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CORRECTING FOR MEASUREMENT ERROR IN LATENT
VARIABLES USED AS PREDICTORS1

BY LYNNE STEUERLE SCHOFIELD

Swarthmore College

This paper represents a methodological-substantive synergy. A new
model, the Mixed Effects Structural Equations (MESE) model which com-
bines structural equations modeling and item response theory, is introduced
to attend to measurement error bias when using several latent variables as pre-
dictors in generalized linear models. The paper investigates racial and gender
disparities in STEM retention in higher education. Using the MESE model
with 1997 National Longitudinal Survey of Youth data, I find prior mathe-
matics proficiency and personality have been previously underestimated in
the STEM retention literature. Pre-college mathematics proficiency and per-
sonality explain large portions of the racial and gender gaps. The findings
have implications for those who design interventions aimed at increasing the
rates of STEM persistence among women and underrepresented minorities.

1. Introduction. Researchers across diverse disciplines in the social sciences
rely on latent variables [Borsboom, Mellenbergh and van Heerden (2003)] as pre-
dictors of an outcome of interest. For example, cognitive proficiencies and noncog-
nitive personality traits (e.g., motivation and self-esteem), developed when individ-
uals are young, are key to later-life outcomes, including labor market, health and
educational decisions [Heckman, Stixrud and Urzua (2006)].

Of particular interest for this paper is the role that cognitive proficiencies
and personality measures play in the racial and gender gaps that exist in col-
lege students’ choices to major in one of the science, technology, engineering or
mathematical (STEM) disciplines [Riegle-Crumb et al. (2012); Xie and Shauman
(2003)]. Despite ongoing work by many colleges and universities, women and un-
derrepresented minorities (URMs) are still far less likely to major in the STEM
disciplines [NCES (2009)]. Using generalized linear models (e.g., linear probabil-
ity models, logistic regressions or probit analyses), researchers model the racial
and gender STEM retention gaps after controlling for a set of covariates, which
often include some latent variable(s) such as, for example, academic achievement
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[Maltese and Tai (2011)] or personality traits [Korpershoek, Kuyper and van der
Werf (2012)].

Because latent variables are hypothetical constructs, they are not observed di-
rectly and are difficult to measure accurately. Typically, latent variables are mea-
sured by a set of observed test or survey items in which a “test score” (often
released by the survey institution) is the estimate of the latent trait. Survey in-
stitutions use modern psychometric models such as item response theory [IRT;
van der Linden and Hambleton (1997)] to construct and design the test and esti-
mate the test score. Researchers throughout the social sciences often use the test
scores as known constants in further statistical analyses. However, the measure-
ment error present in the test score poses an obstacle to accurate estimation of
the relationships among the latent construct(s), other covariates in the model and
the outcome of interest. It is well known that analyses which ignore measurement
error in covariates are prone to biased results [Fuller (2006), Stefanski (2000)].

Consider a multiple linear regression,

Yi = β0 + β1Xi + β2Zi + εi, εi ∼ N
(
0, σ 2)

,(1)

where Y is the response variable, Z is a 0/1 indicator variable intended to test for
a “treatment” effect, and X is a test or survey score intended to measure a latent
trait, θ . If X is measured with classical error [e.g., Xi = θi + νi and νi ∼ N(0, τ )],
then β̂MLE

1 will be attenuated due to the increased variability in X from the mea-
surement error. β̂MLE

2 will also be biased if Z is correlated with θ . The direction
and strength of the bias of β̂MLE

2 will depend on the direction and strength of the
correlations among θ , Z and Y [Fuller (2006)]. Similar results are seen in logistic
and probit regression. When the measurement error is not classical (as is often the
case for latent variables, as I show in Section 3.1), the bias can be in any direction.

When θ is estimated precisely by X, the biases in the regression coefficients
may not be significant, but when θ is not well proxied by X, serious misunder-
standings that are both statistically and practically significant can occur. The use of
noisy measures of latent variables can cause researchers to misestimate the effects
of the latent variables on the outcome of interest and the effects of other correlated
covariates in the analysis. These kinds of biases are most likely to be significant
with short tests or surveys, because shorter tests lead to larger measurement error,
which in turn leads to larger bias. Given the serious problems with estimates of
θ that do not model the measurement error, it is useful to consider more recent
methodological advances for modeling the error.

One might argue for the use of instrumental variables [IV, Staiger and Stock
(1997)] or nonparametric bounds [e.g., Klepper and Leamer (1984)] to solve the
measurement error problem. Each latent variable is obtained from a well-designed
cognitive or noncognitive assessment constructed with an IRT model. The exis-
tence of this IRT model as a direct model eliminates the need for refining nonpara-
metric bounds or searching for suitable instruments to adjust for the measurement
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error in test scores [Junker, Schofield and Taylor (2012)]. Schofield (2014) dis-
cusses the kinds of problems that arise when trying to implement IV or errors
in variables (EIV) models using psychometric data, and notes the error structure
implied by many IRT models violates several assumptions used in IV.

