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In proving large deviation estimates, the lower bound for open sets and
upper bound for compact sets are essentially local estimates. On the other
hand, the upper bound for closed sets is global and compactness of space or
an exponential tightness estimate is needed to establish it. In dealing with the
occupation measure Lt (A) = 1

t

∫ t
0 1A(Ws)ds of the d-dimensional Brow-

nian motion, which is not positive recurrent, there is no possibility of ex-
ponential tightness. The space of probability distributions M1(Rd) can be
compactified by replacing the usual topology of weak convergence by the
vague toplogy, where the space is treated as the dual of continuous functions
with compact support. This is essentially the one point compactification of
Rd by adding a point at ∞ that results in the compactification of M1(Rd )

by allowing some mass to escape to the point at ∞. If one were to use only
test functions that are continuous and vanish at ∞, then the compactification
results in the space of sub-probability distributions M≤1(Rd ) by ignoring
the mass at ∞.

The main drawback of this compactification is that it ignores the underly-
ing translation invariance. More explicitly, we may be interested in the space
of equivalence classes of orbits M̃1 = M̃1(Rd ) under the action of the trans-
lation group Rd on M1(Rd). There are problems for which it is natural to
compactify this space of orbits. We will provide such a compactification,
prove a large deviation principle there and give an application to a relevant
problem.

1. Motivation and introduction.

1.1. Motivation. We start with the Wiener measure P on � = C0([0,∞);Rd)

corresponding to the d-dimensional Brownian motion W = (Wt)t≥0 starting from
the origin. Our result is motivated by the following set up. Let Lt denote the nor-
malized occupation measure of the Brownian motion until time t , that is,

Lt = 1

t

∫ t

0
dsδWs .(1)
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This is a random element of M1 = M1(R
d), the space of probability measures

on Rd . We are interested in the transformed measure

P̂t (A) = 1

Zt

E
{
1A exp

{
tH(Lt)

}}
(2)

with A being a measurable set in the path space of the Brownian motion and

H(μ) =
∫ ∫

Rd×Rd
V (x − y)μ(dx)μ(dy).(3)

Here, V (·) is a continuous function on Rd vanishing at infinity and

Zt = E
{
exp

{
tH(Lt)

}}
is the normalizing constant or the partition function. For d = 3 and V (x) = 1

|x| , it
is known (see [4]) that,

lim
t→∞

1

t
logE

{
exp

{
tH(Lt)

}}
(4)

= sup
ψ∈H 1(Rd )

‖ψ‖2=1

{∫
Rd

∫
Rd

dx dyV (x − y)ψ2(x)ψ2(y) − 1

2
‖∇ψ‖2

2

}
,

where H 1(Rd) is the usual Sobolev space of square integrable functions in with
their gradient in L2(Rd). For d = 3,V (x) = 1

|x| , this variational formula has also
been analyzed by Lieb (see [5]) who proved that there is a maximizer which is
unique except for spatial translations. In other words, if m denotes the set of max-
imizing densities, then

m= {
μ0 � δx :x ∈ R3},(5)

where μ0 is a probability measure with a density ψ2
0 so that ψ0 maximizes the

variational problem (4).
Given (4) and (5), we expect that the asymptotic distribution of Lt under P̂t to

be concentrated around m. Indeed, we would like to show that for very ε > 0,

lim
t→∞ P̂t

{
Lt /∈ Uε(m)

}= 0,(6)

where Uε(m) is a (weak) neighborhood of m. In fact, we can write

P̂t

{
Lt /∈ Uε(m)

}= E[1Lt /∈Uε(m) exp(tH(Lt ))]
E[exp(tH(Lt))]

= E[exp(tF (Lt ))]
E[exp(tH(Lt ))] ,

where

F(μ) =
⎧⎨⎩H(μ) =

∫ ∫
Rd×Rd

V (x − y)μ(dx)μ(dy), if μ /∈ Uε(m),

−∞, else.
(7)
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Let us pretend that we have a strong Donsker–Varadhan large deviation principle
for Lt in M1(R

d) under the weak topology; see (29)–(30) and the following re-
marks for a precise definition. Then, using Varadhan’s lemma [ignoring the lack
of upper semicontinuity of F coming from the singularity for V (x) = 1/|x|] we
could (formally) conclude that P̂t (Lt /∈ Uε(m)) decays exponentially fast in t .

However, the lack of a strong large deviation principle turns out a to be crucial
issue. To circumvent this problem, the space M1(R

d) has to be “compactified.”
This can be done by replacing the usual topology of weak convergence by the
“vague toplogy,” where the space is treated as the dual of continuous functions
with compact support. This is essentially the one point compactification of Rd by
adding a point at ∞ that results in the compactification of M1(R

d) by allowing
some mass to escape to the point at ∞. If one were to use only test functions that
are continuous and vanish at ∞, then the compactification results in the space of
sub-probability distributions M≤1(R

d) by ignoring the mass at ∞.
Let us also mention that, for (4), in [4], the lack of compactness of the state

space was handled by replacing Brownian motion by Ornstein–Uhlenbeck (O-U)
process on Rd whose occupation measure, unlike Brownian motion, satisfies a
strong large deviation principle. Exploiting the positive definiteness of V (x) = 1

|x|
the authors show that the total mass E{exp{tH(Lt )}} is dominated by the same
expectation with respect to the Ornstein–Uhlenbeck process. This monotonicity
combined with strong large deviations for the O-U process proves (4). However,
no such monotonicity is available to us in the complement of the neighborhood of
m (i.e., for the term E[1Lt /∈Uε(m) exp(tH(Lt))]). Another possibility is to replace
Rd by a large torus and “fold” Lt in the torus and use a similar monotonicity of the
total masses (see [1, 3]). Although these methods work well for deriving asymp-
totic behavior of the partition function, questions on the path measures P̂t can not
be handled so well in this manner. In particular, these methods ignore the under-
lying translation invariance of some relevant models from statistical mechanics,
models which depend on shift-invariant functionals of the occupation measures
Lt , like the functional H(μ) = H(μ � δx) for all x ∈ Rd , defined in (3). Motivated
by this, we naturally consider the quotient space

M̃1
(
Rd)= M1

(
Rd)/ ∼

under spatial shifts and are led to a robust theory of compactification of this space.
Let us briefly sketch the main idea here.

1.2. Translation invariant compactfication: The central idea. Note that
M1(R

d) fails to be compact in the weak topology for several reasons. For in-
stance, if we take a Gaussian with a very large variance, the mass can spread very
thin and totally disintegrate into dust. Also, a mixture like 1

2(μ � δan + μ � δ−an)

splits into two (or more) widely separated pieces as an → ∞. To compactify this
space we should be allowed to “center” each piece separately as well as to allow
some mass to be “thinly spread and disappear.”



COMPACTNESS AND LARGE DEVIATIONS 3937

The intuitive idea, starting with a sequence of probability distributions (μn)n in
Rd is to identify a compact region where μn has its largest accumulation of mass.
This is given by its concentration function defined by

qn(r) = sup
x∈Rd

μn

(
Br(x)

)
.

By choosing subsequences, we can assume that qn(r) → q(r) as n → ∞ and
q(r) → p1 ∈ [0,1] as r → ∞. Then there is a shift λn = μn � δan which con-
verges along a subsequence vaguely to a sub-probability measure α1 of mass p1.
This means λn can be written as αn + βn so that αn ⇒ α1 weakly and we recover
the partial mass p1 ∈ [0,1]. We peel off αn from λn and repeat the same process
for βn to get convergence along a further subsequence. We go on recursively to get
convergence of one component at a time along further subsequences in the space
of sub-probability measures, modulo spatial shifts. The picture is, μn roughly con-
centrates on widely separated compact pieces of masses {pj }j∈N while the rest of
the mass 1 −∑

j pj leaks out.
In other words, given any sequence μ̃n of equivalence classes in M̃1(R

d),
which is the quotient space of M1(R

d) under spatial shifts, there is a subsequence
which converges (in a sense which we do not make precise yet) to an element
{α̃1, α̃2, . . .}, a collection of equivalence classes of sub-probabilities αj of masses
0 ≤ pj ≤ 1, j ∈ N.2 The space of such collections of equivalence classes is the
compactfication of M̃1(R

d) and in this space we are able to prove a strong large
deviation principle for the distribution of the equivalence classes L̃t of Lt . This,
combined with the shift invariant structure of V (x − y), enables us to prove (6).

Finally, although we were motivated by asymptotic study of path measures of
mean-field type interactions for Brownian motion, it can also be applied to study a
wider class of problems that involve translation invariant functionals of processes
with independent increments.

