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Connectivity in the brain is the most promising approach to explain hu-
man behavior. Here we develop a focused information criterion for graphical
models to determine brain connectivity tailored to specific research questions.
All efforts are concentrated on high-dimensional settings where the number
of nodes in the graph is larger than the number of samples. The graphical
models may include autoregressive times series components, they can relate
graphs from different subjects or pool data via random effects. The proposed
method selects a graph with a small estimated mean squared error for a user-
specified focus. The performance of the proposed method is assessed on sim-
ulated data sets and on a resting state functional magnetic resonance imaging
(fMRI) data set where often the number of nodes in the estimated graph is
equal to or larger than the number of samples.

1. Introduction. Connectivity based on measurements with functional mag-
netic resonance imaging (fMRI) is thought to be one of the key methods to clar-
ify and understand how regions within our brain relate and communicate. Several
methods have been used to determine connectivity from fMRI resting state data
(where subjects do not perform any task), such as pairwise (Pearson) correlations,
partial correlations [O’Neil et al. (2014)], dynamic causal modeling [Friston et al.
(2014)], structural equation modeling [James et al. (2009)] and Granger causal-
ity [Deshpande, Santhanam and Hu (2011)]. Here we propose an approach based
on graphical models for the analysis of resting state fMRI data, where one based
on theory (i.e., genetic profile) or empirical data can define an a priori focus or
emphasis on a subselection of regions.

Because resting state connectivity analysis is often performed across the whole
brain, with a large number of brain regions (nodes), many of these studies require a
large number of parameters (connections between nodes) while having only a lim-
ited number of observations (recorded time points), the so-called high-dimensional
or p > n setting. While this purely exploratory fashion of connectivity analysis re-
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mains of importance, relationships between resting state connectivity patterns and
more specific cognitive abilities (or malfunctions) might benefit from a more fo-
cused approach, with an emphasis on a specific set of brain regions. For example,
executive control—that is, our ability to voluntarily or strategically control or se-
lect planned actions—has been repeatedly linked (among others) to regions within
the prefrontal cortex in both primates [e.g., Isoda and Hikosaka (2007)] and hu-
mans [e.g., Frank (2011), Jahfari et al. (2011, 2012), Ridderinkhof et al. (2004)]. It
is then desirable to inform the analysis somehow of the preference for the regions
in the prefrontal cortex and the focused information criterion offers a solution to
this issue.

To select a graphical model, we use a series of repeated regressions of all nodes
involved [neighborhood selection, see Meinshausen and Bühlmann (2006)] and
then select a model according to an information criterion. When the number of
observations is less than the number of parameters to estimate, a penalty is re-
quired to obtain estimates of the parameters. Popular choices are the graphical
lasso [Friedman, Hastie and Tibshirani (2008)] and its variants such as the adap-
tive lasso [Fan, Feng and Wu (2009)] or the shrinkage estimator introduced by
James and Stein (1961). Here we combine the choice of the penalty with model
selection. A model is selected using an extension of the focused information cri-
terion (FIC) by Claeskens and Hjort (2003), which minimizes the estimated mean
squared error of an estimator of a particular function of the parameters, the focus.
The focus can be different for different research questions. Pircalabelu, Claeskens
and Waldorp (2015) use the FIC to estimate graphical models with a small number
of nodes. The goal of the present paper is to augment and extend the use of FIC
to high-dimensional graphical models with several popular penalties. We evaluate
the overall differences and similarities between these penalties, and select different
regularization levels in a data-driven way by minimizing MSE expressions. Using
the focused information criterion for model selection of brain connectivity does
not give guarantees with respect to the true underlying graph. A model selected
by the FIC does not necessarily contain all true edges. [See Bühlmann (2013) for
a discussion concerning linear models and screening properties.] Nor is such a
model necessarily consistent. The benefits of the FIC are that (i) the mean squared
error of the estimator for a particular function of the parameters of interest (focus)
is minimized, (ii) by doing so the prediction error related to that focus is mini-
mized, and (iii) the idea of a “single model fits all” is relaxed. The usual approach
when dealing with settings where p > n is to combine the estimation with model
selection by using sparsity enforcing penalties, which have the direct objective of
setting parameters to zero, ensuring thus a sparse solution. The most popular such
penalty is the �1 penalty, which in the context of estimating graphs is used to make
the decision if an edge should or should not be present in the estimated graph. We
propose to separate the estimation from the model selection, as follows. Forced
by the high-dimensional context where p > n, a penalization method is required
in order to estimate the parameters. To decide if an edge should be present in the



FOCUSED INFORMATION CRITERION FOR GRAPHICAL MODELS 2181

estimated graph, we rely on the model selection mechanism associated with the
FIC, as opposed to relying on the sparsity properties of the penalty. We estimate
the final graph by scoring various configurations of edges using the FIC value and
we keep modifying the graph until the FIC value is optimized.

Due to the importance of the prefrontal cortex (PFC) in goal-oriented behavior
and executive control tasks [Ridderinkhof et al. (2004)], resting state studies in-
terested in executive control functions might benefit from a specific focus on PFC
regions. One of the focuses used in the data analysis is, therefore, one where re-
gions in the prefrontal cortex are emphasized. This entails that the estimated edges
in that specific part of the brain should have lower mean squared error than edges
between other regions, and as such be more accurate. The FIC does exactly this.
The choice for minimization of the mean squared error is justified since it pro-
vides a good way to balance squared bias and variance, in other words, fit and
generalization, respectively.

Additionally, by using as focus the observed measurements at a certain time
point k, we estimate with the FIC a network that is designed to perform well with
respect to the MSE of this focus at that time point. By varying the time point it
is possible that a different network is obtained since the focus has changed. By
repeating the process for different time points we can inspect possible changes
over time.

In Abegaz and Wit (2013) vector autoregressive time series are used as models
for time-varying networks, where lag-1 time points are incorporated. Such autore-
gressive effects are also included in our models. Zhou, Lafferty and Wasserman
(2010) also assume autoregressive processes underlying the changes over time in
networks. Kolar et al. (2010), in contrast, have a model that allows abrupt changes
in time with the restriction that the total variation is bounded.

In the brain imaging community, the time varying and dynamical functional
connectivity has been investigated in the works of Allen et al. (2014), Cribben
et al. (2012) and Leonardi et al. (2013), among others.

The “default mode network” (DMN) is often studied in resting state fMRI.
Many cognitive states in psychology have been linked to the DMN regions [see
Raichle et al. (2001)]. The regions forming the DMN did not emerge on the basis
of choice; that is, they were not chosen a priori, but emerged from research as a
set of regions found active when participants were not involved in a task. Honey
et al. (2009) have shown that in the default mode network there exists a connec-
tion between functional and structural connectivity. In the literature [for a review
see Buckner, Andrews-Hanna and Schacter (2008)] the DMN has been linked to
attention disorders, monitoring the external environment, self-reflective thought
and judgment, autism, schizophrenia and Alzheimer’s disease. Also, the fronto-
occipital (FO) connections are thought to be especially important for schizophrenia
[Bassett et al. (2008), Chai et al. (2011), Woodward, Rogers and Heckers (2011)].

Many issues are involved in determining the regions of interest (ROI) from
fMRI data [see e.g., Lindquist (2008), Waldorp (2009)]. One of the issues is that
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contiguous voxels in a volume are spatially related. This issue can be taken up
in several ways, all involving a model for the spatial distribution of brain activity
[e.g., Weeda et al. (2010)]. Here we take the common approach of using atlas based
ROIs that have been aggregated over different subjects [see, e.g., Hagmann et al.
(2008), Honey et al. (2009)]. We refer the reader to Appendix B for the names of
the regions used in the study. The data set contains information on partitions of
these regions.

More information about the data and the acquisition procedure is offered in
Section 4.

The rest of the paper is organized as follows. The general methodology of FIC
with some background information is presented in Section 2, followed by a sim-
ulation study in Section 3. Section 4 contains the obtained results from the analy-
sis on an fMRI data set. Some extensions are presented in Sections 5 and 6 con-
cludes.

2. The proposed FIC method. Consider a p-dimensional multivariate ran-
dom variable X = (X1, . . . ,Xp), which is normally distributed with a certain mean
vector and covariance matrix �. Assuming a nonsingular matrix �, there is a one-
to-one mapping between the conditional independencies that hold in the distribu-
tion and a graphical structure G(E,V), with nodes in V and edges in E . Each of the
univariate variables X1, . . . ,Xp corresponds to one node in the set V and the set
of edges E is a subset of pairs of distinct nodes in V ×V . Lauritzen (1996) showed
that if Xi is independent of Xj conditionally on all remaining variables in the
model, denoted by Xi ⊥ Xj |X{1,...,p}\{i,j }, then the pairs (i, j) ∪ (j, i) /∈ E . Inde-
pendence in the Gaussian case implies that �−1

ij = �−1
ji = 0. In other words, edges

in E can be obtained by estimating the nonzero elements in the inverse covariance
matrix, also called the concentration matrix, a property known in the literature as
“covariance selection” [Dempster (1972)].

