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SOBOLEV DIFFERENTIABLE FLOWS OF SDES WITH LOCAL
SOBOLEV AND SUPER-LINEAR GROWTH COEFFICIENTS1

BY LONGJIE XIE AND XICHENG ZHANG

Wuhan University

By establishing a characterization for Sobolev differentiability of random
fields, we prove the weak differentiability of solutions to stochastic differen-
tial equations with local Sobolev and super-linear growth coefficients with
respect to the starting point. Moreover, we also study the strong Feller prop-
erty and the irreducibility to the associated diffusion semigroup.

1. Introduction and main results. Consider the following stochastic differ-
ential equation (SDE) in Rd :

dXt(x) = b
(
t,Xt (x)

)
dt + σ

(
t,Xt (x)

)
dWt, X0(x) = x,(1.1)

where σ : R+ ×Rd →Rd ⊗Rm and b :R+ ×Rd →Rd are two measurable func-
tions, (Wt)t≥0 is an m-dimensional standard Brownian motion defined on some
probability space (�,F ,P). It is a classical result that if the coefficients are global
Lipschitz continuous and have linear growth in x uniformly with respect to t , then
SDE (1.1) admits a unique global strong solution which forms a stochastic flow of
homeomorphisms on Rd (cf. [23]). However, in many applications, the Lipschitz
continuity and linear growth condition imposed on the coefficients are broken (see
[11, 16, 22, 27] and references therein). Notice that in the deterministic case (i.e.,
σ ≡ 0), SDE (1.1) becomes an ordinary differential equation (ODE):

x′(t) = b
(
t, x(t)

)
, x(0) = x0.(1.2)

A unique regular Lagrangian flow was constructed in [11] by DiPerna and Lions
for Sobolev vector fields with bounded divergence (see also [6] for a direct ar-
gument). This result was later extended by Ambrosio in [2] to BV vector fields
with bounded divergence (see also [12, 38] and [4] for stochastic extensions). It
is emphasized that the solvability of (1.2) in the DiPerna–Lions theory is only
for Lebesgue almost all starting point x0. An interesting phenomena is that when
σ �= 0 is nondegenerate, the noise term will play some regularization effect and
SDE (1.1) can be well-posed for quite singular drift b and for every starting point x.
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In the past decades, there is increasing interest in the study of the strong solutions
and their properties to SDEs (1.1) with irregular coefficients. Let us briefly recall
some well-known results in this direction.

In the additive noise case [i.e., σt (x) = σt is nondegenerate], when b is bounded
and measurable, Veretennikov [32] first proved that SDE (1.1) has a unique global
strong solution Xt(x). Recently, it was shown in [26] that Xt(·) lies in the space⋂

p≥1 L2(�;W 1,p
ρ (Rd)), where W

1,p
ρ (Rd) denotes weighted Sobolev space with

weight ρ possessing finite pth moment with respect to the Lebesgue measure
in Rd . When b ∈ L

q
loc(R+;Lp(Rd)) for some p,q ∈ (1,∞) with d

p
+ 2

q
< 1, us-

ing estimates of solutions to the associated PDE, the existence and uniqueness of a
global strong solution Xt(x) for SDE (1.1) were obtained by Krylov and Röckner
in [22]. Under the same condition, Fedrizzi and Flandoli [13–15] proved that the
map x → Xt(x) is α-Hölder continuous for any α ∈ (0,1), and is also Sobolev
differentiable. We also mention that the Sobolev regularity of the strong solution
in spacial variable enables us to study the associated stochastic transport equation
since it is closely related to SDE (1.1) by the inverse flow of the strong solution; see
[15, 16, 26, 29] and references therein. Moreover, Bismut–Elworthy–Li’s formula
was also established in [25] by using the Sobolev and Malliavin differentiabilities
of strong solutions with respect to the initial values and sample paths, respectively.

In the multiplicative noise case, if the SDE is time homogeneous, supposing
that σ(x), b(x) are in C2(Rd), and ∇σ and ∇b have some mild growth at infinity,
by investigating the corresponding derivative flow equation, Li [24] studied the
strong completeness for SDE (1.1), that is, (t, x) �→ Xt(x) admits a bi-continuous
version. More recently, this result was extended to the case of Sobolev coefficients
in [5] and the Sobolev regularity of solutions with respect to the initial value was
also studied. The main argument in [5] is the mollifying approximation to SDE
(1.1) and the key point is to prove some uniform estimates of the solution to the
corresponding derivative flow equation. It is emphasized that in [5, 24], ∇σ and
∇b are not necessarily bounded. Very recently, Zhang [34, 35, 37] proved under
the assumptions that σ is bounded, uniformly elliptic and uniformly continuous
in x locally uniformly with respect to t , and |b|, |∇σ | ∈ L

q
loc(R+ × Rd) for q >

d + 2, there exists a unique strong solution Xt(x) to (1.1) up to the explosion time
ζ(x) for every x ∈ Rd . Meanwhile, under the global assumptions that |b|, |∇σ | ∈
L

q
loc(R+;Lq(Rd)) for q > d + 2, the solution {Xt(x)} forms a stochastic flow of

homeomorphisms on Rd , and x �→ Xt(x) is Sobolev differentiable.
In this paper, we will establish the Sobolev regularity of strong solutions with

respect to the initial value, as well as the strong Feller property and irreducibility,
to SDE (1.1) with some local Sobolev and super-linear growth coefficients. For this
purpose, we first establish a useful characterization for Sobolev differentiability of
random fields in terms of their moment estimates, which has independent interest.

THEOREM 1.1. Let U ⊂ Rd be a bounded C1-domain and f ∈ Lq(U ;Lp(�;
Lr(T ))) for some p ∈ (1,∞) and q, r ∈ (1,∞]. Then f ∈ W1,q(U ;Lp(�;
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Lr(T ))) [see (2.1) below for a definition] if and only if there exists a non-negative
measurable function g ∈ Lq(U) such that for Lebesgue-almost all x, y ∈ U ,∥∥f (x, ·) − f (y, ·)∥∥Lp(�;Lr(T )) ≤ |x − y|(g(x) + g(y)

)
.(1.3)

Moreover, if (1.3) holds, then for Lebesgue-almost all x ∈ U ,∥∥∂if (x, ·)∥∥Lp(�;Lr(T )) ≤ 2g(x), i = 1, . . . , d,

where ∂if is the weak partial derivative of f with respect to the ith spacial vari-
able.

The advantage of this characterization lies in that, when we want to show the
Sobolev regularity of the strong solution Xt(x) to SDE (1.1) with respect to x, we
just need to estimate the pth moment of Xt(x) − Xt(y), which is much easier to
be handled for SDEs (see a recent work [33] for an application of the above char-
acterization). It should be noticed that in all previous works (see [5, 15, 26]), the
argument of mollifying coefficients is used to obtain the Sobolev differentiability
of strong solutions. This usually leads to some complicated limiting procedures.
Here, an interesting open question is that whether we can extend the above char-
acterization to the infinite dimensional case in somehow so that it can be used to
the SDE in Hilbert spaces as studied in [7–10].

Now, we turn to the study of SDE (1.1) and make the following assumptions on
σ and b.