Let us describe the organization of the rest of the article. In Section 2, we collect
some basic facts about weak and vague convergence, introduce a class of relevant
test functions and characterize notions of total disintegration of measures as well
as measures being widely separated in terms of test integrals with respect to the
corresponding test functions. In Section 3, we introduce a space X̃ and a metric
D giving rise a notion of topology and convergence in this space. Here we also
prove that X̃ is the desired compactfication of the quotient space M̃1(R

d). Sec-
tion 4 is devoted to proving a strong large deviation principle for the distribution
of the equivalence class L̃t in X̃ and in Section 5 we provide the application to the
asymptotics of the path measures P̂t (L̃t ∈ ·).

2For example, let μn be a sequence which is a mixture of three Gaussians, one with mean 0 and
variance 1, one with mean n and variance 1 and one with mean 0 and variance n, each with equal
weight 1

3 . Then the limiting object is the collection {α̃1, α̃1}, where α̃1 is the equivalence class of a

Gaussian with variance 1 and weight 1
3 .
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2. Topologies on measures. We denote by M1 = M1(R
d) the space of prob-

ability distributions on Rd and by M̃1 = M1/ ∼ the quotient space of M1 under
the action of Rd (as an additive group on M1). For any μ ∈ M1, its orbit is defined
by μ̃ = {μ � δx :x ∈ Rd} ∈ M̃1.

2.1. The weak and the vague topology. We turn to two natural topologies on
M1. In the weak topology, a sequence μn in M1 converges to μ, denoted by
μn ⇒ μ, if

lim
n→∞

∫
Rd

f (x)μn(dx) =
∫
Rd

f (x)μ(dx),(8)

for all bounded continuous functions on Rd . On the other hand, in the vague topol-
ogy for the convergence of μn to μ, denoted by μn ↪→ μ, we only require (8) for
continuous functions with compact support. It continues to hold for continuous
functions that tend to 0 as |x| → ∞. Note that the total mass of probability mea-
sures, which is conserved in the weak convergence, is not necessarily conserved
under vague convergence—a salient feature which distinguishes these two topolo-
gies. If we denote by M≤1 = M≤1(R

d) the space of all sub-probability measures
(non-negative measures with total mass less than or equal to one), then both topolo-
gies carry over to M≤1 with the same requirements.

We collect some standard facts as a lemma which will be relevant for us.

LEMMA 2.1. (i) If μn ↪→ μ in M≤1, then μ(Rd) ≤ lim infn→∞ μn(R
d).

(ii) If μn ↪→ μ in M≤1 and μn(R
d) → μ(Rd), then μn ⇒ μ in M≤1.

(iii) While M1 is a closed subset of the space M≤1 in the weak topology, it is
dense in M≤1 in the vague topology.

(iv) The space M≤1 is compact in the vague topology.

We will also need the following elementary lemma.

LEMMA 2.2. If μn ↪→ α in M≤1, then μn can be written as μn = αn + βn

where αn ⇒ α and βn ↪→ 0.

PROOF. We will denote by B(x, r) the ball of radius r > 0 around the point
x ∈ Rd . If μn ↪→ α then

lim
n→∞μn

(
B(0, r)

)= α
(
B(0, r)

)
,

for all but at most countably values of r and α(Rd) can be recovered as the limit

α
(
Rd)= lim

k→∞ lim
n→∞μn

(
B(0, r)

)
.

Hence, given any r > 0, there is nr ∈ N such that for n ≥ nr we have,

μn

(
B(0, r)

]≤ α
(
Rd)+ 1

r
.
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Without loss of generality, we can assume that nr is nondecreasing with r . If we
define

Rn = sup{r > 0 : nr ≤ n},
then Rn → ∞ and

μn

(
B(0,Rn)

)≤ α
(
Rd)+ 1

Rn

.

If we take αn and βn as the restrictions of μn to B(0,Rn) and B(0,Rn)
c respec-

tively, αn ↪→ α and αn(R
d) → α(Rd). Therefore, by Lemma 2.1 part (ii), αn ⇒ α.

Furthermore, for any given r > 0, eventually βn(B(0, r)) = 0 and hence βn ↪→ 0.
�

2.2. The space F of test functions. For our desired compactification, we need
to develop a suitable topology on the quotient space M̃1 via convergence of test
integrals. For this, we first need to characterize a suitable class of continuous func-
tions (or rather, functionals) on M̃1.

We fix a positive integer k ≥ 2. Let Fk be the space of continuous functions
f : (Rd)k −→ R that are translation invariant, i.e.,

f (x1 + y, . . . , xk + y) = f (x1, . . . , xk) ∀y, x1, . . . , xk ∈ Rd

and vanish at infinity, in the sense,

lim
maxi �=j |xi−xj |→∞f (x1, . . . , xk) = 0.

In other words, f (x1, . . . , xk) depends only on the differences {xi − xj }i,j .
A typical example of a function f ∈ F2 could be f (x1, x2) = V (x1 − x2) where
V (·) is a continuous function such that V (x) → 0 as |x| → ∞. Note that, each
f ∈ Fk can interpreted as a continuous function of k − 1 variables vanishing at
infinity. Hence, for each k ≥ 2, Fk is a separable space under the uniform metric.
Hence, if we denote by

F = ⋃
k≥2

Fk,

then we can choose a countable dense subset for each Fk and ordering all of
them as a single countable sequence {fr(x1, . . . , xkr ): r ∈ N} we obtain a count-
able dense subset of F .

For any μ ∈ M1 and f ∈ F , we define the function

�(f,μ) =
∫
(Rd )k

f (x1, . . . , xk)μ(dx1) · · ·μ(dxk).

Note that, because of translation invariance of f , �(f,μ) depends only on the
orbit μ̃ ∈ M̃1 for any fixed f ∈ F . As it will turn out, these are natural continuous
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functions to consider on M̃1. Given any sequence (μn)n in M1, because there is
a countable dense set {fr}, by diagonalization one can choose a subsequence such
that along the subsequence (denoted again by μn), the limit

�(f ) = lim
n→∞�(f,μn),

exists. To compactify the space M̃1 we will determine what the set of possible
limits are; see Section 3.

2.3. Total disintegration of a sequence of measures. We say that a sequence
(μn) in M≤1 totally disintegrates if for any positive r < ∞,

lim
n→∞ sup

x∈Rd

μn

(
B(x, r)

)= 0.

A typical example of a totally disintegrating sequence μn of measures is a centered
Gaussian with covariance matrix nId.

The following facts determine equivalent criteria for total disintegration of a
sequence of measures and it is useful to collect them.

LEMMA 2.3. Let (μn)n be a sequence in M≤1. The following facts are equiv-
alent.

(a) There exists a continuous function V (x) > 0 on Rd , with lim|x|→∞ V (x) =
0, such that

lim
n→∞

∫ ∫
R2d

V (x − y)μn(dx)μn(dy) = 0.(9)

(b)

lim
n→∞ sup

x∈Rd

μn

(
B(x, r)

)= 0.(10)

(c) For any continuous function V (x) with lim|x|→∞ V (x) = 0,

lim
n→∞ sup

x∈Rd

∫
V (x − y)μn(dy) = 0.(11)

(d) For any continuous function V (x) with lim|x|→∞ V (x) = 0,

lim
n→∞

∫ ∫
R2d

V (x − y)μn(dx)μn(dy) = 0.(12)

Let the sequence μn of measures satisfy any of the above. Then for any k ≥ 2
and f ∈ Fk

lim
n→∞

∫
· · ·

∫
Rdk

f (x1, . . . , xk)μn(dx1) · · ·μn(dxk) = 0.(13)
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PROOF. (a) ⇒ (b). Let r > 0 be given. Since V (x) > 0 and continuous, there
exists δ > 0 such that V (x) ≥ δ on B(0,2r). Then,∫ ∫

R2d
V (x − y)μn(dx)μn(dy) ≥ δ

∫
|x−y|≤2r

μn(dx)μn(dy)

≥ δ sup
x∈Rd

{
μn

(
B(x, r)

)}2
.

(b) ⇒ (c). Let εM = sup|x|≥M |V (x)|. Then limM→∞ εM = 0 and

sup
x∈Rd

∫ ∣∣V (x − y)
∣∣μn(dy) ≤ sup

x∈Rd

∫
B(x,M)

∣∣V (x − y)
∣∣μn(dy)

+ sup
x∈Rd

∫
B(x,M)c

∣∣V (x − y)
∣∣μn(dy)

≤ ‖V ‖∞ sup
x∈Rd

μn

[
B(x,M)

]+ εM.

Therefore,

lim sup
n→∞

sup
x∈Rd

∫ ∣∣V (x − y)
∣∣μn(dy) ≤ εM,

for any M . Since εM → 0 if we let M → ∞, we get the claim.
(c) ⇒ (d). Observe that, since μn(R

d) ≤ 1,∫ ∫
R2d

V (x − y)μn(dx)μn(dy) ≤ sup
x∈Rd

∫
V (x − y)μn(dy).

(d) ⇒ (a). This is obvious.
For the last part, for k > 2 we define

W(x1, x2) = sup
x3,...,xk

∣∣f (x1, . . . , xk)
∣∣.

