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RELAXATION TO EQUILIBRIUM OF GENERALIZED EAST
PROCESSES ON Z

d : RENORMALIZATION GROUP ANALYSIS AND
ENERGY-ENTROPY COMPETITION

BY PAUL CHLEBOUN1, ALESSANDRA FAGGIONATO AND FABIO MARTINELLI

Warwick University, Università La Sapienza and Università Roma Tre

We consider a class of kinetically constrained interacting particle sys-
tems on Z

d which play a key role in several heuristic qualitative and quanti-
tative approaches to describe the complex behavior of glassy dynamics. With
rate one and independently among the vertices of Z

d , to each occupation
variable ηx ∈ {0,1} a new value is proposed by tossing a (1 − q)-coin. If a
certain local constraint is satisfied by the current configuration the proposed
move is accepted, otherwise it is rejected. For d = 1, the constraint requires
that there is a vacancy at the vertex to the left of the updating vertex. In this
case, the process is the well-known East process. OnZ2, the West or the South
neighbor of the updating vertex must contain a vacancy, similarly, in higher
dimensions. Despite of their apparent simplicity, in the limit q ↘ 0 of low
vacancy density, corresponding to a low temperature physical setting, these
processes feature a rather complicated dynamic behavior with hierarchical
relaxation time scales, heterogeneity and universality. Using renormalization
group ideas, we first show that the relaxation time on Z

d scales as the 1/d-
root of the relaxation time of the East process, confirming indications coming
from massive numerical simulations. Next, we compute the relaxation time in
finite boxes by carefully analyzing the subtle energy-entropy competition, us-
ing a multiscale analysis, capacity methods and an algorithmic construction.
Our results establish dynamic heterogeneity and a dramatic dependence on
the boundary conditions. Finally, we prove a rather strong anisotropy prop-
erty of these processes: the creation of a new vacancy at a vertex x out of an
isolated one at the origin (a seed) may occur on (logarithmically) different
time scales which heavily depend not only on the �1-norm of x but also on
its direction.

1. Introduction. The East process is a one-dimensional spin system intro-
duced in the physics literature by Jäckle and Eisinger [29] in 1991 to model the be-
havior of cooled liquids near the glass transition point, specializing a class of mod-
els that goes back to [2]. Each site x ∈ Z carries a {0,1}-value (vacant/occupied)
denoted by ηx . The process attempts to update ηx to 1 at rate 0 < p < 1 (a param-
eter) and to 0 at rate q = 1 − p, only accepting the proposed update if ηx−1 = 0
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(a “kinetic constraint”). Since the constraint at site x does not depend on the spin
at x, it is straightforward to verify that the product Bernoulli(1 − q) measure is a
reversible measure.

Despite of its apparent simplicity, the East model has attracted much attention
both in the physical and in the mathematical community (see, e.g., [1, 16, 21, 34,
35]). It in fact features a surprisingly rich behavior, particularly when q � 1 which
corresponds to a low temperature setting in the physical interpretation, with a host
of phenomena like mixing time cutoff and front propagation [6, 23], hierarchical
coalescence and universality [19] and dynamical heterogeneity [13, 14], one of the
main signatures of glassy dynamics. Dynamical heterogeneity is strongly associ-
ated to a broad spectrum of relaxation time scales which emerges as the result of a
subtle energy-entropy competition. Isolated vacancies with, for example, a block of
N particles to their left, cannot in fact update unless the system injects enough ad-
ditional vacancies in a cooperative way in order to unblock the target one. Finding
the correct time scale on which this unblocking process occurs requires a highly
nontrivial analysis to correctly measure the energy contribution (how many extra
vacancies are needed) and the entropic one (in how many ways the unblocking
process may occur). The final outcome is a very nontrivial dependence of the cor-
responding characteristic time scale on the equilibrium vacancy density q and on
the block length N (cf. [14], Theorems 2 and 5).

Mathematically, the East model poses very challenging and interesting prob-
lems because of the hardness of the constraint and the fact that it is not attractive.
It also has interesting ramifications in combinatorics [16], coalescence processes
[19, 20, 22] and random walks on triangular matrices [32]. Moreover, some of the
mathematical tools developed for the analysis of its relaxation time scales proved
to be quite powerful also in other contexts such as card shuffling problems [5] and
random evolution of surfaces [12]. Finally, it is worth mentioning that some attrac-
tive conjectures which appeared in the physical literature on the basis of numerical
simulations, had to be thoroughly revised after a sharp mathematical analysis [10,
13, 14].

Motivated by a series of nonrigorous contributions on realistic models of glass
formers (cf. [3, 24, 30]), in this paper we examine for the first time a natural gen-
eralization of the East process to the higher dimensional lattice Z

d , d > 1, in the
sequel referred to as the East-like process. In one dimension, the East-like process
coincides with the East process. In d = 2, the process evolves similarly to the East
process but now the kinetic constraint requires that the South or West neighbor
of the updating vertex contains at least one vacancy analogously in higher dimen-
sions.

An easy comparison argument with the one-dimensional case shows that the
East-like process is always ergodic, with a relaxation time Trel(Z

d;q) which is
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bounded from above by Trel(Z;q).2 However, massive numerical simulations [3]
suggest that Trel(Z

d;q) is much smaller than Trel(Z;q) and that, as q ↘ 0, it scales
as Trel(Z;q)1/d , where the 1/d-root is a signature of several different effects on
the cooperative dynamics of the sparse vacancies: the entropy associated with the
number of “oriented” paths over which a vacancy typically sends a wave of influ-
ence and the energetic cost of creating the required number of vacancies.

Our first result (cf. Theorem 1 below) confirms the above conjecture by a novel
combination of renormalization group ideas and block dynamics on one hand and
an algorithmically built bottleneck using capacity methods on the other.

Our second result analyzes the relaxation time in a finite box. In this case, in
order to guarantee the irreducibility of the chain, some boundary conditions must
be introduced by declaring unconstrained the spins belonging to certain subsets of
the boundary of �. For example, in two dimensions one could imagine to freeze
to the value 0 all the spins belonging to the South–West (external) boundary of
the box. In this case, we say that we have maximal boundary conditions. If instead
all the spins belonging to the South–West (external) boundary are frozen to be 1
with the exception of one spin adjacent to the South–West corner then we say
that we have minimal boundary conditions. In Theorem 2, we compute the precise
asymptotic as q ↘ 0 of the relaxation time with maximal and minimal boundary
conditions and show that there is a dramatic difference between the two. The result
extends also to mixing times.

The third result concerns another time scale which is genuinely associated with
the out-of-equilibrium behavior. For simplicity, consider the process on Z

2 and,
starting from the configuration with a single vacancy at the origin, let T (x;q) be
the mean hitting time of the set {η :ηx = 0} where x is some vertex in the first
quadrant. In other words, it is the mean time that it takes for the initial vacancy at
the origin to create a vacancy at x. Here, the main outcome is a strong dependence
of T (x;q) as q ↘ 0 not only on the �1-norm ‖x‖1 but also on the direction of x

(cf. Theorem 3 and Figure 1). When log2 ‖x‖1 � √
log2 1/q, the process proceeds

much faster (on a logarithmic scale) along the diagonal direction than along the
coordinate axes. If instead ‖x‖1 = O(1) as q ↘ 0, then the asymptotic behavior
of T (x;q) is essentially dictated by ‖x‖1. This crossover phenomenon is yet an-
other instance of the key role played by the energy-entropy competition in low
temperature kinetically constrained models.

Finally, in the Appendix we have collected some results on the exponential rate
of decay of the persistence function F(t), that is, the probability for the stationary
infinite volume East-like process that the spin at the origin does not flip before
time t . Such a rate of decay is often used by physicists as a proxy for the inverse
relaxation time. For the East model, we indeed prove that the latter assumption

2Notice that the more constrained North–East model in which the constraint at x requires that both
the West and the South neighbor of x contains a vacancy has a ergodicity breaking transition when
p crosses the oriented critical percolation value.
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is correct. In higher dimension, we show that the above rate of decay coincides
with that of the time auto-correlation of the spin at the origin. Our results are quite
similar to those obtained years ago for the Ising model by different methods [28].

We point out that in [15] we have provided an overview of the results and math-
ematical tools of this paper, with special emphasis to the connections with the
existing physics literature on the subject.

1.1. Outline of the paper. In the next section, we define the model and quan-
tities of interest, in Section 2.4 we state our main results. In Section 3, we collect
various technical tools: monotonicity, graphical construction, block dynamics, ca-
pacity methods and the bottleneck inequality. Section 4 is devoted to an algorith-
mic construction of an efficient bottleneck and it will represent the key ingredient
for the proof of the various lower bounds in Theorems 2 and 3. Theorems 1, 2 and 3
are proved in Sections 5, 6 and 7, respectively. Although these proofs have been
divided into different sections, they are actually linked. In particular, the proof of
the upper bound in Theorem 1 uses the upper bound for n ≤ θq in (2.9) of Theo-
rem 2 and the proof of the upper bound in (2.8) for n ≥ θq/d of Theorem 2 uses
the upper bound in Theorem 1. Finally, we have collected in the Appendix some
results on the exponential rate of decay of the persistence function.

2. Model and main results.

2.1. Setting and notation. Given the d-dimensional lattice Z
d , we let Zd+ :=

{x = (x1, . . . , xd) ∈ Z
d :xi ≥ 1 ∀i ≤ d}. Given x ∈ Z

d and A ⊂ Z
d , we let

‖x‖1 := ∑d
i=1 |xi | and ‖A‖1 := supx,y∈A ‖x − y‖1. A box in Z

d will be any set

� of the form
∏d

i=1[ai, bi], ai ≤ bi ∀i, where here and in the sequel it is under-
stood that the interval [ai, bi] consists of all the points x ∈ Z with ai ≤ x ≤ bi . We
call the vertices (a1, . . . , ad) and (b1, . . . , bd) the lower and upper corner of �,
respectively.

Let B := {e1, e2, . . . , ed} be the canonical basis of Zd . The East-like boundary
of a box �, in the sequel ∂E�, is the set

∂E� := {
x ∈ Z

d \ � :x + e ∈ � for some e ∈ B
}
.

Given � ⊂ Z
d , we will denote by �� the product space {0,1}� endowed with

the product topology. If � = Z
d , we simply write �. In the sequel, we will refer

to the vertices of � where a given configuration η ∈ �� is equal to one (zero) as
the particles (vacancies) of η. Given two disjoint sets V,W ⊂ Z

d together with
(ξ, η) ∈ �V × �W , we denote by ξη the configuration in �V∪W which coincides
with ξ in V and with η in W . If V ⊂ � and η ∈ ��, we will write ηV for the
restriction of η to V .

For any box �, a configuration σ ∈ �∂E� will be referred to as a boundary
condition. A special role is assigned to the following class of boundary conditions.
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DEFINITION 2.1. Given a box � = ∏d
i=1[ai, bi], we will say that a boundary

condition σ is ergodic if there exists e ∈ B such that σa−e = 0, a = (a1, . . . , ad).
We call the boundary condition identically equal to zero maximal. If instead σ

is such that by removing one vacancy in σ one obtains a nonergodic boundary
condition then σ is said to be minimal. Equivalently, σ is minimal if it has a unique
vacancy at a − e for some e ∈ B. Notice that for d = 1 the maximal and minimal
boundary conditions coincide.

2.2. The finite volume East-like process. Given a box � and an ergodic bound-
ary configuration σ , we define the constraint at site x ∈ � with boundary condition
σ as the indicator function on ��

c�,σ
x (η) := 1{ω : ∃e∈B such that ωx−e=0}(ησ ).

Then the East-like process with parameter q ∈ (0,1) and boundary configuration
σ is the continuous time Markov chain with state space �� and infinitesimal gen-
erator

Lσ
�f (η) = ∑

x∈�

c�,σ
x (η)

[
ηxq + (1 − ηx)p

] · [f (
ηx) − f (η)

]
(2.1)

= ∑
x∈�

c�,σ
x (η)

[
πx(f )− f

]
(η),

where p := 1 − q , ηx is the configuration in �� obtained from η by flipping its
value at x and πx is the Bernoulli(p) measure on the spin at x.

Since the local constraint c�,σ
x (η) does not depend on ηx and the boundary

condition is ergodic, it is simple to check that the East-like process is an ergodic
chain reversible w.r.t. the product Bernoulli(p) measure π� = ∏

x∈� πx on ��.
We will denote by P

�,σ
η (·) and E

�,σ
η (·) the law and the associated expectation of

the process started from η.

REMARK 2.2. When d = 1, the East-like process coincides with the well-
known East process.

Next, we recall the definition of spectral gap and relaxation time. To this aim,
given f :�� → R and V ⊂ �, we define VarV (f ) as the conditional variance of
f w.r.t. to πV given the variables outside V . The quadratic form or Dirichlet form
associated to −Lσ

� will be denoted by Dσ
� and it takes the form

Dσ
�(f ) := π�

(
f

(−Lσ
�f

)) = ∑
x∈�

π�

(
c�,σ
x Varx(f )

)
.(2.2)

DEFINITION 2.3 (Relaxation time). The smallest positive eigenvalue of −Lσ
�

is called the spectral gap and it is denoted by gap(Lσ
�). It satisfies the Rayleigh–

Ritz variational principle

gap
(
Lσ

�

) := inf
f : �� �→R

f nonconstant

Dσ
�(f )

Var�(f )
.(2.3)
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The relaxation time T σ
rel(�) is defined as the inverse of the spectral gap:

T σ
rel(�) = 1

gap(Lσ
�)

.(2.4)

Equivalently, the relaxation time is the best constant c in the Poincaré inequality

Var�(f ) ≤ cDσ
�(f ) ∀f.

2.3. The infinite volume East-like process. We now define the East process on
the entire lattice Z

d . Let cx(η) := 1{ω : ∃e∈B such that ωx−e=0}(η), be the constraint at
x. Then the East-like process on Z

d is the continuous time Markov process with
state space �, with reversible measure given by the product Bernoulli(p) measure
π = ∏

x∈Zd πx and infinitesimal generator L whose action on functions depending
on finitely many spins is given by

Lf (η) = ∑
x∈Zd

cx(η)
[
ηxq + (1 − ηx)p

] · [f (
ηx) − f (η)

]
(2.5)

= ∑
x∈Zd

cx(η)
[
πx(f ) − f

]
(η).

We will denote by Pη(·) and Eη(·) the law and the associated expectation of the
process started from η. We will also denote by gap(L) and Trel(Z

d) the spectral
gap and relaxation time defined similar to the finite volume case.

It is a priori not obvious that Trel(Z
d) < +∞ for all values of q ∈ (0,1).