(H1) (Local Sobolev integrability). σ is locally uniformly continuous in x and
locally uniformly with respect to t ∈ R+, and for some q > d + 2,

b ∈ L
q
loc

(
R+ ×Rd)

, ∇σ ∈ L
q
loc

(
R+ ×Rd)

,

and for some C1, γ1 > 0, α′ ∈ (0, α) and for all t ≥ 0, x ∈ Rd , ξ ∈Rm,
∣∣σ(t, x)ξ

∣∣ ≥ |ξ |(1α>0 exp
{−C1

(
1 + |x|2)α′} + 1α=0C1

(
1 + |x|2)−γ1

)
,(1.4)

where α is the same as in (1.5) below.
(H2) (Super-linear growth). For some α ∈ [0,1] and for all κ > 0, there exist a

constant Cκ ∈ R and a non-negative function Fκ(t, x) ∈ L
q ′
loc(R+ ×Rd) with some

q ′ > d + 1 such that for all t ≥ 0 and x, y ∈ Rd ,
〈
x, b(t, x)

〉 + κ
(
1 + |x|2)α∥∥σ(t, x)

∥∥2 ≤ Cκ

(
1 + |x|2)

,(1.5)
〈
x − y, b(t, x) − b(t, y)

〉 + κ
∥∥σ(t, x) − σ(t, y)

∥∥2

(1.6)
≤ |x − y|2(

Fκ(t, x) + Fκ(t, y)
)
,

and there exist α′ ∈ [0, α), R0 > 0 and C2, γ2,C3 > 0 such that for all t ≥ 0 and
x ∈ Rd ,

∣∣b(t, x)
∣∣ + ∥∥σ(t, x)

∥∥ ≤ 1α>0 exp
{
C2

(
1 + |x|2)α′} + 1α=0C2

(
1 + |x|2)γ2,(1.7)
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and for all t ≥ 0 and |x| ≥ R0,

Fκ(t, x) ≤ C3
(
1α>0

(
1 + |x|2)α′ + 1α=0 log

(
1 + |x|2))

.(1.8)

Here, neither uniformly elliptic nor the global Lq -integrability conditions are
assumed on b and σ . Notice that q > d +2 in (H1) is almost optimal due to Krylov
and Röckner’s sharp condition d

p
+ 2

q
< 1. Our first main result of this paper is the

following.

THEOREM 1.2. Under (H1) and (H2), there exists a unique global strong
solution Xt(x) to SDE (1.1) so that (t, x) �→ Xt(x) is continuous. Moreover, we
have the following conclusions:

(A) For each t > 0 and almost all ω, the mapping x �→ Xt(x,ω) is Sobolev
differentiable, and for any T > 0 and p ≥ 1, there are constants C,γ > 0 such
that for Lebesgue-almost all x ∈Rd ,

sup
t∈[0,T ]

E
∣∣∇Xt(x)

∣∣p ≤ C
(
1α>0e(1+|x|2)α + 1α=0

(
1 + |x|2)γ )

,(1.9)

where ∇ denotes the gradient in the distributional sense, and α is the same as
in (1.5).

(B) If in addition, we assume that for some F0(t, x) ∈ L
q ′
loc(R+ × Rd) with

q ′ > d + 1,
∥∥σ(t, x) − σ(t, y)

∥∥2 ≤ |x − y|2(
F0(t, x) + F0(t, y)

)
,(1.10)

where F0 also satisfies (1.8), then (1.9) can be strengthened as

E
(
ess. sup

t∈[0,T ]
∣∣∇Xt(x)

∣∣p)
≤ C

(
1α>0e(1+|x|2)α + 1α=0

(
1 + |x|2)γ )

.(1.11)

(C) For each t > 0 and any bounded measurable function f on Rd ,

x �→ Ef
(
Xt(x)

)
is continuous.

(D) For each open set A ⊂Rd and t > 0, x ∈ Rd ,

P
{
ω : Xt(x,ω) ∈ A

}
> 0.

REMARK 1.3. If b and σ are time independent, then the above (C) means that
the semigroup defined by Ptf (x) := Ef (Xt(x)) is strong Feller, and the above (D)
means that Pt is irreducible. In particular, (C) and (D) imply the uniqueness of the
invariant measures associated to (Pt )t≥0 (if it exists). See [3, 27] for applications.

REMARK 1.4. Assumptions (1.5) and (1.6) are classical coercivity and mono-
tonicity conditions when κ = 1

2 , α = 0 and Fκ(t, x) = constant in (1.5) and (1.6).
In this case, if, in addition that b and σ are continuous in x, then the existence
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and uniqueness of strong solutions to SDE (1.1) are classical (cf. [27]). However,
under nondegenerated assumption (1.4), we can drop the continuity assumption on
drift b. Moreover, our estimate (1.11) is stronger than the well-known results (cf.
[3, 5, 15, 26]) since the essential supremum norm with respect to the time variable
is taken in the expectation.

It is well known that under (H1), SDE (1.1) admits a unique local strong solu-
tion. We will show in Lemma 3.1 below that SDE (1.1) with coefficients satisfying
(1.5) does not explode and the solution has exponential integrability. In view of
Theorem 1.1, to show the Sobolev regularity of the strong solution, we will pay our
attention on the pth moment estimates of Xt(x) − Xt(y). This is the place where
assumptions (1.6)–(1.8) are needed. As in [35, 37], the estimates of Krylov’s type
will play an important role throughout this paper. However, since we are assuming
only some local integrability conditions and the coefficients may have exponen-
tial growth rate at infinity, some new probabilistic estimates are established (see
Lemma 2.3 and Lemmas 3.3, 3.4 below).

To illustrate Theorem 1.2, we present below two examples.

EXAMPLE 1.5. Consider the following one-dimensional SDE:

dXt = [(
1 − X5

t

)
1Xt<0 − (

1 + X5
t

)
1Xt≥0

]
dt + (

1 + |Xt |2)β dWt,

where β ∈ [0,1). In this case, σ(x) = (1 + x2)β and b(x) = (1 − x5)1x<0 − (1 +
x5)1x≥0 are both of super-linear growth, and the drift b has a jump at 0. Moreover,
for any κ > 0, by Young’s inequality, it is easy to see that〈

x, b(x)
〉 + κ

(
1 + x2)∣∣σ(x)

∣∣2 = −x6 − |x| + κ
(
1 + x2)1+2β ≤ Cκ,β

and 〈x − y, b(x) − b(y)〉 ≤ 0,∥∥σ(x) − σ(y)
∥∥2 ≤ Cβ |x − y|2(

1 + |x|2(2β−1)∨0 + |y|2(2β−1)∨0)
.

Thus, (H1), (H2) and (1.10) hold.

EXAMPLE 1.6. Suppose that for any κ > 0 and T > 0, there is a convex func-
tion Fκ(x) such that

sup
|ξ |=1

〈
ξ,∇ξ b(t, x)

〉 + κ
∥∥∇σ(t, x)

∥∥2 ≤ Fκ(x),

where ∇ξf := 〈∇f, ξ〉 for a C1-function f : Rd → R. Under this assumption,
(1.6) holds. In fact, by the mean-value formula, we have(〈

x − y, b(t, x) − b(t, y)
〉 + κ

∥∥σ(t, x) − σ(t, y)
∥∥2)

/|x − y|2

≤
ˆ 1

0

[
sup
|ξ |=1

〈
ξ,∇ξ b

(
t, θx + (1 − θ)y

)〉 + κ
∥∥∇σ

(
t, θx + (1 − θ)y

)∥∥2
]

dθ

≤
ˆ 1

0
Fκ

(
θx + (1 − θ)y

)
dθ ≤ Fκ(x) + Fκ(y)

2
,
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where the last step is due to the convexity of Fκ . Compared with [5], our assump-
tions (H1) and (H2) are significantly weaker.

In Theorem 1.2, the drift b is locally bounded. Our next result allows the drift
b to be locally singular and of linear growth at infinity. To this aim, we make the
following assumptions:

(H1′) (Local Sobolev integrability). σ is uniformly continuous in x and locally
uniformly with respect to t ∈R+, and for some q > 2d + 2,

b ∈ L
q
loc

(
R+ ×Rd)

, ∇σ ∈ L
q
loc

(
R+ ×Rd)

,

and for any T > 0, there is a constant K ≥ 1 such that for all (t, x) ∈ [0, T ] ×Rd ,

K−1|ξ |2 ≤ ∣∣σ(t, x)ξ
∣∣2 ≤ K|ξ |2 ∀ξ ∈ Rm.

(H2′) (Lipschitz continuity outside a ball). For any T > 0, there exist R0 ≥ 1,
α′ ∈ [0,1) and constant C > 0 such that for all t ∈ [0, T ],

∣∣b(t, x)
∣∣ ≤ C

(
1 + |x|), |x| ≥ R0,

and for all t ∈ [0, T ] and |x|, |y| ≥ R0,
∥∥σ(t, x) − σ(t, y)

∥∥ ≤ C|x − y|,
(1.12) ∣∣b(t, x) − b(t, y)

∣∣ ≤ C|x − y|(|x|2α′ + |y|2α′)
.

It should be noticed that conditions in (H2′) are assumed to hold only outside a
large ball, while b can be singular in the ball. We have the following.