An estimate of the inverse covariance matrix can be obtained in several ways.
First, the graphical Lasso (GL) maximizes the penalized log-likelihood of the data
using as penalty λ‖�−1‖1, where the �1 norm of a matrix is the sum of the abso-
lute values of the matrix entries [see, e.g., Banerjee, El Ghaoui and d’Aspremont
(2008), Friedman, Hastie and Tibshirani (2008), Krishnamurthy, Ahipaşaoğlu and
d’Aspremont (2012), Mazumder and Hastie (2012), Ravikumar et al. (2008),
Witten, Friedman and Simon (2011), Yuan and Lin (2007)]. Depending on the
value of λ, the �1 penalized problem forces some elements in the concentration
matrix to be set to 0, thus ensuring some degree of sparsity. An alternative is to take
the �1 norm of the elementwise product T � �−1 [Li and Toh (2010), Scheinberg
and Rish (2010)], which offers more flexibility. An extension to including lag-1 for
time series data providing directed edges was proposed by Abegaz and Wit (2013).
Following Dahlhaus and Eichler (2003) and Gao and Tian (2010), those authors
then proceed at constructing a graph G by representing nonzero elements of the
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concentration matrix as undirected edges and nonzero autoregressive coefficients
as directed edges. We adapt this approach for focused graph selection for the fMRI
data; see Section 4.

Second, “neighborhood selection” became popular with the work of
Meinshausen and Bühlmann (2006). This procedure analyzes each node i se-
quentially, and estimates its neighborhood (nei), namely, the smallest subset of
nodes which, conditioned upon, makes the current node independent of all re-
maining nodes. Once all neighborhoods are estimated, an estimated edge set is
obtained using the “AND” rule or the “OR” rule [Meinshausen and Bühlmann
(2006), Schmidt, Niculescu-Mizil and Murphy (2007), Wainwright, Ravikumar
and Lafferty (2007)].

The application of penalized estimation methods in fMRI studies has been pro-
posed in many other works. Examples of such applications include Ryali et al.
(2010, 2012), Bunea et al. (2011) and Lei, Tong and Yan (2013), to cite just a few
more recent applications.

Here we propose to estimate a graph that is optimal in the mean squared er-
ror (MSE) sense. We use the framework of neighborhood selection, where in each
regression model misspecification is allowed [Claeskens and Hjort (2003)], and
the likelihood function, including a penalty, is used to estimate the model param-
eters. Then the focus, emphasizing particular regions or pathways of the network,
is used to determine the score of the focused information criterion (FIC) to deter-
mine which of the parameters are nonzero, in line with Zhang and Liang (2011)
and Claeskens (2012). To determine the network, we combine the FIC scores
of all regressions for each of the nodes which make up the focus’ estimate of
MSE.

2.1. Likelihood and model specification. Consider a data set consisting of n

independent cases for each variable in the vector X. In a neighborhood selection
framework, let in turn Xj be the response variable Y , and denote all remaining
variables {Xi; i ∈ V \ j} by X̃. We denote the observed values for all remaining
nodes for a case k where k = 1, . . . , n as x̃k . The vector x̃k is further subdivided in
two vectors: wk for covariates that are always in the model and zk for covariates
that are subject to variable selection. Likewise, the parameters in the model are
denoted as (θ, γ ), corresponding to the vectors wk and zk , respectively.

The θ components correspond to the protected nodes, whose observed values
are denoted by the vector w. The γ components correspond to the unprotected
nodes whose observed values are denoted by the vector z. Considering nodes as
protected or unprotected is entirely a researcher’s decision, in the sense that one de-
cides beforehand, informed by theory and research objectives, which nodes should
always be included in the final model, that is, the protected nodes, and from which
sets of nodes the algorithm is allowed to select plausible ones, that is, the unpro-
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tected nodes. If one knows that node i should be a neighbor of node j , then one
would include it in the protected set, rather than letting the procedure decide if it
should be included or not. In the narrow model, containing only protected vari-
ables, γ0 is set to 0; in the full model all variables are included.

We assume the local misspecification framework, which assumes working with
the density f (yk|wk, zk, θ0, γ0 + δ/

√
n), where f is two times continuously dif-

ferentiable in a neighborhood of the vector (θ0, γ0). The true unknown parameter
vector (θ0, γ0 + δ/

√
n) is a vector of length d = dθ + dγ , where dθ and dγ rep-

resent the lengths of the corresponding vectors θ and γ . The vector δ controls
the size of the “neighborhood” around the narrow model. In the basic model f

is the normal density with Yk ∼ N(wT
k θ + zT

k (γ0 + δ/
√

n), σ 2), k = 1, . . . , n in-
dependent random variables with different means and a common variance. When
pooling data from several subjects, we allow for extensions were Y1, . . . , Yn are
correlated.

We define a focus parameter as a predetermined differentiable function μ(θ, γ )

which depends directly on the parameters of the density function and which is
used to search for the estimator with the smallest MSE. The focus represents a
mathematical translation of the research question, in the sense that the objective
of the analysis is represented mathematically by the focus parameter. This is the
quantity that we wish to estimate well, with small mean squared error. An estimator
for this quantity is obtained by plugging in the estimated values for θ and γ in the
function μ. Under the above local misspecification framework, μtrue = μ(θ0, γ0 +
δ/

√
n). For example, the focus μ(θ, γ ) = E(Yk|wk, zk) represents the expectation

of a ROI at time k. Setting E(Yk|wk, zk) = wT
k θ + zT

kγ then describes the expected
value of that ROI at time k as a linear function. There are many possible choices
as a focus parameter μ, but it has to be a function of the parameters of the density
and be differentiable.

For the high-dimensional setting in neighborhood selection, an estimator for
(θ, γ ) is obtained by maximizing the penalized objective function with respect to
θ and γ ,

Q(θ, γ ) = 1

n

n∑
k=1

logf (yk|wk, zk, θ, γ ) − λn

n

dγ∑
j=1

ψ
(|γj − γj0|),(2.1)

for a given penalty function ψ (that is twice differentiable in 0) and an external
value λn. An estimator obtained with (2.1) is denoted by (θ̂ , γ̂ ). As an example,
consider the BOLD (blood-oxygen-level dependent) responses from fMRI used
for the analysis of connectivity which are correlated across time points [Worsley
(2001)]. A popular method to tackle temporal dependence is a Gaussian autore-
gressive AR(1) model. In our setting we require the model’s intercept and error
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variance to be in all models

Q(θ, γ ) = −n

2
log(2π) − n

2
logσ 2 −

n∑
k=2

yk − α − x̃T
k β − ρyk−1

2σ 2

− λn

n

{ dγ∑
j=1

ψ
(|βj − βj0|)+ ψ

(|ρ − ρ0|)
}
,

where θ = (σ 2, α) and γ = (ρ,β). More examples and extensions are given in
Section 5.

2.2. FIC for penalized estimation of nodewise models. Since θ is present in
all models, we concentrate the model selection process on γ , and thus the penalty
in (2.1) is applied only to γ . We will always restrict dθ < n, but allow that dγ > n

(although it cannot grow with n).
Let μ̂ = μ(θ̂, γ̂ ) be the penalized maximum likelihood estimator of the focus,

obtained by evaluating μ at the estimated values (θ̂ , γ̂ ). For simplicity, we sup-
press in the notation the dependency of θ̂ and γ̂ on the penalty λn. The objective is
to estimate the focus μ(θ, γ ) in the “best” way, here defined in terms of MSE. We
proceed by estimating μ based on different models (i.e., different configurations
of neighbors for the node under consideration) and denote the estimated quantity
using model S as μ̂S = μ(θ̂S, γ̂S, γ0,Sc ). Note that S is a subset of indices corre-
sponding to all remaining nodes and Sc denotes the complementary set. The length
of the vector θ̂S is always equal to dθ , but the actual value of the estimator may
depend on which of the components of the vector γ are included in the index set S.
The vector γ̂S estimates the components of γ that are included in S, the other com-
ponents are set to zero, and they form the vector γ0,Sc . The cardinality of the set
S ∪ Sc is thus d .

For each model indexed by S, based on the above quantities, we have [see
Claeskens (2012)]

√
n(μ̂S − μtrue)

D→ �S ∼ N
(
Mean(μ,S, δ, c),Var(μ,S)

)
.(2.2)

The mean depends on the chosen focus μ, the submodel S, the value of δ indicating
the distance between the parameters from the simplest model and the true model,
and on the chosen penalization via c = λ0ψ

′′(0)1q , where λn/
√

n → λ0 > 0. The
variance depends only on the focus μ and on the submodel S. Precise values of the
mean and variance are defined in Appendix A. By assumption μ is a differentiable
function for which the partial derivatives with respect to θ and γ exist.

As is well known, the MSE can be decomposed into the squared bias and vari-
ance, which in the case of �S in (2.2) gives

MSE(μ̂S) = Mean(μ,S, δ, c)2 + Var(μ,S).(2.3)
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Appendix A contains the exact MSE expression based on (2.2) which is used for
the implementation. To estimate MSE(μ̂S) in (2.3), we proceed by plugging in the
empirical version of the unknown quantities using parameter estimates from the
full model. An estimator for δ is δ̂ = √

n(γ̂full − γ0) →D N(δ, J 11), with J 11 a
submatrix of the inverse of the Fisher information matrix; see the appendix for a
precise definition. Since the squared bias is needed, an unbiased estimator for δδT

is δ̂δ̂T − Ĵ 11, since E(δ̂δ̂T) = δδT + J 11. Hence, to estimate the MSE, we require
δ̂ and Ĵ 11.

Since the MSE is defined per node, we define the FIC for the entire es-
timated graph as the sum of MSEs, where each node l ∈ V has a particular
model Sl based on which we have constructed the estimator μ̂l;Sl

. Denote the set
S = {S1, . . . , Sp|S1 ⊆ {V \ 1}; . . . ;Sp ⊆ {V \ p}}, then

FIC
(
G(ES,V)

)= p∑
l=1

M̂SE(μ̂l;Sl
).(2.4)

The objective is to minimize (2.4) over the set S .