However, we observe that the East-like process is less constrained than a in-
finite collection of independent one-dimensional East processes, one for every
line in Z parallel to one of the coordinate axis, each of which has a finite re-
laxation time [1]; hence the conclusion. A formal proof goes as follows. Define
cEast
x (η) = 1(ηx−e1 = 0) and observe that cx(η) ≥ cEast

x (η). Therefore, the Dirich-
let form D(f ) = ∑

x π(cx Varx(f )) of the East-like process is bounded from be-
low by

∑
x π(cEast

x Varx(f )) which is nothing but the Dirichlet form of a collection
of independent East processes, one for every line in Z

d parallel to the first coor-
dinate axis. The Rayleigh–Ritz variational principle for the spectral gap implies
that Trel(Z

d) is not larger that the relaxation time of the above product process. In
turn, by the tensorization property of the spectral gap (see, e.g., [33]), the relax-
ation time of the product process coincides with that of the one-dimensional East
process Trel(Z). In conclusion,

Trel
(
Z

d) ≤ Trel(Z) ∀d ≥ 1.(2.6)

2.4. Main results. In order to present our main results, it will be convenient
to fix some extra notation. First, since we will be interested in the small q regime,
the dependence on q of the various time scale characterizing the relaxation toward
equilibrium will be added to their notation. Second, the finite volume East-like
process with maximal or minimal boundary conditions will exhibit quite different
relaxation times for d ≥ 2 and, therefore, they will have a special notation. More
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precisely:

• if the boundary condition σ outside a box � is maximal (minimal) we will write
T max

rel (�;q) [T min
rel (�;q)] instead of T σ

rel(�;q).
• In the special case in which � is the cube [1,L]d of side L, we will write

T σ
rel(L;q) instead of T σ

rel(�).

With the above notation, the first theorem pins down the dependence on the dimen-
sion d of the relaxation time for the process on Z

d . Before stating it, we recall the
precise asymptotic of Trel(Z;q) as q ↓ 0. Let θq := log2(1/q). In [7], Lemma 6.3,
it was proved that, for any L ≥ 2θq ,

Trel(L;q) = 2O(θq)Trel
(
2θq ;q)

,

with O(θq) uniform in L. In turn, the relaxation time on scale 2θq is given by (cf.

[14], Theorem 2) 2θ2
q /2+θq log2 θq+O(θq). By combining the above estimates (cf. also

Lemma 3.2), we conclude that

Trel(Z;q) = 2θ2
q /2+θq log2 θq+O(θq).(2.7)

THEOREM 1. As q ↓ 0

Trel
(
Z

d;q) = 2(θ2
q /(2d))(1+o(1)).

In particular

Trel
(
Z

d;q) = Trel(Z;q)(1/d)(1+o(1)).

REMARK 2.4. The above divergence of the relaxation time as q ↓ 0 confirms
the indications coming from numerical simulation ([3], Figure 3 in Section 9). Our
proof will also show that the o(1) correction is �( 1

θq
log2 θq) and O(θ

−1/2
q ).3

The second result analyzes the relaxation time in a finite box. The main outcome
here is a dramatic dependence on the boundary conditions in dimension greater
than one.

THEOREM 2. 1. Let � = [1,L]d with L ∈ (2n−1,2n] and n = n(q) such that
limq↓0 n(q) =+∞. Then, as q ↓ 0,

T max
rel (L;q) =

{
2(nθq−d(n

2))(1+o(1)), for n ≤ θq/d ,

2(θ2
q /(2d))(1+o(1)), otherwise,

(2.8)

T min
rel (L;q) =

{
2nθq−(n

2)+n log2 n+O(θq), for n ≤ θq ,

2θ2
q /2+θq log2 θq+O(θq), otherwise,

(2.9)

3Recall that f = O(g), f = o(1) and f = �(g) mean that |f | ≤ C|g| for some constant C, f → 0
and lim sup |f |/|g| > 0, respectively.
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where the constant entering in O(θq) in (2.9) does not depend on the choice of
n = n(q).

2. Fix n ∈N and let � = [1,L]d with ‖�‖1 + 1 ∈ (2n−1,2n]. Then, as q ↓ 0,

T min
rel (L;q) = 2nθq+On(1),(2.10)

where On(1) means that the constant may depend on n.

REMARK 2.5. Notice that Lc = 2θq/d is the characteristic intervacancy dis-
tance at equilibrium (the average number of vacancies in a box of side Lc is one).
It coincides with the characteristic length above which the relaxation time with
maximal boundary conditions starts to scale with q like the infinite volume relax-
ation time.

With minimal boundary conditions the relaxation time behaves as in the one-
dimensional case ([14], Theorem 2). In particular, the critical scale 2θq = 1/q is the
equilibrium inter-vacancy distance in d = 1. For what concerns (2.10), we observe
that ‖�‖1 +1 is the number of vertices in any (East-like) oriented path4connecting
x∗ = (1, . . . ,1) to v∗ = (L, . . . ,L). With this interpretation the leading term in the
RHS of (2.10) coincides with the leading term of the relaxation time for an East
process on such an oriented path (cf., e.g., [21]).

Finally, let T σ
mix(L;q) be the mixing time of the East-like process with boundary

conditions σ , that is, the smallest time t such that, for all starting configurations,
the law at time t has total variation distance from π� at most 1/4 (cf., e.g., [31]).
It is well known (see, e.g., [33]) that

T σ
rel(L;q) ≤ T σ

mix(L;q) ≤ T σ
rel(L;q)

(
1 − 1

2 logπ∗),
where π∗ := minη π�(η) = q |�|. Thus T max

mix (L;q) and T min
mix (L;q) satisfy the first

bound in (2.8) and (2.9), respectively.

REMARK 2.6. The error term o(1) in (2.8) can be somewhat detailed [cf.
Remark 6.3 and estimate (6.7) in Section 6].

In order to state the last result, we need to introduce a new time scale. For any
x ∈ Z

d+, let τx be the hitting time of the set {η :ηx = 0} for the East-like process
in Z

d+ with some ergodic boundary condition σ and let T σ (x;q) := E
σ
1(τx) be

its mean when the starting configuration has no vacancies (here and in the sequel
denoted by 1). For simplicity, we present our result on the asymptotics of T σ (x;q)

as q ↓ 0 only for minimal boundary conditions [e.g., corresponding to a single
vacancy at (1,0, . . . ,0)] since they correspond to the most interesting setting from
the physical point of view. In this case the mean hitting times T min(x;q) give

4That is, a path in the oriented graph �Zd obtained by orienting each edge of the graph Z
d in the

direction of increasing coordinate-value.
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some insight on how a wave of vacancies originating from a single one spreads
in space–time. Other boundary conditions could be treated as well. Moreover, we
restrict ourselves only to two main directions for the vertex x: either the diagonal
(i.e., 45◦ degrees in d = 2) or along one of the coordinate axes.

THEOREM 3. 1. Let v∗ = (L,1, . . . ,1), v∗ = (L,L, . . . ,L) with L ∈ (2n−1,

2n] and n = n(q) with limq↓0 n(q) =+∞. Then, as q ↓ 0,

T min(v∗;q) = 2nθq−(n
2)+n log2 n+O(θq) for n ≤ θq,(2.11)

whereas for the vertex v∗ the mean hitting time satisfies

T min(
v∗;q) = 2nθq−d(n

2)+O(θq log θq),(2.12)

for all n ≤ θq/d .

2. Fix n ∈ N and let x ∈ Z
d+ be such that ‖x − x∗‖1 + 1 ∈ [2n−1,2n) where

x∗ = (1, . . . ,1). Then, as q ↓ 0,

T min(x;q) = 2nθq+On(1).(2.13)

REMARK 2.7. Actually, we shall prove that (2.12) holds for any ergodic
boundary conditions on ∂EZ

d+ and not just for the minimal ones.

The above result highlights a somewhat unexpected directional behavior of the
East-like process (cf. Figure 1). Take for simplicity minimal boundary conditions,

(a) (b)

FIG. 1. A snapshot of a simulation of the East-like process with minimal boundary conditions
and initial condition constantly identically equal to 1. White dots are vertices that have never been
updated, grey dots correspond to vertices that have been updated at least once and the black dots are
the vacancies present in the snapshot. (a) q = 0.002, t = 3 × 1012; (b) q = 0.25, t = 9 × 103.
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d = 2 and n = θq/2 so that L = 2n is the mean intervacancy distance Lc at equilib-
rium. Despite of the fact that the �1 distance from the origin of v∗ is roughly twice
that of v∗, implying that the process has to create more vacancies out of 1 in order
to reach v∗ compared to those needed to reach v∗, the mean hitting time for v∗ is
much larger (as q ↓ 0 and on a logarithmic scale) than the mean hitting time for v∗.
The main reason for such a surprising behavior is the fact that v∗ is connected to
the single vacancy of the boundary condition by an exponentially large (in ‖x‖1)
number of (East-like) oriented paths while v∗ is connected by only one such path.
When, for example, n ∝ θq this entropic effects can compensate the increase in en-
ergy caused by the need to use more vacancies. The phenomenon could disappear
for values of n = O(

√
θq log θq) for which the term

(n
2

)
becomes comparable to the

error term O(θq log θq). It certainly does so for n = O(1) as shown in (2.13).

REMARK 2.8. One may wonder what is the behavior of the mean hitting time
T min(x;q) when q is fixed and ‖x‖1 →∞. If x belongs to, for example, the half-
line {x ∈ Z

d+ :xi = 1 ∀i ≥ 2} and since the projection on this line of the East-like
process with minimal boundary conditions is the standard East process, one can
conclude (cf. [6, 23]) that lim‖x‖1→∞ T min(x;q)/‖x‖1 exists. Simulations sug-
gest [cf. Figure 1(b)] that the same occurs for points x belonging to suitable rays
through the origin but that in this case the limit is smaller than the one obtained
along the coordinate axes. Moreover, it seems natural to conjecture that the random
set St consisting of all points of Zd+ that have been updated at least once before
time t , after rescaling by t satisfies a shape theorem.

3. Some preliminary tools. In this section, we collect some technical tools
to guarantee a smoother flow of the proof of the main results.

3.1. Monotonicity. It is clear from the variational characterization of the spec-
tral gap that any monotonicity of the Dirichlet form of the East-like (e.g., in the
boundary conditions, in the volume or in the constraints) induces a similar mono-
tonicity of the spectral gap and, therefore, of the relaxation time. In what follows,
we collect few simple useful inequalities.

LEMMA 3.1. Let � = ∏d
i=1[ai, bi] and let �′ = ∏d

i=1[ai, b
′
i], with b′

i ≥ bi ∀i.
Fix two ergodic boundary conditions σ,σ ′ for �,�′, respectively, such that σx ≤
σ ′

x for all x ∈ ∂E�. Then

T σ
rel(�;q) ≤ T σ ′

rel
(
�′;q)

.(3.1)

In particular, T max
rel (L;q) and T min

rel (L;q) are nondecreasing function of L. More-
over,

T max
rel (�;q) ≤ T σ

rel(�;q) ≤ T min
rel (�;q),(3.2)

T max
rel (�;q) ≤ Trel

(
Z

d;q)
.(3.3)
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PROOF. The inequality c�,σ ′
x ≤ c�,σ

x implies that Dσ ′
� (f ) ≤ Dσ

�(f ). More-
over, for any function f :�� �→ R, it holds that Var�(f ) = Var�′(f ) and
Dσ

�(f ) = Dσ
�′(f ). The first two statements (3.1) and (3.2) are immediate conse-

quences of the variational characterization of the spectral gap. The last statement
follows by similar arguments (cf. [10], Lemma 2.11). �

The second result establishes a useful link between the finite volume relaxation
time with maximal boundary conditions and the infinite volume relaxation time.

LEMMA 3.2. Trel(Z
d;q) = limL→∞ T max

rel (L;q).

PROOF. Using (3.3) together with the fact that T max
rel (L;q) is nondecreasing

in L, it is enough to show that

T max
rel

(
Z

d;q) ≤ sup
L

T max
rel (L;q).

That indeed follows from [10], proof of Proposition 2.13. �

3.2. Graphical construction. It is easily seen that the East-like process (in fi-
nite or infinite volume) has the following graphical representation (see, e.g., [10]).
To each x ∈ Z

d , we associate a rate one Poisson process and, independently, a fam-
ily of independent Bernoulli(p) random variables {sx,k :k ∈ N}. The occurrences
of the Poisson process associated to x will be denoted by {tx,k :k ∈N}. We assume
independence as x varies in Z

d . This fixes the probability space whose probability
law will be denoted by P(·). Expectation w.r.t. P(·) will be denoted by E(·). Notice
that, P-almost surely, all the occurrences {tx,k :k ∈N, x ∈ Z

d} are different. On the
above probability space we construct a Markov process according to the following
rules. At each time tx,k , the site x queries the state of its own constraint cx (or
c�,σ
x in the finite volume case). If and only if the constraint is satisfied (cx = 1 or

c�,σ
x = 1), then tx,k is called a legal ring and the configuration resets its value at

site x to the value of the corresponding Bernoulli variable sx,k . A simple conse-
quence of the graphical construction is that the projection on a finite box � of the
form � = ∏d

i=1[1,Li] of the East-like process on Z
d+ with boundary condition σ

coincides with the East-like process on � with boundary conditions given by the
restriction of σ to ∂E�.

3.3. A block dynamics version of the East-like process. Let S be a finite set and
let μ be a probability measure on S. Let G ⊂ S and define q∗ = 1 − p∗ = μ(G).
Without loss of generality, we assume that q∗ ∈ (0,1). On �∗ = SZ

d
consider the

Markov process with generator A whose action on functions depending on finitely
many coordinates is given by [cf. (2.5)]

Af (ω) = ∑
x∈Zd

c∗x(ω)
[
μx(f ) − f

]
(ω),(3.4)
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where μx(f )(ω) = ∑
ωx∈S μ(ωx)f (ω) is the conditional average on the coordi-

nate ωx given {ωy}y �=x and c∗x(ω) is the indicator of the event that, for some e ∈ B,
the coordinate ωx−e belongs to the subset G.

REMARK 3.3. Exactly as for the East-like process there is a finite volume
version of the above process on a box � with an ergodic boundary condition σ ∈
S∂E� and generator Aσ

�. In particular, σ is maximal if σx ∈ G for all x ∈ ∂E�, and
in this case we will write Amax

� .

If S = {0,1}, G = {0} and μ is the Bernoulli(p) measure on S, the above pro-
cess coincides with the East-like process. As for the latter, one easily verifies re-
versibility w.r.t. the product measure with marginals at each site x given by μ. The
above process also admits a graphical construction tailored for the applications we
have in mind.