THEOREM 1.7. Under (H1′) and (H2′), there exists a unique global strong
solution Xt(x) to SDE (1.1) so that (t, x) �→ Xt(x) is continuous. Moreover, the
conclusions (A) with (1.11), (C) and (D) in Theorem 1.2 still hold, and the α in
(1.11) is taken to be 1.

We organize this paper as follows: In Section 2, we make some preparations,
and give the proof of Theorem 1.1 and a criterion on the existence of exponential
moments of a Markov process. In Section 3, we provide some estimates on the
solution to equation (1.1) and give the proof of Theorem 1.2. Finally, the proof of
Theorem 1.7 is given in Section 4 by using Zvonkin’s transformation and Theo-
rem 1.2.

Throughout this paper, we use the following convention: C with or without sub-
scripts will denote a positive constant, whose value may change in different places,
and whose dependence on the parameters can be traced from the calculations.
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2. Preliminaries. Let U be an open domain in Rd . For p ∈ [1,∞], let
W1,p(U) be the classical first-order Sobolev space:

W1,p(U) := {
f ∈ L1

loc(U) : ‖f ‖1,p := ‖f ‖p + ‖∇f ‖p < +∞}
,

where ‖ · ‖p is the usual Lp(U)-norm and ∇ denotes the gradient in the distri-
butional sense. When U is a bounded C1-domain, it was proved in [18] that a
function f ∈ W1,p(U) if and only if f ∈ Lp(U) and there exists a nonnegative
function g ∈ Lp(U) such that for Lebesgue-almost all x, y ∈ U ,∣∣f (x) − f (y)

∣∣ ≤ |x − y|(g(x) + g(y)
)
.

Let us now extend the above characterization to the case of random fields. For
p,q, r ∈ [1,∞] and T > 0, let Lr(T ) := Lr([0, T ]) and define

W1,q(
U ;Lp(

�;Lr(T )
))

(2.1)
:= {

f ∈ L1
loc

(
U × [0, T ];L1(�)

) : f,∇f ∈ Lq(
U ;Lp(

�;Lr(T )
))}

and

‖f ‖W1,q (U ;Lp(�;Lr(T ))) := ‖f ‖Lq(U ;Lp(�;Lr(T ))) + ‖∇f ‖Lq(U ;Lp(�;Lr(T ))).

Notice that, by Fubini’s theorem,

Lp(
U ;Lp([0, T ] × �

)) = Lp([0, T ] × �;Lp(U)
)
,

and hence,

W1,p(
U ;Lp([0, T ] × �

)) = Lp([0, T ] × �;W1,p(U)
)
.(2.2)

In what follows, we write Br := {x ∈ Rd : |x| < r}.
LEMMA 2.1. Let p ∈ (1,∞), q, r ∈ (1,∞] and f ∈ Lq(U ;Lp(�;Lr(T ))).

Assume that there exists a nonnegative measurable function g ∈ Lq(U) such that
for Lebesgue-almost all x, y ∈ U ,∥∥f (x, ·) − f (y, ·)∥∥Lp(�;Lr(T )) ≤ |x − y|(g(x) + g(y)

)
,(2.3)

then f ∈ W1,q(U ;Lp(�;Lr(T ))), and for Lebesgue-almost all x ∈ U ,∥∥∂if (x, ·)∥∥Lp(�;Lr(T )) ≤ 2g(x), i = 1, . . . , d.(2.4)

PROOF. Below, we always extend a function f defined on U to Rd by setting
f (x, ·) ≡ 0 for x /∈ U . Let � : Rd → [0,1] be a smooth function with support in
B1 and

´
� dx = 1. For n ∈ N, define a family of mollifiers �n(x) as follows:

�n(x) := nd�(nx).(2.5)

Define the mollifying approximations of f and g by

fn(x, t,ω) := f (·, t,ω) ∗ �n(x), gn(x) := g ∗ �n(x).(2.6)
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For ε ∈ (0,1], set

Uε := {
x ∈ U : d(x, ∂U) > ε

}
,

where d(x, ∂U) denotes the distance between x and the boundary ∂U . By (2.3), it
is easy to see that for any x, y ∈ Uε and n > 2/ε,

∥∥fn(x) − fn(y)
∥∥
Lp(�;Lr(T )) ≤

ˆ
Rd

∥∥f (x − z) − f (y − z)
∥∥
Lp(�;Lr(T ))�n(z)dz

≤ |x − y|
ˆ
Rd

(
g(x − z) + g(y − z)

)
�n(z)dz(2.7)

= |x − y|(gn(x) + gn(y)
)
.

Let {ei, i = 1, . . . , d} be the canonical basis of Rd . For all x ∈ Uε and n > 2/ε, by
Fatou’s lemma and (2.7), we have

∥∥∂ifn(x)
∥∥
Lp(�;Lr(T )) =

∥∥∥∥ lim
δ→0

|fn(x + δei) − fn(x)|
δ

∥∥∥∥
Lp(�;Lr(T ))

≤ lim
δ→0

‖fn(x + δei) − fn(x)‖Lp(�;Lr(T ))

δ
(2.8)

≤ lim
δ→0

(
gn(x + δei) + gn(x)

) = 2gn(x).

Integrating both sides on Uε , we obtainˆ
Uε

∥∥∂ifn(x)
∥∥q
Lp(�;Lr(T )) dx ≤ 2q

ˆ
Uε

gn(x)q dx ≤ 2q‖g‖q
Lq(U).(2.9)

In particular, if we let γ = p ∧ q ∧ r and UR
ε := Uε ∩ BR for R > 0, then by (2.2),

we have for any R ∈ N,

sup
n

‖fn‖Lγ ([0,T ]×�;W1,γ (UR
ε )) = sup

n
‖fn‖W1,γ (UR

ε ;Lγ ([0,T ]×�)) < ∞.

Since γ ∈ (1,∞) and Lγ ([0, T ]×�;W1,γ (UR
ε )) is weakly compact and fn → f

in Lγ ([0, T ] × �;Lγ (U)), we have

f ∈ Lγ ([0, T ] × �;W1,γ (
UR

ε

))
.(2.10)

By the arbitrariness of ε and R, one sees that for dt × P(dω)-almost all (t,ω),
x �→ f (x, t,ω) is weakly differentiable in U , and for all x ∈ Uε and n > 2/ε,

∂ifn(x, t,ω) = ∂if (·, t,ω) ∗ �n(x),

which, by (2.10) and the property of convolutions, then implies that

lim
n→∞‖∂ifn − ∂if ‖Lγ (UR

ε ×[0,T ]×�) = 0.
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Thus, for some subsequence nk and dx × dt × P(dω)-almost all (x, t,ω) ∈ UR
ε ×

[0, T ] × �,

∂ifnk
(x, t,ω) → ∂if (x, t,ω).

Now, by (2.8) and Fatou’s lemma, we obtain that for Lebesgue-almost all x ∈ UR
ε ,∥∥∂if (x)

∥∥
Lp(�;Lr(T )) ≤ lim

k→∞
∥∥∂ifnk

(x)
∥∥
Lp(�;Lr(T )) ≤ 2 lim

k→∞gnk
(x) = 2g(x).

The proof is complete by the arbitrariness of ε and R. �

We also have the following converse result.

LEMMA 2.2. Let f ∈ W
1,q
loc (Rd;Lp(�;Lr(T ))) for some p,q, r ∈ (1,∞].

For any R > 0, there exists a measurable function gR ∈ L
q
loc(R

d) such that for
Lebesgue-almost all x, y ∈Rd with |x − y| < R,∥∥f (x, ·) − f (y, ·)∥∥Lp(�;Lr(T )) ≤ |x − y|(gR(x) + gR(y)

)
.(2.11)

Moreover, if f ∈W1,q(Rd;Lp(�;Lr(T ))), then R can be ∞ and g∞ ∈ Lq(Rd).

PROOF. Let fn be the mollifying approximation of f as in (2.6). By [38],
Lemma 3.5, we have

∣∣fn(x, t,ω) − fn(y, t,ω)
∣∣ ≤ 2d

ˆ |x−y|

0

 
Bs

∣∣∇fn(x + z, t,ω)
∣∣dz ds

+ 2d

ˆ |x−y|

0

 
Bs

∣∣∇fn(y + z, t,ω)
∣∣dz ds.

