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IMPROPER POISSON LINE PROCESS AS SIRSN
IN ANY DIMENSION

BY JONAS KAHN

Université de Lille 1, CNRS

Aldous has introduced a notion of scale-invariant random spatial network
(SIRSN) as a mathematical formalization of road networks. Intuitively, those
are random processes that assign a route between each pair of points in Eu-
clidean space, while being invariant under rotation, translation, and change
of scale, and such that the routes are not too long and mainly lie on “main
roads”.

The only known example was somewhat artificial since invariance had to
be added using randomization at the end of the construction. We prove that
the network of geodesics in the random metric space generated by a Poisson
line process marked by speeds according to a power law is a SIRSN, in any
dimension.

Along the way, we establish bounds comparing Euclidean balls and balls
for the random metric space. We also prove that in dimension more than
two, the geodesics have “many directions” near each point where they are
not straight.

1. Introduction. Scale-invariant random spatial networks (SIRSNs) are a
class of random networks defined as a route between each pair of points, with
three types of properties. First, invariance properties, second, guarantees on mean
lengths of routes—in the Euclidean metric—and third guarantees on the mean
length of intersection of a suitably truncated version of the network with a given
compact set. It turns out that these conditions are enough to deeply constrain the
network. For example, all SIRSNs have singly-infinite paths for which any subset
is included in a route, but no such paths are doubly-infinite.

The only known example is the binary hierarchy model, in two dimensions. It
consists of minimum-time paths on a dyadic grid where speed depends on the two-
valuation. Invariance is obtained by a randomization construction. The latter fea-
ture is somewhat unsatisfying: the model itself is invariant, but realisations exhibit
long-range dependence: observation of a small region gives much information on
the network everywhere.

A more “natural” candidate for a SIRSN is therefore the Poisson line process
model. Intuitively, lines are thrown uniformly at random in R

d , and marked with
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random speed limits. Slower lines are dense in R
d . Then the route between two

points is the minimum-time path made of segments of these lines. Remarkably,
even in dimension d ≥ 3, when random lines almost surely do not intersect, such
paths exist. The whole construction is invariant. The aim of this paper is to show
that the Poisson line process is indeed a SIRSN for all d ≥ 2.

Historically, Aldous (2014) introduced the notion of a SIRSN, and proved a
number of their properties, including those mentioned in the first paragraphs of this
Introduction. Aldous and Ganesan (2013) give a verbal description. The motivation
was twofold.

First, Aldous and Kendall (2008) had proved that it was possible to build a road
network connecting a prescribed set of points that both had routes almost as short
as the segments between each pair of points, that is, the corresponding Euclidean
geodesics, and total road length almost as short as the Steiner tree, that is, the short-
est possible connecting network. However, the network was less efficient at small
scales. Thanks to their invariance properties, SIRSNs have the same efficiency at
all scales. It turns out that there is a trade-off: for a SIRSN, there is a lower bound
on the expected total length of the network, which is decreasing in the expected
route length between two points.

The second motivation was to give a mathematical abstraction of road networks
and maps, in particular online maps as they are used today. Namely, we may
change viewpoint, zoom in or out, and the appearance changes little, as smaller
roads are shown and hidden. SIRSNs are then defined as statistically invariant un-
der translation, rotation and change of scale. Moreover, we are less interested in
the roads than in the routes: how do we drive from A to B? SIRSNs are thus de-
fined by giving routes only, namely unique routes connecting pairs of points. It
turns out that a notion of “main roads” at any scale can be built from the network
of routes itself. To wit, the network of main roads at scale r would be the network
of routes deprived of balls of radius r around their endpoints. It is finite in every
compact. Similarly, Kalapala et al. (2006) have shown that a number of statistics
of real road networks do not depend on scale.

Aldous (2014)proved that the binary hierarchy model was a SIRSN, and sug-
gested two other possible models for SIRSN, one of which is the Poisson line
process model. Kendall (2015) has then proved important properties of the Pois-
son line process with appropriate speeds: it does yield a random metric space and
this space is a geodesic space. Moreover, in dimension two, the geodesics are al-
most everywhere unique, the geodesics are locally of finite mean-length, and the
subnetwork obtained from the routes connecting points of an independent Poisson
point process has finite length in a compact set. The latter properties establish a
“pre-SIRSN” result, but fall short of the full definition.

As a candidate for a SIRSN, Poisson line process model then fall in a large cat-
egory: networks derived from geodesic spaces. Indeed, from any geodesic space,
we may build a spatial network by associating to any two points the geodesic(s)
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connecting them. It is not obvious how one might determine when such a network
is a SIRSN.

In Section 2, we give a precise definition of a SIRSN and of Poisson line pro-
cesses. We also present other notation and definitions, and recall some known re-
sults, in particular that the Poisson line process with speed limits yields a random
metric on R

d . We then give a few basic properties of �-paths, that is paths in
this metric space. In Section 3, we give sharp bounds on the random diameter
for this metric of a Euclidean ball, with a few generalizations. These estimates
will be an important tool in several subsequent proofs. In Section 4, we prove
that geodesics between a given pair of points are almost surely unique, in any di-
mension. Lemma 4.6 will play a central role: we introduce the notion of “many
directions”, and the lemma states that geodesics have many directions at relevant
points. A consequence is that any path using the same lines as a geodesic will con-
tain these points. We will then conclude by noticing that geodesics between the
same pair of points almost surely use the same lines (Lemma 4.7). In Section 5,
we prove that geodesics have finite mean Euclidean length. Alternatively, we may
see the result as supplying a stochastic control of the Euclidean diameter of balls
for the metric generated by the Poisson line process. Section 6 contains the last
and most important component of the proof that the Poisson line process generates
a SIRSN. Intuitively, we establish a sharp control of the total length of the inter-
section of all infinitely many geodesics minus a ball around each endpoint, with
a given ball. This corresponds to the fact that all these geodesics coalesce before
hitting the ball and split after leaving it. Bounds are given using the pigeon-hole
principle and the fact that relevant geodesics must use the few fast lines that hit the
ball. Finally, Section 7 suggests a few potential directions of future inquiry.

2. Notation, definitions, basic properties. We follow Kendall’s (2015) nota-
tion whenever possible.

We write B(x, r) for the ball with center x and radius r .
We first give the precise definition of a SIRSN. Suppose that � is an atom-

free measure on a measurable space (X ,B). Recall that a Poisson point process of
intensity measure � is a random set of points such that for any B ∈ B, the number
of points N(B) in B is a Poisson variable with intensity �(B), and the number of
points N(Bi) in disjoint Bi are independent. Then a SIRSN is defined as follows.

DEFINITION 2.1. A SIRSN is a process that associates to any two points x1
and x2 in R

d random routes such that:

1. Between two specified points x1 and x2, there is almost surely a unique route
R(x1, x2) = R(x2, x1). It is a finite-length path connecting x1 and x2.

2. For a finite number of points x1, . . . , xk in R
d , consider the subnetwork

N (x1, . . . , xk) formed by the random routes connecting all xi and xj . Then
N (x1, . . . , xk) is statistically invariant under translation, rotation and change of
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scale: if R is a Euclidean similarity of R
d , then N (R(x1), . . . ,R(xk)) has the

same distribution as RN (x1, . . . , xk).
3. Let D1 be the length of a route between two points at unit distance. Then

E[D1] < ∞.
4. Let {�n,n ∈ N

∗} be a collection of Poisson processes on R
d with intensity

n times Lebesgue, all independent from the SIRSN. Suppose they are coupled so
that �n ⊂ �n+1. Write � = ⋃

n∈N∗ �n. Then the intensity (mean length per unit
area) p(1) of the following long-distance network is finite:⋃

x1,x2∈�

(
R(x1, x2)

) \ (
B(x1,1) ∪ B(x2,1)

)
.

Note that Kendall (2015) uses more conditions in his definition, but the missing
properties are implied by property 4. They were useful to define weaker variants
of a SIRSN.

The use of Poisson processes in property 4 makes it look slightly complex, but
this is a technical shortcut: it allows us to study the network through only countably
many routes. Morally, we would like property 4 to hold true if the long-distance
network was defined as the union of all routes between all pairs of points of Rd ,
minus the balls around the endpoints. But there would be uncountably many routes,
and it would be harder to work with.

We now turn to the definition of the improper Poisson line process. We first need
a measure on lines. More details on this kind of process may be found in the book
by Stoyan, Kendall and Mecke (1996).

Let Ld be the space of all lines of Rd . A line is “un-sensed”, that is, it is seen as
a subset of Rd , without a preferred direction. For K , a compact of Rd , the hitting
set of K is the set of lines that intersect K , denoted as

[K] = {
l ∈ Ld : l hits K

}
.