Note that W ∈ F2 and so it is of the form V (x1 − x2). Since∫
· · ·

∫
Rdk

∣∣f (x1, . . . , xk)
∣∣μn(dx1) · · ·μn(dxk) ≤

∫ ∫
R2d

W(x1, x2)μn(dx1)μn(dx2)

=
∫ ∫

R2d
V (x − y)μn(dx)μn(dy),

the lemma is proved. �

2.4. Widely separated sequences of measures. We now need a working defi-
nition of two widely separated sequence of measures. We say that two sequences
(αn)n and (βn)n in M≤1 are widely separated, if for some strictly positive function
V on Rd which is continuous and vanishes at infinity,

lim
n→∞

∫
V (x − y)αn(dx)βn(dy) = 0.(14)
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Note that if a sequence (μn)n in M≤1 satisfies (9), then, because of (11), it is
widely separated from any arbitrary sequence of measures in M≤1.

LEMMA 2.4. Let (αn)n and (βn)n be two widely separated sequences in M≤1.
Then:

(i) For any continuous function W in Rd vanishing at infinity

lim
n→∞

∫
W(x − y)αn(dx)βn(dy) = 0.

(ii) For every k ≥ 2 and f ∈ Fk ,

lim
n→∞

∣∣∣∣∣
∫

f (x1, . . . , xk)

k∏
i=1

[αn + βn](dxi) −
∫

f (x1, . . . , xk)

k∏
i=1

αn(dxi)

(15)

−
∫

f (x1, . . . , xk)

k∏
i=1

βn(dxi)

∣∣∣∣∣= 0.

PROOF. Let W be any continuous function Rd vanishing at infinity. Since
(αn)n and (βn)n are widely separated, for some strictly positive V which is con-
tinuous and vanishes at infinity,

lim
n→∞

∫
V (x − y)αn(dx)βn(dy) = 0.

Furthermore, given any ε > 0, there is a constant Cε > 0 such that∣∣W(x)
∣∣≤ CεV (x) + ε.

Then

lim sup
n→∞

∫ ∣∣W(x − y)
∣∣αn(dx)βn(dy)

≤ Cε lim sup
n→∞

∫
V (x − y)αn(dx)βn(dy) + ε = ε.

This proves the first part (i).
For the second part (ii), if we take k = 2 and expand the product

2∏
i=1

(αn + βn)(dxi),

it is seen that all the cross terms are controlled by (14) and are negligible, by
the first part (i), as f (x1, x2) = W(x1 − x2) for some continuous W vanishing at
infinity. The general case k ≥ 3 follows easily. �
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3. Compactification of ˜M1: The space ˜X . We turn to the central issue of
M1 failing to be compact in the weak topology. As mentioned before some typical
reasons for this could be as follows: The location of the mass can shift away to ∞
as in μn = μ ∗ δan with an → ∞, or it can split into two (or more) pieces like
in μn = 1

2 [μ ∗ δan + μ ∗ δ−an], or it can also totally disintegrate into dust like
a Gaussian with a large variance. One imagines, in the limit, an empty, finite or
countable collection I of mass distributions {αi : i ∈ I } that are widely separated
with total mass

∑
i∈I αi(R

d) = p ≤ 1 and the remaining mass 1 −p having totally
disintegrated. Therefore, a natural “compactification” could be a space X̃ of empty,
finite or countable collections of orbits {α̃i : i ∈ I } of sub-probability distributions
αi having masses pi with p =∑

i pi ≤ 1.

3.1. The space X̃ and a metric D. We define

X̃ =
{
ξ : ξ = {α̃i}i∈I , αi ∈ M≤1,

∑
i∈I

αi

(
Rd)≤ 1

}
.(16)

We make some remarks about the above definition.

REMARK 1. First note that, in order to keep notation short, we suppressed
the fact that the index set I above ranges over empty, finite or countably many
collections. Furthermore, we will write any typical element ξ ∈ X̃ as ξ = {αi}
with the understanding that either the collection is empty or i ranges over a finite
or countable set.

REMARK 2. Note that any element α ∈ M≤1 in the orbit α̃ has the same total
mass α(Rd). Hence, for any element ξ = {α̃i} ∈ X̃ , pi = αi(R

d) will denote the
total mass of any candidate αi in the orbit α̃i and

∑
i pi = p ≤ 1. If the collection

is empty, then p = 0 vacuously.

REMARK 3. Note that in any element ξ = {α̃i} of X̃ , an orbit αi could be
repeated more than once. We call the number of occurrences of an orbit in an
element ξ its multiplicity.

Recall the class of functions Fk for k ≥ 2 and note that F = ⋃
k≥2 Fk . We

now introduce a metric on X̃ with the following convergence criterion. We want
a sequence (ξn)n to converge to ξ in the space X̃ under the desired metric, if the
sequence

�(f, ξn) = ∑
α̃n∈ξn

∫
f (x1, . . . , xk)αn(dx1) · · ·αn(dxk)

converges to the corresponding expression

�(f, ξ) = ∑
α̃∈ξ

∫
f (x1, . . . , xk)α(dx1) · · ·α(dxk)
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for every f ∈ F . Recall that the value of
∫

f (x1, . . . , xk)α(dx1) · · ·α(dxk) depends
only on the orbit α̃ since f is translation invariant. We also remark that if ξ is
empty then �(f, ξ) = 0 for all f ∈ F .

For any ξ1, ξ2 ∈ X̃ , we define

D(ξ1, ξ2) =
∞∑

r=1

1

2r

1

1 + ‖fr‖∞

∣∣∣∣∣∑
α̃∈ξ1

∫
fr(x1, . . . , xkr )

kr∏
i=1

α(dxi)

(17)

− ∑
α̃∈ξ2

∫
fr(x1, . . . , xkr )

kr∏
i=1

α(dxi)

∣∣∣∣∣,
for a countable sequence of functions {fr(x1, x2, . . . , xkr )}r∈N which is dense in F .
Here is our first main result.

THEOREM 3.1. D is a metric on X̃ .

PROOF. Note that to prove D is a metric the only nontrivial part that we need
to show is that, two collections ξ1 and ξ2 are identical if D(ξ1, ξ2) = 0. For this, it
is enough to show if for every k ≥ 2 and every f in Fk ,∑

α̃∈ξ1

∫
f (x1, . . . , xk)

k∏
i=1

α(dxi) = ∑
α̃∈ξ2

∫
f (x1, . . . , xk)

k∏
i=1

α(dxi),(18)

then ξ1 = ξ2. We prove this into three steps.

Step 1. First, we show that, if (18) holds, then for every integer r ≥ 1,∑
α̃∈ξ1

{∫
f (x1, . . . , xk)

k∏
i=1

α(dxi)

}r

= ∑
α̃∈ξ2

{∫
f (x1, . . . , xk)

k∏
i=1

α(dxi)

}r

.(19)

This is certainly true for r = 1. For r = 2, we take a sequence gN of functions of
2k variables defined by

gN(x1, x2, . . . , x2k)

= f (x1, x2, . . . , xk)f (xk+1, xk+2, . . . , x2k)ϕ
(
N−1(x1 − xk+1)

)
,

where 0 ≤ ϕ ≤ 1 is equal to 1 inside a ball of radius 1 and is truncated smoothly to
be 0 outside a ball of radius 2. Letting N → ∞, for any α ∈ M≤1, by the bounded
convergence theorem,∫

gN(x1, . . . , x2k)

2k∏
i=1

α(dxi) →
{∫

f (x1, x2, . . . , xk)

k∏
i=1

α(dxi)

}2

,

and we obtain∑
α̃∈ξ1

{∫
f (x1, . . . , xk)

k∏
i=1

α(dxi)

}2

= ∑
α̃∈ξ2

{∫
f (x1, . . . , xk)

k∏
i=1

α(xi)

}2

.

The general case for any r ∈ N follows from a similar argument.



COMPACTNESS AND LARGE DEVIATIONS 3945

Step 2. We note that if (19) holds for every r ∈ N, we can identify for each
α ∈ M≤1 the values of ∫

f (x1, . . . , xk)

k∏
i=1

α(dxi),(20)

for f ∈ Fk and k ≥ 2. It follows that if (18) holds for any two elements ξ1 and
ξ2, then for every f ∈ F , the list of values (20) for α̃ ∈ ξ1 is the same as the list
from ξ2.

However, this is not enough. We need to show that if (18) holds for any two
elements ξ1 and ξ2, then every α̃ ∈ ξ1 occurs in ξ2 with the same multiplicity (see
Remark 3 for the definition of multiplicity of an orbit).