Hence, for all x, y ∈ Rd with |x − y| < R,

∥∥fn(x) − fn(y)
∥∥
Lp(�;Lr(T )) ≤ 2d

ˆ |x−y|

0

 
Bs

∥∥∇fn(x + z)
∥∥
Lp(�;Lr(T )) dz ds

+ 2d

ˆ |x−y|

0

 
Bs

∥∥∇fn(y + z)
∥∥
Lp(�;Lr(T )) dz ds(2.12)

≤ 2d |x − y|(gn
R(x) + gn

R(y)
)
,

where

gn
R(x) := MR‖∇fn‖Lp(�;Lr(T ))(x) := sup

s∈(0,R)

 
Bs

∥∥∇fn(x + z)
∥∥
Lp(�;Lr(T )) dz

is the local maximal function of x �→ ‖∇fn(x)‖Lp(�;Lr(T )). Notice that

MR‖∇fn‖Lp(�;Lr(T ))(x) ≤ sup
s∈(0,R)

 
Bs

‖∇f ‖Lp(�;Lr(T )) ∗ �n(x + z)dz

≤ MR‖∇f ‖Lp(�;Lr(T )) ∗ �n(x),
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and MR‖∇f ‖Lp(�;Lr(T )) ∈ L
q
loc(R

d) by the property of maximal functions
(cf. [30]). By taking limits for both sides of

∥∥fn(x) − fn(y)
∥∥
Lp(�;Lr(T ))

≤ 2d |x − y|(MR‖∇f ‖Lp(�;Lr(T )) ∗ �n(x)

+MR‖∇f ‖Lp(�;Lr(T )) ∗ �n(y)
)
,

we obtain that for Lebesgue-almost all x, y ∈Rd with |x − y| < R,
∥∥f (x) − f (y)

∥∥
Lp(�;Lr(T ))

(2.13)
≤ 2d |x − y|(MR‖∇f ‖Lp(�;Lr(T ))(x) +MR‖∇f ‖Lp(�;Lr(T ))(y)

)
.

The proof is complete. �

Combining Lemma 2.1 with Lemma 2.2, we can give the following.

PROOF OF THEOREM 1.1. The sufficiency follows by Lemma 2.1. Let

f ∈W1,q(
U ;Lp(

�;Lr(T )
))

.

Since U is a bounded C1-domain, there exists an extension operator (cf. [1],
page 151, Theorem 5.22 or [30], Chapter VI)

T : W1,q(
U ;Lp(

�;Lr(T )
)) →W1,q(

Rd;Lp(
�;Lr(T )

))
such that Tf = f restricted on U and

‖Tf ‖W1,q (Rd ;Lp(�;Lr(T ))) ≤ C‖f ‖W1,q (U ;Lp(�;Lr(T ))).

Thus, (1.3) follows by (2.11). �

We also need the following local version of Khasminskii’s estimate (see [31],
Lemma 2.1).

LEMMA 2.3. Let (�,F , (Px)x∈Rd ; (Xt)t≥0) be a family of Rd -valued time-
homogenous Markov process. Let f be a nonnegative measurable function
over Rd . For given T ,R > 0, if

sup
|x|≤R

Ex

(ˆ T

0
f (Xt)1|Xt |≤R dt

)
=: c < 1,(2.14)

where Ex denotes the expectation with respect to Px , then for all x ∈Rd ,

Ex exp
{ˆ T

0
f (Xt)1|Xt |≤R dt

}
≤ 1 + 1

1 − c
Ex

(ˆ T

0
f (Xt)1|Xt |≤R dt

)
.(2.15)
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PROOF. Set fR(x) := f (x)1|x|≤R . By Taylor’s expansion, we can write

Ex exp
{ˆ T

0
fR(Xt)dt

}
=

∞∑
n=0

1

n!Ex

(ˆ T

0
fR(Xt)dt

)n

.

For n ∈ N, noticing that
(ˆ T

0
g(t)dt

)n

= n!
ˆ

· · ·
ˆ

�n
T

g(t1) · · ·g(tn)dt1 · · · dtn,

where

�n
T := {

(t1, . . . , tn) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T
}
,

we further have

Ex exp
{ˆ T

0
fR(Xt)dt

}

= 1 +
∞∑

n=1

Ex

(ˆ
· · ·

ˆ
�n

T

fR(Xt1) · · ·fR(Xtn)dt1 · · · dtn

)

= 1 +
∞∑

n=1

Ex

(ˆ
· · ·

ˆ
�n−1

T

fR(Xt1) · · ·fR(Xtn−1)

×EXtn−1

ˆ T −tn−1

0
fR(Xtn)dtn dt1 · · · dtn−1

)

(2.14)≤ 1 +
∞∑

n=1

cEx

(ˆ
· · ·

ˆ
�n−1

T

fR(Xt1) · · ·fR(Xtn−1)dt1 · · · dtn−1

)

≤ · · ·

≤ 1 +
∞∑

n=1

cn−1Ex

(ˆ T

0
fR(Xt1)dt1

)
= 1 + 1

1 − c
Ex

(ˆ T

0
fR(Xt)dt

)
,

where the second equality is due to the Markov property of Xt . �

Finally, we recall the following Krylov estimate about the distributions of con-
tinuous semimartingales (cf. [20] or [17], Lemma 3.1).

LEMMA 2.4. Let m = mt be a continuous Rd -valued local martingale, and
V = Vt a continuous Rd -valued process with finite variation on finite time inter-
vals. Suppose that

m(0) = V (0) = 0, d〈m〉t � dt,
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and set

a(t) := d〈m〉t
2 dt

, X(t) := m(t) + V (t).

For any λ > 0, stopping time τ and nonnegative Borel function f : R+ × Rd →
R+, we have

E

ˆ τ

0
e−λt (deta(t)

)1/(d+1)
f (t,Xt)dt

(2.16)

≤ Nd,λ

(
V2 +A

)d/(2(d+1))
(ˆ ∞

0

ˆ
Rd

f d+1(t, x)dx dt

)1/(d+1)

,

where

V := E

ˆ τ

0
e−λt

∣∣dV (t)
∣∣, A := E

ˆ τ

0
e−λt tra(t)dt,(2.17)

and Nd,λ is a constant depending only on d and λ.

3. Proof of Theorem 1.2. Below we write

L σ,b
s f (x) := 1

2

∑
ijk

σik(s, x)σjk(s, x)∂i∂jf (x) + ∑
i

bi(s, x)∂if (x).

Under (H1), it has been proven in [34, 37] that SDE (1.1) admits a unique local
strong solution. The following lemma gives the nonexplosion and the exponential
integrability of Xt(x) under (1.5) (see also [36]).

LEMMA 3.1. Let Xt(x) be the unique local solution of (1.1) with starting
point x. Under (H1) and (1.5), there is a unique global solution Xt(x) to a
SDE (1.1). Moreover, let α ∈ [0,1] and κ �→ Cκ ∈ R be as in (1.5).

• (α > 0) For any λ ≥ 2αCα+1 and for all t ≥ 0 and x ∈Rd , we have

E exp
{
e−λt (1 + ∣∣Xt(x)

∣∣2)α} ≤ exp
{(

1 + |x|2)α}
.(3.1)

• (α = 0) For any p ≥ 1 and λ ≥ Cp and for all t ≥ 0 and x ∈ Rd , we have

E
(
1 + ∣∣Xt(x)

∣∣2)p ≤ eλt (1 + |x|2)p
.(3.2)

PROOF. We only consider the case of α > 0. For α = 0, it is similar. For
R > 0, define

τR := inf
{
t ≥ 0 : ∣∣Xt(x)

∣∣ ≥ R
}
,(3.3)

and for λ ∈R,

f (t, x) := exp
{
e−λt (1 + |x|2)α}

.(3.4)
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By Itô’s formula, we have

Ef (t ∧ τR,Xt∧τR
) = f (0, x) +E

(ˆ t∧τR

0

(
∂sf + L σ,b

s f
)
(s,Xs)ds

)
.