We also denote by md the Hausdorff measure of dimension d . With this nota-
tion, we have the following.

DEFINITION 2.2. The invariant line measure μd(l) is the unique measure on
the space of lines of Rd that is invariant under Euclidean isometries, and normal-
ized by the following requirement: for a compact set K in R

d of nonempty interior,
the μd -measure of the hitting set of K is half the Hausdorff (d − 1)-dimensional
measure of the boundary of K :

μd

([K]) = 1
2md−1(∂K).

The reason for the normalizing constant 1
2 is to ensure that the measure of the

hitting set of a flat hypersurface A is its hyperarea md−1(A).
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We will often need the hitting set of a ball, so write ωd−1 for the hyperarea of
the unit sphere S

d−1. Thus μd([B(x, r)]) = ωd−1
2 rd−1.

Consider the following parameterization of a line l: it is given by a direction
and a localization. The direction is an element of the projective space PR

d−1. It
then defines a hyperplane normal to this direction, through a special point—the
origin—of Rd . The localization is a point on this hyperplane. The line l is then the
line through this point normal to this hyperplane.

Hence, writing H = R
d−1 for an hyperplane of Rd , we may parameterize the set

of lines by PR
d−1 ⊗H. Notice that if we want to keep track of the topology of the

set of lines, the product should be twisted, but we only need measure-theoretical
properties, so we stick to the simpler direct product.

Recall that the projective space PR
d−1 may be seen as the sphere S

d−1 with
opposite—antipodal—points identified. The projective space then inherits the nat-
ural metric on the sphere, namely the distance between two pairs of antipodal
points is the angle between the pair of segments joining them, in radians. Up to
a null-measure set, the projective space may be more simply viewed as a hemi-
sphere.

With this parameterization, and writing B
d for the unit ball in R

d , we may write
μd as a product measure on PR

d−1 ⊗H:

μd = 1

md−1(Bd−1)
md−1 ⊗ md−1.

To make a clearer reference to it, we write μ
(o)
d−1 = 2md−1/md−1(S

d−1) for

the probability measure on PR
d−1. For a set of lines L, we write μ

(o)
d−1(L) for

the measure of the set of directions of lines in L that go through the origin. In

particular, for A a subset of Rd and x a point of Rd , the value μ
(o)
d−1([A − x]) will

be the proportion of directions that appear in the set of directions of lines through
A and x. We call it the solid angle of A from x. Notice that it is not quite the
usual definition since pairs of antipodal points contribute only once, and since we
have normalized to a probability measure. This is because we are concerned with
orientations of undirected lines, rather than angles of directed lines.

A special case we shall need is the measure of a cone, that is, all the lines
with angle less than θ0 from a given line through the origin. This measure is
proportional to the area on the hemisphere hit by the lines, hence proportional
to

∫ θ0
0 sind−2 θ cos θ dθ = sind−1(θ0)/(d − 1). The integral up to θ0 = π/2 has

value 1, so that

μ
(o)
d−1(cone of aperture θ0) = sind−1(θ0).(1)

The uniform Poisson line process is the image of the Poisson point process
on Ld with intensity measure μd .

We define our improper Poisson line process by adding a mark on each line, a
speed limit. Namely, the improper Poisson line process is the image of a Poisson
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point process on PR
d−1 ⊗ H ⊗ R

+∗ with intensity measure μd,γ , given by the
density

dμd,γ (l, v) = dμd(l)(γ − 1)v−γ dv

for γ > d . Kendall (2015) does define this process for all γ > 1, but the relevant
case for SIRSNs is that of γ > d .

In words, we have more and more slower lines, following a power law. Since∫
v−γ dv diverges at zero, the lines are dense in R

d . However, lines faster than any
given speed are not dense. In particular, the number of lines faster than v0 hitting
a convex set K is a Poisson variable with parameter

μd,γ

(
(l, v) : l ∈ [K] and v ≥ v0

) = μd

([K]) ∫ ∞
v0

(γ − 1)v−γ dv

= 1

2
md−1(∂K)v

−(γ−1)
0 .

We call � = �(d,γ ) the corresponding random process of marked lines (l, v).
Since the dimension d and parameter γ will always be clear from context, we
drop them in the notation. Notice that the total number of lines is almost surely
countable. If (l, v) ∈ �, we say that the speed of line l is v and denote it v(l).

For a subset L of lines, we write �L for the restriction of � to these lines, that
is, �L = {(l, v) : l ∈ L}. In particular, the line process restricted to lines hitting A

but not B is �[A]\[B].
We denote S the silhouette of �, that is the random set in R

d made of all the
lines of �, that is S = {x ∈ R

d : ∃(l, v) ∈ � : x ∈ l}. We also write Sv0 for the
random closed set in R

d made of all the lines (l, v) in � such that v ≥ v0.
We may then define �-paths.

DEFINITION 2.3. A finite-time �-path is a locally Lipschitz path in R
d

respecting the speed limits imposed by �. More precisely, it is a continuous
R

d -valued function

ξ : [0, T ] → R
d,

with T finite, such that for almost all t ∈ [0, T ], either:

• the speed is zero: ξ ′(t) = 0;
• or the path follows a line in �: there is a v ≥ |ξ ′(t)| such that (ξ(t)+ξ ′(t)R, v) ∈

�.

We call T = T (ξ) the time length of the path ξ , or just its time for short.
An infinite-time �-path ξ is the same, with T (ξ) = ∞, except that its domain

is [0,∞).
A �-path is a finite or infinite-time �-path.
In an abuse of notation, we write ξ ∈ �.
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Notice that the image of a �-path is not necessarily contained in the silhou-
ette S . It only needs to have speed zero outside S . The remark is especially relevant
in dimension at least three, where the lines never cross. However, since the lines
are dense in R

d , it turns out that there are paths joining any pair of points, without
any segment in R

d \S . We give a clearer intuition of their tree-like structure in the
proof of Theorem 3.1 and Figure 1.

We write �ab = {ξ ∈ � : ξ(0) = a and ξ(T (ξ)) = b} for any two points a and b.
The following theorem is a union of results from Kendall’s (2015) paper.

THEOREM 2.4. Almost surely, all finite-time �-paths have finite Euclidean
length.

Almost surely, there are finite-time �-paths between each pair of points of Rd .
Moreover, for any two points a and b, the infimum Tab of time lengths T (ξ) of
�-paths ξ ∈ �ab is attained.

Hence, Rd with the metric d(a, b) = Tab is a random metric geodesic space.

We call this metric time length or �-length. Time diameters and similar notions
are defined in the same way.

We denote by N the random network made by all the geodesics connecting all
pairs of points in R

d . Our aim is to show that N is a SIRSN.
It is often possible to define similar metrics on other sets � of marked lines,

though they might not be geodesic. We then speak of �-length. The typical case is
when we restrict � to a subset of lines L, yielding � = �L and �L-length.

We now introduce some notation and remarks to make easier manipulating paths
and geodesics:

• If ξ ∈ �ab, we often write ξab instead.
• Concatenation of �-paths is denoted ξac = ξabξbc, that is, ξac(t) = ξab(t) if

t < T (ξab), and ξac(t) = ξbc(t − T (ξab)) if t ≥ T (ξab).
• We use the letter g for geodesics, and usually gab for a geodesic from a to b.

We say that gab is unique if there is a unique geodesic from a to b.
• In an abuse of notation, we identify a �-path ξ with its image in R

d whenever
it is clear. Hence, we may write x ∈ ξ if there is a time t such that ξ(t) = x.
Similarly, if gab is unique and c, d ∈ gab, we say that gcd is included in gab.

• If gab is unique and c ∈ gab, then gab = gacgcb.
• T (gab) = Tab.
• For a line l ∈ � and a �-path ξ : [0, T ] → R

d , we define the intersection length
of ξ and l as Lξ(l) =̂m1(l ∩ ξ([0, T ])).

• If the intersection length of ξ and l is not zero, we say that l is in the support of
ξ , or that it is supporting ξ . We write l � ξ . Moreover, we denote the support of
ξ by Lξ =̂ {l ∈ � : Lξ(l) > 0}.
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FIG. 1. We cover each ball Bi with a r1-net, and connect each pair of balls of the net with a
segment, be it a point (a). We then do the same at each scale, for rn+1-nets of the balls of the
rn-nets (b). Each point belongs to a ball of the r1-net, so we build a path between two points starting
from the segment connecting their balls (c). We then (d) and (e) connect the points to the segment
endpoints with the segment connecting their balls in their respective r2-nets. At stage n, the path (f)
is made of 2n segments at each scale n.
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• We define the intersection time of l and ξ as Tξ (l) =̂m1([0, T ] ∩ ξ−1(l)).
• In particular, almost surely, for all geodesics g, we have the following equality

and decompositions:

Lg(l) = v(l)Tg(l) for all l ∈ �,

T (g) = ∑
l∈Lg

Tg(l)(2)

= ∑
l∈Lg

v(l)Lg(l).