Let us denote by S(f, ξ) the set of values of �(f, μ̃) as μ̃ varies over ξ . We
have matched for ξ = ξ1 and ξ2 the set of values S(f, ξ1) and S(f, ξ2). The next
step is to show that if we pick an orbit μ̃1 in ξ1, the set of values of �(f, μ̃1) can
actually be matched with the set of values �(f, μ̃2) of some μ̃2 ∈ ξ2 i.e. a single
choice μ̃2 ∈ ξ2 can be made to work for all f ∈⋃k Fk . In other words, if we define
for each μ̃1 ∈ ξ1 and μ̃2 ∈ ξ2

Ck(μ̃1, μ̃2) = {
f ∈ Fk:�(f, μ̃1) = �(f, μ̃2)

}
,

then we have for each μ̃1

Fk = ⋃
μ̃2∈ξ2

Ck(μ̃1, μ̃2).

Each Ck ⊂ Fk is a closed subset of a complete metric space and we have a count-
able union. By the Baire category theorem, at least one Ck has an interior. But
if two linear functionals agree on an open set they agree everywhere. Therefore,
there exists μ2 ∈ ξ2 such that

Fk = Ck(μ̃1, μ̃2).(21)

The choice of μ̃2 may still depend on k. We need to show that (21) holds for some
μ̃2 for all k. We note that any function f (x1, x2, . . . , xk−1) ∈ Fk−1 is a limit of

g(x1, x2, . . . , xk−1, xk) = f (x1, x2, . . . , xk−1)ϕ(xk−1 − xk) ∈ Fk

as the continuous function ϕ with compact support tends boundedly to 1. There-
fore, if �(f, μ̃1) = �(f, μ̃2) on Fk , they agree on Fk−1 as well. In particular if
�(f, μ̃1) = �(f, μ̃2) on Fk for infinitely many values of k, then they agree for
all values of k. We note that by allowing ϕ to tend to 1, if �(f, μ̃1) = �(f, μ̃2)

on F2, then μ1 and μ2 have the same mass. Assuming the mass to be positive,
there can only be a finite number of possibilities for μ2 since the total sum is at
most 1. There is then a μ2 that works for an infinite number of values of k and
consequently for all k. We can then peel off matching pairs and proceed with what
is left. If we are careful to remove at each stage measures with the largest masses
from ξ1 and ξ2, we will exhaust both ξ1 and ξ2 (it may take a countable number of
steps).
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Step 3. Now we have to recover the orbit of μ ∈ M≤1(R
d) from the value

∫
f (x1, . . . , xk)

k∏
i=1

μ(dxi)

for f ∈ Fk . We can let f converge boundedly to exp{∑k
i=1

√−1〈ti , xi〉} pro-
vided

∑
i ti = 0. In other words we can determine for the characteristic functions

{φ(t)e
√−1〈t,a〉} of α̃ ∈X , the value of

∏k
i=1 φ(ti) for all {ti} with

∑
i ti = 0.

The following calculation will complete the proof. Let φ(·) and ψ(·) be
two characteristic functions such that

∏k
i=1 φ(ti) = ∏k

i=1 ψ(ti) for all {ti} with∑
i ti = 0. In particular, |φ(t)|2 = φ(t)φ(−t) = ψ(t)ψ(−t) = |ψ(t)|2. Let G =

{t : |φ(t)| = |ψ(t)| �= 0}. Write φ(t) = ψ(t)χ(t) on G. G is a symmetric open set
containing 0. For any k and t1, . . . , tk ∈ G such that

∑k
i=1 ti = τ ∈ G, we have

k∏
i=1

χ(ti)χ(−τ) = 1.

Noting that χ(τ) = χ(−τ), we find that χ(t1 + t2 + · · · + tk) = ∏k
i=1 χ(ti) pro-

vided, {ti} as well as t1 + · · · + tk are all in G which contains a neighborhood of 0.
It is now standard to show that for some a ∈ Rd , χ(t) = e

√−1〈a,t〉 near 0 and since
χ(kt) = (χ(t))k the proof is complete. �

3.2. Completion under the metric D and the compactification. Henceforth, the
metric D will define the topology on the space X̃ . Recall that the space of orbits
M̃1 is canonically embedded in X̃ .

THEOREM 3.2. The set of orbits M̃1(R
d) is dense in X̃ . Furthermore, given

any sequence (μ̃n)n in M̃1(R
d), there is a subsequence that converges to a limit

in X̃ . Hence, X̃ is a compactification of M̃1(R
d). It is then also the completion

under the metric D of the totally bounded space M̃1(R
d).

PROOF. We prove the theorem in two main steps.

Step 1. First, we show that M̃1 is dense in X̃ . Given any ξ = {α̃i : i ∈ I } ∈ X̃ ,
we would like to have a sequence (μ̃n)n in M̃1 which converges to ξ ∈ X̃. This can
be done if we take “distant shifts” of μn weighted by corresponding masses pi of
αi . Any remaining mass 1−∑

i pi can be filled by a Gaussian with a large variance
(leading to “total disintegration” of mass 1 −∑

i pi). The convex combination of
all these measures will approximate ξ in X̃ .

Indeed, let ξ = {α̃i : i ∈ I } ∈ X̃ be given. If it is an infinite collection, then for
every ε > 0 we can pick a finite sub-collection {α1, . . . , αn} such that the remaining
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total masses
∑

j>n αj (R
d) add up to at most ε > 0. Since for any α ∈ M≤1 and

f ∈Fk , ∫
f (x1, . . . , xk)

k∏
i=1

α(dxi) ≤ ‖f ‖∞
(
α
(
Rd))k ≤ ‖f ‖∞α

(
Rd),

we infer that∑
j>n

∫
f (x1, . . . , xk)

k∏
i=1

αj (dxi) ≤ ‖f ‖∞
∑
j>n

αj

(
Rd)≤ ε‖f ‖∞.(22)

Let us denote by pj = αj (R
d) for j = 1, . . . , n and choose spatial points

a1, . . . , an ∈ Rd so that infi �=j |ai − aj | → ∞. Also, for any M > 0, let λM be
a Gaussian in Rd with mean 0 ∈ Rd and covariance matrix MId ∈ Rd×d . Since
the family of measures {λM}M>0 totally disintegrates, by Lemma 2.3 and (13), for
any k ≥ 2 and f ∈ Fk ,

lim
M→∞

∫
f (x1, . . . , xk)

k∏
i=1

λM(dxi) = 0.(23)

Then for the convex combination

μa1,...,an,M
n = μn :=

n∑
j=1

αj � δaj
+
(

1 −
n∑

j=1

pj

)
λM,(24)

we conclude that, for any k ≥ 2 and f ∈ Fk ,∫
f (x1, . . . , xk)

k∏
i=1

μn(dxi) −→
n∑

j=1

∫
f (x1, . . . , xk)

k∏
i=1

αj (dxi)

as infi �=j |ai − aj | → ∞ and M ↑ ∞, by (15) and (23) (masses that are far away
from each other do not interact and masses that are too thinly spread do not count).
Therefore, by (22) and the definition of the metric D [recall (17)], the sequence of
orbits (μ̃n)n converges to ξ in X̃ .

Step 2. We show that any sequence (μ̃n)n in X̃ has a subsequence that con-
verges to some ξ ∈ X̃ . We need to collect some facts.

Let μ ∈ M≤1(R
d). The concentration function of μ is defined as,

qμ(r) = sup
x∈Rd

μ
(
B(x, r)

)
,(25)

for any r > 0. Then limr→∞ qμ(r) = μ(Rd).
If (μn)n is a sequence in M≤1(R

d), and qn(r) is the concentration function
of μn, we can, by choosing a subsequence (which we suppress in the notation) if
needed, assume that for any r > 0,

lim
n→∞qn(r) = q(r),
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exists and also

lim
n→∞μn

(
Rd)= p ∈ [0,1].

If q = limr↑∞ q(r), then always q ≤ p.
If q = 0, we have for every r > 0

lim
n→∞ sup

x∈Rd

μn

(
B(x, r)

)= lim
n→∞qn(r) = 0

and hence by Lemma 2.3, (13) and the definition of the metric D [recall (17)],
μ̃n → 0 in X̃ .

If q > 0, then taking a suitable translation an ∈ Rd , we can assume that λn =
μn � δan satisfies, for some r > 0,

λn

(
B(0, r)

)≥ q/2,(26)

for all sufficiently large n. Let us assume, by choosing a subsequence if needed,
λn ↪→ α. Then α(Rd) ≥ q

2 . According to Lemma 2.2, we can express λn = αn +βn

where βn ↪→ 0 and αn ⇒ α. Lemma 2.4 implies that for V ∈F2

lim
n→∞

∫
V (x − y)αn(dx)βn(dy) = 0.

This property is valid after translating back by δ−an and μn has the same decom-
position in terms of the shifted αn ∗ δ−an and βn ∗ δ−an . We will denote them again
by αn and βn. We remark that if q = p, then λn = μn � δan converges weakly
to α and βn can be taken to be 0. To see this, choose r > 0 so that (26) holds.
Furthermore, note that given any ε > 0, there are translations bn,ε such that, for
some rε , (μn � δbn)[B(0, rε)] ≥ p − ε for large enough n. The sets B(−an, r)

and B(−bn, rε) can not be disjoint, because if they were, there combined total
mass would exceed p [recall (26)]. Therefore, |an − bn| ≤ r + rε . This implies
B(−an, r + 2rε) ⊃ B(−bn, rε) and λn[B(0, r + 2rε)] ≥ p − ε. This shows that λn

is a tight family of measures and (choosing a subsequence if needed) λn ⇒ α for
some α ∈ M≤1(R

d) and βn can be taken as 0. Hence, again by definition of the
metric D [recall (17)], μ̃n → α̃ in X̃ .