Similar to the East-like process one associates to each x ∈ Z
d a rate one Poisson

process, a family of independent Bernoulli(p∗) random variables {sx,k :k ∈N} and
a family of independent random variables {ωx,k :k ∈ N} ∈ SN, such that ωx,k has
law μ(· | Gc) if sx,k = 1 and μ(· | G) otherwise. All the above variables are inde-
pendent as x varies in Z

d . One then constructs a Markov process according to the
following rules. At each time tx,k , the site x queries the state of its own constraint
c∗x . If and only if the constraint is satisfied (c∗x = 1), then the configuration resets
its value at site x to the value of the corresponding variable ωx,k . The law of the
process started from ω will be denoted by P

∗
ω.

The key result about the process with generator A is the following.

PROPOSITION 3.4. Let gap(A) be the spectral gap of A and recall that
gap(L;q∗) denotes the spectral gap of the East-like process with parameter q∗.
Then

gap(A) = gap
(
L;q∗).

PROOF. Given ω ∈ �∗ = SZ
d

consider the new variables ηx = 0 if ωx ∈ G

and ηx = 1 otherwise, x ∈ Z
d . The projection process on the η variables coincides

with the East-like process at density p = 1 − q∗ because the constraints depend
on ω only through the η’s. Thus, gap(A) ≤ gap(L;q∗). To establish the converse
inequality, we notice that Lemma 3.2 applies as is to A. Therefore, it is enough to
show that, for any L, gap(Amax

�L
) ≥ gap(Lmax

�L
;q∗) where �L = [1,L]d .

For this purpose, consider the East-like process in �L with maximal boundary
conditions and let τx be the first time that there is a legal ring at the vertex x ∈ �L.
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Using Lemma A.3,5 we get that, for any η ∈ ��L
and any x ∈ �L,

lim inf
t→∞ −1

t
logP�L,max

η (τx ≥ t) ≥ gap
(
Lmax

�L
;q∗).(3.5)

Let �∗
�L

= S�L , then for any f :�∗
�L

�→R with μ�L
(f ) = 0 (where μ�L

denotes
the product measure on �∗

�L
with marginal μ at each site) we now write

e
tAmax

�L f (ω) = E
∗
ω

(
f

(
ω(t)

))
(3.6)

= E
∗
ω

(
f

(
ω(t)

)
1{maxx τx<t}

) +E
∗
ω

(
f

(
ω(t)

)
1{maxx τx≥t}

)
,

where E
∗
ω(·) denotes expectation w.r.t. the chain generated by Amax

�L
starting at

t = 0 from ω. Notice that, for any x ∈ �L and any t > 0, the event {τx ≤ t} can be
read off from the evolution of the projection variables η. In particular,

P
∗
ω(τx > t) = P

�L,max
η(ω) (τx > t).

Fix ε > 0. Using (3.5), the absolute value of second term in the RHS of (3.6)
is bounded from above by C exp{−t (gap(Lmax

�L
;q∗) − ε)} for some constant C

depending on f and L.
To bound the first term in the RHS of (3.6) we observe that, conditionally on the

variables ηx(t) = 1ωx∈G(ω(t)) and on the event {maxx∈�L
τx < t}, the variables

ωx(t) are independent with law μ(· | G) if ηx(t) = 1 and μ(· | Gc) otherwise.
Thus, with g(η) := μ�L

(f | η),

E
∗
ω

(
f

(
ω(t)

)
1{maxx τx<t}

) = E
∗
ω

(
g
(
η(t)

)
1{maxx τx<t}

)
= E

�L,max
η(ω)

(
g
(
η(t)

)) −E
∗
ω

(
g
(
η(t)

)
1{maxx τx≥t}

)
.

By construction π(g) = 0, so that

max
ω

∣∣E�L,max
η(ω)

(
g
(
η(t)

))∣∣ ≤ Ce
−tgap(Lmax

�L
;q∗)

,

and we may bound the term E
∗
ω(g(η(t))1{maxx τx≥t}) similar to the second term in

(3.6) using the claim (3.5). In conclusion,

max
ω

∣∣etAmax
�L f (ω)

∣∣ ≤ C′e−t (gap(Lmax
�L

;q∗)−ε)
,

so that, by the arbitrariness of ε, gap(Amax
�L

) ≥ gap(Lmax
�L

;q∗). �

5Lemma A.3 is stated and proved for the whole lattice Z
d at equilibrium, however, a similar

proof applies to the finite volume setting at equilibrium for a fixed boundary condition. Furthermore
P

�L,σ
η (τx ≥ t) ≤ (p ∧ q)−L

P
�L,σ
π (τx ≥ t).
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A concrete example of the process with generator A, which will play a key role
in our proofs, goes as follows.

DEFINITION 3.5 (The East-like block process). Let �� = [1, �]d be the
cube of side �, let S = {0,1}�� , let μ = π��

and let G = {σ ∈ S :σy =
0 for some y ∈ ��}. Thus, q∗ = μ(G) = 1 − (1 − q)�

d
. Let us identify ω ∈ �∗ =

SZ
d

with η ∈ � = {0,1}Zd
by setting ωx = η��(x) where ��(x) := �� + �x. Then

the process with generator A given by (3.4) associated to the above choice of
μ,S,G corresponds to the following Markov process for η, called East-like block
process: the configuration in each block ��(x), with rate one is replaced by a fresh
one sampled from μ, provided that, for some e ∈ B, the block ��(x − e) contains
a vacancy.

The above construction together combined with Proposition 3.4 suggests a pos-
sible route, reminiscent of the renormalization group method in statistical physics,
to bound the relaxation time Trel(Z

d;q) of the East-like process.
Using comparison methods for Markov chains [17], one may hope to establish

a bound on Trel(Z
d;q) of the form (cf. Lemma 5.1)

Trel
(
Z

d;q) ≤ f (q, �)Trel(Lblock),

for some explicit function f where Lblock is the generator of the East-like block
process. Using Proposition 3.4, one would then derive the functional inequality

Trel
(
Z

d;q) ≤ f (q, �)Trel
(
Z

d;1 − (1 − q)�
d )

,

where � is a free parameter. The final inequality obtained after optimizing over the
possible choices of � would clearly represent a rather powerful tool.

In order to carry on the above program, we will often use the following technical
ingredient (cf. [10], Claim 4.6).

LEMMA 3.6 (The enlargement trick). Consider two boxes �1 = ∏d
i=1[ai, ci]

and �2 = ∏d
i=1[bi, ci], with ai < bi ≤ ci ∀i. Let χ(η) be the indicator function of

the event that the configuration η ∈ � has a zero inside the box �3 = ∏d
i=1[ai, di]

where ai ≤ di < bi,∀i. Then

π
(
χ Var�2(f )

) ≤ T min
rel (�1;q)

∑
x∈�1

π
(
cx Varx(f )

) ∀f ∈ L2(�,π).

PROOF. For a configuration η, such that χ(η) = 1, let ξ = (ξ1, . . . , ξd) be the
location of the first zero of η in the box �3 according to the order given by the
�1 distance ‖ · ‖1 in Z

d from the vertex a = (a1, . . . , ad) of the box �1 and some



RELAXATION TO EQUILIBRIUM OF GENERALIZED EAST PROCESSES 1831

arbitrary order on the hyperplanes {y ∈ Z
d :‖y − a‖1 = const}. Let �ξ be the box

[ξ1 + 1, c1] × ∏d
i=2[ξi, ci]. Then

π
(
χ Var�(f )

) = ∑
z∈�3

π
(
1{ξ=z} Var�1(f )

) ≤ ∑
z∈�3

π
(
1{ξ=z} Var�ξ (f )

)
≤ ∑

z∈�3

T min
rel (�z;q)π

(
1{ξ=z}(η)

∑
x∈�z

c
�z,η�∂E�z
x Varx(f )

)

≤ T min
rel (�1;q)

∑
z∈�3

π

(
1{ξ=z}

∑
x∈�z

cx Varx(f )

)

≤ T min
rel (�1;q)

∑
x∈�1

π
(
cx Varx(f )

)
.

Above we used the convexity of the variance in the first inequality, the Poincaré
inequality for the box �z together with Lemma 3.1 in the second inequality, again

Lemma 3.1 together with the equality c
�,η�∂E�

x (η) = cx(η) for all �,x ∈ � and
η ∈ �. �

3.4. Capacity methods. Since the East-like process in a box � ⊂ Z
d with

boundary conditions σ has a reversible measure (the measure π�), one can as-
sociate to it an electrical network in the standard way (cf., e.g., [25]). For lightness
of notation in what follows, we will often drop the dependence on � of the various
quantities of interest.

We first define the transition rate Kσ (η, η′) between two states η,η′ ∈ �� as

Kσ (
η,η′) = {

c�,σ
x (η)

[
qηx + p(1 − ηx)

]
, if η′ = ηx for some x ∈ �,

0, otherwise.

Since the process is reversible, we may associate with each pair (η, η′) ∈ �2
� a con-

ductance Cσ (η, η′) = Cσ (η′, η) in the usual way [see (2.1)],

Cσ (
η,η′) = π(η)Kσ (

η,η′).(3.7)

Observe that Cσ (η, η′) > 0 if and only if η′ = ηx for some x ∈ � and c�,σ
x (η) = 1.

We define the edge set of the electrical network by

Eσ
� = {{

η,η′} ⊂ �� :Cσ (
η,η′) > 0

}
.

Notice that Eσ
� consists of unordered pairs of configurations. We define the re-

sistance rσ (η, η′) of the edge {η,η′} ∈ Eσ
� as the reciprocal of the conductance

Cσ (η, η′). With the above notation, we may express the generator (2.1) as

Lσ
�f (η) = ∑

x∈�

Cσ (η, ηx)

π(η)

[
f

(
ηx) − f (η)

]
.
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Given B ⊂ ��, we denote by τB the hitting time

τB = inf
{
t > 0 :η(t) ∈ B

}
,

and denote by τ+
B the first return time to B

τ+
B = inf

{
t > 0 :η(t) ∈ B,η(s) �= η(0) for some 0 < s < t

}
.

We define the capacity Cσ
A,B between two disjoint subsets A, B of �� by

Cσ
A,B = ∑

ζ∈A

π(ζ )Kσ (ζ )P
�,σ
ζ

(
τ+
A > τB

)
,(3.8)

where Kσ (ζ ) = ∑
ξ �=ζ Kσ (ζ, ξ) is the holding rate of state ζ (see, e.g., [4], Sec-

tion 2). The resistance between two disjoint sets A,B is defined by

Rσ
A,B := 1/Cσ

A,B.(3.9)

With slight abuse of notation, we write Cσ
ζ,B and Rζ,B , if A = {ζ } with ζ /∈ B . The

mean hitting time E
�,σ
ζ (τB) can be expressed as (see, e.g., formula (3.22) in [8]):

E
�,σ
ζ (τB) = Rσ

ζ,B

∑
η/∈B

π(η)P�,σ
η (τ{ζ } < τB).(3.10)

The following variation principle, useful for finding lower bounds on the resistance
(i.e., upper bounds on the capacity), is known as the Dirichlet principle (see, e.g.,
[25]):

Cσ
A,B = inf

{
Dσ

�(f ) :f :�� →R, f |A = 1, f |B = 0
}
,(3.11)

where the Dirichlet form Dσ
�(f ) is given in (2.2).

REMARK 3.7. It is clear from (2.2) that the capacity increases as vacancies
are added to the boundary conditions and, therefore, the resistance decreases. This
is also a consequence of the Rayleigh’s monotonicity principle, which states that
inhibiting allowable transitions of the process can only increase the resistance.

In order to get upper bounds on the resistance, it is useful to introduce the notion
of a flow on the electrical network. For this purpose, we define the set of oriented
edges

�Eσ
� = {(

η,η′) ∈ �2
� :

{
η,η′} ∈ Eσ

�

}
.

For any real valued function θ on oriented edges, we define the divergence of θ at
ξ ∈ �� by

div θ(ξ) = ∑
η : (ξ,η)∈ �Eσ

�

θ(ξ, η).
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DEFINITION 3.8 (Flow from A to B). A flow from the set A ⊂ �� to a dis-
joint set B ⊂ ��, is a real valued function θ on �Eσ

� that is antisymmetric [i.e.,
θ(σ, η) =−θ(η, σ )] and satisfies

div θ(ξ) = 0 if ξ /∈ A∪B,

div θ(ξ) ≥ 0 if ξ ∈ A,

div θ(ξ) ≤ 0 if ξ ∈ B.

The strength of the flow is defined as |θ | = ∑
ξ∈A div θ(ξ). If |θ | = 1 we call θ a

unit flow.

DEFINITION 3.9 (The energy of a flow). The energy associated with a flow θ

is defined by

E(θ) = 1

2

∑
(η,η′)∈ �Eσ

�

rσ (
η,η′)θ(

η,η′)2
.(3.12)

With the above notation, Thompson’s principle states that

Rσ
A,B = inf

{
E(θ) : θ is a unit flow from A to B

}
,(3.13)

and that the infimum is attained by a unique minimizer called the equilibrium flow.
We conclude with a concrete application to the East-like process. Given x ∈

� = [1,L]d , let τx be the hitting time of the set Bx := {η ∈ �� :ηx = 0} for the
East-like process in � with σ boundary condition and let E�,σ

1 (τx) be its average
when the starting configuration has no vacancies (denoted by 1). Also, let τ̃x be
the hitting time of the set B̃x := {η ∈ �� :ηx = 1} for the East-like process in
� with σ boundary condition and let E�,σ

10 (τ̃x) be its average when the starting
configuration has only a single vacancy which is located at x (denoted by 10).

LEMMA 3.10. Suppose L ≤ 2θq/d with q < 1/2. Then there exists a constant
c > 0 (independent from q and d) such that

cRσ
1,Bx

≤ E
�,σ
1 (τx) ≤ Rσ

1,Bx
and

(3.14)
cqRσ

1,B̃x
≤ E

�,σ
10 (τ̃x) ≤ qRσ

1,B̃x
.

PROOF. Setting c := inf{(1−q)1/q :q ∈ (0,1/2)} > 0, we have (1−q)L
d ≥ c.

