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The aim of this paper is to develop a Bayesian functional linear Cox re-
gression model (BFLCRM) with both functional and scalar covariates. This
new development is motivated by establishing the likelihood of conversion
to Alzheimer’s disease (AD) in 346 patients with mild cognitive impair-
ment (MCI) enrolled in the Alzheimer’s Disease Neuroimaging Initiative 1
(ADNI-1) and the early markers of conversion. These 346 MCI patients were
followed over 48 months, with 161 MCI participants progressing to AD at
48 months. The functional linear Cox regression model was used to estab-
lish that functional covariates including hippocampus surface morphology
and scalar covariates including brain MRI volumes, cognitive performance
(ADAS-Cog) and APOE-ε4 status can accurately predict time to onset of
AD. Posterior computation proceeds via an efficient Markov chain Monte
Carlo algorithm. A simulation study is performed to evaluate the finite sam-
ple performance of BFLCRM.

1. Introduction. Alzheimer’s Disease (AD) is a firmly incurable and progres-
sive disease [de la Torre (2010)]. In the pathology of AD, mild cognitive impair-
ment (MCI) is a clinical syndrome characterized by insidious onset and gradual
progression, and commonly arising as a result of underlying neurodegenerative
pathology [Gauthier et al. (2006)]. Since MCI is considered as a risk state for AD,
a major research focus in recent years has been to delineate a set of biomarkers that
provide evidence of such a neurodegenerative pathology in living individuals, with
the goal of specifying the likelihood that the pathophysiological process is due to
Alzheimer’s disease (MCI due to AD; MCI–AD) and will lead to dementia within
a few years [Albert et al. (2011)]. Accordingly, increasing attention has been de-
voted to investigate the utility of various imaging, genetic, clinical, behavioral and
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fluid data to predict the conversion from MCI to AD.
Several studies have utilized a small subset of biosignatures and then assessed

the relative importance of different modalities in predicting the diagnostic change
from MCI to AD [Cui et al. (2011), Fan et al. (2008), Prestia et al. (2013), Risacher
et al. (2009), Zhang, Shen and ADNI (2012)]. For example, in Cui et al. (2011), the
authors simultaneously examined multiple features from different modalities, in-
cluding structural magnetic resonance imaging (MRI) morphometry, cerebrospinal
fluid biomarkers and neuropsychological measures, to assess an optimal set of
predictors of conversion from MCI to AD. They observed that structural changes
within the medial temporal lobe (MTL), particularly the hippocampus, as well as
performance on cognitive tests that rely on MTL integrity (i.e., episodic memory),
were good predictors of MCI to AD conversion.

Recently, most researchers have turned to the analysis of longitudinal data to
assess the dynamic changes of various biomarkers associated with the MCI to
AD transition across time. To begin, a prominent neural correlate of MCI–AD is
volume loss within the MTL, especially within the hippocampus and entorhinal
cortex [Dickerson et al. (2001)], with increasing atrophy in these structures from
normal aging to MCI to AD [Pennanen et al. (2004)]. Longitudinal studies of in-
dividuals with MCI–AD have also highlighted the importance of assessing MTL
changes in tracking the progression of MCI to AD. For example, several studies
have documented diminished baseline hippocampal and entorhinal volumes that
are associated with an increased likelihood of progressing to clinical dementia
[Grundman et al. (2002), Kaye et al. (2005)]. Additionally, several modalities of
disease indicators have been studied to assess progression to AD, including neu-
roimaging biomarkers [Risacher et al. (2009), Vemuri et al. (2008), Young et al.
(2013)], biomedical markers [Shaw et al. (2009)] and neuropsychological assess-
ments [Perri et al. (2007)]. Finally, a number of structural MRI studies, covering
region of interest (ROI), volume of interest, voxel-based morphometry and shape
analysis, have reported that the degree of atrophy in several brain regions, such as
the hippocampus and entorhinal cortex, is not only sensitive to disease progression,
but also predicts MCI conversion [Costafreda et al. (2011), Desikan et al. (2009),
Misra, Fan and Davatzikos (2009)].

Despite the importance of these investigations, a central question remains.
Namely, how do we accurately predict the time to conversion in individuals who
harbor AD pathology, as well as determine the optimal early markers of conver-
sion? In Tabert et al. (2006), 148 MCI subjects were used to identify the most
predictive neuropsychological measures. In Li et al. (2013), 139 MCI subjects in
ADNI-1 were used to evaluate the predictive power of brain volume, ventricular
volume, hippocampus volume, APOE status, cerebrospinal fluid (CSF) biomarkers
and behavioral scores. Their results show a moderately accurate prediction with
the value of an area under the curve of 0.757 at 36 months, whereas they found
that baseline volumetric MRI and behavioral scores were selectively predictive.
Finally, in Da et al. (2014), 381 MCI subjects from ADNI 1 were examined to
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evaluate several biomarkers for predicting MCI to AD conversion, including spa-
tial patterns of brain atrophy, ADAS-Cog, APOE genotype and cerebrospinal fluid
(CSF) biomarkers. Their findings suggest that a combination of spatial patterns
of brain atrophy and ADAS-Cog offers good predictive power of conversion from
MCI to AD, whereas APOE genotype did not significantly improve prediction.
To the best of our knowledge, no prior study has examined the role of functional
covariates including hippocampus surface morphology in predicting time to con-
version from MCI to AD with/without adjusting for low-dimensional behavioral
and clinical measures.

To assess the predictability of hippocampus surface morphology in sur-
vival models, we develop a Bayesian functional linear Cox regression model
(BFLCRM) with both functional and scalar covariates. The BFLCRM integrates
a Cox proportional hazard regression and functional linear model into a single
framework. First, BFLCRM can be an important extension of various statistical
models, including parametric, semiparametric and nonparametric models, for han-
dling survival response data and scalar covariates. See overviews of various sur-
vival models in Fleming and Harrington (2011), Ibrahim, Chen and Sinha (2005),
Kalbfleisch and Prentice (2002) and the references therein. Recent advances in
computation and prior elicitation have made Bayesian analyses of these survival
models with scalar covariates feasible. For instance, nonparametric prior processes
including the gamma process prior, the Beta process model, the correlated gamma
process and the Dirichlet process prior have been developed as the prior distribu-
tion of the baseline cumulative hazard function [Ibrahim, Chen and Sinha (2005),
Sinha, Ibrahim and Chen (2003)]. Second, BFLCRM can be an important ex-
tension of various functional linear models for handling discrete or continuous
response data and functional covariates. The existing literature focuses on the de-
velopment of frequentist methods for functional linear models. Some examples
include Ferraty and Vieu (2006), James (2002), Ramsay and Silverman (2005),
Reiss and Ogden (2010), Yao, Müller and Wang (2005) and the references therein.
Third, BFLCRM can be regarded as an important extension of high-dimensional
survival models. However, most high-dimensional survival models focus on the
identification of a small set of covariates and their overall effect on time-to-event
outcomes [Biswas et al. (2008), Huang et al. (2013), Li and Ma (2013)]. These
approaches can be suboptimal for high-dimensional imaging data, since the effect
of imaging data on clinical data and other imaging data is often nonsparse, which
makes it notoriously difficult for many existing regularization methods [Fan and
Lv (2010), Tibshirani (1996)].