• If the support of ξ is included in L, that is Lξ ⊂ L, we say that ξ is �L-path.
We abuse notation by writing ξ ∈ �L.

• Similarly, we write ξ ∈ �ab
L if ξ ∈ �L and ξ ∈ �ab.

Finally, a few more generic notation. We call internal ε-net of a subset A of
R

d any maximal subset x1, . . . , xk of A such that |xi − xj | ≥ ε for all i 
= j . For
a set A ⊂ R

d , we write Ar for its r-widening, that is the Minkowski sum Ar =
A ⊕ B(0, r). We denote the maximal speed of a set of lines L by vmax(L). That
is, vmax(L) = supl∈L v(l). Notice that if those lines all hit a compact set K , this
supremum is a maximum. We abuse notation by writing vmax(A) = vmax([A]) for
A ∈ R

d . We use C,c, c1, . . . , ci for any positive constant.

3. �-diameters of sets. We start with giving a more quantitative version of
Theorem 3.6 in Kendall’s (2015) article. Namely, we show that in a given precom-
pact set A, any two points can be joined in finite time, and that the largest time
between two such points—the �-diameter of A—is not too big with high proba-
bility: this random variable has more than an exponential moment. We include a
generalization that we will need later on, by allowing the possibility of ignoring
lines hitting forbidden areas F .

THEOREM 3.1. Recall that d ≥ 2 and γ > d . Let αmin = 2(γ−1)/(γ−d). Let
� < �max = (4αmin)

1−d and define αmax = �−1/(d−1)/4. Choose α such that
αmin < α < αmax, and note in particular that α > 1.

Let A and F be two subsets of Rd , such that, for some r > 0:

• A is connected.
• From any x ∈ Ar/(α−1), the solid angle μ

(o)
d−1([F − x]) of F is less than �.

• A may be covered by
◦

N balls Bi of radius r .

Then there is a T1 depending only on α, �, γ and d such that, for any
εmax = 1/(2

◦
N(2α + 1)d) > ε > 0, with probability 1 − ε/εmax, the diameter of
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A on �[Ar/(α−1)]\[F ] satisfies the bound

TA,F =̂ sup
x,y∈A

inf
ξ∈�

xy

[Ar/(α−1)]\[F ]
T (ξ)

≤ T
r,

◦
N

(
ln

1

ε

)1/(γ−1)

with(3)

T
r,

◦
N

= ◦
NT1r

(γ−d)/(γ−1).

In particular, this maximal time has all exponential moments, and more: for any
δ < T

−1/(γ−1)

r,
◦
N

, we have

E
[
exp

(
δT

γ−1
A,F

)]
< ∞.(4)

The proof is a slight variation on that of Theorem 3.6 in Kendall’s (2015) article.

PROOF OF THEOREM 3.1. Since A is connected and covered by
◦

N open balls
Bi of radius r , we may build a path between any two points of A by concatenating
at most

◦
N paths between two points of A belonging to the same ball Bi of the

cover.
We now recursively build a path between each pair of points x0 and y0 of Bi , in

a binary tree-like fashion. First, we specify

rn = rα−n.

We will choose corresponding speed limits vn later. Given such vn:

• We call A0 the set of balls {Bi}1≤i≤ ◦
N

.

• To any ball B(n) ∈ An, we associate an internal rn+1-net of that ball. It may be
viewed as a collection of balls B(n+1) of radius rn+1. We then define An+1 as
the set of all these balls B(n+1) for all B(n) together.

• We have thus built nested internal rn-nets.
• For any two balls B

(n+1)
i and B

(n+1)
j belonging to the internal rn+1-net of the

same ball B(n) in An, we find a line of speed at least vn that hits both B
(n+1)
i

and B
(n+1)
j , but not F . We will have to prove this is possible with high enough

probability.
• For xn and yn, both belonging to B(n) ∈ An, we may then find two points xn+1

and yn+1 such that: xn and xn+1 (resp., yn and yn+1) belong to the same ball
B

(n+1)
i ∈ An (resp., B

(n+1)
j ), and xn+1 and yn+1 both belong to the same line of

speed at least vn.
• We may then build a path between xn and yn as a concatenation of three paths:

ξxnyn = ξxnxn+1ξxn+1yn+1ξyn+1yn . The middle one is a segment. The other two are
paths between points of the same ball in An+1.
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As illustrated in Figure 1, we thus obtain a path between x0 and y0 that is made
of exactly 2n segments for each n, each at speed at least vn between two balls of
the same internal rn+1-net of a ball of radius rn. Moreover, since the points x0
and y0 are in A, all of the segments are between points of the Minkowski sum
A

⊕∞
n=1 B(0, rn) = Ar/(α−1).

This construction has built a path for each pair of points x0 and y0 in Bi . Since
segments between balls of the same internal rn+1-net of a ball of radius rn are at
most (2rn + 2rn+1) long, and are at speed at least vn, the �[Ar/(α−1)]\[F ]-diameter
TA,F of A is bounded from above by

TA,F ≤ ◦
N

∞∑
n=1

2n 2rn + 2rn+1

vn

,(5)

on the event that this construction is possible.
Now to control the probability of this event, we need:

• a bound on the number of pairs of balls in the same rn-net;
• a bound on the probability that the fastest line hitting two such balls but not F

is slower than vn.

We obtain the first bound by using the formula rn = α−1rn−1. Indeed, each
rn-net of a rn−1-ball is then the same as a α−1-net of a radius 1 ball. Since the
balls B(si,1/(2α)) centered on the points of such a α−1-net are disjoint, and all
included in a ball of radius 1 + 1/(2α), a volume argument shows that there at
most (2α + 1)d balls in each rn-net. So that there are at most

◦
N(2α + 1)dn balls in

An, and at most
◦

N(2α + 1)d(n+1) pairs of balls in the same rn-net.
We now consider these lines that hit both of two rn+1-balls B(x, rn+1) and

B(y, rn+1) in an internal rn+1-net of a rn-ball, but that do not hit F . We have seen
that they were in [Ar/(α−1)]. We may then use the hypothesis of the theorem on
the solid angle of F .

We want a bound on

μd

([
B(x, rn+1)

] ∩ [
B(y, rn+1)

] ∩ [F ]c).
Now, as illustrated in Figure 2, let D(x, rn+1/2) be the hyperdisk centered on

x with radius rn+1/2 and included in the hyperplane perpendicular to the vector
x − y. It is included in B(x, rn+1). Moreover, for any z ∈ D(x, rn+1/2), the ball
B(z + y − x, rn+1/2) is included in B(y, rn+1).

Now we may write

μd

([
B(x, rn+1)

] ∩ [
B(y, rn+1)

] ∩ [F ]c)
≥ md−1

(
D(x, rn+1/2)

)
× inf

z∈D(x,rn+1/2)
μ

(o)
d−1

([
B(y − x, rn+1/2)

] ∩ [F − z]c)
≥ md−1

(
D(x, rn+1/2)

) × (
μ

(o)
d−1

([
B(y − x, rn+1/2)

]) − �
)
.
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FIG. 2. Lines that hit both balls B(x, rn+1) and B(y, rn+1) but not F (not necessarily connected)
contain lines through z ∈ D(x, rn+1/2) and B(z + x − y, rn+1/2). These are included in the cone
of angle θ0 through z.

Now, y − x ≤ 2rn = 2αrn+1. So that the lines in [B(y − x, rn+1/2)] are in a
cone of angle θ0 such that sin(θ0) ≤ (4α)−1. So that by formula (1):

μ
(o)
d−1

([
B(y − x, rn+1/2)

]) ≤ (4α)1−d .(6)

Since α < αmax, we have (4α)1−d − � > 0.
Moreover, with νd−1 the (d − 1)-volume of a unit (d − 1)-ball, we have

md−1
(
D(x, rn+1/2)

) = νd−1

(
rn+1

2

)d−1

,

μd

([
B(x, rn+1)

] ∩ [
B(y, rn+1)

] ∩ [F ]c) ≤ νd−1
(
(4α)1−d − �

)(rn+1

2

)d−1

=̂ cα,�rd−1
n+1 ,

using the notation cα,� to summarize and emphasize that this bound depends on α

and �, but not on n, r , or any other feature of A and F .
We thus get

P
[
vmax

([
B(x, rn+1)

] ∩ [
B(y, rn+1)

] ∩ [F ]c) ≤ vn

] ≤ exp
(
−cα,�

rd−1
n+1

v
γ−1
n

)
.