Notice that(
∂sf + L σ,b

s f
)
(s, x)

= α
(
1 + |x|2)αe−λsf (s, x)

(
−λ

α
+ 2〈b, x〉 + ‖σ‖2

1 + |x|2

+ 2
∑
ijk

σikσjk

[
α

(
1 + |x|2)α−2e−λs + α − 1

(1 + |x|2)2

]
xixj

)
(3.5)

≤ α
(
1 + |x|2)αe−λsf (s, x)

(
−λ

α
+ 2〈b, x〉 + 2(α + 1)(1 + |x|2)α‖σ‖2

1 + |x|2
)

(1.5)≤ α
(
1 + |x|2)αe−λsf (s, x)

(
−λ

α
+ 2Cα+1

)
.

Hence, if λ ≥ 2αCα+1, then

Ef (t ∧ τR,Xt∧τR
) ≤ f (0, x).

By letting R → ∞, one sees that τ∞ = ∞, that is, no explosion, and (3.1) holds.
�

The following global Krylov estimate is an easy consequence of Lemmas 2.4
and 3.1.

LEMMA 3.2. Under (H1), (1.5) and (1.7), for any q > d + 1 and T > 0, there
exist constants C,γ > 0 such that for all nonnegative f ∈ Lq([0, T ] × Rd) and
x ∈ Rd ,

E

(ˆ T

0
f

(
t,Xt(x)

)
dt

)

≤ C
(
1α>0e(1+|x|2)α + 1α=0

(
1 + |x|2)γ )(ˆ T

0

ˆ
Rd

f q(t, y)dy dt

)1/q

.

PROOF. In Lemma 2.4, let us take

m(t) :=
ˆ t

0
σ(s,Xs)dWs, V (t) :=

ˆ t

0
b(s,Xs)ds,

so that

a(t) = d〈m〉t
2 dt

= 1

2

(
σσ ∗)

(t,Xt).
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By Hölder’s inequality and Lemma 2.4, we have

E

(ˆ T

0
f

(
t,Xt(x)

)
dt

)
= E

ˆ T

0
f

(
t,Xt(x)

)(
deta(t)

)1/q(
deta(t)

)−1/q dt

≤
(
E

ˆ T

0
f q/(d+1)(t,Xt (x)

)(
deta(t)

)1/(d+1) dt

)(d+1)/q

×
(
E

ˆ T

0

(
deta(t)

)−1/(q−d−1) dt

)(q−d−1)/q

(3.6)

≤ CT,d

(
V2 +A

)d/(2q)
(ˆ T

0

ˆ
Rd

f q(t, x)dx dt

)1/q

×
(
E

ˆ T

0

(
deta(t)

)−1/(q−d−1) dt

)(q−d−1)/q

,

where A and V are defined by (2.17). By (1.7), (3.1) and Young’s inequality, we
have

A+V2 ≤ CE

ˆ T

0

(∣∣b(t,Xt)
∣∣2 + ∥∥σ(t,Xt)

∥∥2)
dt

≤ CE

ˆ T

0

(
1α>0 exp

{
2C2

(
1 + |Xt |2)α′} + 1α=0C

2
2
(
1 + |Xt |2)2γ2

)
dt

(3.7)

≤ C

ˆ T

0

(
1α>0E exp

{
e−λt (1 + |Xt |2)α} + 1α=0E

(
1 + |Xt |2)2γ2

)
dt

≤ C
(
1α>0e(1+|x|2)α + 1α=0

(
1 + |x|2)2γ2

)
.

Similarly, by (1.4), we have for some γ3 > 0,

E

ˆ T

0

(
deta(t)

)−1/(q−d−1) dt ≤ C
(
1α>0e(1+|x|2)α + 1α=0

(
1 + |x|2)γ3

)
.(3.8)

Substituting (3.7) and (3.8) into (3.6), we obtain the desired estimate. �

Taking into account Lemma 2.3, we can prove the following global-exponential
moment estimate of Krylov’s type, which will play a crucial role in the proof of
Theorem 1.2. Since f is allowed to be singular in a ball and of linear growth at
infinity, we need to separately consider the interior and exterior parts of a ball by
using Lemmas 2.3, 3.1 and 3.2.

LEMMA 3.3. For given q > d + 1, let f ∈ L
q
loc(R+ × Rd) be a nonnegative

measurable function. Let α be as in (1.5). Suppose that for some R0,C0 > 0 and
α′ ∈ [0, α),

f (t, x)1{|x|>R0} ≤ C0
[
1α>0

(
1 + |x|2)α′ + 1α=0 log

(
1 + |x|2)]

.(3.9)
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Under (H1), (1.5) and (1.7), for any T > 0, there are C,γ > 0 such that for all
x ∈ Rd ,

E exp
{ˆ T

0
f

(
t,Xt(x)

)
dt

}
≤ C

(
1α>0e(1+|x|2)α + 1α=0

(
1 + |x|2)γ )

.(3.10)

PROOF. Set

fR0(t, x) := f (t, x)1|x|≤R0, f̄R0(t, x) := f (t, x)1|x|>R0 .

By Hölder’s inequality, we have

(
E exp

{ˆ T

0
f

(
t,Xt (x)

)
dt

})2

≤ E exp
{

2
ˆ T

0
f̄R0

(
t,Xt (x)

)
dt

}

×E exp
{

2
ˆ T

0
fR0

(
t,Xt(x)

)
dt

}
(3.11)

=: I1(T , x) × I2(T , x).

For I1(T , x), by (3.9), Jensen’s inequality and Lemma 3.1, we have

I1(T , x) ≤ E exp
{

2C0

ˆ T

0

[
1α>0

(
1 + ∣∣Xt(x)

∣∣2)α′ + 1α=0 log
(
1 + ∣∣Xt(x)

∣∣2)]
dt

}

≤ 1

T

ˆ T

0
E exp

{
2C0T

[
1α>0

(
1 + ∣∣Xt(x)

∣∣2)α′

+ 1α=0 log
(
1 + ∣∣Xt(x)

∣∣2)]}
dt

(3.12)

≤ C

T

ˆ T

0

(
1α>0E exp

{
e−λt (1 + ∣∣Xt(x)

∣∣2)α}

+ 1α=0E
(
1 + ∣∣Xt(x)

∣∣2)2C0T
)

dt

≤ C
(
1α>0 exp

{(
1 + |x|2)α} + 1α=0

(
1 + |x|2)2C0T

)
,

where λ is the same as in (3.1), and the third inequality is due to Young’s inequality.
For I2(T , x), for any ε ∈ (0,1) and θ > 1, by Young’s inequality we have

I2(T , x) ≤ eCεE exp
{
ε

ˆ T

0
fR0

(
t,Xt(x)

)θ dt

}
.(3.13)

Let us choose θ > 1 so that q
θ

> d + 1. Then by Lemma 3.2, we have

ε sup
|x|≤R0

E

(ˆ T

0
fR0

(
t,Xt (x)

)θ dt

)
≤ εCR0

(ˆ T

0

ˆ
|y|<R0

f (t, y)q dy dt

)θ/q

=: cε.
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Since (t,Xt(x)) is a time-homogenous Markov process in R+ ×Rd , if we choose
ε being small enough so that cε < 1, then by (2.15), we obtain

E exp
{
ε

ˆ T

0
fR0

(
t,Xt (x)

)θ dt

}
≤ 1 + ε

1 − cε

E

(ˆ T

0
fR0

(
t,Xt (x)

)θ dt

)
,

which, together with (3.11), (3.12), (3.13) and Lemma 3.2, yields the desired esti-
mate. �

We also need the following local-exponential moment estimate of Krylov’s type,
which is a consequence of Lemma 2.3 and [37], Theorem 2.1, (see also [34], The-
orem 4.1). In particular, the integrability index q in the following lemma can be
smaller than the one in Lemma 3.3.

LEMMA 3.4. For R ≥ 1, let τR be defined by (3.3). Under (H1) and (1.7),
for any q > d

2 + 1 and T > 0, there exists a constant CR > 0 such that for all
f ∈ L

q
loc(R

d+1) and |x| < R,

E exp
{ˆ T ∧τR

0
f

(
t,Xt (x)

)
dt

}
< ∞.(3.14)

PROOF. Let χR be a smooth cutoff function with χR(x) = 1 for |x| ≤ R and
χR = 0 for |x| ≥ R + 1, and set

bR(t, x) = b(t, x)χR(x), σR(t, x) := σ
(
t, χR(x)x

)
.