2.3. Steps to obtain an FIC graph based on nodewise models. Since we are
dealing with fMRI time series, in each nodewise regression we incorporate both
instantaneous and lag-1 effects in the network, resulting in a regression with 2p−1
predictors for each nodewise model. Once all nodewise models are selected, we
apply the following “OR” rule adapted from Meinshausen and Bühlmann (2006):

Êλ,OR
i−j = {

(i, j) ∪ (j, i) : ik ∈ n̂e
λ
jk

OR jk ∈ n̂e
λ
ik

}
instantaneous effects;
undirected edges,

Êλ,OR
i→j = {

(i, j) : ik−1 ∈ n̂e
λ
jk

}
lag 1 effects; directed edges,

Êλ,OR
i←j = {

(j, i) : jk−1 ∈ n̂e
λ
ik

}
lag 1 effects; directed edges,

Êλ,OR = {
Êλ,OR

i−j ∪ Êλ,OR
i→j ∪ Êλ,OR

i←j

}
combined directed and undirected edges,

where n̂e
λ denotes the neighborhood of the considered node for a certain value

of λ.
The main steps of our procedure are summarized as follows:

1 Specify the focus μ. Decide on the likelihood and penalty function to con-
struct the penalized function Q(θ, γ ).

2. At each node and for a set of explanatory models for that node, estimate
the MSE of the focus estimator by FIC and choose the model that minimizes FIC.
This requires optimizing Q(θ, γ ) for different models and estimating the quantities
needed to construct the FIC for this focus. In our approach we find that model in
a greedy forward stepwise manner, where we start by evaluating all one-variable
models, select the best performing one and then add one more variable at each step
until the FIC value for that node cannot be improved.
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3. The “OR” rule is applied to construct a graph from the nodewise models.
We add an undirected edge indicating a contemporaneous relation between two
nodes if at least one node is part of the other node’s selected model. A directed
edge indicating a temporal, lagged relation is added between two nodes if the lag
1 effect of one node is part of the selected model for the other node. An FIC
estimated mixed graph results.

These steps are applicable to the different choices of criterion functions Q(θ, γ )

and allow for different likelihoods and for different penalty functions.

2.4. The choice of penalty function. In principle, any type of penalty such
as an �1 [Meinshausen and Bühlmann (2006)] or bridge [Fu (1998)], elastic net
[Zou and Hastie (2005)], adaptive lasso [Zou (2006)], SCAD [Fan and Li (2001)],
etc. can be used; see below. Although we require the use of a penalty because we
are dealing with the high-dimensional setting where dγ > n is possible, a sparsity
enforcing penalty is unnecessary. The reason is that exclusion/inclusion of a certain
predictor, which translates into a zero/nonzero γ component, is determined by the
value of the FIC.

Since differentiability of ψ is needed, for nondifferentiable functions we pro-
ceed as in Fan and Li (2001) and replace ψ by a local quadratic approximation
(LQA), which has the advantage of being low in computational complexity, as an
iterative Newton–Raphson algorithm can be employed for optimization purposes.
To improve numerical stability, one can also introduce small “perturbations” as in
Hunter and Li (2005). The local linear approximation (LLA) of Zou and Li (2008),
not used in this paper, could be an alternative.

With LQA, ψ(|γj − γj0|) is approximated by a Taylor expansion and its first
and second partial derivatives (with respect to γj − γj0) are approximated by

ψ
(|γj − γj0|)≈ ψ(γj,apx) + 1

2

ψ ′(|γj,apx|)
|γj,apx|

[
(γj − γj0)

2 − γ 2
j,apx

];
ψ ′(|γj − γj0|)≈ ψ ′(|γj,apx|)

|γj,apx| (γj − γj0);

ψ ′′(|γj − γj0|)≈ ψ ′(|γj,apx|)
|γj,apx| ,

for γj,apx an approximation point close to (γj − γj0). With this approximation,
several penalties can be used in (2.1), including the following:

• lasso: ψl(|γj − γj0|) = |γj − γj0|;
• bridge: ψb(|γj − γj0|) = |γj − γj0|α;α > 0;
• hard thresholding: ψh(|γj − γj0|) = λ2 − (|γj − γj0| − λ)2I (|γj − γj0| < λ);
• adaptive lasso: ψal(|γj − γj0|) = wj |γj − γj0|, for a weight wj ;
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• SCAD (first derivative):

ψ ′
s

(|γj − γj0|)= I
(|γj − γj0| ≤ λ

)
+ (aλ − |γj − γj0|)+

(a − 1)λ
I
(|γj − γj0| > λ

); a > 2.

The �2 penalty has the convenient advantage that a closed-form estimator exists,
it is differentiable, and leads to tractable mean squared error expressions for the
focus estimators making the bias-variance trade-off explicit.

2.5. Regularization level λ. Given one of the above penalties and a corre-
sponding value of ψ ′′(0), we propose to choose the regularization parameter λ by
solving a mean squared error minimization problem. In particular, the regulariza-
tion parameter that we propose to use is the one that minimizes MSE(μ̂S) in (2.3).
Since this is a quadratic function in c = λ0ψ

′′(0)1q , we solve for c in the equation
∂ MSE(μ̂S)/∂c = 0. For ψ ′′(0) �= 0, the optimal regularization level is obtained
as λ̂S = arg minc MSE(μ̂S)

√
n/ψ ′′(0), which leads to an explicit expression of a

model dependent value λ̂S , given in (A.2).
Since the λ̂S depends on δ, appearing in the MSE, we are faced with an endo-

geneity problem: to use the optimal λ̂S , we need to know (θ̂ , γ̂ ), but in order to
estimate the two unknown vectors, we need λS . One solution to the problem is
the following two-step procedure: we first estimate (θ̂ , γ̂ ) on a grid of λ values,
and then select the optimal estimates based on the GCV criterion [see Craven and
Wahba (1978/79)]. We mention that using this value for λ we estimate the quan-
tities θ̂ , γ̂ which are necessary in the calculation of ω and δ̂. We then estimate Ĵ ,
and partition it according to the dimensions of the vectors θ and γ after which the
matrix GS is computed. All the necessary quantities for computing λS from (A.2)
are now available. We proceed afterward by estimating ĉS and the MSE(μ̂S) ex-
pression is immediately available for each model S where unknown quantities are
estimated. See Algorithm 1 for more details on the implementation; all quantities
mentioned are defined in Appendix A.1.

Another possibility to determine the regularization level λ is by k-fold cross-
validation, where k = 10, say. This would avoid using the likelihood to determine
both the parameters and the regularization level. However, as we show in the sim-
ulations, optimizing the regularization level through the likelihood, as described
above, results in good performance.

2.6. An algorithmic view on estimating FIC graphs. To summarize the above
procedures and the steps that are followed in estimating the FIC graphs, we pro-
vide in this section in an algorithmic format how one computes the estimated
M̂SE(μ̂l;Sl

) values for a focus specified at the node l (see Algorithm 1), and how
one searches for the configuration of instantaneous (undirected edges) and lagged
(directed edges) effects (see Algorithm 2).



FOCUSED INFORMATION CRITERION FOR GRAPHICAL MODELS 2189

Algorithm 1 Nodewise MSE calculations
1. Specify the focus of interest for a node l in the graph, represented gener-
ically by the variable Y . For example, μ(θ, γ ) = E(Yk|wk, zk) where (θ, γ )

represents the parameters of the underlying density and (wk, zk) represents the
measurements for all other nodes at a fixed data point (either in-sample or out-
of-sample);
2. Choose the approximated penalty function ψ as in Section 2.4 and specify a
value for λ;
3. Optimize (2.1) where autoregressive effects of an arbitrary order are allowed
and obtain (θ̂ , γ̂ ) in the full (most complex) model, after which construct δ̂ =√

nγ̂ ;
4. Construct the ψ ′′ and evaluate it at 0.
5. Estimate the empirical Fisher information matrix (Ĵ ) and its inverse (Ĵ−1) at
the full model;
6. Specify at the node l a collection of models, represented by the potential
neighbor variables and their lagged versions (this is constructed incrementally
in a forward manner in Algorithm 2);
7. For each model S (a configuration of potential neighbors and lagged counter-
parts) in the above collection, construct the empirical Fisher information matrix
corresponding to model S (ĴS ) using the projection matrices πS ;
8. Compute the quantities ω̂ = Ĵ10Ĵ

−1
00

∂μ
∂θ

− ∂μ
∂γ

, ĜS = Ĵ 11,S,0(Ĵ 11)−1, Ĵ 11,S,0 =
πT

S Ĵ 11,SπS based on the partitions of Ĵ , Ĵ−1 and ĴS , the projection matrix πS

and the partial derivatives of the focus;
9. Compute λS as in (A.2) and MSE(μ̂S) as in (A.1) since all necessary quanti-
ties have been estimated in the previous steps.

In Algorithm 1 one starts off by specifying the focus, the penalty function to be
used and the regularization level λ. One then proceeds with estimating the Fisher
information matrix and the parameters δ̂, ω̂ and γ̂ after which all the necessary
quantities for computing the MSE expression as in (A.1) can be directly computed.
Plugging in all the necessary quantities, one obtains the estimated MSE expression
for a model S at node l.