Richardson and Gilks (1993) provide a unifying Bayesian framework in which
to estimate models with covariate measurement error. Their framework involves
specifying three submodels: (1) the structural equation (or an outcome model) re-
lating the outcome of interest Y to the latent variable(s) θ , and any other covari-
ates Z; (2) a measurement model relating the test score(s) and/or item responses
X to θ ; and (3) a prior or conditioning model for θ . Their approach is based on an
assumption of conditional independence relationships between several subsets of
variables.

Several researchers have adapted Richard and Gilks’s (1993) framework to
study issues in epidemiology. For example, Dominici, Zeger and Samet (2000) use
a time series model to study how measurement error in the estimates of exposure
to air pollution affects estimates on mortality. More recently, Haining et al. (2010)
use a Bayesian structural equations model to study the risk of stroke from air pol-
lution. Skrondal and Rabe-Hesketh (2004) extend the general structural equations
model to provide several applications outside of epidemiology, but few have con-
sidered Richardson and Gilks’s framework for research in educational policy.

Junker, Schofield and Taylor (2012) develop a structural equations model called
the Mixed Effects Structural Equations (MESE) model. The MESE model was re-
discovered independently from Richard and Gilks’s (1993) framework and extends
the general SEM framework for psychometric data. In the MESE model, the latent
variable’s measurement model is defined to be the IRT model used by the survey
institution to construct, design and score θ . Unlike other SEM models [such as
MIMIC models [Jöreskog and Goldberger (1975) and Krishnakumar and Nadar
(2008)] or Fox and Glas’s (2001) MLIRT model], the MESE model includes a
conditioning (or prior) model on θ which conditions on the other covariates in
the structural model. Junker, Schofield and Taylor (2012) use the MESE model to
study black–white wage gaps after controlling for the effect of literacy skills and
find substantial differences in the black–white wage gap when the measurement
error of literacy is modeled versus when it is not.

This paper builds on the framework of Richardson and Gilks (1993) and Rabe-
Hesketh, Skrondal and Pickles (2004) to extend Junker, Schofield and Taylor’s
(2012) MESE model. I evaluate the merits of the common practice of treating
statistics such as test scores or personality scale scores as if they were simply
predetermined data in analyses of STEM retention gaps for females and underrep-
resented minorities (URMs). Using an extended MESE model, I present an alter-
native model to examining STEM retention that properly accounts for the error
in the latent variables. I find significant differences in the gender and racial gaps
in STEM retention conditional on math proficiency and personality traits when I
model the measurement error in these latent variables versus when I do not. The
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MESE model extensions are novel in two ways. First, several latent variables are
used as predictors and they are allowed to correlate given the other covariates in
the structural model. Second, each latent variable is modeled with a different item
response theory (IRT) measurement model to estimate the heteroskedastic error
structure.

The question of whether STEM retention gaps are predictable by latent traits
such as academic achievement or personality traits is not an arcane decomposi-
tion. Whether the gap occurs because of deprivation in the latent constructs before
entry into college or whether the gap is due to college teaching practices that un-
intentionally discriminate against women or URMs results in fundamentally dif-
ferent institutional policies and interventions to address the issue. The hope is that
if researchers determine what predicts STEM retention, institutions can develop
interventions to empower students with what they need to complete the necessary
requirements. Any research that mismodels the effect of the latent traits on STEM
retention may lead to inappropriate uses of limited institutional resources.

2. The mixed effects structural equations model. Consider the case in
which a researcher is interested in estimating the linear regression model,

Yi = β0 + β1θi + β2Zi + εi, εi ∼ N
(
0, σ 2)

,(2)

where Yi represents some outcome of interest for individual i, θ is the (possibly
vector-valued) latent trait(s), and Z are some additional covariates of interest mea-
sured accurately. Researchers use such models both when they are interested in
estimates of β1, the effect of the latent variable(s) θ on the outcome of interest, and
when they are interested in estimates of β2, the relationship between two (or more)
variables after “controlling for” θ . The overall goal is to estimate β = (β0, β1, β2)

the vector of the regression coefficients.
If θ is not measured with error, one could either maximize the likelihood

f (Y |β, θ,Z) with respect to β or choose a prior for β and calculate the poste-
rior p(β|Y, θ,Z). However, because θ is a latent variable, it is unobserved and
instead X, a proxy test score or a set of item responses, is observed. This leaves
the likelihood

f (Y,X|Z,β),(3)

where Z is known, Y and X are observed, and β is the vector of unknown pa-
rameter(s) we wish to estimate. It is clear (3) is a marginal distribution of a more
general model in which the unknown θ is integrated out and which can be factored
by the Law of Total Probability,

f (Y,X|Z,β) =
∫

f (Y,X, θ |Z,β)dθ(4)

=
∫

f (Y |X,θ,Z,β)f (X|θ,Z,β)f (θ |Z,β)dθ.(5)
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This more general model (5) implies a form of the Mixed Effects Structural
Equations Model [MESE; Schofield (2008); Junker, Schofield and Taylor (2012)],
which suggests three general models corresponding to the structural, measurement
and prior submodels of Richard and Gilks (1993).