Multiplying by the number of relevant pairs of ball, we then obtain that the
construction is possible except on an event of probability at most

∞∑
n=0

◦
N(2α + 1)d(n+1) exp

(
−cα,�

rd−1
n+1

v
γ−1
n

)
.(7)

Taking

vn = r
(d−1)/(γ−1)
n+1

((n + 1)cα,� ln(1/ε))1/(γ−1)

and replacing in bound (7), we see that this becomes less than
∞∑

n=0

◦
N(2α + 1)d(n+1)εn+1 ≤ ε

εmax
,
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for ε < 1/(2
◦

N(2α + 1)d(n+1)) = εmax, so that εmax does not depend on A or F

except through α and
◦

N .
Replacing vn and rn with their value in the bound (5), we get

TA,F ≤ ◦
N

∞∑
n=1

2n+1(1 + α)
rn+1

vn

= ◦
N

(
(1 + α)c

1/(γ−1)
α,�

∞∑
n=2

(
2α−(γ−d)/(γ−1))nn1/(γ−1)

)

× r(γ−d)/(γ−1)

(
ln

(
1

ε

))1/(γ−1)

,

where the first parentheses correspond to T1 and T1 is finite since α > αmin. We
have thus proved formula (3) of the theorem.

The moment (4) is simple integration:

E
[
exp

(
δT

γ−1
A,F

)] ≤ C + 1

εmax

∫ εmax

0
exp

(
δ

(
T

r,
◦
N

(
ln

1

ε

)1/(γ−1))γ−1)
dε

≤ C + 1

εmax

∫ εmax

0
ε
−δT

1/(γ−1)

r,
◦
N dε

< ∞.

Here, we use δ < T
−1/(γ−1)

r,
◦
N

and C corresponds to the integral between εmax and 1,

bounded by the value of TA,F for ε = εmax. �

REMARK 3.1. If no lines are forbidden, that is if F = ∅, then α can be taken
as big as we wish, so that the lines used all hit as small a widening of A as we
want.

We may slightly generalize the theorem: instead of using a forbidden area F ,
we could use different conditions for which lines to accept. The important property
is that we must have enough relevant lines hitting pairs of balls in a rn+1-net.

There are a few optimisations that could be used to gain slightly in the constants.
For example, we have written the proof with one subnet inside each ball. If we
had used a single rn-net of a correctly widened A, we would have only about
◦

N2dαd(n+1) pairs of ball, allowing a bigger εmax. The result stays essentially the
same, however, as proven by the following proposition.

PROPOSITION 3.2. For any two points x and y, their �-distance Txy does not
have a moment with higher exponent on the time Txy than in formula (4). That is,
for any δ > 0, for any η > γ − 1, we have

E
[
exp

(
δT η

xy

)] = ∞.
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PROOF. Say that |x −y| = r . A path from x to y has to go from x to the border
of B(x, r). Hence, it must use lines hitting B(x, r) for a length at least r . So that
Txy is controlled by the fastest line hitting B(x, r). Now,

P
[
vmax

(
B(x, r)

) ≤ vε

] = exp
(−c(r)v1−γ

ε

) = ε

with

vε =
(

1

c(r)
ln

1

ε

)1/(1−γ )

,

where c(r) depends only on r .
So that on an event of probability at least ε, we have the bound Txy ≥ r/vε =

c2(r)(ln(1/ε))1/(γ−1). Hence, for some positive constant c3 depending on δ, η

and r :

E
[
exp

(
δT η

xy

)] ≥
∫ 1

0
exp

(
−c3

(
ln

1

ε

)η/(γ−1))
dε

= ∞,

since η/(γ − 1) > 1. �

4. Almost sure uniqueness of �-geodesics. In this section, we prove that the
network N satisfies the property 1 of a SIRSN, that is that between two specified
points x and y in R

d , there is almost surely only a unique route. Since routes are
the �-geodesics, this is equivalent to almost sure uniqueness of the geodesic gxy .

The case in dimension 2 has already been established in Kendall’s (2015) paper.
The following proof, on the other hand works in all dimensions more than 2, as
stated in Theorem 4.8. Note that it does not work in dimension 2.

The strategy is the following:

• We introduce a concept of many directions, with the following property. If a
�-path has many directions near a point x, any finite �-path supported by the
same lines contains x.

• We show that almost surely all geodesics have many directions near all the ends
of their component segments, except for the two extremal points. This is the step
where d ≥ 3 is needed.

• We show that for specified x and y in Rd , almost surely all geodesics from x to
y are supported exactly on the same lines.

• So that almost surely all such geodesics contain the same segment ends, and this
will prove they are the same.

The author thinks the proof is very technical for something that looks clear
enough, but could not find an easier way. Maybe the need to work with tree-like
paths in dimension at least three is the reason why there is no obvious argument.
Hopefully, the concept of many directions can be useful elsewhere.
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We first state two technical lemmas we need for the proofs in Section 4.1.
We introduce the notion of “many directions” and give some cases where paths
have many directions in Section 4.2, culminating in Lemma 4.6. We prove that
geodesics must use the same lines in Section 4.3, and end the proof of uniqueness
in Section 4.4.

4.1. Technical lemmas. The first lemma yields a control on the proportion of
balls in a nested set that are hit by lines faster than a threshold appropriately scaling
with their size.

LEMMA 4.1. Let d ≥ 2. Let α > 1 be a scale factor. We write p = α1−d < 1.
Let Bi = B(xi, ri) for 1 ≤ i ≤ n be a set of nested balls with ri = r0/α

i for some
r0. For some v0, define

vi = v0p
i/(γ−1),

V0 = {
(l, v) ∈ � : v ≥ v0

}
,

Vi = {
(l, v) ∈ � : vi−1 ≥ v ≥ vi

}
.

Define now Hi as the number of balls Bi+k smaller than Bi that are hit by lines
faster than vi , and In as the number of balls Bi that are hit by lines faster than
vi−1, that is,

Hi = #
{
k > 0 : Vi ∩ [Bi+k] 
= ∅

}
,

In = #
{
i ≤ n : ∃k > 0 : [Bi] ∩ Vi−k 
=∅

} ≤
n−1∑
i=0

Hi.

Then λ =̂E[#{Vi ∩ [Bi]}] = (1 − p)ωd−1r
d−1
0 /(2v

γ−1
0 ) independently of i ≥ 1.

Then, for any δ > 0:

P[In > δn] ≤
(
(1 + λδ)

(
1 + δ

δ

)δ

pδ

)n

.(8)

Precise but more cumbersome bounds are given in equations (11) and (12).

PROOF. We have

E
[
#
{
Vi ∩ [Bi+k]}] = E

[
#
{
Vi ∩ [Bi]}]pk

= λpk for all i ≥ 1 and k ≥ 0,

E
[
#
{
V0 ∩ [Bk]}] = λpk

∞∑
m=0

pm

= 1

1 − p
λpk for all k ≥ 0.



RANDOM LINES YIELD A SIRSN 2709

Thus,

P[Hi = 0] ≤ 1 for all i ≥ 0,

P[Hi = k > 0] = P
[
Vi ∩ [Bi+k] 
= ∅ and Vi ∩ [Bi+k+1] = ∅

]
= exp

(−λpk+1) − exp
(−λpk) using [Bi+1] ⊂ [Bi]

≤ 1 − exp
(−λ

(
pk − pk+1))

≤ λpk(1 − p) for i ≥ 1.

Similarly,

P[H0 = k > 0] = exp
(
−λpk+1

1 − p

)
− exp

(
− λpk

1 − p

)

≤ λpk.

Hence, for all 0 < a < 1/p:

E
[
aHi

] ≤ 1 +
∞∑

k=1

λpk(1 − p)ak

= 1 + λ(1 − p)
ap

1 − ap
for all i ≥ 1,

E
[
aH0

] ≤ 1 +
∞∑

k=1

λpkak

(9)
= 1 + λ

ap

1 − ap
,

E
[
aIn

] ≤ E
[
a

∑n−1
i=0 Hi

] ∨ 1

≤
(

1 + λ(1 − p)
ap

1 − ap

)n 1 + ap(λ − 1)

1 + ap(λ(1 − p) − 1)
(10)

≤
(

1 + λ
ap

1 − ap

)n

.

We now use the Markov inequality:

P[In > δn] ≤ E[aIn]
aδn

,(11)

and optimize upon a. Exact optimization requires solving a degree-two equa-
tion and yields a cumbersome solution, so we shall only use here the solution
for the second approximation when λ = 1, that is a = δ/((1 + δ)p), so that
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ap/(1 − ap) = δ. Using (10), we get

P[In > δn] ≤ 1 + λap/(1 − ap)

1 + λ(1 − p)ap/(1 − ap)

(
1 + λ(1 − p)

ap

1 − ap

)n

a−δn

= 1 + λδ

1 + λ(1 − p)δ

((
1 + λ(1 − p)δ

)(1 + δ

δ

)δ

pδ

)n

(12)

≤
(
(1 + λδ)

(
1 + δ

δ

)δ

pδ

)n

. �

The second lemma gives a guarantee that except on exceedingly rare events; no
significant fraction of uniformly randomly oriented lines are clumped together in
a small number of directions.