We now observe that

c ≤ (1 − q)L
d ≤ π(1) ≤ ∑

η∈Bc
x

π(η)P�,σ
η (τ1 < τx) ≤ π

(
Bc

x

) = p ≤ 1,

and similarly

cq ≤ q(1 − q)L
d ≤ π(10) ≤ ∑

η∈B̃c
x

π(η)P�,σ
η (τ10 < τ̃x) ≤ π

(
B̃c

x

) = q,

the result follows at once from (3.9) and (3.10). �
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3.5. Bottleneck inequality. One can lower bound the relaxation time (i.e., up-
per bound the spectral gap) by restricting the variational formula (2.3) to indicator
functions of subsets of ��. In this way, one gets (cf., e.g., [33])

T σ
rel(�;q) ≥ max

A⊂��

π(A)π(Ac)

Dσ
�(1A)

.(3.15)

Using reversibility, the Dirichlet form Dσ
�(1A) can be written as

Dσ
�(1A) = ∑

η∈A,η′∈Ac

π(η)Kσ (
η,η′) = ∑

η∈∂A

π(η)Kσ (
η,Ac),(3.16)

where

∂A := {
η ∈ A :∃η′ ∈ Ac such that Kσ (

η,η′) > 0
}

(3.17)

is the internal boundary of A and

Kσ (
η,Ac) = ∑

σ∈Ac

Kσ (η, σ ) = ∑
x∈� : c

�,σ
x (η)=1,

ηx /∈A

{
qηx + p(1 − ηx)

}
(3.18)

is the escape rate from A when the chain is in η. Using the trivial bound
Kσ (η,Ac) ≤ Ld , we get that Dσ

�(1A) ≤ Ldπ(∂A) and the relaxation time satis-
fies

T max
rel (�;q) ≥ max

A⊂��

1

Ld

π(A)π(Ac)

π(∂A)
.

The boundary ∂A of a set A with a small ratio Dσ
�(1A)/(π(A)π(Ac)) is usually

referred to as a bottleneck. A good general strategy to find lower bounds on the
relaxation time is therefore to look for small bottlenecks in the state space (cf. [31,
33]).

4. Algorithmic construction of an efficient bottleneck. In this section, we
will construct a bottleneck (cf. Section 3.5) which will prove some of the lower
bounds in Theorems 2 and 3.

THEOREM 4.1. Fix � = [1,L]d , with L = 2n and n ≤ θq/d . Then there exists
A∗ ⊂ �� such that

Dmax
� (1A∗) ≤ 2−nθq+d(n

2)−n log2 n+O(θq),(4.1)

and 1/2 > π(A∗) ≥ q/2 for q sufficiently small.

In the one-dimensional case, the construction of a bottleneck with the above
properties has been carried out in [14]. The extension to higher dimensions re-
quires some nontrivial generalization of the main ideas of [14] and the whole anal-
ysis of the bottleneck A∗ becomes more involved. The plan of the proof goes as
follows:
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FIG. 2. A configuration η extended with maximal boundary conditions. The gap of the vacancies
at x, y are: gx(η) = 3, gy(η) = 4.

1. We first define the set A∗. For any η ∈ ��, we will remove its vacancies
according to a deterministic rule until we either reach the configuration without
vacancies, and in that case we say that η /∈ A∗, or we reach the configuration with
exactly one vacancy at the upper corner v∗ of � and in that case we declare η ∈ A∗.

2. Next, we prove some structural properties of the configurations η ∈ ∂A∗.
The main combinatorial result here is that, if L = 2n, then η ∈ ∂A∗ must have
at least n + 1 “special” vacancies at vertices (z1, . . . , zn+1), where the range of
the possible values of the (n + 1)-tupla (z1, . . . , zn+1) is a set �

(n)
� of cardinality

|�(n)
� | ≤ 22d(n+1) 2d(n2)

n!dn .

3. The proof is readily finished by observing that π(∂A∗) ≤ qn+1|�(n)
� |.

4.1. Construction of the bottleneck. In what follows, we write � for the lex-
icographic order in Z

d , that is, x � y if and only if xi ≤ yi for all 1 ≤ i ≤ d . For
any box �, we define �̄ := �∪ ∂E�. Given η ∈ ��, with some abuse of notation
we will sometimes also denote by η the configuration in ��̄ which coincides with
η on � and which is zero on ∂E�.

DEFINITION 4.2. Given x ∈ � and η ∈ ��, we define the gap of x in η by

gx(η) := min
{
g > 0 :∃z ∈ �̄ with z � x,ηz = 0,‖x − z‖1 = g

}
.(4.2)

If ηx = 0, we say that gx(η) is the gap of the vacancy at x.

Note that in (4.2) g varies among the positive integers and the minimum is
always realized since η is defined to be zero on ∂E�. Moreover, we know that
gx(η) ≤ L. See Figure 2 for an example.

Following [14], we now define a deterministic discrete time dynamics, which
will be the key input for the construction of the bottleneck A∗.

Starting from η, the successive stages of the dynamics will be obtained recur-
sively by first removing from η all vacancies with gap one, then removing from
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the resulting configuration all vacancies with gap two, and so on until all vacan-
cies with gap size L−1 have been removed. We stop before removing all vacancies
with gap L since this would always give rise to the configuration with no vacancy.

More precisely, given η ∈ �� and a positive integer g, we define φg(η) ∈ ��

as

φg(η)y :=
{ 1, if gy(η) = g,

ηy, otherwise.
(4.3)

Then the deterministic dynamics starting from η is given by the trajectory (�0(η),
�1(η), . . . ,�L−1(η)) where

�0(η) := η, �g(η) := φg

(
�g−1(η)

)
, g = 1,2, . . . ,L− 1.

Since all vacancies in �L−1(η) have gap of size at least L, the configuration
�L−1(η) can either be the configuration with no vacancies, in the sequel denoted
by 1, or the configuration with exactly one vacancy at v∗ := (L,L, . . . ,L), in the
sequel denoted by 10. In what follows, it will be convenient to say that a vacancy
at vertex x is removed at stage g from a configuration ζ if �g−1(ζ )x = 0 and
�g(ζ )x = 1.

We are now in a position to define the bottleneck.

DEFINITION 4.3. We define A∗ ⊂ �� as the set of configurations η ∈ ��

such that �L−1(η) = 10.

REMARK 4.4. Since 10 ∈ A∗ and 1 /∈ A∗, any path in �� connecting 10 to 1
(under the East-like dynamics with maximal boundary conditions) must cross ∂A∗
[cf. (3.17)].

Some properties of the deterministic dynamics, which are an immediate conse-
quence of the definition and are analogous to those already proved in [14] for the
one-dimensional case, are collected below.

• The deterministic dynamics only remove vacancies so gaps are increasing under
the dynamics. Also, if ηx = 0 and gx(η) = g, then �d(η)x = 0 for all d < g.

• �g(η) contains no vacancies with gaps smaller or equal to g.
• Whether the deterministic dynamics remove a vacancy at a point x depends only

on {y ∈ �̄|y � x, y �= x}.
• For two initial configurations η and η′, if �g(η) = �g(η

′) then �m(η) = �m(η′)
for all m ≥ g. In this case, we say the configurations η and η′ are coupled at
gap g.
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4.2. Some structural properties of ∂A∗. Analogously to the one-dimensional
case (cf. [14], Lemma 5.11), in order to compute the cardinality of the boundary
of the bottleneck ∂A∗, we need to prove a structural result for the configurations
in ∂A∗.

Given η ∈ ∂A∗ and z ∈ � such that c�,max
z (η) = 1 and ηz /∈ A∗, we know that

at each stage g of the deterministic dynamics there must be at least one vertex at
which the two configurations �g(η) and �g(η

z) differ. Furthermore, at least one
of these discrepancies must give rise to a new discrepancy before it is removed by
the deterministic dynamics, and this must continue until �L−1(η),�L−1(η

z) have
a discrepancy at the vertex v∗. The next lemma clarifies this mechanism.

LEMMA 4.5. Let η ∈ ∂A∗ and z ∈ � \ {v∗} be such that c�,max
z (η) = 1 and

ηz /∈ A∗. Then there exists a sequence z = u0 � u1 � · · · � uM = v∗ ∈ � of
length M ≥ 1 such that, if di := ‖ui−1 − ui‖1, then 1 = d1 < d2 < · · · < dM < L

and:

(i) ��(η)ui
= ��(η

z)ui
= 0 for � < di ,

(ii) �di
(η)ui

�= �di
(ηz)ui

,
(iii) �di−1(η)ui−1 �= �di−1(η

z)ui−1 .

The above properties can be described as follows. Both η and ηz have a vacancy
at ui, i = 1, . . . ,M . The vacancy at ui survives for both configurations up to and
including the (di − 1)th stage of the deterministic dynamics. At stage di , the va-
cancy at ui is removed from one configuration but not from the other because of
the original vacancy at ui−1. The latter, in fact, is at distance di from ui and it
survives up to the (di − 1)th stage of the deterministic dynamics only in one of the
two configurations �di−1(η),�di−1(η

z).

PROOF OF LEMMA 4.5. We proceed by induction from v∗ toward z. This
gives rise to a sequence of vertices {vi}M+1

i=1 and distances {ci}Mi=1 from which we
define {ui}Mi=0, {di}Mi=1 by ui = vM−i+1 and di = cM−i+1.

We begin by setting v1 = v∗. Since η ∈ ∂A∗ and ηz /∈ A∗, it follows that
��(η)v1 = 0 for all � < L and �L−1(η

z)v1 = 1. Thus, there exists 1 ≤ c1 ≤ L − 1
such that the vacancy at v1 is removed from ηz but not from η at stage c1 of the
dynamics. This implies, in particular, that gv1(�c1−1(η

z)) = c1, so that there exists
a v2 � v1 such that ‖v1 − v2‖1 = c1 and �c1−1(η

z)v2 = 0. Using the fact that the
vacancy at v1 is not removed from η at the c1-stage of the dynamics, we conclude
that the vacancy at v2 cannot be present in �c1−1(η), that is, �c1−1(η)v2 = 1. Since
the deterministic dynamics at the point v2 depend only on the initial configuration
in the region {x ∈ � :x � v2}, we must have z � v2. This completes the proof of
the first inductive step (note that the proof is complete if z = v2).

Assume now inductively that we have been able to find a sequence z � vk+1 �
vk � · · · � v1 = v∗ ∈ � such that, setting ci := ‖vi − vi+1‖1, for 1 ≤ i ≤ k the
following holds; 1 ≤ ck < ck−1 < · · · < c2 < c1 < L and:
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(a) ��(η)vi
= ��(η

z)vi
= 0,∀� < ci ,

(b) �ci
(η)vi

�= �ci
(ηz)vi

,
(c) �ci−1(η)vi+1 �= �ci−1(η

z)vi+1 .

If ck = 1, then ηvk+1 = �0(η)vk+1 �= �0(η
z)vk+1 = ηz

vk+1
which in turn implies

vk+1 = z and we stop, and fix M = k. Otherwise, we may repeat the argument
used for the first step as follows.

The equality �ck−1(η)vk+1 �= �ck−1(η
z)vk+1 implies that there must exist a first

stage ck+1 ≤ ck − 1 at which � removes the vacancy at vk+1 from either η or
ηz but not from both. If ck+1 = 0, then again vk+1 = z, and since c�,max

z (η) = 1
we have �1(η)z = �1(η

z)z = 1. In particular, (c) above with i = k implies that
ck = 1 and we are in the case described above, so we set M = k and stop. Thus,
we can assume ck+1 ≥ 1. Then ��(η)vk+1 = ��(η

z)vk+1 = 0 for � < ck+1, and
�ck+1(η)vk+1 �= �ck+1(η

z)vk+1 [thus assuring (a) and (b) for i = k + 1]. Let ξ = η

if �ck+1(η)vk+1 = 1 and ξ = ηz otherwise. So gvk+1(�ck+1−1(ξ)) = ck+1 by defini-
tion, which implies that there exists a vk+2 � vk+1 with ‖vk+1 − vk+2‖1 = ck+1
and �ck+1−1(ξ)vk+2 = 0. Since the vacancy at vk+1 is not removed from ξz at
stage ck+1 of the dynamics, we must have �ck+1−1(ξ

z)vk+2 = 1 [thus completing
the proof of (c) for i = k + 1]. Following the same argument as for the first step
of the induction we must also have z � vk+2. We may continue by induction until
vk+1 = z and fix M = k ≥ 1. The proof now follows by letting ui = vM−i+1 and
di = cM−i+1. �

In light of the previous technical lemma, we are able to generalize [14],
Lemma 5.11, to higher dimensions.

LEMMA 4.6. Let η ∈ ∂A∗ and z ∈ � \ {v∗} be such that c�,max
z (η) = 1

and ηz /∈ A∗. Fix a sequence (ui)
M
i=0 ∈ � according to Lemma 4.5. Let B =∏d

j=1[aj , bj ] be a box such that (i) B ⊂ �̄, (ii) z ∈ B , (iii) z �= a := (a1, a2, . . . , ad)

and ηa = 0, (iv) b := (b1, b2, . . . , bd) = uk for some k : 0 ≤ k ≤ M . Let � := ‖B‖1
and let

B− := {
x ∈ �̄ \B :x � a and ‖x − a‖1 < �

}
,

B+ := {
x ∈ �̄ \B :x � b and ‖x − b‖1 ≤ �

}
.

Then at least one of the following properties is fulfilled:

1. B contains v∗ = (L,L, . . . ,L) and some point of ∂E�.
2. a /∈ ∂E� and η has at least one vacancy in B− �=∅.
3. k �= M and B+ contains uk+1.

PROOF. Fix η ∈ ∂A∗, z and B satisfying the conditions of the lemma. Suppose
first that a ∈ ∂E�. If k = M , then v∗ = uM = uk = b ∈ B , thus implying the thesis.
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FIG. 3. The sets B−,B+ when far from the border of �. We have considered the case uk+1 ∈ B+.
In this example � = 9.

Suppose k < M . We know that ��(η)b = ��(η
z)b = 1 since a ∈ ∂E�. Hence, by

property (iii) in Lemma 4.5 (with i = k + 1), we have � ≥ dk+1. This implies that
uk+1 ∈ B+, which gives rise to the thesis. Suppose now, for contradiction, that
a /∈ ∂E� and that the thesis is false, so we have:

(¬1) v∗ /∈ B or B ∩ ∂E� =∅,
(¬2) ηy = 1 for all y ∈ B− (including the case B− =∅),
(¬3) either k = M or “k �= M and uk+1 /∈ B+.”

We will prove that these assumptions give rise to a contradiction with the def-
initions of (ui)

M
i=0, (di)

M
i=1. Note that (¬1) holds since we assume a /∈ ∂E� so

B ∩ ∂E� =∅.
First, we claim that the assumption a /∈ ∂E� together with (¬2) implies � < L.

To prove the claim, suppose that � ≥ L. Since a ∈ �̄ and a �= v∗, we know that at
least one coordinate of a is strictly less than L, so there exists a j ∈ {1, . . . , d} such
that aj < L. Now the point r = (r1, . . . , rd) defined by ri = ai for all i �= j and
rj = 0 belongs to the East boundary ∂E�. Also, r � a and ‖r−a‖1 = aj < L ≤ �,
so r ∈ B−. This contradicts assumption (¬2) above.

