM 3.2. If G is a d-regular, infinite, connected, vertex-transitive graph
that is also amenable and {Zt } is the random walk on G, then the following holds.
For any ε > 0 and t ≥ 1/ε2,

P
(
distG(Z0,Zt ) ≤ ε

√
t/d

) ≤ Kd10ε,

where the constant K > 0 is universal.

PROOF. Suppose that G has vertex set V . Let Aut(G) denote the automor-
phism group of G. By [6], Theorem 3.1, there is a Hilbert space H on which
Aut(G) acts by isometries, and a non-constant equivariant harmonic mapping
� : V → H. In other words, one has σ�(x) = �(σx) for all σ ∈ Aut(G) and
x ∈ V . [In fact, one can take H = 	2(V ) and then Aut(G) acts on 	2(V ) by permu-
tation of the coordinates.]

In particular, for any pair of vertices x, y ∈ V , we have

E
[∥∥�(Z0) − �(Z1)

∥∥2|Z0 = x
] = E

[∥∥�(Z0) − �(Z1)
∥∥2|Z0 = y

]
.

Since � is non-constant, we may normalize � so that E‖�(Z0) − �(Z1)‖2 = 1.
Writing

E
∥∥�(Z0) − �(Z1)

∥∥2 = 1

d

∑
y:{y,Z0}∈E

∥∥�(Z0) − �(y)
∥∥2 = 1,
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one concludes that � is a
√

d-Lipschitz mapping from (V ,distG) into H. Addi-
tionally, since � is harmonic, the process {Xt = �(Zt)} is a martingale to which
Theorem 2.5 applies, with L = √

d . Thus, we have

P
(
dist(Z0,Zt ) ≤ ε

√
t/d

) ≤ P
(‖X0 − Xt‖ ≤ ε

√
t
) ≤ O(1)d10ε. �

One can make a similar statement about random walks on finite vertex-transitive
graphs, up to the relaxation time. (The method of proof is also from [6].)

THEOREM 3.3. Suppose G = (V ,E) is a finite, connected, vertex-transitive
d-regular graph, and λ denotes the second-largest eigenvalue of the transition
matrix of the random walk on G. Then for every t ≤ (1−λ)−1 and every ε ≥ 1/

√
t ,

P
(
distG(Z0,Zt ) ≤ ε

√
t/d

) ≤ O
(
d10)

ε.

PROOF. We may assume that λ ≥ 1
2 , else the statement is vacuously true.

Let P be the transition matrix of the random walk on G, and let ψ : V →
R be an eigenfunction of P with eigenvalue 1

2 ≤ λ < 1 and norm-squared∑
u∈V ψ(u)2 = 1. First, observe that∑

u∈V

1

d

∑
v:{u,v}∈E

∣∣λψ(u) − ψ(v)
∣∣2

= ∑
u∈V

(
1 + λ2)

ψ(u)2 − 2λ
∑
u∈V

ψ(u)
1

d

∑
v:{u,v}∈E

ψ(v)

= 〈
ψ,

((
1 + λ2)

I − 2λP
)
ψ

〉
(21)

= 1 + λ2 − 2λ2

= 1 − λ2.

Consider the automorphism group Aut(G) of G and define the map � : V →
R

|Aut(G)| by

�(v) = n

|Aut(G)| · (ψ(σv))σ∈Aut(G)

1 − λ2 .

We claim that the process {λ−t�(Zt)} is a martingale. This follows from the fact
that {λ−tψ(Zt)} is a martingale, which can easily be checked:

E
[
λ−t−1ψ(Zt+1)|Zt

] = λ−t−1(Pψ)(Zt) = λ−tψ(Zt).

Next, observe that

E
[∥∥λ−t−1�(Zt+1) − λ−t�(Zt)

∥∥2|Zt

]
= λ−2(t−1)

E
[∥∥λ�(Zt) − �(Zt+1)

∥∥2|Zt

]
(22)

= λ−2(t−1)(1 − λ2)−1 ∑
u∈V

1

d

∑
v:{u,v}∈E

∣∣λψ(u) − ψ(v)
∣∣2 = λ−2(t−1),

where the final line uses (21).
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From this, we learn two things. First, for t ≥ 1,

E
[∥∥λ−t−1�(Zt+1) − λ−t�(Zt)

∥∥2|Zt

] = λ−2(t−1) ≥ 1.

Second, we have a Lipschitz condition for small times: Consider t ≤ (1−λ)−1 and
{u, v} ∈ E. Then using (22), we have∥∥λ−t−1�(u) − λ−t�(v)

∥∥ ≤ √
d · (

E
[∥∥λ−t−1�(Zt+1) − λ−t�(Zt)

∥∥2|Zt = u
])1/2

≤ λ−(t−1) ≤ √
dλ−1/(1−λ) ≤ 4

√
d,

where we have used the fact that 1 ≥ λ ≥ 1
2 .

Now applying Theorem 2.5 to the martingale {Xt = λ−t�(Zt)} for times t ≤
(1 − λ)−1, we see that

P
(
distG(Z0,Zt ) ≤ ε

√
t/d

) ≤ P
(‖Xt − X0‖ ≤ 4ε

√
t
) ≤ O

(
d10)

ε. �
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