In Algorithm 2 we search in a forward manner for the nodewise model that op-
timizes the MSE expression. We start off by specifying an empty model for the
node and compute the estimated MSE using Algorithm 1. We then modify the
model and check if adding other nodes decreases the MSE values. We repeat the
search until we have introduced in the optimal model Sl the nodes (or lagged ver-
sions of the nodes) that have resulted in the best MSE values. This approach is
taken for each node in turn and this results in estimating for each node its set of
neighbor nodes. With very large graphs the search technique might not scale effi-
ciently. Once the sets have been estimated, the “OR” rule is applied and a graph
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Algorithm 2 Nodewise based FIC graph estimation
for l ∈ all nodes in G do

Current M̂SE(μ̂l;Sl
) = ∞

end for
Ĝ ← empty graph
for l ∈ all nodes in G do

Sl ←∅

Current M̂SE(μ̂l;Sl
) ← compute M̂SE(μ̂l;Sl

) using Algorithm 1
F lag ← False;
while F lag = False do

for m ∈ possible instantaneous and lag-1 neighbors of node l do
Sl ← Sl ∪ m

NeighbormM̂SE(μ̂l;Sl
) ← compute M̂SE(μ̂l;Sl

) using Algorithm 1
end for
Optimal NeighbormM̂SE(μ̂l;Sl

) ← minimum NeighbormM̂SE(μ̂l;Sl
)

if Optimal NeighbormM̂SE(μ̂l;Sl
) < Current M̂SE(μ̂l;Sl

) then

Current M̂SE(μ̂l;Sl
) ← Optimal NeighborkM̂SE(μ̂l;Sl

)

Sl ← Sl ∪ m

possible instantaneous and lag-1 neighbors of node l ←
{possible instantaneous and lag-1 neighbors of node l} \ m

else
F lag ← T rue;

end if
end while

end for
for (i, j) ∈ all nodes in G do

n̂eλ
ik

← Si \ {lag-1 neighbors} ∈ Si

n̂eλ
jk

← Sj \ {lag-1 neighbors} ∈ Sj

n̂eλ
ik−1

← Si \ {instantaneous neighbors} ∈ Si

n̂eλ
jk−1

← Sj \ {instantaneous neighbors} ∈ Sj

end for
Construct {Êλ,OR

i−j ; Êλ,OR
i→j ; Êλ,OR

i←j }
Êλ,OR ← {Êλ,OR

i−j ∪ Êλ,OR
i→j ∪ Êλ,OR

i←j }
Ĝ ← update Ĝ based on Êλ,OR

is then constructed using the optimal identified sets of neighbors. We mention that
if one desires to estimate undirected graphs, one can use the same algorithms, but
restrict the influence of the other nodes to only the instantaneous edges and dis-
regard the autoregressive effects. Such a strategy would be useful for applications
that do not include time dependencies.

3. Simulation study. To compare known methods of graph estimation and
selection to our proposed FIC method, we performed a simulation study. First,
we generated independent data from a multivariate normal distribution with three
different undirected graphical structures: “hub,” “cluster,” and “random” (see Fig-
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FIG. 1. Simulated data. Visual representation of three �−1 matrices and their corresponding
graph structure; hub in the left panel, cluster in the center panel, and random in the right panel.
A black symbol (in the top row) signifies a nonzero entry in the �−1 on position (i, j) which is
interpreted as an edge (in the bottom row) between two nodes. All blank entries are interpreted as
nonexisting edges between pairs of nodes.

ure 1). When hubs (left panel of Figure 1) or clusters (center panel of Figure 1)
were used to generate the data, we have used 5 such structures and when a random
graph structure (right panel of Figure 1) has been used, we have set the probability
of connecting two nodes to 0.2. For each of the three graph structures, with p = 35
nodes, we took settings with sample sizes n = 15, 30 and 75. With p = 150 nodes,
we used sample sizes 75 and 300. For each scenario the number of simulation runs
was set at 300. Out of these 15 different scenarios, there were 9 settings where the
number of nodes was larger than the number of observations (p > n). For each
scenario data have been generated either using constant variance at each node, set
at 1, or using nonconstant variances that were drawn at random from the interval
[1,2.5]. This leads to a total of 60 settings.

The competitive methods that have been studied here are FIC, GL, CLIME [Cai,
Liu and Luo (2011)] and TIGER [Liu and Wang (2012)], as implemented in Li,
Zhao and Liu (2013). For GL, CLIME and TIGER the regularization parameter
has been chosen by threefold cross-validation using the “Likelihood” or “Trace”
loss:

Likelihood = trace
(
�̂−1

train�̂test
)− log

(∣∣�̂−1
train

∣∣),
Trace = trace

(
diag

(
�̂−1

train�̂test
)2 − I

)
,

where �̂−1
train is the concentration matrix estimated on the training sample and �̂test

is the covariance matrix fitted using the test set. The matrix diag(�̂−1
train�̂test)

2 is the
matrix �̂−1

train�̂test whose diagonal elements are squared. The extended Bayesian
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information criterion (eBIC) developed in Foygel and Drton (2010), as well as the
“StARS” criterion implemented in Zhao et al. (2012), have been used for model
selection.

For the FIC we defined the focus as μ(θ, γ ; x̃) = E[Y |x̃], where no variables
are protected, and this is further specified to two focus choices for x̃:

(i) μ1 = μ(θ, γ ; x̃) evaluated at the x̃ values corresponding to Huber’s robust
location of the center of the distribution;

(ii) μ2 = μ(θ, γ ; x̃) evaluated at the x̃ values that correspond to the median
values of the measurements of each node.

Each of these two focuses has been treated once as an in-sample data point that
was used in the training of the algorithms (in this case we have added the point
to the original data set) and once as an out-of-sample data point (the point was
completely separated of the data set used for training the algorithms).

For each of the two focuses, the FIC selects a graph and from the list of penalties
described in Section 2.4 we have used the �2 penalty and the quadratic approxima-
tion to the �1 penalty to be more comparable with the competitor techniques. The
regularization parameter has been chosen as described in Section 2.5.

For each method, once a graph is estimated, we estimate the elements of the
corresponding concentration matrix and construct the empirical MSE as

MSE = 1

p

∑
l∈V

(
x̃0l − ∑

i∈ne(l)

β̂liXi

)2

,

where x̃0 is the focus evaluation point and p is the number of nodes in the graph.
The β’s are estimated as follows: for GL, CLIME and TIGER based on the concen-
tration matrix, we construct at each node j a vector (�−1

j,1/�−1
j,j , . . . ,�

−1
j,m/�−1

j,j )

corresponding to the regression coefficients of all other m nodes in the regression
model of node j [see Bühlmann and van de Geer (2011), pages 436]. Due to the
sparsity nature of the techniques, some components in this vector will be set to 0.
For FIC we have used the penalized maximum likelihood estimator for (θ ,γ ) after
optimizing (2.1).

We have used four measures to compare the performance of the methods: empir-
ical MSE, sparsity, true positive rate (the number of correctly found edges divided
by the number of true edges) and false positive rate (the number of incorrectly
found edges divided by the number of true nonpresent edges). The sparsity of the
estimated graphs has been estimated as SI = 1 − |Ê |/(p(p − 1)/2), where |Ê |
represents the number of estimated edges and p represents the number of nodes.
A larger value corresponds to a “sparser” graph which has a lower number of
estimated edges.

3.1. Results. Pooled across all simulation runs from all settings, the FIC-�2
and FIC LQA �1 estimated graphs produced the smallest empirical MSE values
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for each of the two focuses. From Table 1 we observe that for the first evalua-
tion point the FIC provided better empirical MSE than the competitors regardless
of it being an in-/out-of-sample point or whether the nodes had constant or non-
constant variance. For the second evaluation point, the FIC-�2 provided the best
performance with the largest gains against the competitors for an in-sample eval-
uation point. For out-of-sample cases, its performance was closer to that of the
competitors, but still better.

With respect to the sparsity of the estimated graphs, when compared to the com-
petitor techniques, we observe that the FIC estimated graphs are not too sparse, but
not too dense either. In general, since the FIC graph is estimated for a particular
focus, it provided lower TPR rates when compared to the competitors that all esti-
mate a global model that is not fine-tuned for the focus under analysis. In certain
scenarios, the FIC can obtain better TPR rates than the average ones presented in
Table 1. As an example, for the setting where data of size n = 75 were generated
from a graph with cluster structure and p = 35 nodes, we observed an average TPR
of 42%. Zooming in on the subnetworks formed around a node (i.e., the node and
all its neighbors), the TPRs in this setting ranged on average from 40% to 54%.
The FPR rate was generally lower than for most of the competitor techniques. This
suggests that the focus-tuned FIC graphs use only a part of the total true edges, the
ones that reduce best the bias of the focus estimator without increasing too much
the variance, such that in the end the MSE of the estimated graph is kept small.

Figure 2 presents the empirical MSE obtained as a function of λ. To investigate
the change in the value of the empirical MSE of the estimated selection of the
nodes with FIC when λ varies as compared to other methods, we simulated 300
data sets and took a sequence of ten values for λ ranging from 0.05 to 2.5. We
have used here samples of size 75 for a random graph containing 35 nodes where
the evaluation point was an out-of sample point for both cases of constant and
nonconstant variance at each node. Due to the two step procedure that we employ,
the fluctuations in empirical MSE for this range of regularization values are milder
for FIC than for the other two methods. The figure also suggests that increasing
the penalty might be better for FIC, but we did not explore this any further since
already for the larger values in the specified λ sequence the competitors provided
empty graphs.