By (¬2) ηy = 1 for all y ∈ B−, so we have ��−1(η)a = ��−1(η
z)a = 0. In

particular, gb(��−1(η)), gb(��−1(η
z)) ≤ � so ��(η)b = ��(η

z)b = 1. This im-
plies that �L−1(η)b = 1 hence b �= v∗ (since η ∈ ∂A∗). So b = uk for some
k < M and there exists uk+1 � uk satisfying ‖b − uk+1‖1 = dk+1 < L. By (¬3)
uk+1 /∈ B+ so that dk+1 > �, so by monotonicity of the deterministic dynamics
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�dk+1−1(η)b ≥ ��(η)b = 1 and �dk+1−1(η
z)b ≥ ��(η

z)b = 1. This implies that
�dk+1−1(η

z)b = �dk+1−1(η)b = 1 which contradicts b = uk [see Lemma 4.5(iii)].
�

For any configuration η ∈ ∂A∗ the above Lemma 4.6 allows us to isolate a
special subset of vacancies of η. This special subset, in the sequel denoted by
{z1, z2, . . . , zS}, will be defined iteratively by means of an algorithm which we
now describe. In what follows, it will be convenient to use the following notation:
given a box � and a site x ∈ Z

d \ �, we define � � x as the minimal box con-
taining both � and x. The input of the algorithm is a pair (η, z0), where η ∈ ∂A∗
and z0 ∈ � is such that c�,max

z0
(η) = 1 and ηz0 /∈ A∗. The output will be a sequence

{(zi,�i)}Si=1, S ≥ n + 1 if the box � = [1,L]d has side L = 2n, where {�i}Si=1 is
a increasing sequence of boxes contained in �̄ and {zi}Si=1 ⊂ �̄ contains exactly
S − 1 points in � where η is zero.

REMARK 4.7. Necessarily z0 �= v∗. Otherwise, the condition c�,max
z0

(η) = 1
would imply that the gap of the vacancy at v∗ is equal to one and the latter would
be removed at the first step of the deterministic dynamics defining A∗. That would
contradict the property �L−1(η)v∗ = 0.

Initial step. Choose an arbitrary sequence of vertices u1, . . . , uM satisfying the
properties described in Lemma 4.5 for the pair (η, z0). Define also z1 to be the
minimal element (in lexicographic order) of the nonempty set {z0 − e :ηz0−e =
0, e ∈ B} and set �1 = {z0} � z1.

The recursive step. Suppose that (z1,�1), (z2,�2), . . . , (zi,�i) has been de-
fined in such a way that:

• for all j ≤ i, the set �j is a box satisfying: (i) �j ⊂ �̄, (ii) z0 ∈ �j but it does
not coincides with the lower corner of �j where η has a vacancy, (iii) the upper
corner of �j coincides with ukj

for some kj ∈ {0,1, . . . ,M}.
• zk �= zj for all j �= k and ηzj

= 0 for all j ≤ i.

Let �±
i be the two sets defined in Lemma 4.6 for the box �i and adopt the con-

vention that {uM+1} :=∅.

• If the upper corner of �i is v∗ and the lower corner of �i belongs to ∂E� then
stop;

• else
– if the lower corner of �i is not in ∂E�, define zi+1 to be the minimal element

(in lexicographic order) of the nonempty set {z ∈ �−
i ∪ (�+

i ∩ {uki+1}) :ηz =
0} and set �i+1 := �i � zi+1;

– else define zi+1 = uki+1 and set �i+1 := �i � uki+1;
• Endif



RELAXATION TO EQUILIBRIUM OF GENERALIZED EAST PROCESSES 1841

REMARK 4.8. Note that in last case (i.e., upper corner �= v∗ and lower corner
∈ ∂E�), ki �= M since uM = v∗.

Using Lemma 4.6, it is simple to check by induction that the above algorithm is
well posed, it always stops and that exactly S − 1 points among z1, . . . , zS belong
to �.

It is convenient to parametrize the points z1, . . . , zS as follows. Let �0 := {z0},
let ε1 =−1 and set εi =±1 if zi ∈ �±

i−1, i = 2, . . . , S. If {v∗(�i), v∗(�i)} denote
the upper and lower corner, respectively, of the box �i , then by construction, zi �
v∗(�i−1) if εi =−1 and v∗(�i−1) � zi otherwise. Finally, we define

ξi :=
{

v∗(�i−1)− zi, if εi =−1,
zi − v∗(�i−1), if εi =+1,

1 ≤ i ≤ S.

Note that each ξi has nonnegative coordinates and ξi �= 0. By the previous consid-
erations and by the definition of the sets �±

i (cf. Lemma 4.6), if γi := ‖ξi‖1 and
�i := ‖�i‖1 then

γ1 = �1 = 1, �i+1 = �i + γi+1, 1 ≤ γi+1 ≤ �i ∀i = 1, . . . , S − 1.(4.4)

From the above identities, we get γi+1 ≤ ∑i
j=1 γj and �i+1 ≤ 2�i , that is, �i ≤

2i−1. On the other hand, when the algorithm stops for i = S, the box �S has at
least one edge of length L. That implies that 2n = L ≤ ‖�S‖1 = �S ≤ 2S−1, that
is, S ≥ n+ 1.

4.2.1. Counting the number of possible outputs. We now focus on bounding
from above the number Z of the possible (n+1)-tuples (z1, . . . , zn+1) that can be
produced by the above algorithm. As already discussed, the vertices (z1, . . . , zn+1)

are uniquely specified by z0, by the vectors (ξ1, . . . , ξn+1) and by the variables
(ε1, . . . , εn+1). Clearly, z0 and (ε1, . . . , εn+1) can be chosen in at most Ld × 2n =
2(d+1)n ways. To upper bound the number � of the possible (n + 1)-tuples
(ξ1, . . . , ξn+1), we first observe that, given the lengths (γ1, . . . , γn+1), there are at
most [(1 + γ1)(1 + γ2) · · · (1 + γn+1)]d−1 possible (n + 1)-tuples (ξ1, . . . , ξn+1).
Since γi+1 ≤ ∑i

j=1 γj , setting

U(k) := {
(x1, x2, . . . , xk) ∈N

k :x1 = 1 and 1 ≤ xi ≤ x1+· · ·+xi−1 ∀i : 2 ≤ i ≤ k
}

and writing
∑

U(k)(·) for the sum restricted to values in U(k), we get

� ≤ ∑
U(n+1)

[
(1 + x1)(1 + x2) · · · (1 + xn+1)

]d−1

≤ ∑
U(n+1)

2(d−1)(n+1)[x1x2 · · ·xn+1]d−1

≤ 2(2d−1)(n+1) 2d(n
2)

n!dn
,
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where we used Claim 4.9 below. In conclusion,

Z ≤ 2(d+1)n� ≤ 23d(n+1) 2d(n
2)

n!dn
.(4.5)

CLAIM 4.9. The following holds:

∑
U(n+1)

(x1x2 · · ·xn+1)
d−1 ≤ 2d(n

2)+dn

n!dn
∀n > 1.

PROOF. Setting Mn := ∑n
i=1 xi and summing over xn+1 gives the bound

∑
U(n+1)

(x1x2 · · ·xn+1)
d−1 ≤ ∑

U(n)

(x1x2 · · ·xn)
d−1 (Mn + 1)d

d
,(4.6)

where we used the bound
n∑

i=1

f (i) ≤
∫ n+1

0
dx f (x),

valid for any nonnegative increasing function f . Similarly,

a(j, k) := ∑
U(j)

(x1x2 · · ·xj )
d−1(Mj + 1)k

≤ ∑
U(j−1)

(x1x2 · · ·xj−1)
d−1

∫ Mj−1+1

0
dxj (xj +Mj−1 + 1)k+d−1

(4.7)

≤ 2k+d

k + d

∑
U(j−1)

(x1x2 · · ·xj−1)
d−1(Mj−1 + 1)k+d

= 2k+d

k + d
a(j − 1, k + d).

If we combine together (4.6) and (4.7), we obtain

d
∑

U(n+1)

(x1x2 · · ·xn+1)
d−1

≤ a(n, d)

≤ 22d

2d
a(n − 1,2d) ≤ 22d · 23d

(2d)(3d)
a(n − 2,3d)

≤ · · · ≤ 22d · 23d · · ·2nd

(2d)(3d) · · · (nd)
a(1, nd) ≤ 2d(n

2)+d(n−1)

n!dn−1 . �



RELAXATION TO EQUILIBRIUM OF GENERALIZED EAST PROCESSES 1843

4.3. Conclusion. By the arguments above, we know that

∂A∗ ⊂ {
η ∈ �� :∃(z1, . . . , zn+1) ∈ �

(n)
� with ηz1 = · · · = ηzn+1 = 0

}
,

where �
(n)
� consists of all possible (n + 1)-tuples (z1, . . . , zn+1) in �̄ which can

be obtained by applying the algorithm above to a pair (η, z0) satisfying η ∈ ∂A∗,
c�,max
z0

(η) = 1 and ηz0 /∈ A∗. Note that the set �
(n)
� has cardinality Z . Thus, us-

ing (4.5) together with n ≤ θq/d ,

π(∂A∗) ≤ qnZ ≤ 2−nθq 23d(n+1) 2d(n
2)

n!dn
= 2−nθq+d(n

2)+O(θq)

n!dn
.

By applying the trivial bound Dmax
� (1A∗) ≤ Ldπ(∂A∗) (cf. Section 3.5) we imme-

diately get (4.1). Finally, recall that 10 ∈ A∗ and 1 /∈ A∗. Thus,

π(A∗) ≥ π(10) ≥ q(1 − q)L
d ≥ q/2,

π
(
Ac∗

) ≥ π(ηv∗ = 1) = p ≥ 1/2,

for q sufficiently small (here the restriction n ≤ θq/d is crucial). This completes
the proof of the Theorem 4.1.

5. Proof of Theorem 1.

5.1. Lower bound. Recall that θq = log2(1/q) and let Lc = �2θq/d�. Lem-
ma 3.1 together with (3.15) and Theorem 4.1 imply a more refined lower bound of
the form

T max
rel (Lc;q) ≥ 2θ2

q /(2d)+(θq/d) log2 θq+O(θq).

Therefore, the o(1) term in Trel(Z
d;q) ≥ 2θ2

q /(2d)(1+o(1)) is �((log2 θq)/θq) (see
Remark 2.4). Using (2.7), the RHS above can also be rewritten as Trel(Z;
q)(1/d)(1+o(1)).

5.2. Upper bound. We upper bound the relaxation time Trel(Z
d;q) by a renor-

malization procedure based on the following result.

LEMMA 5.1. Fixed � ∈N, set q∗ = 1 − (1 − q)�
d
. Then for any q ∈ (0,1)

Trel
(
Z

d;q) ≤ κdT min
rel (3�;q)Trel

(
Z

d;q∗)(5.1)

for some constant κd depending only on the dimension d .

We postpone the proof to the end of the section and explain how to conclude.
First, we note that, since q∗ = π(∃x ∈ �� :ηx = 0), the Bonferroni inequalities
(cf., e.g., [18]) imply that

q�d/2 ≤ q∗ ≤ q�d for q�d ≤ 1.(5.2)
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We will now use Theorem 2 together with (5.1) to prove inductively the required
upper bound on Trel(Z

d;q) as q ↓ 0. Fix d > 1. We already know [cf. (2.6)] that
Trel(Z

d;q) ≤ Trel(Z;q) so that, using (2.7),

Trel
(
Z

d;q) ≤ 2θ2
q /2+θq log2 θq+γ0θq+α0,

for some constants γ0, α0 > 0 and any q ∈ (0,1). Assume now that, for some
λ ∈ (1/d,1] and γ,α > 0, the following bound holds for all q ∈ (0,1):

Trel
(
Z

d;q) ≤ 2λ(θ2
q /2)+θq log2 θq+γ θq+α.(5.3)

Choose the free parameter � in (5.1) of the form � = 2n with 1 ≤ n ≤ θq/d . With
this choice and using (5.2), we get

θq∗ ≤ θq − nd + 1 ≤ θq.(5.4)

Using (5.1) and (5.3) together with Theorem 2 to bound from above the term
T min

rel (3�;q) for all q ∈ (0,1) by

T min
rel (3�;q) ≤ 2nθq−n2/2+n log2 n+βθq+ρ

for some constants β,ρ > 0 independent of n, we get

Trel
(
Z

d;q) ≤ κd2nθq−n2/2+n log2 n+βθq+(λ/2)θ2
q∗+θq∗ log2 θq∗+γ θq∗+α+ρ

(5.5)
≤ κd2nθq−n2/2+(λ/2)θ2

q∗+θq log2 θq+(γ+β)θq+α+ρ
.

Above we used that

n log2 n+ θq∗ log2 θq∗ + γ θq∗ ≤ (n+ θq∗) log2 θq + γ θq∗ ≤ θq log2 θq + γ θq,

where the first inequality follows from max{n, θq∗} ≤ θq and the latter from (5.4).
Using again (5.4), we can bound

nθq − n2

2
+ λ

2
θ2
q∗ ≤ nθq − n2

2
+ λ

2
(θq − nd + 1)2

= n2

2

(
d2λ− 1

) − n
(
θq(λd − 1) + λd

) + λ

2
(θq + 1)2(5.6)

=: n2

2
A− nB + C.

Note that A,B > 0. We now optimize over n and choose it equal to nc = �B/A�,
that is,

nc =
⌊
θq(λd − 1) + λd

d2λ− 1

⌋
.
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Since n2
c

2 A − ncB +C ≤−B2

2A
+B + C, from (5.5) and (5.6) we derive that

Trel
(
Z

d;q) ≤ κd2−([θq(λd−1)+λd]2/(2(d2λ−1)))

× 2θq(λd−1)+λd+(λ/2)(θq+1)2+θq log2 θq+(γ+β)θq+α+ρ.

Hence, using that λ ∈ (1/d,1], we conclude that for any q ∈ (0,1)

Trel
(
Z

d;q) ≤ 2(θ2
q /2)λ1+θq log2 θq+γ1θq+α1,

where λ1 = 2dλ−1−λ
d2λ−1

, γ1 = γ + β + d and α1 = α + ρ + d + 1 + log2 κd .
We interpret the above as a three-dimensional dynamical system in the running

coefficients (λ, γ,α). Let (λk, γk, αk) be the constants obtained after k iterations
of the above mapping starting from λ0 = 1, γ0, α0. Clearly, γk,αk = O(k). As
far as λk is concerned, it is easy to check that the sequence is decreasing under
recursive application of the map

(1/d,1] � λ �→ 2dλ − 1 − λ

d2λ− 1
∈ (1/d,1]

and it has an attractive quadratic fixed point at λc = 1/d . Thus, λk = λc +O(k−1).
Choosing k = �θ1/2

q �, we then we get (in agreement with Remark 2.4)

Trel
(
Z

d;q) ≤ 2λk(θ
2
q /2)+θq log2 θq+γkθq+αk = 2θ2

q /(2d)+O(θ
3/2
q ).