In Section 2 we introduce BFLCRM and its associated Bayesian estimation pro-
cedure. In Section 3 we introduce the NIH Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) data set and illustrate the use of BFLCRM in the prediction of time
to conversion from MCI to AD by using both functional and scalar covariates. In
Section 4 we conduct simulation studies to examine the finite sample performance
of BFLCRM. In Section 5 we interpret the findings obtained from the analysis of
the ADNI data set.
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FIG. 1. ADNI data: panel (a) is hippocampal subfields mapped onto a representative hippocampal
surface [Apostolova et al. (2006a)], and panels (b) and (c), respectively, show the top and bottom
views of the first subject’s hippocampal surface data where the corresponding radial distances are
color-coded by the colorbar in panel (d).

2. Bayesian functional linear Cox regression models.

2.1. Setup. Consider imaging, genetic and clinical data from n = 346 inde-
pendent MCI patients in ADNI-1. For the ith MCI patient, we observe a possibly
right-censored time to conversion to AD, denoted by yi . Specifically, yi = Ti ∧ Ci

is the minimum of the censoring time Ci and the transition time Ti and νi = 1(yi =
Ti), where 1(·) is an indicator function. Moreover, we observe a p × 1 vector of
scalar covariates, denoted by xi = (xi1, . . . , xip)T , and a functional covariate, de-
noted by Zi(·), on a compact set S . In this paper, we focus on the noninformative
censoring setting such that Ti and Ci are conditionally independent given all co-
variates of interest. The scalar covariates of interest include age at baseline, length
of eduction, gender, handedness, marital status, retirement and the well-known
Apolipoprotein E (APOE) SNPs. The APOE has three major forms, ε2, ε3 and
ε4, where ε3 is the most common form. The functional covariate of interest is
the hippocampus surface morphology. Figure 1 on page 2156 shows the example
hippocampus surface morphology data in ADNI-1 data.

Our problems of interest are to establish the likelihood of conversion to
Alzheimer’s disease (AD) in 346 MCI patients enrolled in the ADNI-1 and to
select the optimal early markers of conversion from both the scalar covariates and
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the functional covariate. With the sole presence of xi , it is common to consider
Cox’s proportional hazards model [Cox (1972)], which assumes that the condi-
tional hazard function of yi given xi is given by

h(y|xi ) = h0(y) exp
(
xT
i β

) = h0(y) exp

( p∑
k=1

xikβk

)
,(2.1)

where β = (β1, . . . , βp)T is a p×1 vector of regression coefficients and h0(·) is an
unknown baseline hazard function. However, the Cox proportional hazards model
(2.1) does not incorporate the effect of the functional covariate Zi(·) on the time
to conversion.

2.2. Model formulation. We propose a Bayesian functional linear Cox regres-
sion model with three main ingredients for handling both functional and scalar
covariates as a natural extension of (2.1). Based on this formulation, we take a
Bayesian approach to estimate the parameters of interest.

In the first component of BFLCRM, it is assumed that the hazard function of yi

given (xi ,Zi(·)) is given by

h
(
y|xi ,Zi(·)) = h0(y) exp

( p∑
k=1

xikβk +
∫
S

γ (s)
(
Zi(s) − μ(s)

)
ds

)
,(2.2)

where μ(s) is the mean function of Zi(s) and γ (·) is an unknown coefficient func-
tion, a square integrable function on S .

The second component of BFLCRM is the functional principal component anal-
ysis (fPCA) model of the Zi(·)’s. It is assumed that the Zi(s)’s are square inte-
grable random functions and Wi(s) is measured at a set of grid points in S with
measurement errors such that

Wi(s) = Zi(s) + εi(s) = μ(s) + Z̄i(s) + εi(s),(2.3)

where Z̄i(s) characterizes individual functional variations from μ(s). The εi(s)’s
are measurement errors with mean zero and variance σ 2

ε (s) at each s and inde-
pendent of each other for s �= s ′. Moreover, μ(s) can be consistently estimated by
μ̂(s) = ∑n

i=1 Wi(s)/n.
It is assumed that Zi(s) and εi(s) are independent of each other and the co-

variance function of {Z̄i(s) : s ∈ S}, denoted by K(s, s ′) = E{Z̄(s)Z̄(s′)}, is con-
tinuous on S × S . According to Mercer’s theorem, K(s, s′) also admits a spec-
tral decomposition K(s, s′) = ∑∞

j=1 ψjφj (s)φj (s
′), where (ψj ,φj (s))’s are the

eigenvalue-eigenfunction pairs of K(s, s′) such that {ψj : j ≥ 1} are the eigen-
values in decreasing order with

∑∞
j=1 ψ2

j < ∞. Thus, Z̄i(s) admits the Karhunen–

Loeve expansion as Z̄i(s) = ∑∞
j=1 ξijφj (s), where the ξij are referred to functional

principal component (fPC) scores and the ξij = ∫
S Z̄(s)φj (s) ds are uncorrelated

random variables with mean zero and variance ψj = E(ξ2
ij ). To estimate ξij based
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on the observed covariate functions Wi(s), we first employ the cubic smoothing
spline [Hastie and Tibshirani (1990)] to estimate the underlying signal Zi(s). We
then use the sample mean and covariance functions of the estimated Zi(s) to esti-
mate μ(s) and K(s, s′). Subsequently, we estimate φj (s) and ξij for all i, j ≤ n.

The third component of the BFLCRM is an approximation of
∫
S γ (s)Z̄(s) ds.