We have compared our method to a Bayesian graph learning technique with
sparse priors; see Table 2. For this we generated 300 data sets using samples of
size 15, 30 and 75 for random, hub and cluster graphs containing 35 nodes. The
evaluation points were either in-sample or out-of sample points and the variance
at each node was either constant for all nodes or nonconstant. This leads to 36
settings. For fitting sparse undirected Bayesian graphs we have used the procedure
implemented in Mohammadi and Wit (2015). Over all the simulation settings the
FIC graphs were performing better than the Bayesian graphs for the first evaluation
point. For the second evaluation point both techniques provided similar empirical
MSE values when the point was an in-sample point, but the Bayesian graph was
slightly better when the point was out-of-sample.
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TABLE 1
Simulated data. Empirical mean squared error (MSE), sparsity index (SI), true positive rate (TPR) and false positive rate (FPR) of estimated graphs for
2 focuses, pooled across 300 simulation runs and 60 different simulation settings (3 graph types, 5 scenarios per graph). “In/Out” refer to the settings

where the point was an in-sample or out-of sample point, while “Ct/Non-Ct” refer to settings where the variance at each node was constant or
nonconstant (randomly sampled at each node)

MSE SI

In; Ct In; Non-ct Out; Ct Out; Non-ct In; Ct In; Non-ct Out; Ct Out; Non-ct

μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2

FIC-�2 0.002 0.012 0.005 0.025 0.002 0.024 0.004 0.051 0.92 0.94 0.90 0.92 0.93 0.94 0.93 0.93
FIC-LQA �1 0.002 0.014 0.006 0.026 0.003 0.035 0.006 0.081 0.88 0.90 0.87 0.90 0.88 0.89 0.88 0.88
GL (CV-Likelihood) 0.020 0.035 0.054 0.082 0.018 0.032 0.049 0.075 0.69 0.69 0.85 0.85 0.71 0.71 0.87 0.87
GL (CV-Trace) 0.025 0.041 0.061 0.089 0.025 0.040 0.056 0.081 0.78 0.78 0.99 0.99 0.82 0.82 1.00 1.00
GL (StARS) 0.027 0.041 0.059 0.087 0.023 0.037 0.053 0.079 0.90 0.90 0.95 0.95 0.89 0.89 0.94 0.94
GL (eBIC) 0.033 0.049 0.062 0.090 0.032 0.047 0.056 0.082 0.96 0.96 1.00 1.00 0.96 0.96 1.00 1.00
CLIME (STARS) 0.035 0.051 0.060 0.087 0.033 0.049 0.054 0.079 0.97 0.97 0.96 0.96 0.97 0.97 0.96 0.96
CLIME (CV-Likelihood) 0.031 0.046 0.058 0.086 0.028 0.043 0.052 0.078 0.77 0.77 0.54 0.54 0.77 0.77 0.55 0.55
CLIME (CV-Trace) 0.032 0.048 0.059 0.087 0.031 0.045 0.053 0.079 0.83 0.83 0.75 0.75 0.83 0.83 0.74 0.74
TIGER (StARS) 0.026 0.040 0.059 0.087 0.023 0.037 0.053 0.079 0.94 0.94 0.96 0.96 0.94 0.94 0.96 0.96
TIGER (CV-Likelihood) 0.032 0.048 0.060 0.088 0.031 0.046 0.054 0.080 0.97 0.97 0.96 0.96 0.97 0.97 0.96 0.96

TPR FPR

FIC-�2 0.20 0.19 0.17 0.15 0.19 0.19 0.14 0.14 0.08 0.06 0.10 0.07 0.06 0.05 0.07 0.06
FIC-LQA �1 0.29 0.28 0.20 0.18 0.29 0.29 0.19 0.19 0.11 0.09 0.13 0.10 0.11 0.10 0.12 0.12
GL (CV-Likelihood) 0.89 0.89 0.53 0.53 0.90 0.90 0.50 0.50 0.27 0.27 0.13 0.13 0.25 0.25 0.11 0.11
GL (CV-Trace) 0.75 0.75 0.03 0.03 0.70 0.70 0.02 0.02 0.18 0.18 0.00 0.00 0.15 0.15 0.00 0.00
GL (StARS) 0.67 0.67 0.36 0.36 0.71 0.71 0.40 0.40 0.07 0.07 0.04 0.04 0.08 0.08 0.04 0.04
GL (eBIC) 0.25 0.25 0.00 0.00 0.22 0.22 0.00 0.00 0.03 0.03 0.00 0.00 0.03 0.03 0.00 0.00
CLIME (StARS) 0.23 0.23 0.20 0.20 0.25 0.25 0.23 0.23 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03
CLIME (CV-Likelihood) 0.80 0.80 0.76 0.76 0.82 0.82 0.76 0.76 0.19 0.19 0.44 0.44 0.20 0.20 0.43 0.43
CLIME (CV-Trace) 0.68 0.68 0.56 0.56 0.71 0.71 0.60 0.60 0.14 0.14 0.23 0.23 0.14 0.14 0.25 0.25
TIGER (StARS) 0.66 0.66 0.31 0.31 0.70 0.70 0.34 0.34 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03
TIGER (CV-Likelihood) 0.41 0.41 0.27 0.27 0.37 0.37 0.28 0.28 0.01 0.01 0.03 0.03 0.01 0.01 0.03 0.03
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FIG. 2. Simulated data. Empirical MSE plotted against a λ sequence for FIC-�2, FIC-LQA �1,
GL (CV-Likelihood) and TIGER (StARS) when the variance at each node is constant (left panel) or
nonconstant (right panel) for μ2 when the evaluation point is out-of-sample.

3.2. Dependent observations, lag-1. We have generated multivariate data
from cluster, hub and random structures, though now with autoregressive effects
of order 1. The probability of connecting two nodes was 0.2, the sample size was
30 or 75, and the number of nodes was 35. Autoregressive effects of order 1 (lag-
1) have been used for modeling the mean structure as well as for generating the
data. We compared FIC to the time series chain graphical model (TSCGM) from
Abegaz and Wit (2013). The regularization parameter in TSCGM has been chosen
using eBIC, the traditional BIC and a “generalized” information criterion (GIC)
defined as

GIC = −2log Lik + log(2p) log log(nm)
[
0.5#

{
σ−1

ij > 0
}+ p + #{γij > 0}],

where p is the number of nodes, n is the number of observations per time series, m
is the number of time points and #{σ−1

ij > 0}, #{γij > 0} are the number of nonzero

entries in the matrices �−1 and �. The FIC has been used with an �2 penalty or a

TABLE 2
Simulated data. Empirical mean squared error (MSE) of estimated graphs for 2 focuses, pooled

across 300 simulation runs and 36 different simulation settings for p = 35 (three types of graphs,
3 sample sizes). “In/Out” refer to the settings where the point was an in-sample or out-of sample

point, while “Ct/Non-Ct” refer to settings where the variance at each node was constant or
nonconstant (randomly sampled at each node)

In; Ct In; Non-ct Out; Ct Out; Non-ct

μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2

FIC-�2 0.002 0.014 0.005 0.028 0.002 0.028 0.005 0.062
FIC-LQA �1 0.003 0.016 0.006 0.029 0.003 0.042 0.008 0.101
Bayesian graph 0.057 0.010 0.100 0.030 0.056 0.011 0.100 0.035



2196 PIRCALABELU, CLAESKENS, JAHFARI AND WALDORP

TABLE 3
Simulated data. Empirical mean squared error (MSE) of estimated graphs for 2 focuses, pooled

across 300 simulation runs and 24 different simulation settings (3 graph types, with n = 30 or 75
for p = 35). “In/Out” refer to the settings where the point was an in-sample or out-of sample point,
while “Ct/Non-Ct” refer to settings where the variance at each node was constant or nonconstant

(randomly sampled at each node)

In; Ct In; Non-ct Out; Ct Out; Non-ct

μ1 μ2 μ1 μ2 μ1 μ2 μ1 μ2

FIC-�2 0.01 0.07 0.01 0.13 0.01 0.07 0.01 0.13
FIC-LQA SCAD 0.01 0.07 0.01 0.13 0.01 0.07 0.01 0.13
TSCGM (eBIC) 0.13 0.13 0.24 0.23 0.15 0.14 0.26 0.25
TSCGM (BIC) 0.13 0.13 0.23 0.24 0.16 0.15 0.27 0.27
TSCGM (GIC) 0.13 0.13 0.24 0.24 0.15 0.14 0.27 0.27

local quadratic approximation to the SCAD penalty (to be more comparable with
the TSCGM methodology).

In order to obtain empirical MSE expressions, in the TSCGM we could use two
strategies. Either we predict one node as a function of its past, through the directed
structure and the matrix of AR(1) coefficients estimated by the method, or proceed
by constructing the vectors of regression coefficients using the undirected graphi-
cal structure which accounts for instantaneous relations between nodes corrected
for the lagged influence. We explored both ways of getting the empirical MSE
values. As expected, using the directed structure provided worse MSE values than
using the undirected graph since predicting the nodes by using their past might be
too simple, as this does not account for the influence of the other nodes. Hence, we
present the empirical MSE values when using the concentration matrix estimates.

Table 3 presents the empirical MSE values obtained for this comparison. Similar
conclusions to independent data hold for the case where autoregressive effects
were modeled. The FIC produces smaller empirical MSE values for the focuses,
but tends to produce for many settings TPR and FPR rates that are lower than
those obtained by using TSCGM. In terms of sparsity, for most settings the FIC
produced either comparable or sparser models.