LEMMA 4.2. Let (X , d,μ) be a metric space with a probability measure μ,
and such that for all positive and small enough ε, for any point x in X , the volume
of the ball is bounded in this way:

c1ε
d−1 ≤ μ

[
B(x, ε)

] ≤ c2ε
d−1,(13)

for c1 and c2 constants depending only on the space (X , d,μ).
Let α > β > δ > 0. Consider {si}i∈I a n−η-net of X . Consider {xj }j≤αn αn

random μ-i.i.d. points in X .
Then there is no subset of βn points in {xj } that are all contained in at most δn

balls of the net B(si, n
−η), except on an event of sub-exponential probability, at

most (Cn(β−δ)(η(d−1)−1))−n with C depending only on α,β and δ, c1 and c2.

Moreover, the projective space (PR
d−1, θ,μ

(o)
d−1) satisfies the hypotheses for

(X , d,μ). Here θ(l1, l2) is the angle between two lines, and μ
(o)
d−1 is the natural

probability measure on PR
d−1, defined in Section 2.

PROOF. Since all the points in the n−η-net are in disjoint balls of radius
n−η/2, there are at most c3n

η(d−1) points in the net, for n big enough. Now, with
c4, c5, c6 depending on α,β and δ:

P
[
There are βn points xj all contained in δn balls B

(
si, n

−η)
of the net

]
≤ #{subsets of βn points}# {subsets of δn balls}

× P[βn specific points are all contained in δn specific balls]
≤

(
αn

βn

)(
c3n

η(d−1)

δn

)(
δnc2n

−η(d−1))βn

≤ 2αn(
c4n

η(d−1)−1)δn(
c5n

1−η(d−1))βn

= (
c6n

(β−δ)(η(d−1)−1))−n
.
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In the projective space, where points are seen as lines through the origin in R
d ,

a ball of radius θ0 is exactly a cone of aperture θ0. We recall formula (1) and
θ/2 ≤ sin(θ) ≤ θ for positive small θ , and we conclude that property (13) is indeed
satisfied. �

4.2. Many directions. Having many directions near a point x intuitively means
that the lines used near the point have so many different unit vectors that the only
way to touch all those lines (a tour) with a finite curve is by touching most of them
near x.

DEFINITION 4.3. For a set of lines L= {lj }j∈J and a subset of the Euclidean
space X ⊂ R

d , a L-tour in X is a curve f in X such that for all j ∈ J , there is a tj
such that f (tj ) ∈ lj . If f is rectifiable, the tour is said to be finite; else it is infinite.

Recalling the notation Lξ for the support of ξ :

DEFINITION 4.4. A finite �-path ξ has many directions near a point x if, for
all ε > 0, all Lξ -tours in R

d \ B(x, ε) are infinite.

As a remark, this concept is only interesting in dimension at least three: in di-
mension two, a circle is usually a tour, and it is finite.

PROPOSITION 4.5. Let two finite �-paths ξ and η. If ξ has many directions
near a point x ∈R

d , and its support is included in that of η, that is, Lξ ⊂ Lη, then
x ∈ η.

PROOF. By Theorem 2.4, the finite �-path η has finite Euclidean length.
Moreover, Lξ ⊂ Lη, so that η is a Lξ -tour in R

d . Since ξ has many direc-
tions near x, there is no finite Lξ -tour in R

d \ B(x, ε), for any ε > 0. So that
B(x, ε) ∩ η 
= ∅. Any finite �-path is closed in R

d , hence x ∈ η. �

LEMMA 4.6. Let d ≥ 3.
Let l be a prescribed line independent of �. Almost surely, for all x ∈ l, for any

y /∈ l, all geodesics gxy have many directions near x.

PROOF. It is sufficient to show that the claim holds for all x ∈ l ∩ B(0,R),
for all R > 0. It is also sufficient to work with a fixed ε, and prove that for any
y /∈ lε the ε-widening of l, for any geodesic gxy , all Lgxy -tours on R

d \ B(x, ε)

have infinite length.
Let rn = r0/α

n for r0 = ε and an α > 1 big enough to be determined later. We
consider one-dimensional internal rn

4 -nets Nn of B(0,R) ∩ l.

In particular, there are at most 4R
rn

+ 1 points in Nn.
Now, for any point xn in Nn, we may build a set of nested balls {Bi}i≤n depend-

ing on xn, with the following properties:
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• The ball Bn is centred on xn.
• All balls Bi = B(xi, ri) are centred on a point xi in the net Ni .
• The centres lie deep inside the previous ball, that is xi ∈ B(xi−1,

ri−1
4 ). This

stems from the fact that Ni−1 is an ri−1
4 -net.

We also use the notation of Lemma 4.1 for vi and Vi . We have to choose a good
speed v0.

We then show that the nested balls have the following properties, with a T to be
determined later, except on an event of probability o(r−1

n ):

1. There are at least 2n
5 balls Bi that no line faster than vi−1 hits.

2. There are at least 5n
6 indices i such that the time diameter of B(xi,

7ri
8 ) \

B(xi,
ri
2 ) on �[Bi ]\[Bi+1] is less than T α−i(γ−d)/(γ−1).

3. There are at least 5n
6 balls Bi that are hit by at most τ lines of speed be-

tween vi and vi−1, for some fixed τ . Moreover, all those lines have independent,
uniformly random directions.

The T will yield the v0 we need to continue the proof, that is,

v0 = 3r0

8T
.(14)

We deal with these properties in reverse order, and first consider property 3.
Since the sets of lines Vi are disjoint, the events that more than τ lines in Vi hit

Bi are mutually independent (in i), as are their directions. Moreover, since the Bi

are balls, the direction of the lines of the isotropic Poisson line process that hit it
are uniformly random.

So that the number Xn of such events is a binomial random variable B(n, q)

where q is the probability of a single event. The Chernoff bound for a binomial is,
for δ > q ,

P[Xn > δn] ≤
((

q

δ

)δ(1 − q

1 − δ

)1−δ)n

.

Here, it suffices to take δ = 1
6 . For α big enough, if, for example, we take q ≤ α−7,

the above bound is negligible with respect to α−n.
Now the probability q of a single event is the probability that a Poisson random

variable with parameter not depending on i is bigger than τ . We then just choose
τ so that q ≤ α−7.

Now for property 2.
Since the sets of lines [Bi] \ [Bi+1] are disjoint, each of the events that the time

diameter of B(xi,
7ri
8 ) \ B(xi,

ri
2 ) on �[Bi ]\[Bi+1] is less than T α−i(γ−d)/(γ−1) are

independent. Arguing as for property 3, we merely have to choose T such that the
probability q of a single event is less than α−7.
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Now, by scaling, the sets Ai = B(xi,
7ri
8 ) \ B(xi,

ri
2 ) may all be covered by the

same number
◦

N of balls with radius ri
8 , and centres in Ai . Moreover, Ai is con-

nected. Now the ri
8 -widening of Ai is included in Bi , and since xi+1 ∈ B(xi,

ri
4 ),

we know that xi+1 is at distance at least 1
8 of this widening. So that the maximum

solid angle of Bi+1 viewed from any point of the widening is a decreasing function
of α, hitting zero when α goes to infinity. Thus, for α big enough, we may apply
Lemma 3.1 with � < �max. Replacing ε in bound (3) with 1/(εmaxα

−7) to ensure
q ≤ α−7, we find that property 2 is ensured if we choose

T = ◦
NT1

(
r0

8

)(γ−d)/(γ−1)(
ln

(
α7/εmax

))1/(γ−1)

= O
(
ln1/(γ−1) α

)
.

This choice of T ensures that v0 = O(ln−1/(γ−1) α).
As for property 1, we apply Lemma 4.1.
We substitute δ = 3

5 in equation (8), and use p = α1−d ≤ α−2—since d ≥ 3—

and λ = O(v
1−γ
0 ) = O(lnα). We obtain

P

[
For less than

2n

5
indices i, no line faster than vi−1 hits the ball Bi

]

≤ (
c ln(α)α−6/5)n

= o
(
α−n)

.