Since the eigenfunctions ψj(·) form a complete orthonormal system on the space
of square-integrable functions on S , the covariate function γ (s) can be expanded
as

γ (s) =
∞∑

j=1

φj (s)γj with
∞∑

j=1

γ 2
j < ∞.(2.4)

Therefore, we have ∫
S

Z̄i(s)γ (s) ds =
∞∑

j=1

ξij γj(2.5)

and approximate h(y|xi ,Zi(·)) as

h0(y) exp

( p∑
k=1

xikβk +
∞∑

j=1

ξij γj

)
≈ h0(y) exp

( p∑
k=1

xikβk +
qn∑

j=1

ξij γj

)
,(2.6)

where qn is a sufficiently large integer that may depend on n. As shown in the
literature, such an approximation is accurate under some conditions on the decay
rate of the γj ’s. Practically, it is common to choose qn such that the percentage
of variance explained by the first qn fPCA components is 70%, 85% or 95%. Al-
ternatively, we may formulate it as a model selection procedure and choose it by
using some model selection criterion, such as the deviance information criterion
(DIC) [Ibrahim, Chen and Kim (2008), Spiegelhalter et al. (2002)].

2.3. Priors. To carry out a Bayesian analysis of model (2.6), we specify
joint prior distributions for all unknown parameters (β,γ , h0), where h0(·) is
the baseline hazard function. We first set p(β,γ , h0) = p(β,γ )p(h0) and as-
sume (β,γ ) ∼ N(μ0,
0), where N(μ0,
0) is the multivariate Normal distri-
bution with a (p + qn) × 1 mean vector μ0 and a (p + qn) × (p + qn) covariance
matrix 
0.

We may specify different prior distributions for h0(y). The most convenient and
popular distribution for h0(y) is the piecewise constant hazard model. Specifically,
we first construct a finite partition of the time axis, 0 < s1 < s2 < · · · < sJ , with
sJ > yi for all i, which leads to J intervals (0, s1], . . . , (sJ−1, sJ ]. In the j th in-
terval, we set h0(y) = λj for y ∈ Ij = (sj−1, sj ]. A common prior of the baseline
hazard λ = (λ1, . . . , λJ )T is the independent gamma prior λj ∼ G(α0j , α1j ) for
j = 1, . . . , J , where α0j and α1j are prior hyperparameters. Another approach is
to build prior correlation among the λj ’s using a prior ψ ∼ N(ψ0,
J ), where
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ψj = log(λj ) for j = 1, . . . , J and ψj = (ψ1, . . . ,ψJ ). For notational simplicity,
we focus on the piecewise constant hazard model with the independent gamma
prior from here on.

We consider the strategy of choosing the hyperparameters 
0, α0j and α1j as
follows. We can tune the eigenvalues of 
0 in order to control the prior infor-
mation for the regression coefficients. If the smallest eigenvalue λmin(
0) con-
verges to ∞, then N(μ0,
0) tends to be an improper prior. In contrast, if the
largest eigenvalue λmax(
0) is very small, then N(μ0,
0) tends to be a strongly
informative prior. In order to use a noninformative prior for the λj ’s, the shape
and scale parameters of the gamma distributions are set to be α0j = 0.2 and
α1j = 0.4 for all j = 1, . . . , J [Sinha, Chen and Ghosh (1999)]. Also, setting either
(α0j , α1j ) = (0.5,1) or (α0j , α1j ) = (0.2,1) would make the gamma distribution
flat as well.

2.4. Posterior computation. The log-posterior distribution of (β,γ ,λ) (un-
normalized) is given by

n∑
i=1

J∑
j=1

[
uij νi

(
logλj + zT

i θ
)

− uij

{
λj (yi − sj−1) +

j−1∑
g=1

λg(sg − sg−1)

}
exp

(
zT
i θ

)]

(2.7)
− {

log |�0| + (θ − μ0)
T 
−1

0 (θ − μ0)
}
/2

+
J∑

j=1

{
(α0j − 1) logλj − λjα1j + α0j log(α1j ) − log(α0j )

}
,

where θ = (βT ,γ T )T , zi = (xT
i , ξi1, . . . , ξiqn)

T and s0 = 0. Moreover, uij = 1 if
the ith subject fails or is right censored in the j th interval and 0 otherwise. We
propose a Gibbs sampler for posterior computation after truncating the sum of the
infinite series to have qn < ∞ terms. The Gibbs sampler is computationally effi-
cient and mixes rapidly. We first specify the hyperparameters μ0,
0, α0j and α1j

for all j at appropriate values to represent prior opinion. Starting from the initia-
tion step, the Gibbs sampler for model (2.6) with the truncated term qn proceeds
as follows:

1. Update (β,γ ) according to their full conditional distribution in (2.7). Specif-
ically, we employ the random walk Metropolis–Hastings (M–H) [Hastings (1970),
Metropolis et al. (2004)] algorithm and choose a multivariate Normal proposal
density yielding an average acceptance rate of 23.4% [Roberts, Gelman and Gilks
(1997)]. The mean of the proposal density is the posterior sample (β t−1,γ t−1)

from the previous iteration. The covariance matrix is the inverse of the Fisher in-
formation matrix of the posterior distribution evaluated at (β t−1,γ t−1).
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2. Update λj from its full conditional distribution

p
(
λj |λ(−j)

0 ,−) ∼ Gamma

(
α0j +

n∑
i=1

uij νi, α̃1j

)
,

where λ
(−j)
0 is the vector λ0 without the j th element and α̃1j is given by

α̃1j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1j +
n∑

i=1

{
uij (yi − sj−1) + (sj − sj−1)

J∑
k=j+1

uik

}
exp

(
zT
i θ

)
,

if j ≤ J − 1;
α1J +

n∑
i=1

{
uiJ (yi − sJ−1) exp

(
zT
i θ

)}
,

if j = J .