4. Analysis of the fMRI data. For eight participants (2 male, 6 female, mean
age = 24.4, range 21–25), resting state functional magnetic resonance imaging
data were acquired in a single scanning session on a 3T scanner (Philips). For
the resting state protocol, participants were instructed to stay alert and focus on a
white fixation cross, presented on a black-projection screen that was viewed via
a mirror system attached to the magnetic resonance imaging (MRI) head coil.
In total, 246 T2∗-weighted echoplanar images (EPIs) (2202 mm FOV; 962 in
plane resolution; 3.3 mm slice thickness; 0 mm slice spacing; TR 2000 ms; TE
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28 ms; FA 90◦, ascending orientation) were scanned. For registration purposes,
a three-dimensional T1 scan was acquired before functional runs of an indepen-
dent fMRI study (T1; TFE 218 × 226 mm FOV; 2562 in plane resolution; 182
slices, 1.2 mm slice thickness, TR 9.56 ms, TE 4.6 ms, FA 8, coronal orientation).
FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool)
Version 5.98, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl).
After discarding the first 6 volumes to allow for stabilization of the magnetic
field, the images were concatenated across time into a single 4-dimensional im-
age. The following pre-statistics processing was applied: motion correction using
MCFLIRT [Jenkinson et al. (2002)]; slice-timing correction using Fourier-space
time-series phase-shifting; nonbrain removal using BET [Smith (2002)]; grand-
mean intensity normalization of the entire 4D data set by a single multiplicative
factor; highpass temporal filtering (Gaussian-weighted least-squares straight line
fitting, with sigma = 50.0 s). The Lausance 2008 parcellation within the Connec-
tome viewer toolkit (http://www.cmtk.org) was used to create the embedded hier-
archical cortical parcellations within Freesurfer [Cammoun et al. (2012), Gerhard
et al. (2011), Hagmann et al. (2008), Honey et al. (2009)]. For each subject, the
preprocessed T1-weighted image was first segmented into 68 atlas-based cortical
parcels [Desikan et al. (2006)]. See Table 6 for the names of the regions used in the
study. In a second step, each region was split into a set of smaller regions on the
average space (Freesurfer). The subdivision for each region was then registered to
each individual brain in the same way as the original parcellation with 68 regions,
such that the regions were similar for each subject. This resulted in a set of 448 re-
gions for each subject. All segmentations were transformed and registered onto the
fMRI resting-state images using FLIRT [Jenkinson and Smith (2001), Jenkinson
et al. (2002)]. Consequently, the averaged times series across voxels were extracted
for each of the 448 ROI’s, at each time point (n = 240). Prior to the computations
of networks, all time series were detrended and the mean cerebral fluid and white
matter signals were regressed from all time points.

4.1. Focuses of interest. One of the advantages of the FIC is that we can con-
centrate the graph search on specific parameters (or regions) that will be accurately
estimated, that is, have the lowest MSE. We concentrate on three specific focuses
concerning the “default mode network” (DMN), fronto-occipital (FO) regions and
the prefrontal cortex (PFC):

μ1 Regions forming the DMN can be emphasized by having increased levels
compared to other regions in the focus. For this focus we set the values of the
DMN regions to high or low values and average values for the remaining regions;

μ2 We emphasize with this focus all ROIs from the fronto-occipital regions by
setting the values of these regions to high or low values and average values for the
remaining regions;

http://www.fmrib.ox.ac.uk/fsl
http://www.cmtk.org
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μ3 The primary goal of research into executive functions is to investigate the
prefrontal cortex. A focus is created that emphasizes the prefrontal regions. This
focus obtains high values for brain regions in the PFC and average values for other
regions.

The average signal values over the ROIs for focuses μ1, μ2 and μ3 can be seen
in Figure 3 in the first column. Each focus represents a certain signal pattern for the
ROIs. It is of interest to investigate what the implications are for the structure of
the estimated networks. The “spikes” represent the strength of the average signal
in the emphasized regions. For some regions an average strength of the signal is
recorded, given by the zero values in Figure 3. For other regions a higher or lower
than average signal is recorded. The choice of low/high values for ROIs is based
on the observed values for an external subject. The focuses correspond to patterns
of activation of a real subject for which the signal in some regions takes an average
value, while in some other regions, namely, for μ1 the DMN, for μ2 the FO and for
μ3 the PFC, the signal is above or below the average as observed for the external
subject.

For the fMRI measurements, we are interested in estimating networks that pro-
vide small MSE values for estimating a function of the parameters of interest (fo-
cus) μ(θ, γ ; x̃) = E(Y |x̃).

We observe in Figure 3 that choosing different penalties for a given fixed focus
made a smaller difference on the structure of the estimated graphs than choosing
a different focus. As expected, the most important factor in determining how the
networks look is the focus, rather than the penalty. The size of the label for each
region is proportional to the corresponding degree of the node and it is comparable
across methods, larger labels denote nodes with more connections. For illustration
purposes, results for the 3rd subject only are presented throughout this subsection.
Results for other subjects are available from the authors.

Comparing the graphs for the same technique, but with different focuses, we see
that since the focuses are quite far from each other, the graphs are also identifying
different regions as playing central roles. This is to be expected since the FIC
procedure optimizes graphs with respect to the focus. In general, the FIC identified
the focused regions and produced graphs where these regions are highly connected
nodes in the graph. In the FO and PFC focus some regions are common and the
FIC is stable since for these regions the graphs share more similarities.

Since the FIC graphs are constructed by optimizing the MSE of the focus es-
timator, we have compared the performance of the graphs presented in Figure 3
with the graphs obtained by using a graphical lasso where we use 3-fold cross-
validation with the “Likelihood” and “Trace” loss and the StARS criterion for se-
lecting the optimal regularization level on a grid of λ values. The choice for 3-fold
cross-validation can be motivated by the assumption of stationary noise, which is
reasonable [Wink and Roerdink (2006)]. The size of the problem, unfortunately,
proved to be too large for comparing to the Bayesian graph and TSGCM tech-
niques. As a function of λ, the estimated graphs ranged from being very sparse
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FIG. 3. fMRI data. FIC estimated graphs based on three focuses μ1–μ3 for the 3rd subject using
penalty functions LQA �1 and �2. Undirected edges denote contemporaneous relations, while di-
rected edges (bold) denote dynamic relations. Larger labels correspond to ROIs highly connected to
other ROIs. Red denotes a ROI from the DMN regions (μ1), FO regions (μ2) and PFC regions (μ3).
The signal in the focused regions is higher/lower than the average as specified by the focus given in
the first column. Undirected edges are depicted in gray and directed edges are depicted in green.

(they contained a small number of edges) to being very dense (they contained a
high number of edges). The same grid was used for the FIC graphs to select the
appropriate level of regularization for each method. We present in Table 4 the
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TABLE 4
fMRI data. Ratios of the empirical MSE and number of edges in the

estimated graphs for GL-CV(Lik), GL-CV(Trace) and GL-StARS relative
to the graphs estimated using FIC-LQA �1 for μ1, μ2 and μ3

Ratio vs FIC GL-CV(Lik) GL-CV(Trace) GL-StARS

MSE (μ1) 1.44 1.44 1.06
MSE (μ2) 1.36 1.36 1.01
MSE (μ3) 1.52 1.52 1.11
No of edges (μ1) 4.40 4.40 9.70
No of edges (μ2) 4.66 4.66 10.3
No of edges (μ3) 4.67 4.67 10.3

obtained empirical MSE value for the focused ROIs and the number of edges es-
timated by each technique as a ratio versus the performance of FIC LQA �1. For
better compatibility with the cross-validation used for GL, we chose the regular-
ization level based on the GCV criterion. All three techniques estimate more edges
in the graph than the FIC, and the stability selection provided an empirical MSE
slightly larger than that of the FIC LQA �1 but at the expense of a much denser
graph.

Based on the estimated graphs for the DMN and FO regions, we are interested
in knowing:

(i) whether there is a propensity of the DMN regions to connect more intensely
to other DMN regions or to “outside” regions, following Bassett et al. (2008);

(ii) if the hypothesis of small-worldness and the property of a truncated power-
law degree distribution hold for the estimated network based on the fronto-
occipital (FO) focus.

For the studied DMN focus presented in Figure 3 (upper row and leftmost panel),
the estimated graphs are relatively dense and, regardless of the penalty used,
roughly one in four connections is a connection between nodes from the DMN
regions (see Figure 4 leftmost panel). Most of the DMN connections are made be-
tween ROIs that form the medial temporal lobes. In Figure 4 only the results for
FIC-LQA �1 are shown, as the results for FIC �2 are similar.

Regarding the fronto-occipital regions, the truncated power-law distribution hy-
pothesis posits that the probability of a node to have degree equal to r is propor-
tional to rζ , where the exponent ζ often ranges from 2 to 3 for biological networks
[Bullmore and Sporns (2009)]. For the selected graph based on FO regions, the
degree distribution seems to be exponentially decaying (see Figure 4, rightmost
panel) with rates 2.20 (for FIC-LQA �1) and 1.99 (for FIC �2), which makes such
a hypothesis plausible.