By (H1) and (1.7), it is easy to see that for some CR > 0 and α ∈ (0,1),∣∣bR(t, x)
∣∣ ≤ CR, C−1

R |ξ | ≤ ∣∣σR(t, x)ξ
∣∣ ≤ CR|ξ |,∣∣σR(t, x) − σR(t, y)

∣∣ ≤ CR|x − y|α.

Let XR
t (x) solve SDE (1.1) with (bR,σR) in place of (b, σ ). By the local unique-

ness, one has

XR
t (x) = Xt(x), t < τR.

Hence, letting θ > 1 so that q
θ

> d
2 + 1, by [37], Theorem 2.1, we have for all

|x| < R,

E

(ˆ T ∧τR

0

∣∣f (
t,Xt (x)

)∣∣θ dt

)
= E

(ˆ T

0

∣∣f (
t,XR

t (x)
)∣∣θ1t<τR

dt

)

≤ E

(ˆ T

0

∣∣f (
t,XR

t (x)
)∣∣θ1|XR

t (x)|<R dt

)

≤ CR

(ˆ T

0

ˆ
BR

∣∣f (t, y)
∣∣q dy dt

)θ/q

.
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Thus, using the same technique as in the proof of Lemma 3.3 and by (2.15), we
get (3.14). �

The following lemma will be used in the proof of irreducibility.

LEMMA 3.5. For given x0, y0 ∈ Rd and m ≥ 1, let Yt solve the following SDE:

dYt = −m(Yt − y0)dt + b(t, Yt )dt + σ(t, Yt )dWt, Y0 = x0.(3.15)

Under (H1) and (H2), for any T > 0, there exist constants C0,C1 > 0 such that
for all t ∈ [0, T ] and m ≥ 1,

E|Yt − y0|2 ≤ C0e−mt |x0 − y0|2 + C1√
m

(3.16)

and

E
(

sup
t∈[0,T ]

|Yt |2
)

< ∞.(3.17)

PROOF. Let b̃(t, x) := −m(x − y0) + b(t, x) and f be as in (3.4). As in the
calculations of (3.5), we have

(
∂sf + L σ,b̃

s f
)
(s, x)

≤ α
(
1 + |x|2)αe−λsf (s, x)

(
−λ

α
+ 2〈b̃, x〉 + 2(α + 1)(1 + |x|2)α‖σ‖2

1 + |x|2
)

(1.5)≤ α
(
1 + |x|2)αe−λsf (s, x)

(
−λ

α
+ 2Cα+1 + 2m(|x| · |y0| − |x|2)

1 + |x|2
)
.

If |x| ≤ |y0|, then
(
∂sf + L σ,b̃

s f
)
(s, x)

≤ α
(
1 + |y0|2)αe−λs exp

(
e−λs(1 + |y0|2)α){

2Cα+1 + 2m|y0|2}
.

If |x| > |y0| and choose λ > 2αCα+1, then
(
∂sf + L σ,b̃

s f
)
(s, x) ≤ 0.

Hence,

E exp
{
e−λt (1 + |Yt |2)α} = Ef (t, Yt ) ≤ f (0, x0) + C(y0)(1 + m)t.(3.18)

On the other hand, by Itô’s formula, we have for all t ∈ [0, T ]
dE|Yt − y0|2

dt
= −2mE|Yt − y0|2 + 2E

〈
Yt − y0, b(t, Yt )

〉 +E
∥∥σ(t, Yt )

∥∥2

(1.5)≤ −2mE|Yt − y0|2 + 2C1/2
(
1 +E|Yt |2) + 2|y0|E

∣∣b(t, Yt )
∣∣
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(1.7)≤ 2(C1/2 − m)E|Yt − y0|2 + C + (
E exp

{
C

(
1 + |Yt |2)α′})1/2

(3.18)≤ 2(C1/2 − m)E|Yt − y0|2 + C
√

m,

where C = C(T , x0, y0) is independent of m. By Gronwall’s inequality, we have

E|Yt − y0|2 ≤ e2(C2−m)t |x0 − y0|2 + C
√

me2(C2−m)t

ˆ t

0
e2(m−C2)s ds,

which then gives (3.16). As for (3.17), it follows by (3.15), (1.7) and (3.18). �

We are now in a position to give:

PROOF OF THEOREM 1.2. For any p ≥ 2 and T > 0, by (1.7) and
Burkholder’s inequality, we have for all 0 ≤ s ≤ t ≤ T ,

E
∣∣Xt(x) − Xs(x)

∣∣p

≤ CE

(ˆ t

s

∣∣b(
r,Xr(x)

)∣∣ dr

)p

+ CE

∣∣∣∣
ˆ t

s

σ
(
r,Xr(x)

)
dWr

∣∣∣∣
p

≤ CE

(ˆ t

s

∣∣b(
r,Xr(x)

)∣∣2 dr

)p/2

+ CE

(ˆ t

s

∥∥σ (
r,Xr(x)

)∥∥2 dr

)p/2

≤ C(t − s)p/2−1E

ˆ t

s

(∣∣b(
r,Xr(x)

)∣∣p + ∥∥σ (
r,Xr(x)

)∥∥p)
dr(3.19)

≤ C(t − s)p/2−1E

ˆ t

s

(
1α>0 exp

{
C

(
1 + ∣∣Xr(x)

∣∣2)α′}

+ 1α=0
(
1 + ∣∣Xr(x)

∣∣2)pγ2
)

dr

≤ C(t − s)p/2(
1α>0 exp

{(
1 + |x|2)α} + 1α=0

(
1 + |x|2)pγ2

)
,

where the last step is due to α′ ∈ [0, α), Young’s inequality and Lemma 3.1.
Next, set Zt := Xt(x) − Xt(y). For any p ≥ 1, by Itô’s formula we have

|Zt |2p = |x − y|2p + 2p

ˆ t

0
|Zs |2(p−1)〈Zs,

[
σ

(
s,Xs(x)

) − σ
(
s,Xs(y)

)]
dWs

〉

+ 2p

ˆ t

0
|Zs |2(p−1)〈Zs,

[
b
(
s,Xs(x)

) − b
(
s,Xs(y)

)]〉
ds

+ 2p

ˆ t

0
|Zs |2(p−1)

∥∥σ (
s,Xs(x)

) − σ
(
s,Xs(y)

)∥∥2 ds(3.20)

+ 2p(p − 1)

ˆ t

0
|Zs |2(p−2)

∣∣[σ (
s,Xs(x)

) − σ
(
s,Xs(y)

)]∗
Zs

∣∣2 ds

=: |x − y|2p +
ˆ t

0
|Zs |2p(

ξ(s)dWs + η(s)ds
)
,
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where

ξ(s) := 2p[σ(s,Xs(x)) − σ(s,Xs(y))]∗Zs

|Zs |2
and

η(s) := 2p〈Zs, [b(s,Xs(x)) − b(s,Xs(y))]〉
|Zs |2

+ 2p‖σ(s,Xs(x)) − σ(s,Xs(y))‖2

|Zs |2

+ 2p(p − 1)|[σ(s,Xs(x)) − σ(s,Xs(y))]∗Zs |2
|Zs |4 .

Here, we use the convention 0
0 = 0. By Doléans–Dade’s exponential formula, we

have

|Zt |2p = |x − y|2p exp
{ˆ t

0
ξ(s)dWs − 1

2

ˆ t

0

∣∣ξ(s)
∣∣2 ds +

ˆ t

0
η(s)ds

}
.

For R > |x| ∨ |y|, define a stopping time

τR := inf
{
t ≥ 0 : ∣∣Xt(x)

∣∣ ∨ ∣∣Xt(y)
∣∣ ≥ R

}
.

By (2.13), we have for s < τR ,
∣∣ξ(s)

∣∣ ≤ 2d+1p
(
M2R

∣∣∇σ(t, ·)∣∣(Xs(x)
) +M2R

∣∣∇σ(t, ·)∣∣(Xs(y)
))

.

Since M2R|∇σ(t, ·)|(x) ∈ L
q
loc(R+ ×Rd) with q > d +2, by Lemma 3.4, we have

for any κ > 0,

E exp
{
κ

ˆ T ∧τR

0

∣∣ξ(s)
∣∣2 ds

}
< ∞.