3. Alzheimer’s disease neuroimaging initiative data analysis.

3.1. Alzheimer’s disease neuroimaging initiative. The development of the
BFLCRM is motivated by the analysis of imaging, genetic and clinical data
collected by ADNI. “Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database”
(www.loni.usc.edu/ADNI). The ADNI was launched in 2003 by the National In-
stitute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), private pharmaceuti-
cal companies and nonprofit organizations, as a $60 million, 5-year public private
partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (aMCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of clinical tri-
als. The Principal Investigator of this initiative is Michael W. Weiner, M.D., VA
Medical Center and University of California, San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55
to 90, to participate in the research—approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with aMCI to be followed for
3 years, and 200 people with early AD to be followed for 2 years. For up-to-date
information see www.adni-info.org.”

http://www.loni.usc.edu/ADNI
http://www.adni-info.org
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3.2. Data description. The aim of this ADNI data analysis is to examine the
predictability of clinical, genetic and imaging data for the time to conversion to
AD in MCI patients. We focused on 346 MCI patients at baseline of the ADNI-1
database. Among the 346 MCI patients, 151 of them are converters and 195 are
nonconverters at 48 months.

For each MCI patient, we included his/her clinical, genetic and imaging vari-
ables at baseline. The clinical characteristics include Gender (0 = Male; 1 =
Female), Handedness (0 = Right; 1 = Left), Marital Status (1 = Married; 2 =
Widowed; 3 = Divorced; 4 = Never married), Education length, Retirement (1 =
Yes; 0 = No), Age and Alzheimer’s Disease Assessment Scale-Cognition (ADAS-
Cog) score. Marriage status is coded using 3 dummy variables: “Widowed,” “Di-
vorced,” “Never married.” The ADAS-Cog test has been widely used to assess the
severity of dysfunction in adults [Rosen, Mohs and Davis (1984)]. The genetic
variables include the APOE genetic covariates, since it is well known that muta-
tions in APOE raise the risk of progression from amnestic MCI to AD [Petersen
et al. (2005)]. The Apolipoprotein E (APOE) SNPs, rs429358 and rs7412 were,
separately, genotyped in ADNI-1. These two SNPs together define a 3-allele hap-
lotype, namely, the ε2, ε3 and ε4 variants and the presence of each of these variants
was available in the ADNI database for all the individuals. Among these variants,
APOE-ε3 is known to be the most common allele, while APOE-ε4 has turned
out to be a risk factor for early onset of AD [Okuizumi et al. (1994)]. In this
model, we consider the presence of APOE-ε4 as a covariate to incorporate its ef-
fect on the time to conversion from MCI to AD. In addition, we selected 7 regions
of interest (ROIs) which may significantly influence MCI progression among the
93 ROI volume data [Bryant et al. (2013), Fennema-Notestine et al. (2009), Jack
et al. (2010)]. These 7 ROIs are bilateral hippocampal formation, bilateral amyg-
dala, posterior limb of internal capsule and bilateral thalamus. In total, we have
17 scalar covariates. The imaging data include the hippocampal radial distances of
30,000 surface points on the left and right hippocampal surfaces. The hippocampal
radial distance is a distance from its medial core to the hippocampal surface and
measures hippocampal thickness.

In the demographic information, 220 participants are male, and 126 are female;
316 are right-handed, and 30 are left-handed. For Marital Status, 283 were married,
40 were widowed, 19 were divorced, and 4 were never married at baseline. Among
these individuals, 276 were retired and 70 were not. On average, the subjects had
15.7 years of education with standard deviation 3.0 years, the minimum 6 years
and the maximum 20 years. The average age of subjects was 75.0 years with a
standard deviation of 7.3 years. The youngest person was 55 years old, while the
oldest person was 90 years old. For the genetics information on the first allele of
APOE, 25 subjects had genotype 2, 277 subjects had genotype 3, and 44 subjects
had genotype 4. For the second allele, 156 subjects had genotype 3, while 190
subjects had genotype 4. The average ADAS-cog score was 11.5, with a standard
deviation of 4.4. The lowest score was 2 and the highest score was 27.67.
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3.3. Hippocampus image preprocessing. We used a hippocampal image anal-
ysis package to calculate hippocampal surface data as follows [Wang et al. (2011),
Shi et al. (2013a, 2013b, 2014), Colom et al. (2013), Luders et al. (2013), Monje
et al. (2013)]. Given the 3D MRI scans, we used FIRST [Patenaude et al. (2011)]
to segment hippocampal substructures and then applied the marching cube method
[Lorensen and Cline (1987)] to automatically reconstruct hippocampal surfaces.
Then, an automatic algorithm, called topology optimization, was used to introduce
two cuts on a hippocampal surface in order to convert it into a genus zero surface
with two open boundaries. The two cuts, whose locations were at the front and
back of the hippocampal surface, represent its anterior junction with the amyg-
dala and its posterior limit as it turns into the white matter of the fornix. We then
computed holomorphic 1-form basis functions [Wang et al. (2010)]. It allows us to
induce conformal grids of the hippocampal surfaces which were consistent across
subjects. The conformal representation of the surface was computed with this con-
formal grid [Shi et al. (2013a)]. We also computed the “feature image” of a sur-
face by combining the conformal factor and mean curvature and linearly scaling
the dynamic range into [0,255]. Finally, the feature image of each surface in the
data set was registered to a common template by using an inverse consistent fluid
registration algorithm [Shi et al. (2014)]. It establishes high-order correspondences
between 3D surfaces. Finally, we computed various surface statistics based on the
registered surface, such as multivariate tensor-based morphometry (mTBM) statis-
tics [Wang et al. (2010)].

3.4. Data analysis. We focused on 346 MCI patients in the ADNI-1 data in
order to examine the predictability of clinical, genetic and imaging covariates for
the time to conversion to AD from MCI. The patients consist of 151 converters and
195 nonconverters. We fit BFLCRM with time to conversion to AD as the response
yi , the clinical, genetic and ROI volume data as scalar covariates in xi , and the
hippocampus surface data based on radial distance as functional covariates in Zi(·)
for the ith subject. In all posterior computations, we centered the scalar covariates
xi using their mean. We chose the first 14 eigenfunctions of hippocampal surface
data, which explain about 73.48% of the variance in the hippocampus surface data.
The first 14 largest eigenfunctions projected on the hippocampal surfaces were
presented in Figure 3 in the supplementary document [Lee et al. (2016)]. For the
piecewise constant hazards model of h0(·), we chose J = 70 intervals so that each
interval contains at least one failure or censored observation. The full BFLCRM
model (2.6) contains 19 scalar covariates and the first 14 fPC scores.