Let us now consider a geodesic gxy from a point y outside B0 to a point x

inside Bn. Since the balls are nested, they are all crossed by the geodesic. Even
the sets Ai = B(xi,

7ri
8 ) \ B(xi,

ri
2 ) introduced in the proof of property 2 are all

crossed, that is we must pass from the spherical boundary S(xi,
7ri
8 ) to the smaller

boundary S(xi,
ri
2 ).

If the three properties are satisfied, then there are at least n
15 indices i for

which the conditions are simultaneously satisfied. For such an i, by property 2
the geodesic will go from S(xi,

7ri
8 ) to S(xi,

ri
2 ) in time at most T α−i(γ−d)/(γ−1).

Since the two boundaries are 3ri
8 apart, the geodesic must use a line with speed

more than 3ri
8T α−i(γ−d)/(γ−1) = v0α

−i(d−1)/(γ−1) = vi within Ai . Now, Ai ⊂ Bi and,
by property 1, there is no line faster than vi−1 in Bi . So that the geodesic must use
a line in Vi ∩ [Bi], whose cardinal is less than τ by property 3. Since the vi are
disjoint, we have proved that the geodesic must use at least n

15 distinct lines among
a set of size at most τn of lines with uniformly random direction.

We may then apply Lemma 4.2.
We take 1 > η > 1/(d − 1) and δ = 1/20. With probability 1 − O(n−cn), all

geodesics from a point outside B0 to a point inside Bn must use at least n/20 lines
(depending on the geodesic), each with a direction in a different ball of a n−η-net
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FIG. 3. We project on the vector space spanned by l1 and l2, with l1 parallel to the first coordinate
and x as the origin. All points of l1 then have second coordinate at most n−ηε/3 in absolute value.
On the other hand, let A be a point in l2 ∩ B(x,n−ηε/3) and B a point in l2 \ B(x, ε). Then the
vector

−→
AB has absolute second coordinate at least (ε −n−ηε/3) sin(n−η) > 11

12εn−η for large n, so

that B has absolute second coordinate at least 7
12εn−η .

of the projective space. Since there are at most a constant number c1 of points in
a n−η-net at distance less than 3n−η from a given point, we may choose n/(20c1)

of those lines, so that each pair of them makes an angle at least n−η.
Let us consider a fixed r0 = ε. Since d(xi, xi−1) ≤ ri−1

4 and x ∈ B(xn, rn), and
since ri = εα−i = o(εn−η) for i > c2 lnn, we know that Bi ⊂ B(x, εn−η/3) for
i > c2 lnn. Among our n/(20c1) lines, at most τ hit each Bi . Hence, up to remov-
ing c3 lnn of our n/(20c1) lines, all those lines hit the ball B(x, εn−η/3). So that,
by elementary geometry illustrated in Figure 3, for any two lines l1 and l2 in our
collection, no point of l1 \ B(x, ε) is closer to a point of l2 \ B(x, ε) than εn−η/4.

We have thus proved that for any geodesic gxy with x ∈ Bn and y /∈ B0, any
Lgxy -tour in R

d \ B(x, ε) must contain c4n points that are c5n
−η apart pairwise.

Hence, it has length at least c6n
1−η, going to infinity with n.

All those properties were obtained except on a set of probability o(α−n). Since
the net Nn has cardinal of order αn, this is true simultaneously for all sets of nested
balls built on all the points xn in Nn, except on an event of probability εn going to
zero.

Letting n go to infinity yields the lemma. �
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4.3. Geodesics use the same lines.

THEOREM 4.7. For all x and y in R
d , almost surely all geodesics gxy are

supported on exactly the same lines.

PROOF. A similar result is used during the proof of Theorem 4.4 in Kendall’s
(2015) article. The idea of the proof is to “slow down” the lines not used by a
specific geodesic. Then all geodesics that use one of those lines become slower
and are no longer geodesics. The set of slowed speeds has infinite measure relative
to the initial speeds.

Almost surely, there exists a finite R such that all geodesics from x to y are
included in B(0,R), by Theorem 2.6 of Kendall. Almost surely, for any R, there
are countably many lines intersecting B(0,R), all with different speeds v1 > v2 >

· · · (the information here is that there is a measurable order-preserving bijection
from N to the inverse line speeds). We then write li for the line with speed vi .

Let i ∈ N and let us fix all the other speeds vj for j 
= i. Let us suppose there is
a speed v=

i between vi−1 and vi+1 such that if vi = v=
i , then there are at least two

geodesics gi
xy and g¬i

xy from x to y, one of which is supported by li , and the other
not. That is li � gi

xy and li 
� g¬i
xy .

Now, the time length of a path not supported by li does not depend on vi . So
that g¬i

xy is the fastest of these paths for all vi , with constant time. On the other
hand, by decomposition (2), the time length of gi

xy is decreasing in vi . Hence, if
vi > v=

i , all geodesics from x to y are supported by li . Conversely, if vi < v=
i , no

path supported by li is a geodesic from x to y. Indeed, such a path would be as fast
as g¬i

xy at speed vi , hence faster at speed v=
i .

So that, when the other speeds are fixed, there is at most one value v=
i of vi

such that li is in the support of some geodesic from x to y and not in the support
of another such geodesic.

Now, we may disintegrate the measures on the line speeds. For almost all fixed
line speeds for all lines except li , the measure μi for vi has a density (namely, it
is proportional to v

−γ
i 1vi−1≤vi≤vi+1 ). Hence, μi({v=

i }) = 0. So that almost surely,
either li � g for all geodesics g from x to y, or li 
� g for any such geodesic. This
is true for all lines li , completing the proof. �

4.4. Almost sure uniqueness. We may now state this section’s main result.

THEOREM 4.8. In dimension d ≥ 2, for all x and y in R
d , almost surely there

is a unique geodesic gxy from x to y.

PROOF. Kendall (2015) proved the dimension 2 case in Theorem 4.4. We then
assume from here on that d ≥ 3.

Consider any line l ∈ �. We apply a Palm distribution argument: since � is a
Poisson process, � \ {l} still has the same distribution as �. So that almost surely,
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by Lemma 4.6, all geodesics on �\{l} with an endpoint z ∈ l have many directions
near z. Since the lines are countable, this is true for all lines simultaneously.

The rigorous way of writing the former paragraph is through Slivnyak–
Mecke formula [originally proved by Slivnyak (1962); see, e.g., Møller and
Waagepetersen’s (2003) book, Theorem 3.2, for a modern treatment]. A Pois-
son point process X with intensity μ takes value in the set of locally finite point
configurations Nlf . For any nonnegative measurable function h on R

d × Nlf , we
have

E

[∑
x∈X

h
(
x,X \ {x})] =

∫
Rd

E
[
h(x,X)

]
dμ(x).

We apply the formula with the underlying point process for �, so that x = (l, v)

are marked lines. The function h is the indicator function

h
(
(l, v),�

) =
⎧⎨
⎩

1, if ∃z ∈ l, y /∈ l, gzy �-geodesic such that
gzy does not have many directions near z,

0, otherwise.

Lemma 4.6 then ensures that the expectation in the integrand in the right-hand
side is uniformly zero, so that, almost surely, for all l ∈ �, all geodesics on � \ {l}
with an endpoint z ∈ l have many directions near z.

Let gxy be a geodesic from x to y. Let {zi} be the set of endpoints of all the
segments of the geodesic gxy except x and y. For any zi , since it is a segment
endpoint (on line l), there is a u such that guzi

or gziu is included in gxy , and such
that l is not in the support of this sub-geodesic. Hence, this sub-geodesic is also
a geodesic in � \ {l}, and has many directions near zi . A fortiori, gxy has many
directions near zi . Moreover, by Lemma 4.7 almost surely all other geodesics from
x to y have the same support. Hence, all these geodesics include all the segment
endpoints of all the geodesics from x to y.

Now two geodesics from x to y must pass through the same points in the same
order: indeed if g2

xy = g2
xag

2
abg

2
by and g2

xy = g2
xbg

2
bag

2
ay , then g1

xag
2
ay or g2

xbg
1
by

would be shorter than both.
So that all geodesics from x to y pass through their segment endpoints in the

same order, so they are the same. �

A byproduct of the proof is the following remark.

COROLLARY 4.9. Let d ≥ 3. Almost surely, for any point x not on a line of �,
that is x /∈ S , all geodesics containing x have many directions near x.

PROOF. We use the step in the former proof, that almost surely, for all l ∈ �,
all geodesics on � \ {l} with an endpoint z ∈ l have many directions near z.

For any ε, since x /∈ S , the geodesic to x will leave a line of � at a point z ∈
B(x, ε/2). Now the restriction of the geodesic to gzx has many directions near z.
Since B(z, ε/2) ⊂ B(x, ε), g has also many directions near x. �
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5. Geodesic length has finite expectation. This is property 3 of a SIRSN.