When compared to an Erdös-Rényi random graph of similar characteristics (the
same number of nodes and edges as the observed graph, but the edges are placed
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FIG. 4. fMRI data. Histograms showing the number of edges connecting the DMN regions (left
panel) and the distribution of small-worldness values and node degree for FO regions (right panel).
The results for FIC-LQA �1 are shown.

with uniform probability), the estimated network appears to have higher clustering,
and thus higher local connectivity for roughly the same shortness of paths as in
the random case. Thus, the hypothesis of small-worldness is justifiable too. This
means that most regions can be reached within a few intermediate passes, as almost
paradoxically most nodes have a low amount of immediate connections. For this
purpose the estimated network was compared to a sample of 10,000 random graphs
and a histogram of all estimated small-world coefficients is presented in Figure 4.
Around 86% (for FIC-LQA �1) and 99% (for FIC �2) of the estimated values are
larger than the cutoff value of 1 used in Humphries, Gurney and Prescott (2006),
but only around 2% (regardless of the penalty) of the values are larger than a
conservative value of 3 used in Humphries and Gurney (2008).

As a form of validation we have repeated the analysis for all 8 subjects in the
study (on a smaller data set containing 68 ROIs; see Table 6 for the names of the
regions used) and there is a high degree of reproducibility, in the sense that the
regions forming the DMN and the FO get identified as important regions for most
of the subjects.

5. Extensions of the basic model. It is well known that individual differences
exist in people’s brain structure and function, which may have originated from
genetic or phenotypic differences. It seems therefore intuitive that subjects with
similar genetic or phenotypic profiles are also similar with respect to brain function
or connectivity [Thompson et al. (2001)]. We can then use the fact that certain
connectivity patterns, like hubs, are expected for certain groups of subjects, but not
for others. Alternatively, we can incorporate those individual differences explicitly
into our model by using a mixed effects model to allow for individual differences
between subjects that are drawn from a common population.
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5.1. A mixed effects combined-data model. Background information such as
genetic markup could lead to assumptions about similar graphs for a class of sub-
jects. It may then be worthwhile to allow for some differences between subjects
while still assuming that these subjects are from the same population. Statistically,
it is then beneficial to use a linear mixed effects model that pools information from
all subjects.

We let for this

Yj = α + Xjβ + Zj bj + εj ,

where the index j denotes the subject level with j = 1, . . . ,8 and Yj represents a
vector of nj measurements; in our case nj = 240 for all 8 subjects in the analysis.
The matrices Xj (of dimension nj × p) and Zj (of dimension nj × q) represent
the design matrices corresponding to the fixed and random effects. The parameters
α and β represent the fixed effects parameters, while bj represents the vector (of
length q) of subject specific effects with bj ∼ N(0,D) where D is the q × q

variance matrix of the random effects. The random errors εj ∼ N(0,Rj ) with Rj

a nj × nj variance matrix.
In this application, we model only a random intercept and, therefore, we let Zj

denote a vector of ones (of length nj ), though the structure of Zj can be more com-
plex. We treat all dynamic and contemporaneous effects as fixed, but one could, if
desired, treat any of them as random by including the observed measurements cor-
responding to these nodes in the Zj matrix. Here it is assumed that D = σ 2

b Iq and
Rj = σ 2Inj

for all j , which implies that for all subjects σ 2 and σ 2
b are constant.

In light of the notation in Section 2.2, we have θ = (σ 2
b , σ 2, α) and γ = β and

the complete loglikelihood with a penalty function on the β coefficients is used in
the optimization problem:

Q(θ, γ ) = −1

2

8∑
j=1

[
log det�j +

{(
YT

j

bT
j

)
−
(

α + Xjβ

0

)}T

× �−1
j

{(
YT

j

bT
j

)
−
(

α + Xjβ

0

)}]

− λ

p∑
l=1

ψ
(|βl − βl0|) where �j =

(
σ 2

b Zj ZT
j + σ 2Inj

σ 2
b Zj

σ 2
b ZT

j σ 2
b Iq

)
.

To estimate the unknown parameters, we use the EM algorithm [Laird, Lange
and Stram (1987)]. For our example with 8 subjects and nj = 240 time points,
similar to the algorithm in McLachlan and Krishnan (2008), we set at iteration (k)

b
(k)
j = (

ZT
j Zj + Iqσ

2(k)

σ−2(k)

b

)−1ZT
j

(
Yj − α(k) − Xjβ

(k)),
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where P = diag(ψ ′(|β(k)|)/|β(k)|), and at iteration (k + 1) we set

(
α

β

)(k+1)

=
( 8∑

j=1

[1nj
,Xj ]T[1nj

,Xj ] + λP

)−1 8∑
j=1

[1nj
,Xj ]T(Yj − Zj b

(k)
j

)
,

σ 2(k+1) = 1

240 · 8

8∑
j=1

[
trace

{
ZT

j Zj

(
σ−2(k)

ZT
j Zj + σ−2(k)

b Iq
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+ (Yj − α(k) − Xjβ
(k) − Zj b

(k)
j

)T(Yj − α(k) − Xjβ
(k) − Zj b

(k)
j

)]
,

σ 2(k+1)

b = 1

240 · 8

8∑
j=1

[
trace

{(
σ 2(k) + σ 2(k)

b

)−1
σ 2(k)

σ
2(k)
b Iq

}+ b
(k)T
j b

(k)
j

]
.

The simplest model that we consider for a node does not include any other nodes
as neighbors (i.e., γ0 = 0), and the most complex model includes all other nodes
as potential neighbors.

Let Ỹ represent the stacked vector of measurements from all 8 subjects, that
is, Ỹ = (YT

1, . . . ,YT
8)

T = (Y1,1, . . . , Y1,240, . . . , Y8,1, . . . , Y8,240)
T, and let X̃ =

(X1, . . . ,X8) be the design matrix corresponding to the stacked fixed effects de-
sign matrices. Let Z̃ = Diag{Z1, . . . ,Z8} be a diagonal design matrix where the
individual design matrices for each subject are placed on the main diagonal and let
Ṽ be a diagonal matrix constructed as Ṽ = Diag{σ 2

b Z1ZT
1 +σ 2In1, . . . , σ

2
b Z8ZT

8 +
σ 2In8}.

The Fisher information matrix J takes for this particular case the following
form:

J = Diag
{
J00, X̃

TṼ −1X̃ + λP
}
,

where the submatrix corresponding to the elements of θ ,

J00 = Diag
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∂σ 2
b

}
1

2
trace

{
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,

where ∂Ṽ

∂σ 2
b

= Diag{Z1ZT
1, . . . ,Z8ZT

8}, ∂Ṽ
∂σ 2 = Diag{R1, . . . ,R8} and 18·240 is a vec-

tor of ones of the same length as the number of rows of Ṽ −1.
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FIG. 5. fMRI data. FIC estimated graphs with pooled data and subject-specific effects based on
μ3 and using the penalty functions LQA �1 (left panel) and �2 (right panel). We refer to Figure 3 for
details about what the colors and edges represent.

Model selection for the pooled data follows the same steps as in Section 4.1.
Under the above framework, we estimate the vectors θ̂ and γ̂ using the largest
model. We then construct the empirical version of the Fisher information matrix,
partition it according to the lengths of the vectors θ and γ , construct all the nec-
essary quantities using these partitions, the partial derivatives of the focuses and
the projection matrices for each model, and in the end calculate the MSE value
as in (A.1). We use the same algorithms as in Section 2.6. Note that the purpose
of this extension is to allow for the estimation of a general graph when the infor-
mation from all subjects is pooled together. The differences between subjects are
captured when estimating the fixed (common to all subjects) and random (subject-
specific) parameters. This is different from estimating subject-specific networks as
in Section 4. The goal is here to pool all data in order to estimate one graph.

Figure 5 presents the obtained results when FIC is used on the pooled data when
different subject-specific effects are allowed in the models at each node and when
the �2 and LQA �1 penalties are used for constructing the P matrix. We consider
the same PFC focus as in Section 4.1. Comparing the obtained results with those of
Section 4.1, we conclude that the ROIs with large (in absolute value) signal values
get selected as important regions and that pooling information from all subjects
results in having estimated sparser graphs. Again, the focus is more important in
determining the structure of the graph than the penalty used.

5.2. An average model. By specifying the time as part of the focus, FIC is
able to estimate different graphs for each time point. An averaged graph is con-
structed where averaging takes place over all 8 subjects and all time points. There
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TABLE 5
fMRI data. Network summary measures for estimated mixed graphs including contemporaneous

and dynamic effects for eight subjects

Avg. Avg. Max. Avg. Avg. Max.
Procedure Tran. Pth Dgr. Dgr. St. Cnt. Btw. Asso. SWI Kcor.

FIC-�2 0.37 3.42 11.57 19.50 596.00 167.73 0.17 1.42 8.12
FIC-LQA �1 0.21 2.51 12.64 21.25 362.88 115.79 0.04 0.94 8.62
FIC-LQA SCAD 0.21 2.51 12.63 21.00 362.38 115.75 0.04 0.93 8.62
GL CV-Likelihood 0.38 2.28 9.86 19.88 483.00 42.55 0.18 2.38 13.50
GL StARS 0.38 2.25 9.99 19.75 367.38 41.53 0.16 2.23 9.25

is some evidence that the functional graph changes over time, possibly reflecting
different states [Cribben et al. (2012)]. Our average graph should therefore be in-
terpreted as reflecting common properties over subjects and stable edges in the
graph. We compared the FIC with a GL approach where we choose the graph ac-
cording to the stability selection procedure (GL StARS) and cross-validation (GL
CV-Likelihood). For FIC we have used an �2, an LQA �1 and the LQA SCAD
penalty. Table 5 presents the obtained results averaged across all 8 subjects.