Let us now start with a sequence (μn)n in M1(R
d). We want to prove that the

sequence (μ̃n)n in X̃ has a subsequence that converges to some ξ ∈ X̃ . Hence,
to begin with p = 1 and 0 ≤ q ≤ 1. By the remarks made above, if q = 0, then
μ̃n → 0 in X̃ . If q = 1, then αn = μn and μ̃n → α̃ in X̃ .

If 0 < q < 1, we can, for some sequence (an)n ⊂ Rd , represent μn = αn + βn.
αn so that:
•

αn ∗ δan ⇒ α.

• For every V ∈F2,

lim
n→∞

∫
V (x1 − x2)αn(dx1)βn(dx2) = 0.
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• For every r > 0,

lim
n→∞qβn(r) ≤ min

{
1 − q

2
, q

}
.

The last inequality requires a remark. Since βn ≤ μn we have qβn(r) ≤ qμn(r) for
every r . Mass of q

2 has been removed in the limit from μn by (26). What is left can
in the limit have mass at most 1 − q

2 .
We repeat the procedure with βn. Either the process goes on forever or termi-

nates at some finite stage. If it terminates at a finite stage, we would have the
decomposition

μn =
k∑

j=1

α(j)
n + γn k ∈ N,(27)

that will satisfy:

• For j = 1, . . . , k,

lim
n→∞α(j)

n ∗ a(j)
n ⇒ αj .

• For i �= j and V ∈ F2,

lim
n→∞

∫
V (x1 − x2)α

(i)
n (dx1)α

(j)
n (dx2) = 0.

• For every r > 0, qγn(r) → 0 and

lim
n→∞

∫
V (x1 − x2)γn(dx1)γn(dx2) = 0.

Clearly μ̃n converges to ξ = {α̃1, . . . , α̃k} in X̃ .
If the process continues forever, we have for each k ∈ N a decomposition as

above. Inductively, starting from βn,0 = μn, we define according to Lemma 2.2
βn,j = αn,j+1 + βn,j+1 so that αn,j ⇒ αj . Let pj = limn→∞ βj (R

d) and qj =
limr→∞ limn→∞ qβn,j

(r). Since αj (R
d) ≥ qj

2 , and
∑

j αj (R
d) ≤ 1, it follows that

qj → 0 as j → ∞. Fix any F ∈ Fk . Then, proceeding inductively in j ,

∫
F(x1, . . . , xk)μn(dx1) · · ·μn(dxk) =

j∑
i=1

∫
F(x1, . . . , xk)αn,i(dx1) · · ·αn,i(dxk)

+
∫

F(x1, . . . , xk)βn,j (dx1) · · ·βn,j (dxk).

Since qj → 0 and the orbits α̃n,j converge to α̃j in X̃ , the theorem is proved. �

We end this section with an immediate corollary which will be of use later.
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COROLLARY 3.3. Let (μ̃n)n be a sequence in X̃ so that μ̃n → ξ = {α̃j } ∈ X̃ .
Then, for any V ∈F2,

lim
n→∞

∫ ∫
Rd×Rd

V (x − y)μn(dx)μn(dy) =∑
j

∫ ∫
Rd×Rd

V (x − y)αj (dx)αj (dy).

In other words, the functional

H(μ̃) =
∫ ∫

Rd×Rd
V (x − y)μ(dx)μ(dy) μ ∈ M1

(
Rd),

is continuous on X̃ .

4. Large deviation principles in the compact space ˜X . Recall that we
started with Wiener measure P on � = C[[0,∞);Rd] corresponding to the d-
dimensional Brownian motion W starting from the origin with

Lt(A) = 1

t

∫ t

0
1A

(
W(s)

)
ds A ⊂ Rd

denoting its normalized occupation measure until time t . Note that Lt maps

� → M1
(
Rd)(28)

inducing a probability distribution on M1(R
d). Classical large deviation principle

[2] states that the family of these distributions satisfies a “weak” large deviation
principle in the space probability measures on M1(R

d) equipped with the weak
topology with a rate function I . More precisely, for every compact subset K ⊂
M1(R

d),

lim sup
t→∞

1

t
logP(Lt ∈ K) ≤ − inf

μ∈K
I (μ)(29)

and for every open subset G ⊂ M1(R
d)

lim inf
t→∞

1

t
logP(Lt ∈ G) ≥ − inf

μ∈G
I (μ),(30)

where I is the rate function given by

I (μ) =
⎧⎪⎨⎪⎩

1

2
‖∇f ‖2

2, if f =
√

dμ

dx
∈ H 1(Rd),

∞, else.

(31)

Here H 1(Rd) is the usual Sobolev space of square integrable functions with square
integrable derivatives. Note that the function μ �→ I (μ) is translation invariant and
depends only on the orbit μ̃. Furthermore, this map is convex and homogenous of
degree 1.
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We say that a family of measures satisfies a “strong” large deviation principle,
or simply a large deviation principle (LDP) if the upper bound (29) holds for all
closed sets.

Note that we also have an extension of (28) via

� → M1
(
Rd)→ M̃1

(
Rd)⊂ X̃

which induces a probability distribution Qt of L̃t on X̃ . Our second main result
gives a large deviation principle for Qt on X̃ with the rate function

Ĩ (ξ) = ∑
α̃∈ξ

I (α̃),(32)

where

I (α̃) = I (α),

where I is defined in (31) and α is any arbitrary element of the orbit α̃ (recall that I

is translation invariant). We remark that although I is defined in (31) only on prob-
ability measures M1(R

d), the definition canonically extends to sub-probability
measures M≤1(R

d). Here is our second main result.

THEOREM 4.1. The family of measures {Qt }t on the compact metric space
X̃ equipped with the metric D satisfies a large deviation principle with the rate
function Ĩ (ξ) defined in (32).

We split the proof into three main steps. First, we prove that the function Ĩ is
lower semicontinuous on X̃ .

LEMMA 4.2 (Lower semicontinuity). If ξn → ξ in X̃ , then

lim inf
n→∞ Ĩ (ξn) ≥ Ĩ (ξ ).

PROOF. Let us first consider the case where, for each n ∈ N, ξn consists of
a single orbit μ̃n and the limit ξ is a finite or countable collection {α̃i} arranged
so that their masses {pi} form a non-increasing sequence. Given ε > 0, it is then
possible to write [recall (27)]

μn =
k∑

i=1

α(i)
n + βn

for some k ∈ N such that the following properties hold: For each i = 1, . . . , k, there
are sequences {a(i)

n }n ⊂Rd such that

α(i)
n ∗ δ

a
(i)
n

⇒ αi ∈ α̃i ,

lim
n→∞ inf

i �=j

∣∣a(i)
n − a(j)

n

∣∣ = ∞,
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lim
n→∞

∫
V (x − y)α(i)

n (dx)βn(dy) = 0,

lim sup
n→∞

∫
V (x − y)βn(dx)βn(dy) ≤ 2ε,

for all V ∈F2. In particular, since for each i = 1, . . . , k, α
(i)
n is weakly convergent,

they are a tight sequence and therefore α
(i)
n is concentrated near −a

(i)
n . We can

find a smooth cut-off function ϕ(x) which is 1 in the unit ball, 0 outside a ball of
radius 2 and smoothly varies in between. In particular, 0 ≤ ϕ ≤ 1. For rn > 0 to be
suitably chosen later, we will have a partition of unity by setting

1 =
k∑

i=1

{
ϕ

(
x + a

(i)
n

rn

)}2

+
[

1 −
k∑

i=1

{
ϕ

(
x + a

(i)
n

rn

)}2
]

rn > 0.

We can assume that I (μn) < ∞ for each n ∈ N (since otherwise there is noth-
ing to prove) and hence μn(dx) = fn(x)dx and fn ∈ H 1(Rd). If gn = √

fn and
1
2

∫
Rd |∇gn|2 dx ≤ �, we need to prove that α1, . . . , αk are all absolutely continuous

with densities f 1, . . . , f k and
k∑

i=1

I
(
f (i))≤ �.

We define, for any i = 1, . . . , k,

f (i)
n (x) = fn(x)

{
ϕ

(
x + a

(i)
n

rn

)}2

=
{
gn(x)ϕ

(
x + a

(i)
n

rn

)}2

and we let rn → ∞ in such a way that 2rn ≤ mini �=j |a(i)
n − a

(j)
n |. Then

f
(i)
n (x)dx ⇒ αi for i = 1,2, . . . , k and

I
(
f (i)

n

)= 1

2

∫ ∣∣∣∣∇gn(x)ϕ

(
x + a

(i)
n

rn

)
+ 1

rn
gn(x)(∇ϕ)

(
x + a

(i)
n

rn

)∣∣∣∣2 dx.