THEOREM 5.1. Let x, y ∈ R
d . Then the Euclidean length of the �-geodesic

between x and y has finite expectation

E[Lxy] < ∞.

PROOF. For any r , any �-path containing x whose Euclidean length is more
than r has to intersect B(x, r) on a length at least r . Hence, it must spend time
at least r/vmax(B(x, r)) in that ball. If the geodesic gxy has Euclidean length Lxy

and time length Txy , we thus obtain the constraint

vmax
(
B(x, r)

) ≥ r/Txy for all r ≤ Lxy.(15)

By equation (3) of Theorem 3.1, there is a T such that with probability at least
1 − 2−(n+1)

Txy ≤ (n + 1)1/(γ−1)T =̂Tn.(16)

We now consider a collection of radii

rl = 2lr0

for l between 0 and m, with r0 and m to be chosen later, possibly depending on n,
but independent of �.

If Lxy > rm, then Lxy > rl for all l ∈ [0,m], so that constraint (15) must be
satisfied for each rl . In particular, on the event (16), the following constraint is
satisfied for all l ∈ [0,m]:

vmax
(
B(x, rl)

) ≥ rl/Tn =̂vl.(17)

We again drop the dependence on n in the notation of vl , and vl is independent
of �.

These constraints are simultaneously satisfied if and only if there is a strictly
increasing sequence of (1 + k) integers 0 = l0, l1, . . . , lk between 0 and m such
that

vli+1 > vmax
(
B(x, rli )

) ≥ vli+1−1 if i < k,

vmax
(
B(x, rlk )

) ≥ vm.

We define the following events for all i ∈ [0,m], with the conventions lk+1 =
m + 1 and rl−1 = 0:

Ai = {
vmax

(
B(x, rli )

) ≥ vli+1−1
}
,

Bi = {
vli+1 > vmax

(
B(x, rli )

) ≥ vli+1−1
}
,

Di = {
vmax

([
B(x, rli )

] \ [
B(x, rli−1)

]) ≥ vli+1−1
}
.
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Notice that the events do not depend only on i, but on the whole sequence of li .
Notation is easier this way. In particular, the former paragraph reads

P[Lxy > rm|Txy ≤ Tn] ≤
m∑

k=0

∑
0=l0<···<lk≤m

P[B0 ∩ B1 ∩ · · · ∩ Bk−1 ∩ Ak].(18)

Let us consider the filtration generated by the lines intersecting B(x, r) for in-
creasing r , that is Fr = σ(�[B(x,r)]). Then Ai , Bi and Di are all Frli

-measurable,
and Di is independent of Frli−1

.
Moreover, the difference between Ai and Di is only on the event that there is a

line faster than vli+1−1 hitting B(x, rli−1). Since li+1 − 1 ≥ li , this never happens
under Bi−1. So that Ai ∩ Bi−1 = Di ∩ Bi−1. From this, we deduce

P[Bi |B0, . . . ,Bi−1] ≤ P[Ai |B0, . . . ,Bi−1] since Bi ⊂ Ai

= P[Di |B0, . . . ,Bi−1] since Ai ∩ Bi−1 = Di ∩ Bi−1
(19) = P[Di] since Di indep. of Bj for j < i

≤ P[Ai] since Di ⊂ Ai.

Recall that the number of lines faster than v hitting a ball of radius r is a Pois-
son variable with parameter crd−1v−(γ−1), with c = μd([B(0,1)]). We may then
compute

P[Ai] = 1 − exp
(−crd−1

li
v

−(γ−1)
li+1−1

)
≤ crd−1

li
v

−(γ−1)
li+1−1

= crd−1
li

2−(γ−1)(li+1−li−1)v
−(γ−1)
li

= 2−(γ−1)(li+1−li−1)cr
d−γ
li

T γ−1
n(20)

≤ 2−(γ−1)(li+1−li−1)cr
d−γ
0 T γ−1

n since r0 ≤ rli

= 2−(γ−1)(li+1−li )p(r0) with

p(r0) = 2γ−1cr
d−γ
0 T γ−1

n .

Recalling the convention lk+1 = m + 1, we obtain

P[B0 ∩ B1 ∩ · · · ∩ Bk−1 ∩ Ak]
≤ P[B0]P[B1|B0] · · ·P[Ak|B0,B1, . . . ,Bk−1]

≤
k∏

i=0

P[Ai] by (19)

≤
k∏

i=0

2−(γ−1)(li+1−li )p(r0) by (20)

= 2−(γ−1)(m+1)p(r0)
k+1.
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Substituting into bound (18), we obtain

P[Lxy > rm|Txy ≤ Tn] ≤
m∑

k=0

∑
0=l0<···<lk≤m

2−(γ−1)(m+1)p(r0)
k+1

=
m∑

k=0

(
m

k

)
2−(m+1)(γ−1)p(r0)

k+1(21)

= 2−(m+1)(γ−1)p(r0)
(
1 + p(r0)

)m
≤ (

2−(γ−1)(1 + p(r0)
))m+1

.(22)

Let κ < γ − 1. We now choose our free parameters:

r0 =
(

2γ−1cT γ−1

2γ−1−κ − 1

)1/(γ−d)

,

so that

1 + p(r0) = 2γ−1−κ ,

m = ⌊
(n + 1)/κ

⌋
.

Substituting into bound (22), we get

P[Lxy > rm|Txy ≤ Tn] ≤ 2−(m+1)κ

≤ 2−(n+1).

Since P[Txy > Tn] ≤ 2−(n+1), we have thus proved that with probability at least
1 − 2−n, the Euclidean length is bounded by

Lxy ≤ rm

= 2(n+1)/κ(n + 1)1/(γ−d)C,

where C is a positive constant depending on T and κ , but not on n.
Thus, Lxy has a δ-moment for all δ < κ . Indeed,

E
[
Lδ

xy

] ≤
∞∑

n=0

2−n(
2(n+1)/κ(n + 1)1/(γ−d)C

)δ

≤
∞∑

n=0

2(δ/κ−1)nO
(
nδ/(γ−d))

< ∞ if δ < κ.

Since κ is only constrained by κ < γ − 1, we have a δ-moment for all δ < γ − 1.
Since γ > d ≥ 2, this completes the proof. �
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REMARK 5.1. The main part of the proof is really just saying that the Eu-
clidean diameter of a �-ball has finite mean. Together with Theorem 3.1, this
implies that the random metric space generated by the �-length is almost surely
homeomorphic to R

d .
Notice that for κ close to γ − 1, the main term in the sum (21) is the one for

k = 0. In other words, it is easier to have one single extremely fast line close to
x than to have many successively faster lines, if we want to be abnormally fast at
each distance of x.

A first way to improve on the moments of Lxy starts with noticing that if we use
a line to go far away very fast, we need to use another line to come back, since a
geodesic never crosses itself.

More precisely, the author conjectures that the structure yielding long geodesics
with highest probability is the following: a line with speed at least 2r/Txy hits
B(x, ε), another hits B(y, ε) and they hit a common ε-ball at distance r . Since the
two first events have probability in r−(γ−1) and the other in r−(d−1), we would
conclude that E[L2γ+d−3

xy ] = ∞, but E[Lδ
xy] < ∞ for all δ < 2γ + d − 3.

6. Finite intensity of long-distance network. We now turn to property 4 of
a SIRSN, that is their key property.

Intuitively, this means that the SIRSN contains “highways.” If we look at all
the geodesics simultaneously, truncating each geodesic by deleting balls around
its endpoints, their total length in each compact set is finite: the geodesics largely
re-use the same segments in each region. Contrast with the Euclidean case where
the whole space is used.

In our context, we have to prove that the intensity p(1) of the following long-
distance network F is finite: let {�n,n ∈ N

∗} be a collection of Poisson processes
on R

d with intensity n times Lebesgue, all independent from �, and coupled so
that �n ⊂ �n+1. Write � = ⋃

n∈N∗ �n. Then

F = ⋃
x,y∈�

(
gxy \ (

B(x,1) ∪ B(y,1)
))

.

Notice that almost surely gxy is unique for all x and y, since the dense point set
� is countable.

By translational invariance, it is enough to prove that the intersection of F with
a given ball has finite mean Hausdorff measure of dimension 1. Indeed, if � =
m1(F ∩ B(x, r)), then E[�] = ωd−1r

d−1

2 p(1). Notice that scale equivariance yields
similar results if the long-distance network F is defined by removing balls of any
fixed radius instead of radius 1.