PROOF OF LEMMA 5.1. Consider the East-like block process defined in Sec-
tion 3.3 (cf. Definition 3.5). Due to Proposition 3.4, it is enough to prove for any
� ∈N and q ∈ (0,1) that

Trel
(
Z

d;q) ≤ κdT min
rel (3�;q)Trel(Lblock).(5.7)

In order to prove the above bound, we need to define another auxiliary chain.

DEFINITION 5.2 (The Knight chain). On the vertex set V := Z
d define the

following graph structure G = (V ,E). Given two vertices x = (x1, . . . , xd) and
y = (y1, . . . , yd) we write y ≺ x if there exists j ∈ {1, . . . , d} such that yi = xi −
1,∀i �= j and yj = xj − 2. Then we define the edge set E as those pairs of vertices
(x, y) such that either y ≺ x or x ≺ y. It is easy to see that G is the union of d + 1
disjoint subgraphs G(i) = (V (i),E(i)), each one isomorphic to the original lattice
Z

d (cf. Figure 4).
The Knight chain KC(�) with parameter � ∈N is then defined very similarly to

the East-like block process (cf. Definition 3.5) except that the constraint is tailored
to the graph G. Partition Z

d into blocks of the form ��(x) := �� + �x, x ∈ Z
d ,

where �� = [1, �]d . On � = {0,1}Zd
define the Markov process which, with rate

one and independently among the blocks ��(x), resamples from π��(x) the con-

figuration in the block ��(x) provided that the Knight-constraint c
(kc)
x is satisfied,
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(a) (b)

FIG. 4. (a) The blocks forming the underlying grid are unit squares centered at the vertices of the
lattice Z

2. The four blocks containing the white squares are the neighbors of the block with the black
square; similarly, for the blocks containing the white circles and the white triangles. (b) A larger
image showing the vertices of {G(i)}3i=1 and the edges of G(1).

where c
(kc)
x is the indicator of the event that for some y ≺ x, the current configura-

tion in the block ��(y) contains a vacancy.

Because of the structure of the graph G, the chain KC(�) is a product chain,
one for each subgraph G(i), i = 1, . . . , d +1, in which each factor is isomorphic to
the East-like block process. Hence, its relaxation time Trel(KC(�)) coincides with
that of the East-like block process Trel(Lblock). We can therefore write the Poincaré
inequality

Var(f ) ≤ Trel(Lblock)

d+1∑
i=1

∑
x∈V (i)

π
(
c(kc)
x Var��(x)(f )

) ∀f ∈ L2(π).

Using the enlargement trick (cf. Lemma 3.6) together with Lemma 3.1, we get that

π
(
c(kc)
x Var��(x)(f )

) ≤ T min
rel (3�;q)

∑
z∈�3�+�x′

π
(
cz Varz(f )

)
,

where x′
i = xi − 2 for all i = 1, . . . , d . Therefore,

Var(f ) ≤ κdT min
rel (3�;q)Trel(Lblock)

∑
x∈Zd

π
(
cx Varx(f )

)
,

for some constant κd depending only on the dimension d . By definition, the latter
implies (5.7). �

6. Proof of Theorem 2. Without loss of generality, due to Lemma 3.1 and
since n(q) → ∞, in the proof of (2.8) and (2.9) we fix the side L of � equal to
2n.
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6.1. Maximal boundary conditions.

6.1.1. Upper bound in (2.8). If n ≥ θq/d , we can use Lemma 3.1 together
with Theorem 1 to get

T max
rel (L;q) ≤ Trel

(
Z

d;q) = 2(θ2
q /(2d))(1+o(1)).

For n ≤ θq/d , we proceed as in the proof of the upper bound in Theorem 1. With-
out loss of generality, we can assume d ≥ 2 since the result was proved in [14],
Theorem 2, for d = 1.

Fix � = 2m with m < n, let J ≡ J�,L = [0,L/� − 1]d and for x ∈ J�,L let
��(x) = [1, �]d + �x. Then we have the analog of Lemma 5.1.

LEMMA 6.1. Setting q∗ = 1 − (1 − q)�
d
, we have

T max
rel (L;q) ≤ κdT min

rel (3�;q)T max
rel

(
L/�;q∗)(6.1)

for some constant κd depending only on the dimension d .

PROOF. We sketch the proof, which is essentially the same as the proof of
Lemma 5.1 apart boundary effects. Recall the notation introduced in Definition 5.2
(in particular, the partial order y ≺ x) and define the finite-volume Knight chain
on �� as the Markov chain with generator

LKC,Jf (η) := ∑
x∈J

ĉx(η)
[
π��(x)(f ) − f

]
(η),

where ĉx(η) is the characteristic function that there exists y ∈ Z
d with y ≺ x such

that η has a vacancy in ��(y) (we extend η as zero outside �). Using the enlarge-
ment trick (cf. Lemma 3.6) as in the proof of Lemma 5.1, we get

Var(f ) ≤ κdT min
rel (3�;q)Trel(LKC,J)

∑
z∈�

π
(
c�,max
z Varz(f )

)
,(6.2)

for some constant κd depending only on the dimension d . Above Trel(LKC,J) de-
notes the relaxation time of the finite–volume Knight chain. Since this chain is a
product of d + 1 independent Markov chains, each one with generator

L(i)
KC,Jf (η) := ∑

x∈V (i)∩J

ĉx(η)
[
π��(x)(f ) − f

]
(η),

it follows that gap(LKC,J) = min{gap(L(i)
KC,J) : 1 ≤ i ≤ d + 1}. On the other hand,

by Proposition 3.4,6 gap(L(i)
KC,J) = gap(L(i);q∗) where L(i) is the generator of the

6Although the proposition is stated for Zd , the same proof works in the present setting.
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FIG. 5. Left: The square represents J = [0,L/�−1]d with d = 2, L/� = 23. Circles mark points in
J ∩V (i), where the index i is such that (1,1) ∈ V (i), and transversal lines give the edges induced by

G(i). Black circles mark points x ∈ J ∩V (i) with c
(i)
x ≡ 1 (constraint always fulfilled). Right: Circles

mark points in A(i), the black ones correspond to points with fulfilled constraint. The isomorphism
maps marked points on the left to marked points on the right maintaining the enumeration.

East-like process on V (i) ∩ J , thought of as subgraph of G(i) = (V (i),E(i)), with
maximal boundary condition

L(i)f (σ ) = ∑
x∈V (i)∩J

c(i)
x (σ )

[
πx(f ) − f

]
(σ ), σ ∈ {0,1}V (i)∩J ,

c
(i)
x (σ ) being the characteristic function that σ has a vacancy at some y ≺ x, y ∈

V (i) (set σ ≡ 0 on V (i) \ J ).
We now observe that the set V (i) ∩J , endowed with the graph structure induced

by G(i), is isomorphic to a subset A(i) of [1,L/�]d (see Figure 5).
Using this isomorphism, the process generated by L(i) can be identified with the

East-like process on �A(i) with maximal boundary conditions and parameter q∗.
By the same arguments leading to (3.1) in Lemma 3.1, we get that Trel(L(i);q∗) ≤
T max

rel (L/�;q∗) and, therefore, the same upper bound holds for Trel(LKC,J). �

By (2.9) we know that, for some positive constants α, ᾱ and for all integer r ≤ θq

it holds

T max
rel

(
2r;q) ≤ T min

rel
(
3 · 2r ;q) ≤ 2rθq−r2/2+r log2 r+αθq+ᾱ .(6.3)

Given positive constants λ,β, β̄ , we say that property P(λ,β, β̄) is satisfied if

T max
rel

(
2n;q) ≤ 2nθq−λ(n2/2)+n log2 n+βθq+β̄ ∀q ∈ (0,1),∀n ≤ θq/d.(6.4)

Note that, due to (6.3), property P(1, α, ᾱ) is satisfied. The following result is at
the basis of the renormalization procedure.

LEMMA 6.2. If property P(λ,β, β̄) is satisfied with λ ≤ d , then also property

P(λ′, β ′, β̄ ′) is satisfied, where λ′ := d2−λ
2d−λ−1 ≤ d , β ′ := α + β + 1 and β̄ ′ :=

ᾱ + β̄ + d .
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The proof follows from Lemma 6.1 and (6.3) by straightforward computations
similar to the ones of Section 5.2 and we omit it here. The interested reader can
find all the details in Appendix B of the extended version.7

Let H(λ) = d2−λ
2d−λ−1 . We interpret the map (λ,β, β̄) �→ (λ′, β ′, β̄ ′) in Lem-

ma 6.2 as a dynamical system. Let (λk, βk, β̄k) be the constants obtained after
k iterations of the above mapping starting from (1, α, ᾱ). Clearly, βk, β̄k = O(k),
while the map H has an attractive quadratic fixed point at d , thus implying that
λk = d +O(k−1). Restricting to q ∈ (0,1/2], we then obtain that

T max
rel

(
2n;q) ≤ 2nθq−d(n2/2)+n log2 n+(c/k)(n2/2)+ckθq

(6.5)
∀q ∈ (0,1/2],∀n ≤ θq/d,

for a constant c > 0 depending only on d , thus implying the thesis.

REMARK 6.3. One can optimize (6.5) by taking k :=  
√

n2/2θq". As a result,

one gets a better upper bound w.r.t. (2.8) when n � θ
1/2
q . More precisely, one gets

T max
rel

(
2n;q) ≤ 2nθq−d(n2/2)+n log2 n+cnθ

1/2
q

(6.6)
∀q ∈ (0,1/2],∀n ∈ (

c′θ1/2
q , θq/d

]
,

for suitable constants c, c′ > 0 independent from n,q .

6.1.2. Lower bound in (2.8). Using Lemma 3.1, it is enough to prove the lower
bound for L = 2n with n ≤ θq/d . In this case, the sought lower bound follows
from the bottleneck inequality (3.15) together with Theorem 4.1. More precisely,
one gets

T max
rel

(
2n;q) ≥ 2nθq−d(n

2)+n log2 n+O(θq), n ≤ θq/d.(6.7)

6.2. Minimal boundary conditions.

6.2.1. Lower bound in (2.9). By Lemma 3.1, T min
rel (L;q) is bounded from be-

low by the relaxation time of the East process on the finite interval [1,L] with
parameter q . If n ≤ θq , the required lower bound of the form of the RHS of (2.9)
then follows from [14], Theorem 2. If instead n ≥ θq , we can use the monotonicity
in L of T min

rel (L;q) (cf. Lemma 3.1) to get T min
rel (L;q) ≥ T min

rel (2θq ;q).

7http://arxiv.org/abs/1404.7257.

http://arxiv.org/abs/1404.7257
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6.2.2. Upper bound in (2.9). Given � = [1,L]d consider the rooted directed
graph G = (V ,E, r) with vertex set V = �, root r = (1, . . . ,1) and edge set E

consisting of all pairs (x, y) ∈ V × V such that y = x + e for some e ∈ B. Notice
that for any v ∈ V there is a path in G from r to v. Using this property, it is well
known that the graph G contains a directed spanning tree (or arborescence) rooted
at r , that is, a subgraph T = (V ,F ) such that the underlying undirected graph of
T is a spanning tree rooted at r of the underlying undirected graph of G and for
every v ∈ V there is a path in T from r to v (cf., e.g., [26]). In the present case, it
is simple to build such a T .

Let T be one such directed spanning tree and let us consider a modified East-
like process on � with the new constraints:

cT ,min
x (η) :=

{
1, if either x = r or ηy = 0 where y is the parent of x in T ,

0, otherwise.

Clearly, cT ,min
x ≤ c�,min

x so that T min
rel (L;q) ≤ T min

rel (T ;q), where T min
rel (T ;q)

denotes the relaxation time of the modified process. In turn, as shown in [9],
Theorem 6.1 and equation (6.3), page 307, T min

rel (T ;q) is smaller than the re-
laxation time of the one-dimensional East process on the longest branch of T ,
which has dL − d + 1 vertices. Such a relaxation time was estimated quite pre-
cisely in [14], Theorem 2, to be equal to 2nθq−(n

2)+n log2 n+O(θq) for n ≤ θq and

to 2θ2
q /2+θq log2 θq+O(θq) for n ≥ θq (cf. the discussion before Theorem 1). This

proves (2.9).

6.2.3. Lower bound in (2.10). We first need a combinatorial lemma which
extends previous results for the East process [16]. Consider Z

d+ and recall that
x∗ = (1,1, . . . ,1). Given η ∈ �

Z
d+ , we write |η| := |{x ∈ Z

d+ :ηx = 0}| for the total
number of vacancies of η. Moreover, we let Zm := {η ∈ �

Z
d+ : |η| ≤ m} and define

Vm as the set of configurations which, starting from the configuration 1 on Z
d+ with

no vacancy, can be reached by East-like paths in Zm (i.e., paths for which each
transition is admissible for the East-like process in Z

d+ with minimal boundary
conditions, i.e., with a single frozen vacancy at x∗ − e for some e ∈ B and using
no more than m simultaneous other vacancies).

LEMMA 6.4. For m ∈N

Y(m) := max
{‖x − x∗‖1 + 1 :x ∈ Z

d+, ηx = 0 for some η ∈ Vm

} = 2m − 1,

X(m) := max
{‖x − x∗‖1 + 1 :x ∈ Z

d+, ηx = 0 for some η ∈ Vm, |η| = 1
} = 2m−1.

REMARK 6.5. Note that ‖x − x∗‖1 + 1 equals the L1-distance between x and
the frozen vacancy.
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PROOF OF LEMMA 6.4. It is convenient to write Vm(d), Zm(d) instead of
Vm, Zm in order to stress the d-dependence. The lower bounds X(m) ≥ 2m−1

and Y(m) ≥ 2m − 1 follow immediately from the same result for the East process
(cf. [16], Section 2) if we use that, under minimal boundary conditions, the pro-
jection process to the line (x,1,1, . . . ,1), x ∈ Z+ coincides with the East process
on Z+.

We now prove the upper bounds X(m) ≤ 2m−1 and Y(m) ≤ 2m − 1. To this
aim given a ∈ Z+ we define �a := {x ∈ Z

d+ :‖x − x∗‖ + 1 = a} [e.g., �a =
{(1, a), (2, a − 2), . . . , (a,1)} for d = 2]. We then define the map ρ : �

Z
d+ �→ �Z+

as

ρ(η)a :=
{

1, if ηx = 1 ∀x ∈ �a,

0, otherwise.