Since rn → ∞, ϕ and ∇ϕ are uniformly bounded and the integrals
∫ |gn(x)|2 dx

and
∫ |∇gn|2 dx are bounded, only the first term in the integral counts. Since the

functions {
ϕ

(
x + a

(i)
n

rn

)}
i=1,...,k

do not overlap and 0 ≤ ϕ ≤ 1, we infer
k∑

i=1

1

2

∫ {∣∣∇gn(x)
∣∣ϕ(x + a

(i)
n

rn

)}2

dx ≤ 1

2

∫ ∣∣∇gn(x)
∣∣2 dx

= 1

2

∫ ∣∣∇√fn(x)
∣∣2 dx = I (fn) ≤ �.
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This implies that any weak limit αi of f
(i)
n dx has a density f (i) and∑k

i=1 I (f (i)) ≤ �.

Finally, if ξn consists of multiple orbits {ξ (i)
n }i with

∑
i Ĩ (ξ

(i)
n ) ≤ �, we can

choose subsequences such that, for each i, ξ
(i)
n has a limit which is a collection

ξ (i) of orbits {α̃(i)
j }j . The last step implies, for each i,

∑
j Ĩ (α̃

(i)
j ) ≤ �(i) where

�(i) = lim infn→∞ Ĩ (ξ
(i)
n ). Hence,

I (ξ) =∑
i

�(i) ≤ lim inf
n→∞

∑
i

Ĩ
(
ξ (i)
n

)≤ �.

This proves the lemma. �

Next, we derive the large deviation lower bound for Qt on X̃ . This is easily
done given the translation invariance, convexity and homogeneity of I and the
denseness of the space M̃1(R

d) in X̃ .

LEMMA 4.3 (Lower bound). For any open set G in X̃ ,

lim inf
t→∞

1

t
logQt (G) ≥ − inf

ξ∈G
Ĩ (ξ).(33)

PROOF. For (33) it is enough to prove, given ξ ∈ X̃ with Ĩ (ξ ) < ∞,

lim inf
t→∞

1

t
logQt (U) ≥ −Ĩ (ξ),(34)

for any neighborhood U � ξ .
We claim that any ξ ∈ X̃ with Ĩ (ξ) < ∞ can be approximated by ξn ∈ X̃ such

that
lim sup
n→∞

Ĩ (ξn) ≤ Ĩ (ξ).(35)

Indeed, recall from step-1 of the proof of Theorem 3.2 that M̃1 is dense in X̃
and ξ = {α̃j } ∈ X̃ can be approximated by the sequence (μ̃n)n in M̃1, where, as
constructed in (24),

μn :=
n∑

j=1

αj � δaj
+
(

1 −
n∑

j=1

pj

)
λM ∈ M1

(
Rd),

and λM is a Gaussian with mean vector 0 and covariance matrix MId. Further-
more, since I (·) on M1(R

d) is translation invariant, homogeneous of degree 1
and convex, it is also sub-additive on M≤1(R

d). Then,

I (μn) ≤
n∑

j=1

I (αj � δaj
) +

(
1 −

n∑
j=1

pj

)
I (λM)

=
n∑

j=1

I (αj ) +
(

1 −
n∑

j=1

pj

)
I (λM)
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≤ Ĩ (ξ ) + I (λM)

= Ĩ (ξ ) + 1

M
.

Since we can choose M to depend on n, make it arbitrarily large and take (ξn) to
be the single orbit sequence (μ̃n), (35) is proved. The desired lower bound (34)
now follows from the large deviation lower bound (30) of the distribution of Lt on
M1(R

d). �

Finally, we turn to the large deviation upper bound for Qt .

PROPOSITION 4.4 (Upper bound of Theorem 4.1). For any closed set F in X̃ ,

lim sup
t→∞

1

t
logQt (F ) ≤ − inf

ξ∈F
Ĩ (ξ).(36)

Let U be the space of functions of the form u = c + v where v is a smooth
nonnegative function with compact support on Rd and c > 0 is a positive constant.
Let ϕ(x) be a smooth function satisfying 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 inside the unit
ball and ϕ(x) = 0 outside the ball of radius 2. For any k ≥ 1,R > 0, u1, . . . , uk ∈ U
and a1, . . . , ak ∈ Rd and c > 0 consider the function

g(x) = g(k,R, c, a1, . . . , ak, x) = c +
k∑

i=1

ui(x + ai)ϕ

(
x + ai

R

)
(37)

and define F : � →R by setting

F(u1, . . . , uk, c,R, t,ω) = sup
a1,...,ak

infi �=j |ai−aj |≥4R

1

t

∫ t

0

−1/2�g(W(s))

g(W(s))
ds

(38)

= sup
a1,...,ak

infi �=j |ai−aj |≥4R

∫
Rd

−1/2�g(x)

g(x)
Lt (dx).

Since the last expression depends only on the image L̃t of Lt in X̃ , we write

F̃ (u1, . . . , uk, c,R, L̃t ) = sup
a1,...,ak

infi �=j |ai−aj |≥4R

∫
Rd

−1/2�g(x)

g(x)
Lt (dx)

(39)
= F(u1, . . . , uk, c,R, t,ω).

We will need the next three lemmas to prove the upper bound. First, we prove that
F̃ (·) grows only sub-exponentially as t → ∞.
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LEMMA 4.5. For any k ≥ 1,R > 0, u1, . . . , uk ∈ U and c > 0,

lim sup
t→∞

1

t
logE

{
exp

{
t F̃ (u1, . . . , uk, c,R, L̃t )

}}
= lim sup

t→∞
1

t
logE

{
exp

{
tF (u1, . . . , uk, c,R, t,ω)

}}
(40)

≤ 0.

PROOF. If it were not for the supremum over a1, . . . , ak this would be a simple
consequence of Feynman–Kac formula. In fact, we first show that

lim sup
t→∞

1

t
logE

{
exp

{∫ t

0
−�g(W(s))

2g(W(s))
ds

}}
= 0.(41)

Indeed, by the Feynman–Kac formula, the function

�(t, x) = Ex

{
g(Wt) exp

{∫ t

0
−�g(Ws)

2g(Ws)
ds

}}
satisfies the initial value problem⎧⎨⎩

∂

∂t
� = 1

2
��(t, x) − �g(x)

2g(x)
�(t, x),

�(0, x) = g(x).

However, we clearly see that

�(t, x) = g(x)

solves the above heat equation. Furthermore by definition [recall (37)],

g(x) ≥ c.

Hence, we conclude

g(x) = Ex

{
g(Wt) exp

{∫ t

0
−�g(Ws)

2g(Ws)

}}

≥ cEx

{
exp

{∫ t

0
−�g(Ws)

2g(Ws)

}}
and therefore,

Ex

{
exp

{∫ t

0
−�g(Ws)

2g(Ws)

}}
≤ g(x)

c
.(42)

This proves (41). To handle the supremum over (a1, . . . , ak) inside the expectation
we have to do a “course graining” argument.

First, we note that if the range of the Brownian motion in the time interval [0, t]
is rt , once any |ai | exceeds rt +R it will no longer affect the value of g [again recall
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the definition (37)]. We can therefore limit each ai to the ball of radius rt +R. But
P [rt + R ≥ t2] ≤ exp[−c1t

3] and can be ignored. In other words, we can limit
each ai to the ball of radius t2.