2.1. Conditional independence assumptions. Following Richardson and Gilks
(1993), I will make several conditional independence assumptions to simplify the
MESE model. First, I assume Y depends only on θ and Z and that Y ⊥⊥ X|θ
such that X provides no additional information about Y once θ is known. Second,
I assume θ ⊥⊥ β|Z. Finally, as I show in Section 3.1, good measurement practice
and modern psychometric theory allows the assumption that X ⊥⊥ Z,β|θ . I can
now write the MESE model in hierarchical form:

Structural model: Yi |Zi, θi, β ∼ f (Yi |θi,Zi, β),(6)

Measurement model: Xij |θi, γj ∼ f (Xij |θi, γj ),(7)

Conditioning model: θi |Zi,α ∼ f (θi |Zi,α),(8)

where γj are the parameters in the measurement model, α are the parameters in the
population model for θ |Z, and β , θ , Y , X and Z are defined as before. In MESE,
the latent variables and the regression coefficients are estimated simultaneously.

The MESE model follows the structural approach advocated in Richardson et al.
(2002) and can easily be shown to be a general structural equations model [Bollen
(1989)]. The MESE model is in the spirit of MIMIC models [Jöreskog and Gold-
berger (1975) and Krishnakumar and Nadar (2008)] which examine the causes
of a posited latent variable(s) with multiple observed indicators. The interest in
MIMIC models is often in the theoretical explanation of the latent variable or in
the relations between the latent variable and some observed variables. The MESE
model extends the MIMIC model to cases where the interest is in the effect of the
covariates after controlling for the latent variables. Fox and Glas (2001) proposed
MLIRT, a similar model to MESE, in which they attempt to control for a latent
variable (e.g., IQ) to predict how student performance on a test may be different
for schools under different treatments. In MLIRT, the only predictor variables are
psychometric latent variables and they do not include a prior model on θ that con-
ditions on the other covariates in the model. MESE extends the MLIRT model to
include other fixed effect predictors. Rabe-Hesketh, Skrondal and Pickles (2004)
provide a unifying framework for multilevel structural equations into which the
MESE model fits.

2.2. Estimating the MESE model. To estimate the coefficients of interest
from (6), the latent variables must be integrated out of the full likelihood, (5).
One can either integrate using numerical integration and Newton–Raphson or E–M
algorithms (using software such as the gllamm model in Stata [Rabe-Hesketh,
Skrondal and Pickles (2004) and Rabe-Hesketh, Skrondal and Pickles (2005)] or
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Mplus [Muthén and Muthén (1998–2011)]), or through a computational Bayesian
approach in which priors are assigned to parameters and a Markov Chain Monte
Carlo (MCMC) algorithm is applied to sample directly from the joint posterior
distribution and any marginal posterior distributions of interest (using software
such as WinBUGS [Spiegelhalter, Thomas and Best (2000)] or JAGS [Plummer
(2003)]).

In this paper I take the Bayesian approach to estimation. The reasons for this are
threefold. First, the Bayesian estimation approach becomes comparatively more
attractive than likelihood-based methods as the dimension of the latent variables
grow, because maximizing the likelihood requires multivariate numerical integra-
tion for each observation and the numerical integration becomes computationally
prohibitive [Lockwood and McCaffrey (2014)]. Second, as Dunson (2001) notes,
the Bayesian MCMC approach allows for a more flexible set of submodels, in-
cluding multilevel correlation structures and different measurement scales for dif-
ferent test items. Under these more complicated models, maximum likelihood ap-
proaches to estimation are difficult to implement because of the high-dimensional
integration required. Third, the Bayesian approach allows for flexibility in assign-
ing hyperpriors to the parameters in the measurement models and the conditioning
model when these are unknown or unreliably estimated. In the maximum likeli-
hood approach, numerical integration again becomes much more difficult as the
number of (nuisance) parameters increases.

3. The submodels of the MESE model. Richardson et al. (2002) note that
once a structural model, such as the MESE model, is built, researchers must choose
functional forms for the distributions of the submodels. I turn now to each sub-
model to describe the appropriate functional forms when the variables measured
with error are latent psychometric variables.