Hence, for any κ > 0, by Novikov’s criterion,

t �→ exp
{
κ

ˆ t∧τR

0
ξ(s)dWs − κ2

2

ˆ t∧τR

0

∣∣ξ(s)
∣∣2 ds

}
=: Eκ(t)

is a martingale. Thus, by Hölder’s inequality we have

E|Zt∧τR
|2p

≤ |x − y|2p(
EE2(t)

)1/2
(
E exp

{ˆ t∧τR

0

(∣∣ξ(s)
∣∣2 + 2η(s)

)
ds

})1/2

(3.21)

= |x − y|2p

(
E exp

{ˆ t∧τR

0

(∣∣ξ(s)
∣∣2 + 2η(s)

)
ds

})1/2

.
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On the other hand, in view of

|Zs |2(∣∣ξ(s)
∣∣2 + 2η(s)

) ≤ 8p2∥∥σ (
s,Xs(x)

) − σ
(
s,Xs(y)

)∥∥2

+ 4p
〈
Zs,

[
b
(
s,Xs(x)

) − b
(
s,Xs(y)

)]〉
(1.6)≤ 4p|Zs |2(

F2p

(
s,Xs(x)

) + F2p

(
s,Xs(y)

))
,

by (3.21), (1.8) and Lemma 3.3, as well as Lemma 3.1 and Fatou’s lemma, we
further have

E|Zt |2p

≤ |x − y|2p

(
E exp

{
4p

ˆ t

0

(
F2p

(
s,Xs(x)

) + F2p

(
s,Xs(y)

))
ds

})1/2

(3.22)

≤ C|x − y|2p{
g(x)g(y)

}1/4 ≤ C|x − y|2p(
g(x)1/2 + g(y)1/2)

,

where g(x) := 1α>0e(1+|x|2)α + 1α=0(1 + |x|2)γ , which, together with (3.19) and
Kolmogorov’s continuity criterion, yields that Xt(x) admits a bi-continuous ver-
sion, and for any T ,R > 0 and p ≥ 1,

E
(

sup
t∈[0,T ],|x|≤R

∣∣Xt(x)
∣∣p)

< +∞.(3.23)

(A) It follows by (3.22) and Lemma 2.1 with q = ∞, U being any ball.
(B) Following the above proof, for any T > 0, by Hölder’s inequality and

Doob’s maximal inequality, we have

E
(

sup
t∈[0,T ∧τR]

|Zt |2p
)

≤ |x − y|2p
(
E sup

t∈[0,T ]
E 2

1 (t)
)1/2

(
E exp

{
sup

t∈[0,T ∧τR]
2
ˆ t

0
η(s)ds

})1/2

≤ 2|x − y|2p(
EE 2

1 (T )
)1/2

(
E exp

{
sup

t∈[0,T ∧τR]
2
ˆ t

0
η(s)ds

})1/2

≤ 2|x − y|2p(
EE4(T )

)1/4
(
E exp

{
6
ˆ T

0

∣∣ξ(s)
∣∣2 ds

})1/4

×
(
E exp

{
sup

t∈[0,T ∧τR]
2
ˆ t

0
η(s)ds

})1/2

.

By the additional assumption (1.10), as in the above proof, we get

E
(

sup
t∈[0,T ]

|Zt |2p
)

≤ C|x − y|2p{
g(x)g(y)

}1/4 ≤ C|x − y|2p(
g(x)1/2 + g(y)1/2)

,

which, together with Lemma 2.1 with q, r = ∞ and U being any ball, im-
plies (1.11).
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(C) For each n ∈ N, let χn(x) be a nonnegative smooth function in Rd with
χn(x) = 1 for all x ∈ Bn and χn(x) = 0 for all x /∈ Bn+1. Let

bn(t, x) := χn(x)b(t, x), σn(t, x) := σ
(
t, χn(x)x

)
.

Clearly, for any T > 0,

bn ∈ Lq([0, T ] ×Rd)
, ∇σn ∈ Lq([0, T ] ×Rd)

,

and for some Kn > 0,

K−1
n |ξ | ≤ ∣∣σn(t, x)ξ

∣∣ ≤ Kn|ξ |, (t, x) ∈ [0, T ] ×Rd, ξ ∈ Rm.

Let Xn
t (x) be the solution of SDE (1.1) corresponding to bn and σn. By [37],

Theorem 1.1 or [34], for any bounded measurable function f and t > 0,

x �→ Ef
(
Xn

t (x)
)

is continuous.(3.24)

Fix R > 0. For n > R, define a stopping time

τn,R :=
{
t ≥ 0 : sup

|x|≤R

∣∣Xt(x)
∣∣ ≥ n

}
.

By Chebyshev’s inequality and (3.23), we have

lim
n→∞P(t > τn,R) ≤ lim

n→∞E
(

sup
s∈[0,t],|x|≤R

∣∣Xs(x)
∣∣p)

/n = 0.(3.25)

Moreover, by the local uniqueness of solutions to SDE (1.1) (see [37]), we have

Xt(x) = Xn
t (x), |x| ≤ R, t ∈ [0, τn,R].

Let f be a bounded measurable function. For any x, y ∈ BR , we have
∣∣E(

f
(
Xt(x)

) − f
(
Xt(y)

))∣∣
≤ ∣∣E(

f
(
Xt(x)

) − f
(
Xt(y)

)
1t≤τn,R

)∣∣ + 2‖f ‖∞P(t > τn,R)

= ∣∣E(
f

(
Xn

t (x)
) − f

(
Xn

t (y)
)
1t≤τn,R

)∣∣ + 2‖f ‖∞P(t > τn,R)

≤ ∣∣E(
f

(
Xn

t (x)
) − f

(
Xn

t (y)
))∣∣ + 4‖f ‖∞P(t > τn,R),

which together with (3.24) and (3.25) yields the continuity of x �→ E(f (Xt(x))).
(D) Our proof is adapted from [28]. It suffices to prove that for any T ,a > 0 and

x0, y0 ∈ Rd ,

P
(∣∣XT (x0) − y0

∣∣ ≤ a
)
> 0.

In what follows, we shall fix T ,a > 0 and x0, y0 ∈ Rd . Let Yt (x0) solve SDE (3.15)
and for N > 0, set

τN := inf
{
t : ∣∣Yt (x0)

∣∣ ≥ N
}
.



3682 L. XIE AND X. ZHANG

By (3.16) and (3.17), we may choose N and m large enough so that

P(τN ≤ T ) + P
(∣∣YT (x0) − y0

∣∣ > a
)
< 1.(3.26)

Define

Ut := −mσ(t, Yt )
∗[

σ(t, Yt )σ (t, Yt )
∗]−1

(Yt − y0)

and

ZT := exp
(ˆ T ∧τN

0
Us dWs − 1

2

ˆ T ∧τN

0
|Us |2 ds

)
.

Since |Ut∧τN
|2 is bounded, E[ZT ] = 1 by Novikov’s criteria.

By Girsanov’s theorem, W̃t := Wt + Vt is a Q-Brownian motion, where

Vt :=
ˆ t∧τN

0
Us ds, Q := ZT P.

By (3.26) we have

Q
({τN ≤ T } ∪ {∣∣YT (x0) − y0

∣∣ > a
})

< 1.(3.27)

Notice that the solution Yt of (3.15) also solves the following SDE:

Yt∧τN
= x0 +

ˆ t∧τN

0
b(s, Ys)ds +

ˆ t∧τN

0
σ(s, Ys)dW̃s.

Set

θN := inf
{
t : |Xt | ≥ N

}
.

Then the uniqueness in distribution for (1.1) yields that the law of {(Xt ×
1{θN≥t})t∈[0,T ], θN } under P is the same as that of {(Yt1{τN≥t})t∈[0,T ], τN } under
Q. Hence,

P
(∣∣XT (x0) − y0

∣∣ > a
) ≤ P

({θN ≤ T } ∪ {
θN ≥ T ,

∣∣XT (x0) − y0
∣∣ > a

})
= Q

({τN ≤ T } ∪ {
τN ≥ T ,

∣∣YT (x0) − y0
∣∣ > a

})
≤ Q

({τN ≤ T } ∪ {∣∣YT (x0) − y0
∣∣ > a

})
< 1.