Note that ρ does not increase the number of vacancies. Moreover, if γ :=
(η(1), . . . , η(n)) is an East-like path in Zm(d), then its image under ρ is an East-
like path in Zm(1) (possibly with constant pieces). In particular, given an East-like
path in Zm(d) starting from 1, its ρ-image gives an East-like path in Zm(1) start-
ing from the full configuration. Hence, ρ(Vm(d)) ⊂ Vm(1). Since the thesis of the
lemma is true for d = 1 due to [16], Section 2, we then recover that the maximal
a ∈ Z+ such that a vacancy can be created in �a by some path γ is bounded by
2m −1. On the other hand, such a value a equals Y(m). Similarly, if η ∈ Vm(d) has
a single vacancy, then ρ(η) ∈ Vm(1) has a single vacancy and the thesis for d = 1
implies that X(m) ≤ 2m−1. �

The previous combinatorial result allows us to construct a small bottleneck
which gives rise to the lower bound in (2.10) of Theorem 2. This bottleneck is
of energetic nature as in [11], the Appendix and [14], Lemma 5.5.

Take � = [1,L]d with � := ‖�‖1 + 1 = ‖v∗ − x∗‖1 + 1 ∈ (2n−1,2n], let 10 ∈
�� be the configuration with a single vacancy located at the upper corner v∗.
Let V = Vn be the set of configurations in �� which can be reached from 1 by
East-like paths (with minimal boundary conditions) such that at each step there
are at most n vacancies in �. Clearly, V ⊆ {η� :η ∈ Vn}. Since X(n) = 2n−1 and
‖v∗ −x∗‖1 +1 > 2n−1, we have that 10 /∈ V . Also by definition 1 ∈ V , so π(V ) ≥
π(1) = 1 + o(1) and π(V c) ≥ π(10) ≥ q(1 + o(1)).

We now give a lower bound on Dmin
� (1V ). Let U := {η ∈ �� : |η| = n}. By

definition, if η ∈ V then |η| ≤ n. If η ∈ V and |η| < n, then ηx ∈ V for each x ∈ �

with c�,min
x (η) = 1, therefore, ∂V ⊆ U . Recall (3.16), and observe that to escape

the set V a vacancy must be created, so

Dmin
� (1V ) = ∑

η∈∂V

π�(η)Kmin(
η,V c) ≤ ∑

η∈U

π�(η)
∑

x∈� : ηx=1
cmin
x (η)=1

q

≤ π(U)d(n + 1)q ≤ d(n + 1)c0(n, d)qn+1,
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where c0(n, d) in the number of configurations in [1,2n]d with exactly n vacan-
cies. The lower bound in (2.10) follows from the bottleneck inequality (3.15) ap-
plied with minimal boundary conditions, the above estimate and the above lower
bounds on π(V ) and π(V c).

6.2.4. Upper bound in (2.10). The upper bound of the relaxation time on � =
[1,L]d with ‖�‖1 + 1 ∈ (2n−1,2n] can be derived as for the upper bound in (2.9)
above. Consider the rooted directed graph G = (V ,E, r) with vertex set V = �,
root r = (1, . . . ,1) and edge set E consisting of all pairs (x, y) ∈ V × V such
that y = x + e for some e ∈ B. By the same argument as previously, G contains a
directed spanning tree, and the longest branch contains exactly � := ‖v∗ − x∗‖1 +
1 = ‖�‖1 + 1 vertices. It follows that the relaxation time is bounded above by the
relaxation time of the East process on [1, �] which is known to be bounded above
by c(n)/qn (see, e.g., (2.6) in [14]).

7. Proof of Theorem 3.

7.1. Proof of (2.11). Since the boundary conditions are minimal, the mean
hitting time T min(v∗;q) coincides with the same quantity in one dimension and
for the latter (2.11) follows from [14], Theorems 1 and 2.

7.2. Proof of (2.12). In agreement with Remark 2.7, we prove (2.12) for a
generic ergodic boundary condition σ . Below � = [1,L]d .

7.2.1. Lower bound. Let τ̃v∗ be the hitting time of the set {η :ηv∗ = 1}. As
in [14], Proposition 3.2, the hitting time τ̃v∗ starting from the configuration 10
with a single vacancy at v∗ is stochastically dominated by the hitting time τv∗
starting with no vacancies. Thus, T σ (v∗;q) ≥ E

�,σ
10 (τ̃v∗). To lower bound the lat-

ter, we use the observation that the hitting time τ̃v∗ for the East-like process in Z
d+

coincides with the same hitting time for the process in � = [1,L]d together with
Lemma 3.10. Using the variational characterization (3.11) of the capacity together
with the fact that the indicator 1A∗ of the bottleneck A∗ constructed in Theorem 4.1
is zero on {η ∈ �� :ηv∗ = 1} and one on the configuration 10, we get that

E
�,σ
10 (τ̃v∗) ≥ c

q

Dσ
�(1A∗)

≥ c
q

Dmax
� (1A∗)

.

The sought lower bound follows at once from Theorem 4.1.

7.2.2. Upper bound. Lemma 3.10 and Remark 3.7 imply that

T σ (
v∗;q) ≤ Rσ

1,B ≤ Rmin
1,B,(7.1)

where 1 denotes the configuration with no vacancies, B = {η ∈ �� :ηv∗ = 0}.
Thanks to Thompson’s principle [see (3.13)] the main idea now is to construct a
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suitable unit flow and to bound its energy by a multiscale analysis. In order to
proceed, we need to fix some additional notation.

Given x = (x1, . . . , xd) ∈ �, let �x = ∏d
i=1[1, xi] and Bx = {η ∈ ��x :ηx = 0}.

Next, we define

R(x) := R
�x,min
1,Bx

= inf
{
E(θ) | θ a unit flow from 1 to Bx in ��x

}
.(7.2)

LEMMA 7.1. Let � = [1,L]d with L = 2n and n ≤ θq/d . Given x ∈ � with
entries xi ≥ 3, let Vx be a box inside

∏d
i=1[2, xi −1] containing at least one lattice

site and let ρ : Vx �→ [0,1] be such that
∑

y∈Vx
ρ(y) = 1. Then

R(x) ≤ 9
∑
y∈Vx

ρ(y)R(y) + 9

q

∑
y∈Vx

ρ2(y)R(y)+ 9

q

∑
y∈Vx

ρ2(y)R
(
x̃(y)

)
,(7.3)

where x̃(y) = x − y + (0,1,1, . . . ,1).

Assuming the lemma, we complete the proof of the upper bound. Given N ∈N,
let L±

m be defined recursively by

L+
m = 2L+

m−1 − 1

N
2m−1 − 2, L+

0 = 11,

L−
m = 2L−

m−1 + 1

N
2m−1 + 2, L−

0 = 1.

A simple computation gives

L+
m = 2 + 2m

(
9 − m

2N

)
, L−

m =−2 + 2m

(
3 + m

2N

)
.

It is straightforward to verify that the following occurs for 1 ≤ m ≤ N :

(i) L−
m ≤ L+

m;
(ii) For any x, y ∈ Z

d such that L−
m ≤ xi ≤ L+

m and |2yi − xi | ≤ 1
N

2m−1 we
have that both yi and xi − yi belong to the interval [L−

m−1 + 1,L+
m−1 − 1].

LEMMA 7.2. Setting Rm := maxx∈[L−
m,L+

m]d R(x),

Rm ≤ 27
Nd

q2dm
Rm−1, m0 < m ≤ N,

where m0 =  log2(4N)". In particular,

RN ≤ 27N−m02(N−m0)θq−d[(N
2)−(

m0
2 )]+d(N−m0) log2 NRm0 .(7.4)

PROOF. Fix x ∈ [L−
m,L+

m]d , and let Vx = {y ∈ �x : |2yi − xi | ≤ 2m−1

N
for 1 ≤

i ≤ d}. Observe that |Vx | ≥ (2m−1

N
− 1)d ≥ ( 1

N
2m−2)d ≥ 1, where in the second
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inequality we have used m > m0 =  log2(4N)". Since L−
m ≥ 2m > 22, we have

xi ≥ 4, while yi, xi − yi ≥ L−
m−1 + 1 ≥ 2 [by (ii) above]. In particular, both x and

Vx fulfill the assumptions of Lemma 7.1.
By (ii) above, we have y, x̃(y) ∈ [L−

m−1 + 1,L+
m−1]d for each y ∈ Vx , so

R(y) and R(x̃(y)) are bounded from above by Rm−1 [recall x̃(y) = x − y +
(0,1,1, . . . ,1)]. Now applying Lemma 7.1 with ρ uniform on Vx , that is, ρ(y) =
1/|Vx | for all y ∈ Vx , we have

R(x) ≤ 9
(

4N

2m

)d

Rm−1 + 18

q

(
4N

2m

)2d

Rm−1 ≤ 27

q

(
4N

2m

)d

Rm−1.

We arrive at (7.4) by iterating the above inequality. �

In order to complete the proof of the upper bound in (2.12), fix L ∈ (2n−1,2n] with
n ≤ θq/d and choose N = n− 3. In this case, L ∈ [L−

N,L+
N ], since

L−
N =−2 + 2N (

3 + 1
2

) ≤ 2N+2 = 2n−1 < L ≤ 2n ≤ 2 + 2N+3

≤ 2 + 2N (
9 − 1

2

) = L+
N.

Therefore, using (7.1) we have T σ (v∗;q) ≤ Rmin(v∗) ≤ RN . If we apply Lem-
ma 7.2 with m0 =  log2[4(n− 3)]", we get

RN ≤ 2nθq−d(n
2)+O(θq log θq)Rm0 .

The relaxation time of the East process on an interval I of length O(m0) is
bounded by 2O(θqm0) by [14], Theorem 2. Also, by [14], Theorem 1, Proposi-
tion 3.2, this relaxation time is of the same order as the mean time needed to put
a vacancy in the rightmost site of I starting from the filled configuration. Now
following the derivation of (7.10) below we have the desired bound

Rm0 ≤ 2O(θqm0) = 2O(θq log θq).

7.2.3. Proof of Lemma 7.1. The proof is based on an iterative procedure which
generalizes our construction in [14], Appendix A.2. Given y ∈ �x , we define
�̃y := [y1 + 1, x1] × ∏d

i=2[yi, xi], 0y ∈ ��x as the configuration with a single
vacancy located as y and set

By := {η ∈ ��y :ηy = 0},
Bx

y := {η ∈ ��x :ηy = 0 and ηz = 1 for z ∈ �x \ �y},
Cx

y := {
η ∈ ��x :ηy = 0 and ηz = 1 for z /∈ �̃y ∪ {y}}.

Let ψy be the equilibrium unit flow in ��y from 1 to By , whose energy equals
R(y). We now restrict to y ∈ Vx (thus implying in particular that the box �̃y is
not empty). We introduce the flows φy, φ̂y, φ̃y on ��x (cf. Figure 6), roughly de-
scribed as follows: φy is the unit flow from 1 to Bx

y obtained by mimicking ψy



RELAXATION TO EQUILIBRIUM OF GENERALIZED EAST PROCESSES 1855

FIG. 6. Left: Geometry of the lattice �x with site x in the top right, and sub-lattices �y and �̃y

for a y ∈ Vx . Right: Construction of the unit flow θy = φy + φ̂y + φ̃y .

on configurations which have no vacancies outside �y , φ̂y keeps the vacancy at y

fixed and reverses φy to clear all the other vacancies (φy + φ̂y will become a unit
flow from 1 to 0y), and finally φ̃y is the unit flow from 0y to Bx which mimics
ψx̃(y) by using only transitions inside �̃y . More precisely, we set

φy(σ, η) =
{

ψy(σ�y , η�y ), if σz, ηz = 1 for z ∈ �x \�y,

0, otherwise,
(7.5)

φ̂y(σ, η) :=
{

φy

(
ηy, σ y

)
, if σ,η ∈ Bx

y ,
0, otherwise,

(7.6)

φ̃y(σ, η) :=
{

ψx̃(y)(σ̃ , η̃), if σ,η ∈ Cx
y ,

0, otherwise,
(7.7)

where η̃ ∈ ��x̃(y)
is defined as η̃z := ηz+y−(0,1,1,...,1) for z ∈ �x̃(y). Note that �̃y −

y + (0,1,1, . . . ,1) = �x̃(y) and x̃(y) ∈ �x .

CLAIM 7.3. For each y ∈ Vx , the flow θy := φy + φ̂y + φ̃y is a unit flow from
1 to Bx . In particular, � := ∑

y∈Vx
ρ(y)θy is a unit flow from 1 to Bx .

PROOF. We prove that θy is a unit flow from 1 to Bx , which trivially im-
plies the thesis for �. Fix y ∈ Vx . Note that y �= (1,1, . . . ,1) and y �= x by our
conditions on Vx . Clearly, div θy(1) = 1 by construction, it remains to show that
div θy(η) = 0 for all η /∈ Bx ∪ {1} and div θy(η) ≤ 0 for all η ∈ Bx . In general, we
have div θy = divφy + div φ̂y + div φ̃y , while divφy(η), div φ̂y(η) and div φ̃y(η)

equal, respectively,∑
z∈�y : c

�x,min
z (η)=1

φy

(
η,ηz), ∑

z∈�y : c
�x,min
z (η)=1

φ̂y

(
η,ηz),

∑
z∈�̃y : c

�x,min
z (η)=1

φ̃y

(
η,ηz).
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If η ∈ Bx , then div θy(η) = div φ̃y(η) and the latter equals divψx̃(y)(η̃) if η ∈ Cx
y

and zero otherwise. Since divψx̃(y)(η̃) ≤ 0 for η ∈ Cx
y ∩ Bx by definition of the

equilibrium flow, we conclude that div θy(η) ≤ 0 for all η ∈ Bx . We now distin-
guish several cases, always restricting to η /∈ Bx ∪ {1}.
• Case η /∈ Bx

y ∪ Cx
y . By construction, divφy(η) = divψy(η�y ) or 0. Since ψy is

a unit flow from 1 to By , it is divergence free outside of 1 and By , in particular
divφy(η) = 0. Also φ̂y(η, ·) ≡ 0 and φ̃y(η, ·) ≡ 0. This implies that div θy = 0.