Due to the lack of prior information, all hyperparameters were chosen to re-
flect nearly noninformative priors. For regression coefficients, the hyperparam-
eters of the multivariate Normal priors were set as μ0 = (0, . . . ,0) and 
0 =
diag(5, . . . ,5). For the λj ’s, the shape and scale parameters of the Gamma pri-
ors were set to be α0j = 0.2 and α1j = 0.4 for j = 1, . . . ,70 [Sinha, Chen and
Ghosh (1999)]. We ran the Gibbs sampler for 25,000 iterations after 5000 burn-in
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TABLE 1
ADNI data analysis results for the full BFLCRM model: the posterior quantities of 19 regression

coefficients βks, that correspond to xi = (Gender, Handedness, Widowed, Divorced, Never married,
Length of Education, Retirement, Age, APOE-ε4 carrier, ADAS-cog Score, posterior limb of

internal capsule, Right hippocampal formation, Left hippocampal formation, Left thalamus, Left
amygdala, Right amygdala, and Right thalamus). “Mean” denotes the posterior mean, “SD”

denotes the posterior standard deviation, and “Lower” and “Upper,” respectively, represent the
lower and upper limits of a 95% highest posterior density interval

β1 β2 β3 β4 β5 β6 β7 β8

Mean 0.4344 0.2255 0.3119 0.2729 0.7203 −0.0874 0.3455 −0.0519
SD 0.2513 0.3647 0.3827 0.4663 0.7867 0.0367 0.2482 0.0178
Lower −0.0495 −0.5248 −0.4632 −0.6789 −0.9383 −0.1691 −0.0919 −0.0873
Upper 0.9478 0.8628 1.0138 1.1195 2.2009 −0.0244 0.8608 −0.0188

β9 β10 β11 β12 β13 β14 β15 β16 β17

Mean 0.5550 0.1568 0.0008 0.0006 −0.0011 −0.0004 0.0018 −0.0012 0.0003
SD 0.2341 0.0265 0.0005 0.0004 0.0004 0.0004 0.0009 0.0005 0.0004
Lower 0.1258 0.1030 −0.0002 −0.0002 −0.0019 −0.0012 0.0000 −0.0023 −0.0004
Upper 1.0258 0.2075 0.0019 0.0014 −0.0004 0.0003 0.0036 −0.0002 0.0010

iterations. Based on the 20,000 MCMC samples, we calculated various posterior
quantities of (β,γ ,λ). For the full BFLCRM model, we also conducted sensitiv-
ity analyses in order to investigate the influence of different choices of hyperpa-
rameters in the prior distributions. From the results shown in Tables 1–4 in the
supplementary document [Lee et al. (2016)], we found that the proposed priors
were robust to various choices of the hyperparameters in the prior distributions.
The computational time (in C/C++ using an 8-cores 2.80 GHz Intel processors)
was 350 seconds for running the Gibbs sampler for the full BFLCRM model with
25,000 iterations.

Table 1 shows the posterior means of the regression coefficients β and their stan-
dard deviations, as well as the lower and upper limits of the 95% highest posterior
density (HPD) intervals based on the full BFLCRM model. Six scalar covariates
including “Length of Education,” “Age,” “APOE-ε4 carrirer,” “ADAS-cog score,”
“Left Hippocampal formation” and “Right amygdala” have 95% HPD intervals
that do not contain 0. This implies that we can expect a worse prognosis of AD for
MCI patients with lower ROI volume in the left hippocampal formation and the
right amygdala. This finding supports the finding that atrophy of the hippocampal
formation is a significant diagnostic marker [Jack et al. (1992), Kesslak, Nalcioglu
and Cotman (1991)]. It also confirms the previous finding that the amygdala vol-
ume tends to be reduced in the early stage of AD [Mizuno et al. (2000), Poulin
et al. (2011)]. Moreover, the 95% HPD intervals of the 1st, 7th and 14th fPCs do
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FIG. 2. ADNI data analysis results for the full BFLCRM model: panels (a) and (b), respectively,
show the top and bottom views of the estimated coefficient function associated with the hippocampal
surface data color-coded by the colorbar in panel (c).

not contain 0. This may indicate that the hippocampal radial distance is an im-
portant functional covariate for predicting the time to conversion to AD in MCI
subjects.

We estimated the coefficient function γ (·) by using γ̂ (s) = ∑14
j=1 φ̂j (s)γ̂j ,

where γ̂j is the posterior mean of γj for each j . Figure 2 shows the estimated
coefficient function γ̂ (·) associated with the hippocampal surface data. When hip-
pocampal atrophy in a red region is greater, a risk of progressing from MCI to
AD is expected to be increased. A blue region suggests that the thicker the area
is on the hippocampus, the shorter the time to conversion to AD is. Inspecting
Figure 2 reveals that the subfields of CA1 and subiculum on the hippocampi have
positive effects on the hazard function, indicating that the thinner these areas on
the hippocampus are, the shorter the time is to conversion to AD.

Figure 3 on page 2165 shows the estimated survival functions of the APOE-
ε4 carriers and noncarriers, when the values of the continuous covariates are set
at their mean values and the categorical variables are set at their reference levels.
The dotted lines show the 95% HPD intervals of survival functions. The APOE-ε4
carriers are expected to convert from MCI to AD faster than noncarriers. These
results are consistent with several prior studies, suggesting that the presence of
the APOE-ε4 allele increases the risk of developing AD [Corder et al. (1993),
Saunders et al. (1993), Strittmatter et al. (1993)].

We compared the full BFLCRM model with three reduced models in terms of
their predictive performance. For Model 1, we excluded the ROI volume covari-
ates from the full BFLCRM model. For Model 2, we only included all the scalar
covariates. For Model 3, we only included the clinical covariates, APOE-ε4 status
and the ADAS-cog score. For all three reduced models, we set J = 70 intervals so
that each interval contains at least one failure or censored observation. For the re-
gression coefficients, the hyperparameters of the multivariate Normal priors were
set as μ0 = (0, . . . ,0) and 
0 = diag(5, . . . ,5). We set α0j = 0.2 and α1j = 0.4
for j = 1, . . . ,70. We ran the Gibbs sampler for 25,000 iterations after 5000 burn-
in iterations. We also calculated the DIC and integrated AUC (iAUC) [Hung and
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FIG. 3. ADNI data analysis results: the estimated survival curves of APOE-ε4 carriers and noncar-
riers under the full BFLCRM model. Other continuous or categorical covariates are fixed at the mean
values or reference levels. The dotted lines show the 95% HPD intervals of the estimated survival
functions.