Furthermore, the function −1/2�g(x)
g(x)

is a uniformly continuous function of
a1, . . . , ak and given any ε > 0, there is a δ > 0 such that its oscillation in a box of

size δ is at most ε. A ball of radius t2 can be covered by ( t2

δ
)dk such boxes. There

is a set K ⊂ (Rd)k of representatives of such boxes, a set of cardinality at most
( t2

δ
)dk satisfying |ai − aj | ≥ 4R for all i �= j .
Using the above two remarks, we can now estimate

E

{
exp

{
sup

a1,...,ak

|ai−aj |≥4R ∀i �=j

∫ t

0

−1/2�g(Ws)

g(Ws)
ds

}}

≤ E

{
exp

{
sup

|a1|≤t2,...,|ak |≤t2

|ai−aj |≥4R ∀i �=j

∫ t

0

−1/2�g(Ws)

g(Ws)
ds

}}
+ ec2tP

(
sup

0≤s≤t

|Ws | ≥ t2
)

≤ E

{
exp

{
εt + sup

(a1,...,ak)∈K

∫ t

0

−1/2�g(Ws)

g(Ws)
ds

}}
+ exp

(
c2t − c1t

3)
≤ E

{ ∑
(a1,...,ak)∈K

exp
{
εt +

∫ t

0

−1/2�g(Ws)

g(Ws)
ds

}}
+ exp

(
c2t − c1t

3)

≤
(

t2

δ

)dk

sup
(a1,...,ak)∈K

E

{
exp

{
εt +

∫ t

0

−1/2�g(Ws)

g(Ws)
ds

}}
+ exp

(
c2t − c1t

3).
Taking logarithm, dividing by t , passing to limt→∞ and invoking (41), we obtain

lim sup
t→∞

1

t
logE

{
exp

{
sup

a1,...,ak

|ai−aj |≥4R ∀i �=j

∫ t

0

−1/2�g(Ws)

g(Ws)
ds

}}
≤ ε,

and ε > 0 is arbitrary. (40) is proved. �

LEMMA 4.6. Let (μ̃n)n be sequence in X̃ which converges to ξ = {α̃j } ∈ X̃ .
For any k ∈N, i = 1, . . . , k and ui,�(x) = ui(x)ϕ( x

R
), where ui ∈ U , we have

lim inf
n→∞ F̃ (u1, . . . , uk, c,R, μ̃n) ≥

k∑
i=1

∫ −(1/2�ui,R)(x)

c + ui,R(x)
αi(dx)

(43)
= �̃(ξ,R, c,u1, . . . , uk).
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PROOF. If μ̃n → ξ = {α̃j }, then for j = 1,2, . . . , k we can again decompose
μn as [recall (27)] μn = ∑k

j=1 αn,j + βn with αn,j ∗ δan,j
⇒ αj for a suitable

choice of an,j that satisfy limn→∞ |an,i −an,j | = ∞ for i �= j . If n is large enough
|an,i − an,j | ≥ 4R and the supports of {ui,R}i are mutually disjoint. In particular
with the choice of ai = −an,i

−1/2�g(k,R, c, a1, . . . , ak, x)

g(k,R, c, a1, . . . , ak, x)
=

k∑
i=1

−(1/2�ui,R)(x − an,i)

c + ui,R(x − an,i)
.

Because αn,j is gets widely separated from βn as well as αn,i for i �= j , it is clear
that

lim
n→∞

∫ −(1/2�ui,R)(x − an,i)

c + ui,R(x − an,i)
μn(dx) =

∫ −(1/2�ui,R)(x)

c + ui,R(x)
αi(dx),

and the lemma follows. �

LEMMA 4.7. With �̃ defined in (43) and Ĩ defined in (32), we have the iden-
tification

Ĩ (ξ) = sup
R,c>0,k∈N,

u1,...,uk∈U

�̃(ξ,R, c,u1, . . . , uk).

PROOF. Recall the definition of the classical rate function I from (31). For
any α ∈M≤1(R

d), we can also identify I as

I (α) = sup
u∈U
c>0

∫ −1/2�u(x)

c + u(x)
α(dx).

Therefore for every k ∈N,

sup
c>0,R>0

u1,...,uk∈U
�̃(ξ, c,R,u1, . . . , uk) =

k∑
i=1

I (αj )

and

sup
k∈N

k∑
j=1

I (αj ) =
∞∑

j=1

I (αj ) = Ĩ (ξ ).
�

Now we come to the proof of the large deviation upper bound for Qt in X̃ .

PROOF OF PROPOSITION 4.4. X̃ being compact, for (36), it is enough to
prove (by the usual machinery of covering a compact space by finitely many balls
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and invoking the union of events bound) that if ξ ∈ X̃ and Nδ is a ball (as usual, in
the metric D) of radius δ around ξ , then

lim sup
δ→0

lim sup
t→∞

1

t
logQt (Nδ) ≤ −Ĩ (ξ ).(44)

Let H be the space of maps H : M̃1(R
d) → R with the following properties: For

each H there is a corresponding function �H : X̃ →R such that

lim inf
μ̃∈M̃1(R

d )

μ̃→ξ∈X̃

H(μ̃) ≥ �H(ξ)(45)

and

lim sup
t→∞

1

t
logEQt

{
exp

{
tH(·)}}≤ 0.(46)

Then again the properties of the decomposition (27), a routine application of
Tchebycheff’s inequality, (45) and (46) show that, for any H ∈ H,

lim sup
δ→0

lim sup
t→∞

1

t
logQt [Nδ] ≤ −�H(ξ).

It is therefore enough to identify Ĩ (ξ) as

Ĩ (ξ) = sup
H∈H

�H(ξ).(47)

Recall the definition of F̃ from (39). Then, for H, by Lemma 4.5, Lemma 4.6 and
Lemma 4.7, we can take the collection {F̃ (u1, . . . , uk, c,R, μ̃)} with k ∈ N,R,

c > 0, u1, . . . , uk ∈ U and μ ∈ M1(R
d) and set �F̃ = �̃, with �̃ defined in (43).

This proves (47) and hence Proposition 4.4. �

5. Application: Localization of path measures with Coulomb interaction.
In this section, we come back to the problem we introduced in Section 1. Again,
we consider the Wiener measure P on � = C0([0,∞);R3) corresponding to a
three dimensional Brownian motion W = (Wt)t≥0 starting at the origin. Consider
the transformed measure

dP̂t = 1

Zt

exp
{

1

t

∫ t

0

∫ t

0

1

|Ws − Wσ | ds dσ

}
dP,

where

Zt = E

[
exp

{
1

t

∫ t

0

∫ t

0

1

|Ws − Wσ | ds dσ

}]
is the normalizing constant or the partition function. As mentioned before (see
[4]),

lim
t→∞

1

t
logZt = sup

ψ∈H 1(R3)

‖ψ‖2=1

{∫
Rd

∫
Rd

dx dy
ψ2(x)ψ2(y)

|x − y| − 1

2
‖∇ψ‖2

2

}
,(48)



COMPACTNESS AND LARGE DEVIATIONS 3959

and according to the classical result of Lieb (see [5]), this variational problem ad-
mits a maximizer ψ0 which is radially symmetric and is unique up to translations.
Let dμ0 = ψ2

0 (x)dx define its probability distribution with μ̃0 the corresponding
orbit in M̃1(R

3). We study the distribution

Q̂t = P̂t L̃
−1
t

on M̃1(R
3) of the orbit L̃t of the normalized occupation measures Lt of the tra-

jectory {Ws : 0 ≤ s ≤ t} under the transformed measure P̂t . Here is our next main
result.

THEOREM 5.1 (The tube property under Coulomb interaction). As probability
measures on M̃1(R

3),

lim
t→∞ Q̂t = δμ̃0

under the weak topology.

REMARK 4. Note that the topology on M̃1(R
3) is the same as weak conver-

gence. As we shall see, the compactification X̃ of M̃1(R
3) plays a role only in the

proof of this theorem and not in its statement.

The proof involves the standard large deviation route. The function 1
|x| is un-

bounded and needs to be truncated to fit within the standard large deviation theory.
We write

1

|x| = Vε(x) + Yε(x)(49)

with Vε(x) = (ε2 + |x|2)−1/2. The difference is given by

Yε(x) = 1

|x| − 1√
ε2 + |x|2

=
√

ε2 + |x|2 − |x|
|x|
√

ε2 + |x|2

= ε2

|x| +
√

ε2 + |x|2
1√

ε2 + |x|2
1

|x|

= ε−1ϕ

(
x

ε

)
,

with

φ(x) = 1

|x|
1√

1 + |x|2
1

(|x| +
√

1 + |x|2)
.

We need the following lemma to control the difference.
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LEMMA 5.2. For any λ > 0,

lim sup
ε→0

lim sup
t→∞

1

t
logE

[
exp

λ

t

∫ t

0

∫ t

0
Yε(Ws − Wσ)ds dσ

]
= 0.(50)

PROOF. One can bound φ(x) which behaves like 1
|x| near 0 and like 1

|x|3 near

∞ by C
|x|3/2 . In particular,

Yε(x) ≤ C
√

ε

|x|3/2 .

Then by time ordering and Jensen’s inequality,

exp
{
λ

t

∫ t

0

∫ t

0
Yε(Ws − Wσ)ds dσ

}
= exp

{
2λ

t

∫ t

0

{∫ t

s
Yε(Ws − Wσ)dσ

}
ds

}

≤ 1

t

∫ t

0
exp

{
2λ

∫ T

s
Yε(Ws − Wσ)dσ

}
ds

≤ 1

t

∫ t

0
exp

{
2Cλ

√
ε

∫ t

s

1

|Ws − Wσ |3/2 dσ

}
ds

(D)= 1

t

∫ t

0
ds exp

{
2Cλ

√
ε

∫ t−s

0

1

|Wσ |3/2 dσ

}
.