• Case η ∈ Cx
y and η �= 0y . We have φy(η, ·) ≡ 0 and φ̂y(η, ·) ≡ 0. On the other

hand, div φ̃y(η) = divψx̃(y)(η̃) = 0 since η̃ /∈ Bx̃(y) ∪ 1�x̃(y)
(recall that η /∈ Bx ,

η �= 0y ).
• Case η ∈ Bx

y and η �= 0y . Note that Bx
y ∩ Cx

y = 0y , so φ̃y(η, ·) ≡ 0. Also
φy(σ,σ ′) = 0 if σ,σ ′ ∈ Bx

y since ψy is the equilibrium unit flow in ��y from
1 to By , otherwise replacing ψy by a flow which is identical on all edges ex-
cept between configurations in By , on which the new flow is identically zero,
would give rise to a unit flow from 1 to By with lower energy, contradicting the
variational characterization of the equilibrium unit flow. It follows that

div θy(η) = ∑
z∈�y :

c
�x,min
z (η)=1

(
φy

(
η,ηz) + φ̂y

(
η,ηz))

=−c�x,min
y (η)φy

(
ηy, η

) − ∑
z∈�y : ηz∈Bx

y

c
�x,min
z (η)=1

φy

(
ηy,

(
ηz)y)

=−divφy

(
ηy) = 0,

where in the second identity we have used (ηz)y = (ηy)z. The last identity fol-
lows from the fact that η,ηz ∈ Bx

y implies z �= y, and that η
y
�y

/∈ By ∪ {1�y },
hence divψy(η

y
�y

) = 0.
• Case η = 0y . There are only 1 + d transitions under the East dynamics from

state 0y : the unconstrained site (1,1, . . . ,1), as well as any of the d upper–right
neighbors of y, can update. However, any transition with nonzero flow θy must
change the configuration only inside �y ∪ �̃y . Hence,

div θy(0y) = φ̂y

(
0y,0(1,1,...,1)

y

) + φ̃y

(
0y,0y+(1,0,...,0)

y

)
=−ψy

(
1,1(1,1,...,1)) + ψx̃(y)

(
1,1(1,1,...,1)) =−1 + 1 = 0. �

Given two flows θ, θ ′ on ��x we write θ ⊥ θ ′ if θ · θ ′ ≡ 0, that is, θ and θ ′ have
disjoint supports. Note that, given y �= z in Vx , Bx

y ∩ Bx
z =∅ and Cx

y ∩ Cx
z = ∅.

Hence, by definition of φ̂y , φ̃y we get

φ̂y ⊥ φ̂z, φ̃y ⊥ φ̃z for any y �= z in Vx.(7.8)
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To complete the proof of the lemma, we set

� := ∑
y∈Vx

ρ(y)φy, �̂ := ∑
y∈Vx

ρ(y)φ̂y, �̃ := ∑
y∈Vx

ρ(y)φ̃y.

Note that � = � + �̂ + �̃. Due to Claim 7.3, � is a unit flow in ��x from 1 to
Bx . Moreover, by Thompson principle [cf. (3.13)], Schwarz inequality and (7.8),
we get

R(x) ≤ E(�) ≤ 3E(�) + 3E(�̂)+ 3E(�̃)
(7.9)

≤ 3
∑
y∈Vx

ρ(y)E(φy)+ 3
∑
y∈Vx

ρ2(y)E(φ̂y)+ 3
∑
y∈Vx

ρ2(y)E(φ̃y).

Let η ∈ ��x with η�x\�y = 1�x\�y and let z ∈ �y . Observe now that, (η, ηz)

is a possible transition for the East dynamics on �x if and only if (η�y , η
z
�y

) is a
possible transition for the East dynamics on �y , and in this case (since |�x | ≤ 1/q

and 1 − q ≤ e−q )

r�x,min(
η,ηz) = (1 − q)−|�x\�y |r�y,min(

η�y , η
z
�y

) ≤ er�y,min(
η�y , η

z
�y

)
.

This implies that E(φy) ≤ eE(ψy) = eR(y). Similarly, by straightforward compu-
tations, one can prove that E(φ̂y) ≤ (e/q)R(y) and E(φ̃y) ≤ (e/q)R(x̃(y)). Com-
ing back to (7.9), we get the thesis.

7.3. Proof of (2.13).

7.3.1. Lower bound. The lower bound follows by appealing to the combinato-
rial result of Lemma 6.4 and making a similar bottleneck argument as for the proof
of the lower bound in (2.10). Fix x ∈ Z

d+ such that ‖x − x∗‖1 + 1 ∈ [2n−1,2n)

where x∗ = (1,1, . . . ,1). Recall that Vm is the set of configurations which can
be reached, starting from the configuration 1 on Z

d+, by East-like paths in Zm.
Let V = {η� :η ∈ Vn−1} be the image of Vn−1 under projection on the lattice
� = ∏d

i=1[1, xi], then by Lemma 6.4 1� ∈ V and η /∈ V for all η ∈ �� such
that ηx = 0, since x ≥ 2n−1 and Y(n − 1) = 2n−1 − 1.

It follows from the graphical construction (see Section 3.2) that for any an event

A which belongs to the σ -algebra generated by {ηx(s)}x∈� we have P
Z

d+,min
η (A) =

P
�,min
η�

(A). In particular, we get T min(x;q) = E
�,min
1 (τx) so that (cf. the beginning

of Section 7.2)

E
�,min
1 (τx) ≥ c

Dmin
� (1V )

.

Finally, observe that to escape the set V a vacancy must be created by a transi-
tion which is allowable under the East-like dynamics, therefore, ∂V ⊆ U := {η ∈
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�� : |η| = n − 1}, so using (3.16)

Dmin
� (1V ) = ∑

η∈∂V

π�(η)Kmin(
η,V c) ≤ ∑

η∈U

π�(η)
∑

x∈� : ηx=1

c
�,min
x (η)=1

q

≤ π�(U)dnq ≤ dnc0(n− 1, d)qn,

where c0(n−1, d) = |U | is the number of configurations in �� with exactly n−1
vacancies.

7.3.2. Upper bound. The upper bound follows by Rayleigh’s monotonicity
principle combined with Lemma 3.10. Fix x ∈ Z

d+ such that ‖x − x∗‖1 + 1 ∈
[2n−1,2n) where x∗ = (1,1, . . . ,1), and let � = ∏d

i=1[1, xi]. Lemma 3.10 implies

T min(x;q) = E
�,min
1 (τx) ≤ Rmin

1,Bx
,

where Bx = {η ∈ �� :ηx = 0}. Rayleigh’s monotonicity principle (see, e.g., [31],
Theorem 9.12) implies that, for any set of conductances C′(η, ξ) defined on �2

�

with C′(η, ξ) ≤ Cmin(η, ξ) for all (η, ξ) ∈ �2
� the associated resistance satisfies

R′
1,Bx

≥ Rmin
1,Bx

. Consider the directed spanning tree as in Section 6.2.2. Let � be
all the vertices in the branch from r to x. Now define new conductances by

C′(η, ξ) =
{
Cmin(η, ξ), if η�\� = ξ�\� = 1,

0, otherwise.
The resulting resistance graph is isomorphic to that of the East process on [1, |�|].
So, if we let TEast(|�|;q) be the mean hitting time of η|�| = 0 in the one-
dimensional process we have

T min(x;q) ≤ Rmin
1,Bx

≤ R′
1,Bx

≤ cTEast
(|�|;q) ≤ 2nθq+On(1),(7.10)

where the penultimate inequality is due to Lemma 3.10 (with d = 1) and the final
inequality is due to previous bounds on the mean hitting time in the East process
(see, e.g., [14], Theorem 1 and equations (2.6) and (3.1)).

APPENDIX: ON THE RATE OF DECAY OF THE PERSISTENCE FUNCTION

Consider the East-like process in Z
d and let τ be the first time that there is a

legal ring at the origin. Let F(t) := Pπ(τ > t) be the persistence function (see,
e.g., [27, 35]) and let A(t) := Varπ(etLη0)

1/2. Notice that, using reversibility,

A(t/2)2 = Varπ
(
e(t/2)Lη0

) = π
(
η0e

tLη0
) − p2

that is, it coincides with the time autocorrelation at time t of the spin at the origin.
In analogy with the stochastic Ising model [28], it is very natural to conjecture
that A(t) and F(t) vanish exponentially fast as t → ∞, with a rate equal to the
spectral gap of the generator L. Here, we show that the rate of exponential decay
of F(t) and A(t) coincide in any dimension and we prove the above conjecture in
one dimension (i.e., for the East model).
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THEOREM A.1. Consider the East-like process on Z
d . Then

lim sup
t→∞

t−1 logF(t) = lim sup
t→∞

t−1 logA(t),

lim inf
t→∞ t−1 logF(t) = lim inf

t→∞ t−1 logA(t).

In the one-dimensional case d = 1,

lim
t→∞ t−1 logF(t) = lim

t→∞ t−1 logA(t) =−gap(L).

REMARK A.2. As will be clear from the proof, the last statement applies also
to the constrained model in Z

d , d ≥ 1, in which the constraint at x requires that all
the neighbors of x of the form y = x − e, e ∈ B contain a vacancy. These models
share with the one-dimensional East process the key feature that, starting from a
configuration with no vacancies in � = [−L + 1,0]d , at the time of the first legal
ring at the origin, all vertices in � have been updated at least once.

To prove the theorem, we first need two basic lemmas.

LEMMA A.3. For all t > 0,
1

(p ∨ q)2 A2(t/2) ≤ F(t) ≤ 1

(p ∧ q)
A(t).(A.1)

In particular,

F(t) ≤ 1

(p ∧ q)
e−t/Trel(Z

d ;q).(A.2)

REMARK A.4. The above result considerably refines a previous bound given
in [10], Theorem 3.6.

PROOF OF THE LEMMA A.3. Clearly, (A.1) implies (A.2). To prove (A.1), for
any η ∈ � we write

Eη

(
η0(t)− p

) = (η0 − p)Pη(τ > t)+Eη

(
η0(t)− p | τ ≤ t

)
Pη(τ ≤ t).

By the very definition of the East-like process, the law of η0(t) given that {τ ≤ t}
is a Bernoulli(p). Hence, the second term in the RHS above is zero. Thus,

A(t) = π
([
Eη

(
η0(t)− p

)]2)1/2

= π
(
(η0 − p)2

Pη(τ > t)2)1/2

≥ (p ∧ q)Pπ(τ > t) = (p ∧ q)F (t),

and the sought upper bound follows. Similarly,

A2(t/2) = π
(
(η0 − p)Eη

(
η0(t)− p

)) = π
(
(η0 − p)2

Pη(τ > t)
)

≤ (p ∨ q)2
Pπ(τ > t) = (p ∨ q)2F(t). �
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The second lemma specializes to the one-dimensional case and it extends a
coupling result proved in [14], Section 1.2. Fix an integer L and let � = [−L,0].
Consider the East process on the negative semi-infinite lattice Z

− := (−∞,0],
with initial distribution μπ,ω given by the product of the equilibrium measure π on
�(−∞,−(L+1)] and the Dirac mass on ω ∈ ��. Let also μt

π,ω be the corresponding
law at a later time t > 0.

LEMMA A.5. Let d�(t) = maxω ‖μt
π,ω − π‖TV, where ‖ · ‖TV denotes the

total variation distance. Then

d�(t) ≤ (1/p)L+1F(t).(A.3)

PROOF. Let 1 be the configuration in �� identically equal to one and let
Fπ,1(t) = ∫

dμπ,1(η)Pη(τ > t). Let ησ,ω(·) be the East process on Z
− given

by the graphical construction, started from the initial configuration equal to σ on
(−∞,−(L+1)] and to ω on �. Let also X

σ,1
t be the largest x ∈ � such that, start-

ing from the configuration equal to σ on (−∞,−(L+1)] and to 1 on �, there has
been a legal ring at x before time t . If no point in � had a legal ring before t , we
set X

σ,1
t =−(L + 1).

CLAIM A.6. For all σ,ω,ω′ and all t , the two configurations ησ,ω(t), ησ,ω′
(t)

coincide on the semi-infinite interval (−∞,Xσ
t ].

If we assume the claim, we get that

max
ω

∥∥μt
π,ω − π

∥∥
TV ≤ max

ω,ω′
∥∥μt

π,ω −μt
π,ω′

∥∥
TV

≤ max
ω,ω′

∫
dπ(σ)P

(
ησ,ω(t) �= ησ,ω′

(t)
)

=
∫

dπ(σ)P
(
X

σ,1
t < 0

) = Fπ,1(t) ≤ (1/p)L+1F(t).

The claim is proved inductively. By the oriented character of the East process,
the two configurations ησ,ω(t), ησ,ω′

(t) will remain equal inside the semi-infinite
interval (−∞,−(L+1)] for any t ≥ 0. It is also clear by the graphical construction
that once the vertex x =−L is updated [at the same time for both ησ,ω(·), ησ,ω′

(·)],
the two configurations become equal in (−∞,−L] and stay equal there forever.
By repeating this argument for the vertices −L+1,−L+2, . . . , we get the claim.

�

PROOF OF THEOREM A.1. The first part follows at once from Lemma A.3.
To prove the second part, we observe that, using again Lemma A.3, it is enough to
show that, for the East model,

lim inf
t→∞ t−1 logF(t) ≥−gap(L).
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For this purpose, fix an integer L, let � = [−L,0] and let φ denotes the eigen-
vector of Lmax

� with eigenvalue −gap(Lmax
� ), normalized in such a way that

Varπ(φ) = 1. We start by observing that

Varπ
(
etLφ

) ≥ e−2tD(φ) ≥ e−2tDmax
� (φ) = e−2tgap(Lmax

� ).(A.4)

To prove the first bound, we use the spectral theorem for the self-adjoint opera-
tor L. Let νφ(·) be the spectral measure (for the infinite system) associated to φ.
Clearly, νφ is a probability measure. Using Jensen’s inequality, we get

Varπ
(
etLφ

) = ∫ ∞
0

e−2tλ dνφ(λ) ≥ e−2t
∫ ∞

0 λdνφ(λ) = e−2tD(φ).

We now prove an upper bound on Varπ(etLφ) in terms of the persistence function
F(t).

Recall the definition of the law μt
π,ω in Lemma A.5. Using reversibility and the

fact that π�(φ) = 0, we get

Varπ
(
etLφ

) = Covπ

(
φ, e2tLφ

) = ∑
ω∈��

π(ω)φ(ω)
[
μ2t

π,ω(φ) − π�(φ)
]
.(A.5)

Above we used the oriented character of the East model to get that the marginal on
�� of the law at time t of the East process on Z coincides with the same marginal
for the process on the half lattice Z

−. Using Lemma A.5, the RHS of (A.5) can be
bounded from above by∑

ω∈��

π(ω)φ(ω)
[
μ2t

π,ω(φ) − π�(φ)
] ≤ 1

2
‖φ‖2∞(1/p)L+1F(2t).(A.6)

In conclusion, by combining (A.4), (A.5) and (A.6) we get that

F(2t) ≥ 2

‖φ‖2∞
pL+1e−2tgap(Lmax

� ),

which, in turn, implies that

lim inf
t→∞ t−1 logF(t) ≥−gap

(
Lmax

�

) ∀L ≥ 1.

Since gap(Lmax
� ) → gap(L) as L →∞ (see [10]), we get that

lim inf
t→∞ t−1 logF(t) ≥−gap(L),

as required. �
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