Chiang (2010)] for all four models, where AUC denotes the area under the Re-
ceiver Operating Characteristic (ROC) curve. The DIC can be estimated within the
MCMC iterations. More details can be found in Ibrahim, Chen and Kim (2008),
Spiegelhalter et al. (2002).

Table 2 shows the values of DIC and iAUC for the four models. The full
BFLCRM model yields the DIC value of 427.19, which is smaller than that of
Model 3, but larger than those of Models 1 and 2. Model 1 had the smallest DIC
value as 413.08. For Model 1, as shown in Table 3, “Age,” “APOE-ε4 carrier” and
“ADAS-cog score” have their 95% HPD intervals that do not contain 0. See addi-
tional estimation results associated with Models 1–3 in Tables 5–7 and Figures 1
and 2 of the supplementary document [Lee et al. (2016)]. Based on the iAUC val-
ues, however, the full model achieves the best predictive performance. Moreover,
the full model and Model 1, which include the hippocampal surface data as func-
tional covariates, provide better predictive performance than Models 2 and 3. This

TABLE 2
ADNI data analysis results under the four models: DICs and the empirical means of iAUC values

and their corresponding standard errors in the parenthesis calculated from the Monte Carlo
cross-validation (MCCV)

The full BFLCRM model Model 1 Model 2 Model 3

DIC 427.19 413.08 417.04 438.22
iAUC 0.840 (0.003) 0.836 (0.003) 0.809 (0.003) 0.751 (0.004)
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TABLE 3
ADNI data analysis results for Model 1: the posterior quantities of 12 regression coefficients βks,

that correspond to xi = (Gender, Handedness, Widowed, Divorced, Never married, Length of
Education, Retirement, Age, APOE-ε4 carrier, and ADAS-cog Score). “Mean” denotes the

posterior mean, “SD” denotes the posterior standard deviation, and “Lower” and “Upper,”
respectively, represent the lower and upper limits of a 95% highest posterior density interval

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Mean 0.3943 0.2826 0.2422 0.1409 0.5174 −0.0577 0.4045 −0.0406 0.5143 0.1572
SD 0.2016 0.3317 0.3121 0.4377 0.7682 0.0341 0.2442 0.0156 0.2190 0.0239
Lower −0.0157 −0.3488 −0.4151 −0.7356 −0.9930 −0.1260 −0.0610 −0.0699 0.1069 0.1104
Upper 0.7842 0.9094 0.8308 0.9196 1.9468 0.0045 0.8900 −0.0089 0.9634 0.2030

may indicate that the hippocampal surface data contributes significantly to the time
of conversion from MCI to AD. We estimated the iAUC by using a Monte Carlo
cross-validation (MCCV) method. Specifically, the full data set was randomly split
into a training set with 200 subjects and a test set with 146 subjects. For each such
split, we fitted each model to the training set and then calculated iAUC based on
the test set. This random split was repeated 100 times, yielding the estimated iAUC
values for all models.

4. Simulation studies. We conduct Monte Carlo simulations to evaluate the
proposed BFLCRM across different censoring rates and sample sizes. Moreover,
we will evaluate the predictability of our BFLCRM compared to proportional haz-
ards models without the use of functional covariates.

4.1. Setup. We generated all simulated data sets according to model (2.1). The
xi is a 4 × 1 vector and its corresponding elements were independently gener-
ated from N(0,0.5). We set the true value of β to be (0.7,0.2,−0.5,−1)T . The
functional covariate Zi(s) was generated from model (2.3), where its underly-
ing function follows the standard Gaussian process with the covariance function
K(s, t) = exp(−3(s − t)2). The observed functional covariate data Wi(s) con-
sists of noisy observations evaluated at 100 equally spaced grids in the interval
[−4,4] with some measurement errors. Specifically, the measurement errors εi(s)

were independently generated from a N(0,0.5) across s. The functional coefficient
γ (s) was generated from the standard Gaussian process with covariance function
Kγ (s, t) = exp(−2(s − t)2). To generate the survival time, we considered two dif-
ferent baseline hazard functions h01(·) and h02(·) as follows:

h01(t) = 1 if t > 0,(4.1)

h02(t) =
⎧⎨
⎩

κω, if 0 < t ≤ 2;
κω(t − 1)ω−1, if 2 < t ≤ 3;
κω2ω−1, if t > 3.

(4.2)
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The first baseline hazard function h01(·) assumes that it is constant over time.
As a more general form of hazard function, we consider a mixed form of base-
line hazard functions for the exponential and Weibull distributions. The hazard
function h02(·) depends on κ and ω. In this simulation study, we set κ = 1/3 and
ω = 2. Finally, the censoring times were independently generated from a uniform
distribution with the parameter chosen to achieve a desired censoring rate of 30%
or 50%. We considered sample sizes of n = 200 and n = 500 for each censoring
rate and simulated 100 data sets for each case.

4.2. Simulation results. We used the piecewise constant hazard model for
h0(s), in which we set J = 5 and subintervals (sj−1, sj ] so that each interval con-
tains at least one failure or censored observation. We set (α0j , α1j ) = (0.2,0.4)

for all j , �0 = diag(5, . . . ,5), and μ0 = (0, . . . ,0)T . We calculated the first 12
fPC scores explaining 95% of the variation of the functional covariates, and then
compared the estimation results using the first 12 PC scores in order to investigate
the efficacy of using fPCA. For each simulated data set, we ran the Gibbs sampler
for 20,000 iterations with 5000 burn-in iterations.