If we can show that, for ε > 0 small enough,

sup
x∈R3

E(x)

{
exp

{
2Cλ

√
ε

∫ 1

0

1

|Wσ |3/2 dσ

}}
≤ α < ∞,(51)

then it follows, by successive conditioning and the Markov property,

E

{
exp

{
2Cλ

√
ε

∫ t−s

0

1

|Wσ |3/2 dσ

}}
≤ αt−s .(52)

This will prove (50).
It remains to check (51). For this, we appeal to Portenko’s lemma (see [6]),

which states that, if for a Markov process {P(x)} and for a function Ṽ ≥ 0,

sup
x∈Rd

E(x)

{∫ 1

0
Ṽ (Ws)ds

}
≤ η < 1

then

sup
x∈Rd

E(x)

{
exp

{∫ 1

0
Ṽ (Ws)ds

}}
≤ η

1 − η
= α < ∞.
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Hence, to prove (51), we need to verify that

sup
x∈R3

E(x)

{∫ 1

0

dσ

|Wσ |3/2

}
(53)

= sup
x∈R3

dy

∫ 1

0
dσ

∫
R3

1

|y|3/2

1

(2πσ)3/2 exp
{
−(y − x)2

2σ

}
< ∞.

One can see that

sup
x∈R3

∫
R3

dy
1

|y|3/2

1

(2πσ)3/2 exp
{
−(y − x)2

2σ

}
is attained at x = 0 because we can rewrite the integral by Parseval’s identity as

c

∫
R3

exp
{
−σ |ξ |2

2
+ i〈x, ξ〉

}
1

|ξ |3/2 dξ,

where c > 0 is a constant. When x = 0 the integral reduces to
∫ 1

0 σ−3/4 dσ which
is finite. �

We continue with the proof of the Theorem 5.1. First, we prove a large deviation
estimate for Q̂t .

THEOREM 5.3. For any closed set F ⊂ X̃

lim sup
t→∞

1

t
log Q̂t [F ] ≤ − inf

ξ∈F
J̃ (ξ),

and for any open set G ⊂ X̃

lim inf
t→∞

1

t
log Q̂t [G] ≥ − inf

ξ∈G
J̃ (ξ),

where, for ξ = {α̃j } ∈ X̃ ,

J̃ (ξ) = ρ̃ −∑
j

{∫ 1

|x − y|αj (dx)αj (dy) − Ĩ (α̃j )

}

and ρ̃ is given by

ρ̃ = sup
ξ∈X̃

∑
j

{∫
R3

∫
R3

ψ2
j (x)ψ2

j (y)

|x − y| dx dy − 1

2

∑
j

‖∇ψj‖2
2

}

and αj (dx) = ψ2
j (x)dx with

∑
j

∫
R3 ψ2

j (x)dx ≤ 1.
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PROOF. We fix a closed set F ⊂ X̃ . Then, by definition,

Q̂t (F ) = P̂t (L̃t ∈ F)
(54)

= EQt {exp{(1/t)
∫ t

0
∫ t

0 (1/|Wσ − Ws |)dσ ds}1F }
EQt {exp{(1/t)

∫ t
0
∫ t

0 (1/|Wσ − Ws |)dσ ds}} ,

where Qt is the distribution of L̃t in M̃1(R
d). We first handle the numerator. The

denominator will be taken care of similarly. Recall the decomposition (49). Then
with 1

p
+ 1

q
= 1 and Hölder’s inequality, the numerator becomes∫

F
exp

[
1

t

∫ t

0

∫ t

0

{
Vε

(|Ws − Wσ |)+ Yε

(|Ws − Wσ |)}dσ ds

]
dQt

≤
[∫

F
exp

{
1

t

∫ t

0

∫ t

0
pVε

(|Ws − Wσ |)dσ ds

}
dQt

]1/p

×
[∫

F
exp

{
1

t

∫ t

0

∫ t

0
qYε

(|Ws − Wσ |)dσ ds

}
dQt

]1/q

.

Taking logarithm, dividing by t , passing to lim supt→∞ and followed by ε → 0,

lim sup
t→∞

1

t
log

∫
F

exp
[

1

t

∫ t

0

∫ t

0

1

|Ws − Wσ | dσ ds

]
dQt

≤ lim sup
ε→0

1

p
lim sup
t→∞

1

t
log

∫
F

exp
[

1

t

∫ t

0

∫ t

0
pVε

(|Ws − Wσ |)dσ ds

]
dQt

+ lim sup
ε→0

1

q
lim sup
t→∞

1

t
log

∫
F

exp
[

1

t

∫ t

0

∫ t

0
qYε

(|Ws − Wσ |)dσ ds

]
dQt .

By Lemma 5.2, the second term is 0. For the first term, since for every ε > 0,
Vε ∈ F2, by Corollary 3.3, Proposition 4.4 and Varadhan’s lemma,

lim sup
t→∞

1

t
log

∫
F

exp
[

1

t

∫ t

0

∫ t

0
pVε

(|Ws − Wσ |)dσ ds

]
dQt

≤ sup
ξ∈F

[∑
j

∫
R3

∫
R3

pVε(x − y)ψ2
j (x)ψ2

j (y)dx dy − 1

2

∑
j

‖∇ψj‖2
]
,

where ξ = {α̃j } and αj (dx) = ψ2
j (x)dx with

∑
j

∫
R3 ψ2

j (x)dx ≤ 1.

Since Vε(x) ≤ 1
|x| and Vε(x) → 1

|x| as ε → 0, for any p > 1,

lim
ε→0

sup
ξ∈F

[∑
j

∫
R3

∫
R3

pVε(x − y)ψ2
j (x)ψ2

j (y)dx dy − 1

2

∑
j

‖∇ψj‖2
]

= sup
ξ∈F

[∑
j

∫
R3

∫
R3

p
1

|x − y|ψ
2
j (x)ψ2

j (y)dx dy − 1

2

∑
j

‖∇ψj‖2
]
.
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We can now let p → 1 and obtain

lim sup
t→∞

1

t
log

∫
F

exp
[

1

t

∫ t

0

∫ t

0

1

|Ws − Wσ | dσ ds

]
dQt

(55)

≤ sup
ξ∈F

[∑
j

∫
R3

∫
R3

1

|x − y|ψ
2
j (x)ψ2

j (y)dx dy − 1

2

∑
j

‖∇ψj‖2
]
.

The lower bound

lim sup
t→∞

1

t
log

∫
G

exp
[

1

t

∫ t

0

∫ t

0

1

|Ws − Wσ | dσ ds

]
dQt

(56)

≥ sup
ξ∈G

[∑
j

∫
R3

∫
R3

1

|x − y|ψ
2
j (x)ψ2

j (y)dx dy − 1

2

∑
j

‖∇ψj‖2
]
,

for open sets G ⊂ X̃ follows immediately from Lemma 4.3. This derives the
asymptotic behavior of the numerator in (54). For the denominator, we invoke (55)
for F = X̃ and (56) for G = X̃ to deduce

lim
t→∞

1

t
log

∫
X̃

exp
[

1

t

∫ t

0

∫ t

0

1

|Ws − Wσ | dσ ds

]
dQt

= sup
ξ∈X̃

[∑
j

∫
R3

∫
R3

1

|x − y|ψ
2
j (x)ψ2

j (y)dx dy − 1

2

∑
j

‖∇ψj‖2
]

(57)

= ρ̃.

We apply (55), (56) and (57) to (54). The theorem is proved. �

We need a lemma here to complete the proof of Theorem 5.1.

LEMMA 5.4. The supremum in (57) is attained only when ξ consists of a
single orbit μ̃ with μ(dx) = ψ2(x)dx for a unique radially symmetric ψ and∫
R3 ψ(x)2 dx = 1.

PROOF. If we rescale with ψ(x) being replaced by σ 2ψ(σx), the expression

σ 8
∫
R3

∫
R3

1

|x − y|ψ
2(σx)ψ2(σy)dx dy − σ 6 1

2

∫
R3

∣∣∇ψ(σx)
∣∣2 dx

becomes

σ 3
∫
R3

∫
R3

1

|x − y|ψ
2(x)ψ2(y)dx dy − 1

2
σ 3

∫ ∣∣∇ψ(x)
∣∣2 dx

while the mass σ 4 ∫
R3 ψ2(σx)dx becomes σ

∫
R3 ψ2(x)dx. Therefore if we define

ρ(m) = sup∫
R3 h2(x)dx=m

[∫
R3

∫
R3

1

|x − y|ψ
2(x)ψ2(y)dx dy − 1

2

∫
R3

∣∣∇ψ(x)
∣∣2 dx

]



3964 C. MUKHERJEE AND S. R. S. VARADHAN

then ρ(m) = Cm3. In particular, ρ(m1 +m2) > ρ(m1)+ρ(m2) proving that supre-
mum in (57) is attained at a single orbit ξ = {μ̃} of total mass μ(R3) = 1. Accord-
ing to Lieb’s theorem (see [5]), the function ψ that maximizes[∫

R3

∫
R3

1

|x − y|ψ
2(x)ψ2(y)dx dy − 1

2

∫
R3

∣∣∇ψ(x)
∣∣2 dx

]
subject to

∫
R3 ψ2(x)dx = 1 is unique up to translation. �
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