The proof is complete. �

4. Proof of Theorem 1.7. We first prepare the following easy lemma.

LEMMA 4.1. Let f : Rd →R be a measurable function. Assume that for some
g1 ∈ L

p1
loc(R

d), g2 ∈ L
p2
loc(R

d) and some R > 0,∣∣f (x) − f (y)
∣∣ ≤ |x − y|(g1(x) + g1(y)

) ∀x, y ∈ B3R,(4.1) ∣∣f (x) − f (y)
∣∣ ≤ |x − y|(g2(x) + g2(y)

) ∀x, y /∈ BR.(4.2)
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Then we have for all x, y ∈ Rd with |x − y| ≤ R,
∣∣f (x) − f (y)

∣∣ ≤ 2d+1|x − y|(g(x) + g(y)
)
,

where

g(x) =MRg1(x)1|x|≤2R +MRg2(x)1|x|>2R,

and MRgi(x) := sups∈(0,R)

ffl
Bs

|gi(x + z)|dz, i = 1,2.

PROOF. First of all, by the assumptions and Lemma 2.1, we have
∣∣∇f (x)

∣∣ ≤ 2g1(x), |x| < 3R,
∣∣∇f (x)

∣∣ ≤ 2g2(x), |x| > R.

By (2.13), we have for Lebesgue-almost all x, y ∈Rd with |x − y| < R,
∣∣f (x) − f (y)

∣∣ ≤ 2d |x − y|(MR|∇f |(x) +MR|∇f |(y)
)
,

which in turn implies the desired estimate by the definition of MR and redefinition
of g(x) on a Lebesgue zero set. �

Below, we fix T > 0 and write for p ∈ [1,∞],
Lp(T ) := Lp([0, T ] ×Rd)

.

Let χ ∈ C∞(Rd; [0,1]) be a cutoff function with

χ(x) = 1, ∀|x| ≤ 1, χ(x) = 0, ∀|x| > 2, ‖∇χ‖∞ ≤ 2,

and for R > 0, we set

χR(x) := χ(x/R), χ̄R(x) = 1 − χR(x).

Let R0 be as in (H2′). Without loss of generality, we may assume R0 ≥ 4 so that

‖∇χR0‖∞ ≤ ‖∇χ‖∞/R0 ≤ 1/2.(4.3)

We make the following decomposition for b:

b = b1 + b2, b1 := bχR0, b2 := bχ̄R0 .

In view of (H1′), the function b1 is global Lq -integrable; while (H2′) implies that
b2 satisfies (H2). On the other hand, by Sobolev’s embedding theorem, (H1′) and
(H2′) also imply that for some α ∈ (0,1) and C > 0,

∥∥σ(t, x) − σ(t, y)
∥∥ ≤ C|x − y|α.

The following result is an easy combination of [21], page 120, Theorem 1,
and [22], Theorem 10.3 and Lemma 10.2 (see [34], Theorem 3.5, for a detailed
proof).
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LEMMA 4.2. Let q > d +2. Under (H1′) and (H2′), for any λ > 0, there exists
a unique solution u ∈ Lq(T ) with ∇2u ∈ Lq(T ) to the following backward PDE:

∂tu + L σ,b1
t u + b1 = λu, u(T ) = 0.(4.4)

Moreover, there exist a λ > 0 and a positive constant C = C(K,d, q, T ,λ,

‖b1‖Lq (T )) such that

‖∂tu‖Lq (T ) + ∥∥∇2u
∥∥
Lq (T ) ≤ C < ∞ and ‖u‖L∞(T ) + ‖∇u‖L∞(T ) ≤ 1

2 .(4.5)

Let u(t, x) be as in the above lemma. Now, we want to follow the same idea as
in [37] to perform Zvonkin’s transformation and transform SDE (1.1) into a new
one with coefficients satisfying (H1) and (H2). However, if we argue entirely the
same as usual and consider the transform

(t, x) �→ �(t, x) := x + u(t, x),

then one finds that condition (1.8) may not be satisfied for the new coefficients (see
Lemma 4.4 below). For this reason, we define

uR0(t, x) := u(t, x)χ2R0(x), �t (x) := x + uR0(t, x),

where R0 is the same as in (H2′).
We have

LEMMA 4.3. The following statements hold:

(i) For each t ∈ [0, T ], the map x → �t(x) is a C1-diffeomorphism and

‖∇�t‖∞,
∥∥∇�−1

t

∥∥∞ ≤ 2.

Moreover, ∇�t(x) and ∇�−1
t (x) are Hölder continuous in x uniformly in t ∈

[0, T ].
(ii) Let q > d + 2. We have ∂t�t ,∇2�t, ∂t�

−1
t ,∇2�−1

t ∈ Lq(T ) and

∂t�t + L σ,b1
t �t = σikσjk∂iu∂jχ2R0 + 1

2uσikσjk∂i∂jχ2R0 + λuR0 .(4.6)

Here and below, we use Einstein’s convention for summation.

PROOF. By (4.5) and (4.3), we have
1
2 |x − y| ≤ ∣∣�t(x) − �t(y)

∣∣ ≤ 3
2 |x − y|.

Thus, (i) follows by (4.5) and Sobolev’s embedding result (see [22], Lemma 10.2).
(ii) ∂t�t ,∇2�t, ∂t�

−1
t ,∇2�−1

t ∈ Lq(T ) follows by (4.5) and (i). Moreover, by
elementary calculations, we have

∂t�t + L σ,b1
t �t = σikσjk∂iu∂jχ2R0 + 1

2uσikσjk∂i∂jχ2R0
(4.7)

+ ubi
1∂iχ2R0 + λuR0 + b1(1 − χ2R0).
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Notice that

bi
1∂iχ2R0 = χR0b

i∂iχ2R0 = 0, b1(1 − χ2R0) = bχR0(1 − χ2R0) = 0.

Equality (4.6) follows by (4.7). �

Using the above lemma, we may prove the following Zvonkin transformation
(see [16, 37] for more details).

LEMMA 4.4. Let h be defined by the right-hand side of (4.6). Then Xt solves
SDE (1.1) if and only if Yt := �t(Xt) solves the following SDE:

dYt = b̃(t, Yt )dt + σ̃ (t, Yt )dWt,(4.8)

where

σ̃ := (∇� · σ) ◦ �−1, b̃ := (h + b2 · ∇�) ◦ �−1.(4.9)

PROOF. (⇒) By (4.6) and generalized Itô’s formula (see [19], page 122, The-
orem 1), we have (4.8).

(⇐) By elementary calculations, it is easy to check that

∂t�
−1
t + L σ̃ ,b̃

t �−1
t = b ◦ �−1

t .

As above, using generalized Itô’s formula again, we obtain that �−1
t (Yt ) solves

the SDE (1.1). �

Now we give:

PROOF OF THEOREM 1.7. Since (A)–(D) are invariant under diffeomorphism
transformation x �→ �t(x), by Lemma 4.4, it suffices to check that σ̃ and b̃ defined
by (4.9) satisfy (H1)–(H2) so that we can use Theorem 1.2 to complete the proof.

First of all, (H1) is obvious by Lemma 4.3 and (H1′). For (H2), by definitions
(4.9) and Lemma 4.3, it is easy to see that∣∣b̃(t, x)

∣∣ ≤ ‖h‖∞ + 2
∣∣b2

(
t,�−1

t (x)
)∣∣ ≤ C

(
1 + ∣∣�−1

t (x)
∣∣) ≤ C

(
1 + |x|),

and by (2.11), for any R > 0, there are functions gR, ĝR ∈ L
q
loc(R+ × Rd) such

that for all x, y ∈ Rd with |x − y| ≤ R∥∥σ̃ (t, x) − σ̃ (t, y)
∥∥ ≤ |x − y|(gR(t, x) + gR(t, y)

)
,∣∣b̃(t, x) − b̃(t, y)

∣∣ ≤ |x − y|(ĝR(t, x) + ĝR(t, y)
)
.

On the other hand, by the definition of �, there exists a R1 ≥ 2R0 large enough
such that

�t(x) = �−1
t (x) = x, |x| ≥ R1.



3686 L. XIE AND X. ZHANG

Hence, for |x| ≥ R1, we have

b̃(t, x) = b(t, x), σ̃ (t, x) = σ(t, x).

Thus, by (H2′) and Lemma 4.1, one sees that (H2) and (1.10) hold for b̃ and σ̃ .
The proof is complete. �
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