To examine the estimation and prediction performance of BFLCRM, we cal-
culated mean squared errors (MSEs) and time-dependent integrated area under
the curve (iAUC) [Hung and Chiang (2010)] based on 100 simulated data sets
for each scenario. The computational time (in C/C++ using an 8-cores 2.80
GHz Intel processor) was 50.3 seconds for BFLCRM with sample size 200 for
one repetition. We let β̂ denote the posterior mean of β . The MSE of β̂ is
defined by MSE

β̂
= ∑p

j=1(β̂j − β)2, whereas the MSE for γ (·) is defined by

MSEγ̂ = ∫ 4
−4{γ̂ (s) − γ (s)}2 ds, where γ̂ (s) denotes the posterior mean of γ at

time s. A smaller MSE implies better estimation accuracy, and a large value of
iAUC implies a better predictive model. To evaluate the predictive value of the
functional covariate to the hazard function, we calculated iAUC for two nested
models including a reduced BFLCRM model with solely scalar covariates in xi

and a full BFLCRM model with both Wi(·) and xi .
Table 4 presents the estimation results with h01(·) in (4.1) based on 100 sim-

ulated data sets for each scenario. The MSE values of both β̂ and γ̂ (·) are fairly
small in all the cases. The values of iAUC indicate reasonable predictive perfor-
mance of our BFLCRM. The MSE value decreases as either the sample size gets
larger or the censoring rate gets smaller. Also, estimation results of fPCA are better
than those of PCA in both MSE and iAUC. When the functional covariate has mod-
erate measurement noise, fPCA will lead better estimation and prediction results
since the use of a smoothing step in fPCA can dramatically reduce measurement
errors. Table 5 presents the means and standard errors of iAUC for the reduced and
full BFLCRM models under each scenario. The iAUC value of the full BFLCRM
model is generally larger than that of the reduced model in all scenarios. This may
indicate that the use of functional covariates can improve predictability of the haz-
ard function. Figure 4 shows the baseline hazard functions estimated by the full
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TABLE 4
Simulation results corresponding to h01(·) under different censoring rates and sample sizes: the

deviance information criterion (DIC), the mean squared errors (MSE) of β̂ and γ̂ , and the
estimated integrated area under the curve (iAUCs) and their standard errors in parentheses

calculated from the 100 simulated data sets. The Gibbs sampler was run for 20,000 iterations with
5000 burn-in iterations for each simulated data set

Sample Censoring
size rate MSE

β̂
MSEγ̂ iAUC DIC

200 0.3 FPCA 0.109 (0.009) 0.614 (0.016) 0.935 (0.001) 42.99 (3.46)

PCA 0.113 (0.010) 0.847 (0.020) 0.934 (0.001) 44.66 (3.58)

0.5 FPCA 0.181 (0.014) 0.696 (0.021) 0.933 (0.002) −93.80 (3.44)

PCA 0.186 (0.014) 0.913 (0.025) 0.932 (0.002) −92.21 (3.46)

500 0.3 FPCA 0.045 (0.003) 0.445 (0.012) 0.932 (0.001) 83.52 (4.52)

PCA 0.047 (0.003) 0.581 (0.015) 0.930 (0.001) 85.50 (4.57)

0.5 FPCA 0.052 (0.004) 0.454 (0.013) 0.928 (0.001) −260.93 (4.58)

PCA 0.052 (0.004) 0.600 (0.015) 0.927 (0.001) −259.37 (4.63)

TABLE 5
Simulation results corresponding to h01(·): the mean iAUC and the corresponding standard error in
the parenthesis calculated from the 100 simulated data sets for each scenario. The Gibbs sampler

was run for 20,000 iterations with 5000 burn-in iterations for each simulated data set

n 200 500

Censoring rate 0.3 0.5 0.3 0.5

Reduced 0.675 (0.004) 0.612 (0.006) 0.668 (0.002) 0.666 (0.002)
Full 0.935 (0.001) 0.933 (0.002) 0.932 (0.001) 0.928 (0.001)

FIG. 4. Simulation results corresponding to h01(·): panels (a) and (b), respectively, show the first
10 estimated baseline hazard functions with 0.3 and 0.5 censoring rates based on the size 500 sam-
ples. The solid line is the true baseline hazard function, h01(·).
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TABLE 6
Simulation results corresponding to h02(·) under different censoring rates and sample sizes: the

deviance information criterion (DIC), the mean squared errors (MSE) of β̂ and γ̂ , and the
estimated integrated area under the curve (iAUCs) and their standard errors in parentheses

calculated from the 100 simulated data sets. The Gibbs sampler was run for 20,000 iterations with
5000 burn-in iterations for each simulated data set

Sample Censoring
size rate MSE

β̂
MSEγ̂ iAUC DIC

200 0.3 FPCA 0.112 (0.009) 0.618 (0.018) 0.934 (0.001) 128.21 (3.57)

PCA 0.112 (0.010) 0.854 (0.021) 0.933 (0.001) 129.02 (3.66)

0.5 FPCA 0.183 (0.017) 0.698 (0.023) 0.933 (0.002) −15.26 (3.37)

PCA 0.189 (0.018) 0.913 (0.023) 0.932 (0.002) −13.70 (3.38)

500 0.3 FPCA 0.048 (0.003) 0.453 (0.012) 0.931 (0.001) 306.94 (4.46)

PCA 0.049 (0.005) 0.586 (0.015) 0.930 (0.001) 308.62 (4.49)

0.5 FPCA 0.054 (0.004) 0.457 (0.013) 0.927 (0.001) −69.55 (4.50)

PCA 0.054 (0.004) 0.611 (0.016) 0.926 (0.001) −68.00 (4.54)

BFLCRM from the first 10 data sets in the sample size 500 cases. The dotted lines
show the estimated baseline hazard functions, and the true baseline hazard func-
tion h01(·) is plotted as a solid line on each plot. When the true baseline hazard
function is constant, our model estimates the true function well in low to moderate
censoring cases.

Table 6 presents the estimation results with h02(·) in (4.2) based on 100 simu-
lated data sets for each scenario. Table 7 shows iAUC values for the two nested
models. These results in Tables 6 and 7 are consistent with those based on h01(·).
The estimated baseline hazard functions are presented in Figure 5 on page 2170 for
the sample size 500 cases. We plot the estimated baseline hazard functions of the
first 10 data sets using the full BFLCRM model. The solid line shows the true base-
line hazard function h02(·) on each plot. When the true baseline hazard function
is not piecewise constant, it is well approximated by the estimated baseline haz-
ard function in the low censoring case. In the moderate censoring case, our model

TABLE 7
Simulation results corresponding to h02(·): the mean iAUC and the corresponding standard error in
the parenthesis calculated from the 100 simulated data sets for each scenario. The Gibbs sampler

was run for 20,000 iterations with 5000 burn-in iterations for each simulated data set

n 200 500

Censoring rate 0.3 0.5 0.3 0.5

Reduced 0.673 (0.004) 0.612 (0.006) 0.668 (0.002) 0.665 (0.002)
Full 0.934 (0.001) 0.933 (0.002) 0.931 (0.001) 0.927 (0.001)
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FIG. 5. Simulation results corresponding to h02(·): panels (a) and (b), respectively, show the first
10 estimated baseline hazard functions with 0.3 and 0.5 censoring rates based on the size 500 sam-
ples. The solid line is the true baseline hazard function, h02(·).

captures the general pattern of the true baseline hazard function. It may indicate
that our BFLCRM approximates the general form of the baseline hazard function
fairly well and, therefore, it is applicable for most of the practical settings.