The main argument relies on the pigeon-hole principle: a geodesic getting close
to a prescribed point must use one of a very few fast lines close to that point, and
must use them again to draw away. And by uniqueness of geodesics, two geodesics
with two common points must agree between those points.
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THEOREM 6.1. Let γ > d ≥ 2. With the above notation, let � = m1(F ∩
B(0, 1

3)) be the length of the long-distance network in B(0, 1
3). For ε < εmax, with

probability at least 1− ε, this length is less than C(ln(C1/ε))
2, for constants εmax,

C and C1 depending only on γ and d . Consequently, there is a finite moment of
exponential form: for any δ <

√
C,

E
[
exp(δ

√
�)

]
< ∞.(23)

In particular, � has finite mean.

PROOF. Since � is countable, by Theorem 4.8, almost surely all geodesics
between its points are unique. In the proof, we only consider such geodesics and
sub-geodesics, so that we assume uniqueness.

Consider the balls B(0, 1
3) and B(0, 2

3). We call their set difference B(0, 2
3) \

B(0, 1
3) the border.

Now if a point x ∈ B(0, 2
3), then B(0, 1

3) ⊂ B(x,1). Hence, geodesics with an
endpoint in B(0, 2

3) make no contribution to �. We have

� ≤ m1

( ⋃
x,y∈�\B(0,2/3)

(
gxy ∩ B

(
0,

1

3

)))
.

Hence, geodesics gxy making contributions to � are structured in the following
way, illustrated in Figure 4.

• They hit B(0, 2
3) for the first time at point s on the corresponding sphere.

• Then they hit B(0, 1
3) for the first time at point u on the corresponding sphere.

• Then they hit B(0, 1
3) for the last time at point v on the corresponding sphere.

• Then they hit B(0, 2
3) for the last time at point z on the corresponding sphere.

FIG. 4. The geodesic from x to y hits B(0, 2
3 ) for the first time at s and the last time at z. It hits

B(0, 1
3 ) for the first time at u and the last time at v.
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In particular, the contribution to � is included in the sub-geodesic guv .
Now, uniformly on x and y, the time Tsz between s and z is bounded by the

time diameter of B(0, 2
3). So that, by Theorem 3.1, with probability 1 − ε/2, we

have

Tsz ≤ Tε
(24)

=̂ T2/3,1

(
ln

2

ε · εmax

)1/(γ−1)

.

We call fast lines the lines faster than vε = 1/(6Tε). Conversely, lines slower
than vε are slow lines. We write Vε = Svε ∩B(0, 2

3) for the intersection of all those
fast lines with the ball B(0, 2

3).
The number of fast lines hitting B(0, 2

3) is a Poisson variable with parame-

ter λε = ωd−1(2/3)d−1

2v
γ−1
ε

= C2 ln(C1/ε) for explicit constants C1 and C2, with C1 =
2/εmax ≥ 2. We recall that the moment generating function of such a Poisson vari-
able X is E[etX] = exp(λε(e

t − 1)), and use Chernoff bound to get

P[X ≥ C3λε] ≤ eλε(e
t−1)e−tC3λε

= exp
(
λε(C3 − 1 − C3 lnC3)

)
with et = C3

=
(

C1

ε

)C2(C3−1−C3 lnC3)

≤ ε

2
,

with C3 chosen big enough to have C2(C3 − 1 − C3 lnC3) ≤ −1.
Hence, with probability at least 1 − ε

2 , there are at most C3λε fast lines hitting
B(0, 2

3). With probability at least 1 − ε both this event and Tsz ≤ Tε are true. We
assume both from now on.

Since Tsz ≤ Tε , the intersection of gsz with slow lines has length at most
vε/Tε = 1

6 .
So that, since s and u (resp., v and z) are at least 1

3 apart, the geodesic must
have fast segments for length at least 1

6 between s and u (resp., v and z), that is,

m1(Vε ∩ gsu) ≥ 1
6 ,

m1(Vε ∩ gvz) ≥ 1
6 .

Now

m1(Vε) ≤ #{fast lines} · Diam
(
B

(
0,

2

3

))

≤ 4C3λε

3

= C4 ln
(

C1

ε

)
,
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FIG. 5. Close parallel curves in the figure agree. They are separated to make the figure more
readable. The three thin black lines are the fast lines. The light dashed lines and black dotted curves
are a family of geodesics {gi}. The solid curve connecting x and y is the geodesic gxy . The geodesic
gxy has a common point t with the black dotted geodesic on a fast (black) line when first crossing
the border, and another w when last crossing the border. Hence, they agree between u and v. Any
other geodesic contributing to � would meet one of the geodesics in the family {gi} in the same way.

so that
m1 ⊗ m1(Vε ⊗ Vε)

m1 ⊗ m1(gsu ∩ Vε ⊗ gvz ∩ Vε)
≤ C5

(
ln

C1

ε

)2

.

Hence, by the pigeon-hole property as illustrated in Figure 5, we may find a
maximal family {gi} of at most (C5(ln

C1
ε

)2 + 1) geodesics such that:

• gi is a geodesic between xi and yi in � \B(0, 2
3), passing through si , ui , vi and

zi defined as for s, u, v and z above.
• Any geodesic gxy contributing to � crosses one of the gi when first and last

crossing the border, that is, there are points t and w such that t ∈ gsiui ∩ gsu and
w ∈ gvizi ∩ gvz.

By uniqueness of geodesics, gi and gxy coincide on gtw . In particular, they coin-
cide on guv . Hence, the intersection F ∩B(0, 1

3) is included in the finite number of
geodesics guivi . We may then conclude by separating contributions from fast and
slow lines:

� ≤ ∑
i

m1(guivi )

≤ m1(Vε) + ∑
i

m1
(
guivi ∩ (� \ Vε)

)
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≤ C4 ln
(

C1

ε

)
+

(
C5

(
ln

C1

ε

)2

+ 1
)

· 1

6

≤ C

(
ln

C1

ε

)2

. �

THEOREM 6.2. The network N made of the time geodesics is a SIRSN.

PROOF. Property 1 of a SIRSN is a consequence of almost sure uniqueness
of geodesics between two points, that is Theorem 4 in dimension at least 3, and
Theorem 4.4. in Kendall’s (2015) article in dimension 2.

Property 2 of a SIRSN is because the underlying Poisson line process is invari-
ant by translation and rotation. As for change of scale, the underlying Poisson line
process is invariant by a transformation where scale is multiplied by α and speed
by α(d−1)/(γ−1). Hence, all paths have their time length multiplied by the same
α(γ−d)/(γ−1), so that the geodesics are the same and N is invariant.

Property 3 of a SIRSN is Theorem 5.1.
Property 4 of a SIRSN is Theorem 6.1. �

7. Conclusion. We have established that the improper Poisson line process
with adequate speed limits yield a SIRSN.

Along the way, a few questions have been raised. Is there an easier, more nat-
ural way to prove uniqueness of geodesics? What are the tightest moments of the
Euclidean length of a geodesic? When can we generalize this construction using
geodesics from a random geodesic metric space?

On a more general note, we may wonder which property of our network N
translate to general SIRSNs, or to SIRSNs made of geodesics of a metric space.
For example, it should be easy to show that not all SIRSNs have the equivalent of
Lemma 4.6 or Corollary 4.9: it is certainly not true for the binary hierarchy model
by Aldous.

We might also raise a few typical questions in stochastic geometry. Is there only
one geodesic connecting a prescribed point x to infinity, like in dimension two?
In many models, infinite geodesics have an asymptotic direction. For SIRSNs,
this property looks unlikely, and characterizing the random walk of the angle as
a function of the �-distance to x looks worthwhile. What is the law of a typical
cell in the tessellation generated by the network connecting the points of �1, an
intensity 1 Poisson point process?

Finally, another somewhat tangential direction of research would be to study
more closely the properties of the random metric space. For example, being a
SIRSN entails coalescence of geodesics, a very hyperbolic-like property. We may
also draw comparisons with a well-known random metric space such as the Brow-
nian map [see, e.g., Le Gall (2014)].
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The Brownian map is a random metric space homeomorphic to the sphere S
2.

It has Hausdorff dimension 4. All its geodesics minus their endpoints is of Haus-
dorff dimension 1. The cut-locus of its geodesics starting from a given point has
Hausdorff dimension 2, and the topology of an open continuous tree.

On the other hand, we have shown that our metric space is homeomorphic to R
d .

It should be easy, by scaling arguments, to show that its Hausdorff dimension is
(dγ − d)/(γ − d), which is bigger than d . In particular, with d = 2 and γ = 3,
we have the same dimensions as the Brownian map. If any geodesic can be appro-
priately approximated by geodesics between points of Poisson point processes, it
should also be easy to show that the geodesics minus their endpoints is of dimen-
sion 1. However, the cut-locus might have a very different behaviour.

Acknowledgements. I would like to thank Wilfrid Kendall for introducing us
to the problem during a talk, and helpful discussions since then. Remarks from a
referee have greatly improved the presentation of the paper.
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