With respect to the transitivity (Tran.) of the estimated networks, the FIC �2
graphs were closer to the GL graphs than the other penalties. This means that if
two ROIs communicate with a third one, the FIC �2 and GL would suggest more
often that they should influence each other as well, thus suggesting more clustered
brain regions than the other graphs.

The average degree (Avg. Dgr.) and the maximal degree (Max. Dgr.) of a node
tended to be higher for FIC graphs than for the GL graphs. This suggests that
the FIC graphs have on average more edges connecting a node, thus a ROI will
have more connections linking it to other regions in the FIC graph. Moreover,
the average stress centrality score (Avg. St. Cnt.) suggests that for the FIC-LQA
�1 and LQA SCAD there are fewer shortest paths between other ROIs passing
through a specific node than for GL. This means that going from one region to
another can be accomplished in fewer ways once the information passes a hub.
The average path length (Avg. Pth.) between two nodes was also generally larger
for the FIC graphs than for the GL graphs, showing that on average the shortest
path between two nodes is larger in the FIC graph, which implies that for these
graphs the information would travel longer.

The average betweennees values (Avg. Btw.) suggest that in the FIC estimated
models, information can flow from one ROI to another one on several distinct
routes that pass through a “gateway,” while for the GL graphs, this number is
smaller and thus on average moving between ROIs can be accomplished in fewer
ways through a specific node.

A small-world (SWI) behavior is not strongly supported when using the FIC-
LQA �1 and LQA SCAD graphs, as on average the SWI values are close to the
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FIG. 6. fMRI data. Estimated graphical structures for the 3rd subject using FIC-LQA �1 (a) and
graphical lasso with stability selection (b). Larger labels correspond to high-degree ROIs. Undi-
rected edges denote contemporaneous effects, while directed edges denote dynamic effects. The
graphical lasso models only contemporaneous effects.

cutoff value of 1, but the estimated graphs using FIC �2 support such a hypothesis,
which is in line with claims as in Sporns and Honey (2006) or Achard et al. (2006).

Another common feature of the network summary statistics are the positive as-
sortativity coefficients (Asso.). This implies a preference for nodes to attach to
others that are more similar in terms of degree. Thus, high-degree nodes are linked
with other high-degree nodes, and low-degree nodes are more often linked with
other low-degree nodes, but the relation is not very strong. The number of esti-
mated clusters (Max. Kcor.) suggests that the number of groups of nodes which
are disconnected from other groups of nodes is similar for FIC graphs and GL
graphs.

We further construct an “average” model by retaining only the edges that ap-
pear with a high frequency in such a way that the sparsity of the FIC network
was set close to that of the GL StARS. Figure 6 presents the estimated average
networks for the 3rd subject, using FIC-LQA �1 and the graph estimated with
GL StARS. Visually, both networks seem to roughly indicate similar structures
of interaction between ROIs. Most often, the graphs proposed the 8th (inferior-
parietal), 10th (insula), 20th (parsorbitalis), 23rd (postcentral), 24th (posteriorcin-
gulate), 25th (precentral), 28th (rostralmiddlefrontal), 29th (superiorfrontal) and
32nd (supramarginal) ROI as important regions in brain functionality. Both esti-
mated graphs agree in finding these regions as important ones, but vary somewhat
in the number of links connecting these regions to the other ones.

Moussa et al. (2012) concluded based on the results of a voxel-based analysis
that the precentral/postcentral regions are consistent regions in the sensory/motor
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module across subjects, while Koyama et al. (2011) found that high functional
connectivity between the precentral ROI and other motor areas was positively cor-
related with reading abilities. Fan, Yao and Wu (2012) discovered a decreased
activity in the postcentral gyrus (among a few others) for adults with depression
episodes of bipolar disorder. There is, thus, already some evidence in the literature
which seems to confirm that the regions identified by FIC have a theoretical basis
for their presence in the estimated graphs.

6. Discussion. Selecting graphs using the FIC can be a fruitful modeling strat-
egy, as a direct estimation of the MSE of a focus estimator is performed which
incorporates the research interest. Focuses based on different configurations of co-
variates can lead to different selected graphical models and, moreover, using differ-
ent μ functions for the same configuration of covariates can lead, too, to different
models being selected. This is not a methodological contradiction, as all of the sit-
uations above relate to different research questions, which should not necessarily
receive the same answer. The FIC offers thus more flexibility in selecting models,
and orients the search toward a particular interest. In contrast, all competitors used
in this study result in only one selected model regardless of the specific purpose
for which model selection is desired. With FIC one can extract more specific in-
formation from the analysis. The analysis on the fMRI data set revealed potential
configurations of edges where some regions of the brain are revealed as important
regions acting as informational hubs where individual particularities and differ-
ences in signal patterns can be easily identified and assessed. The performance on
simulated data sets showed that model selection based on FIC can be a powerful
and beneficial strategy.

The accumulation of knowledge about connectivity from both animal and hu-
man research leads to the possibility of informed analyses of connectivity. This
has the great advantage that (anatomical) information about regions of interest or
connectivity can be taken into account by making a focus. For large-scale networks
such an approach is novel. A focus is an informed way of describing the impor-
tance of the prior knowledge. Using the FIC to determine which network has the
lowest estimated MSE results in high accuracy for the choice of the parameters
in focus. As was seen in resting state analysis, the focus on the prefrontal cortex
results in an emphasis on connectivity in the prefrontal cortex.

The implications for fMRI research are clear. (i) Prior research on connectivity
is explicitly taken into account by the use of a focus. Commonly, a meta-analysis
is used to see what the current position of the field is on, say, the prefrontal cor-
tex [Ridderinkhof et al. (2004)]. Due to focusing on a particular region or set of
pathways, a new study reflects both prior and current research. With the FIC prior
research is not hard coded into the algorithm, but is used to emphasize in the cur-
rent estimates what has been found before. (ii) Accuracy (in terms of MSE) of
the focus is high, resulting in a network that is tailored to the specific needs of
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the researcher. This may especially prove relevant for prediction. When the focus
can be related to behavioral data, for instance, then prediction will be more ac-
curate using the model that optimizes the FIC than one that optimizes the BIC,
say. This is because the FIC balances the squared bias and variance of the focus
such that the MSE of the focus estimator is minimal. This in turn implies that
prediction with the network obtained with the FIC is optimal with respect to the
focus.

APPENDIX A: DETAILS OF CALCULATIONS

A.1. Notation in submodels and definition of the FIC. We denote by J

the Fisher information matrix of the full model evaluated at the narrow model
parameter (θ0, γ0) with the inverse matrix denoted by J−1 and we define JS

to be the Fisher information matrix of model S, including only those rows and
columns indexed by S. All three matrices are partitioned to the dimensions of

θ and γ as J = (J00 J01
J10 J11

)
, J−1 = (J 00 J 01

J 10 J 11

)
and JS = (J00,S J01,S

J10,S J11,S

)
. We further in-

troduce the following quantities: ω = J10J
−1
00

∂μ
∂θ

− ∂μ
∂γ

, GS = J 11,S,0(J 11)−1,

J 11,S,0 = πT
S J 11,SπS and cn = λψ ′′(0)1q/

√
n → c, where πS is a projection ma-

trix containing only 0’s and 1’s corresponding to selecting only those components
indicated by S and 1q is a vector of 1’s of length q . For any model S we have [see
Claeskens (2012)]

√
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,
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+ ωT{J 11,S,0ccT(J 11,S,0)t − 2(I − GS)δcT(J 11,S,0)T}ω.

A.2. Minimum MSE regularization level. Performing multiplications and
leaving out terms that do not depend on c, minimizing (A.1) is equivalent to

min
c

(
ωT{J 11,S,0ccT(J 11,S,0)t − 2(I − GS)δcT(J 11,S,0)T}ω).
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Taking the derivative of the MSE expression with respect to c and setting it equal
to 0, we get the following equation with cn = λψ ′′(0)1q/

√
n replacing c:

λψ ′′(0)√
n

ωTJ 11,S,01q1q
T(J 11,S,0)Tω − ωT(I − GS)δ1q

T(J 11,S,0)Tω = 0,

which is solved by

λS = ωT(I − GS)δ1q
T(J 11,S,0)Tω

ωTJ 11,S,01q1q
T(J 11,S,0)Tω

√
n

ψ ′′(0)
.(A.2)

APPENDIX B: CORRESPONDENCE BETWEEN THE STUDIED ROIS
AND THE NUMBERING

TABLE 6
fMRI data. Correspondence between numbers and names of the regions of interest

ROI Name ROI Name ROI Name

1 Bankssts 12 Lateraloccipital 23 Postcentral
2 Caudalanteriorcingulate 13 Lateralorbitofrontal 24 Posteriorcingulate
3 Caudalmiddlefrontal 14 Lingual 25 Precentral
4 Cuneus 15 Medialorbitofrontal 26 Precuneus
5 Entorhinal 16 Middletemporal 27 Rostralanteriorcingulate
6 Frontalpole 17 Paracentral 28 Rostralmiddlefrontal
7 Fusiform 18 Parahippocampal 29 Superiorfrontal
8 Inferiorparietal 19 Parsopercularis 30 Superiorparietal
9 Inferiortemporal 20 Parsorbitalis 31 Superiortemporal

10 Insula 21 Parstriangularis 32 Supramarginal
11 Isthmuscingulate 22 Pericalcarine 33 Temporalpole

34 Transversetemporal
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