5. Discussion. The BFLCRM was developed to predict the time of conversion
from MCI to AD, as well as to determine the optimal set of predictors at baseline
that effect the time of conversion. We obtained estimation and prediction results
for functional and scalar predictors. This study has examined a very large set of
predictors for predicting the time of conversion from MCI to AD. We observed sev-
eral important predictors including (i) length of education, (ii) age, (iii) APOE-ε4
carrier, (iv) ADAS-cog score, (v) the left hippocampal formation volume, (vi) the
right amygdala volume, and (vii) surface morphology changes with the right and
left hippocampi. These findings highlight the importance of including not only de-
mographic and clinical information, but also high-dimensional imaging data, in
statistical analyses of MCI–AD conversion. These results are also consistent with
newly published clinical research criteria which incorporate the use of an array of
biomarkers in research settings and clinical trials [Albert et al. (2011)].

Several prior studies have highlighted the importance of hippocampal changes
in the context of AD-related neurodegeneration and prediction of MCI–AD
conversion [Dickerson, Wolk and Alzheimer’s Disease Neuroimaging Initiative
(2013)]. These studies, however, commonly assess changes to hippocampal vol-
ume rather than surface morphology. The current analysis includes both measures
of volume and surface area, with the changes in surface morphology adding addi-
tional predictive value.

As shown in Figure 2, the changes in surface area occur more prominently on
the anterior portion of the long axis of the hippocampus. Functional MRI stud-
ies in healthy adults suggest that anterior portions of the hippocampus are critical
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for the mnemonic binding processes that are engaged in tasks of episodic (day-to-
day) memory. Since episodic memory tasks, particularly those that require binding
operations, are some of the earliest cognitive impairments observed in MCI–AD
[Anderson et al. (2008)], the anterior surface changes identified in the current anal-
ysis may underlie these early memory changes and serve as an important predictor
of time of conversion.

From Figure 2, we observed that when hippocampal atrophy was greater in
the CA1 subfield and subiculum of the hippocampi, it took shorter to progress
to AD. Similar to our finding, it was reported that greater atrophy of CA1 and
subicular subfields in hippoocampi was related to increased risk for conversion
from MCI to AD [Apostolova et al. (2006b)]. The subregional atrophy rate in the
CA1 and subicular subfields also turned out to be the best predictor to explain
the progression to AD from MCI [Frankó, Joly and ADNI (2013)]. Also, it was
revealed that left hippocampal body volume was associated with delayed verbal
memory [Chen et al. (2010)], where the delayed verbal memory was one of the
important predictors for determining whether a subject was a MCI converter or
not [Gomar et al. (2011)]. Thus, our finding in Figure 2 supports these research
results.

Beyond the important effects on hippocampal surface morphology, we observed
important volumetric changes in the left hippocampal formation and the right
amygdala. There has been extensive research to diagnose Alzheimer’s disease by
using atrophy of various brain regions [Devanand et al. (2007), De Leon et al.
(1997), Jack et al. (1997), Scheltens et al. (1992)]. In particular, it was reported that
the hippocampal formation volume showed significant reduction in patients with
clinically diagnosed Alzheimer’s disease [Jack et al. (1992), Kesslak, Nalcioglu
and Cotman (1991)]. It was also found that the amygdala volume was reduced in
very early AD, which suggested that MRI-based amygdaloid volumetric measure-
ment was a relevant marker [Mizuno et al. (2000)]. Also, as shown in Poulin et al.
(2011), the level of amygdala atrophy is related to global illness severity in the
early stage of AD. Our ADNI-1 data analysis results agree with these findings in
that volumetric change in the hippocampal formation is an important variable to
predict the time to conversion from MCI to AD.

The analysis also shows that APOE status exerts important effects on the time
of conversion. Our results also agree with several prior studies that have docu-
mented that the presence of the APOE-ε4 allele increases the risk of developing
Alzheimer’s disease. Particularly, if a subject has APOE-ε4, then MCI progression
more likely occurs.

We have demonstrated the utility of BFLCRM as a valuable method for iden-
tifying optimal early markers of conversion to AD in patients with MCI. The
early markers identified from our analysis could be used in case selection for vari-
ous clinical trials for evaluating drug/therapeutic efficiency in slowing or modify-
ing AD-related pathophysiology, when such drugs and therapeutic treatments are
available.
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There are some limitations to our analysis. Our findings survived internal cross-
validation, but they need replication in an independent community-based sample.
We did not include measures of pathology (e.g., beta-amyloid) in our models since
CSF and amyloid-PET were available only in a small subset of individuals in
ADNI-1. However, a study of ADNI-2 subjects has shown a robust correlation
between the APOE-ε4 allele and cortical amyloid burden [Murphy et al. (2013)],
suggesting that APOE-ε4 may have served as a surrogate for cortical amyloid
plaque load in our analysis.

We have developed BFLCRM for the use of functional and scalar covariates
to predict time-to-event outcomes. Several important methodological issues need
to be addressed in future research. First, it would be interesting to investigate the
theoretical properties of our Bayesian procedure, including the support of the prior
and truncation approximation bounds qn. Second, it would be interesting to de-
velop a new Bayesian method to automatically determine the distribution of qn.
Third, it would be interesting to incorporate high-dimensional scalar covariates
(e.g., genetic markers in the whole genome) in BFLCRM and develop its associ-
ated estimation and testing procedures. Developing such statistical methods poses
many new challenges both computationally and theoretically.
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SUPPLEMENTARY MATERIAL

Supplement to “BFLFRM: A Bayesian functional linear Cox regres-
sion model for predicting time to conversion to Alzheimer’s disease” (DOI:
10.1214/15-AOAS879SUPP; .pdf). This supplementary document contains addi-
tional results of ADNI-1 data analysis. Sensitivity analysis results for the full
model were discussed for the purpose of evaluating the robustness of prior choice.
As additional information, we interpreted the posterior quantities associated with
the reduced models, Model 1, 2 and 3.
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