3.1. The measurement model. The latent variable(s) θ are often obtained from
a well-designed cognitive or noncognitive assessment(s) constructed, developed
and scored using item response theory (IRT) models. Thus, it makes sense to use
the IRT model as the functional form of (7) in the MESE model. The IRT model
is efficient and provides a direct model of θ and its measurement error.2

Latent variables θ are commonly measured by a set of binary or ordinal items
(or sometimes combinations of both) denoted Xij , which is the ith individual’s re-
sponse to item j . IRT models assume the probability of answering a test or survey
item correctly increases as the latent trait underlying the performance on a test or
survey increases [van der Linden and Hambleton (1997)].

2Junker, Schofield and Taylor (2012) note IRT models are flexible enough to use as a direct model
for measurement error even in cases in which the test or survey was not constructed using IRT
techniques.
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A novel feature of the MESE model is its flexibility in using different IRT mea-
surement models for different latent constructs. IRT models take on different forms
according to the items developed for the test. A common IRT model used for bi-
nary items scored right/wrong is the three-parameter logistic (3PL) model,

Pj (θi) ≡ P [Xij = 1] = cj + 1 − cj

1 + exp[−aj (θi − bj )] .(9)

Samejima’s (1969) graded response model (GRM) is a generalization of (9) used
for Likert-scale survey responses and other ordinal items. It is a type of ordered
logit model,

P ∗
jk(θi) ≡ P [Xijk ≥ xijk] = exp[aj (θi − bjk)]

1 + exp[aj (θi − bjk)] .(10)

In each of these models, xij is the response of individual i to item j , aj is the
“discrimination” item parameter, bj is the “difficulty” item parameter and cj is the
“guessing” item parameter and P ∗

jk is the probability of individual i with profi-
ciency θ scoring k or above on item j .

IRT models provide a direct estimate of the measurement error for θ̂ , which is
equivalent to the standard error of θ̂ . Asymptotically,

SE(θi) = 1√∑J
j=1 Ij (θi)

,(11)

where Ij (θi) is the Fisher information.
A few points about the measurement error are noteworthy. First, as Figure 1

shows, SE(θ) varies for different values of θ . In general, SE(θ) is largest for those
individuals in the tails of the distribution of θ and smallest for those in the mid-
dle of the distribution. Second, increases in J , the number of test items, increase
precision in the estimation of θi . Thus, the measurement error tends toward 0 as
J → ∞. Large J is often not possible due to time constraints, so θ̂i can be ex-
pected to be imprecise, particularly for short tests. Third, because θ is unknown
for every individual, so too is the standard error of the estimation. While the infor-
mation function can be estimated using θ̂ , Lockwood and McCaffrey (2014) show
using SE(θ̂) to correct for measurement error leads to bias.

Misspecification of the IRT model in the MESE model is relatively robust.
A simulation study conducted in Schofield (2008) suggests unreliable and/or im-
precise item parameters have little effect on the estimates of the regression coeffi-
cients in (6). When item parameters are unknown or unreliable, estimation of the
MESE model using the Bayesian framework is flexible such that priors can be as-
signed to the item parameters and these can be estimated simultaneously with θ

and the regression coefficients. [See Patz and Junker (1999) for more on MCMC
methods for estimating the item parameters and θ .]
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FIG. 1. Measurement error for a typical 3-PL model by θ where a ∼ Unif(0,2), b ∼ N(0,1) and
c = 0 for all items.

3.2. The conditioning model. The conditioning model (8) often assumes θ to
be multivariate normally distributed and allows for possible differences in the dis-
tribution of θ across subgroups of the sample. A novel feature of the MESE model
is its flexibility in modeling the latent constructs as associated with one another
conditional on the other covariates in the model.

Misspecification to the shape of the conditioning model is also relatively robust.
Schofield (2008) found little bias in the estimates of the regression coefficients of
the structural equations in cases where the conditioning model was misspecified,
even when the generating distribution of θ was skewed and the conditioning model
was assumed normally distributed. Dresher (2006) found poor estimates to the
mean and standard deviation of the distribution of θ when she assumed a normal
conditional distribution on a θ whose distribution was skewed. Despite these same
poor estimates of the θ distribution appearing in Schofield’s (2008) simulation, the
estimates of the regression coefficients were not biased.

The choice of which variables to include in the conditioning model (8) is an
interesting research question. Many large-scale assessments (such as the National
Assessment of Educational Progress, NAEP or the Program for International Stu-
dent Assessment, PISA) follow Mislevy (1991) and condition on a huge set of
background covariates to avoid bias in population statistics estimated from the
test. Newer research by Schofield et al. (2015) shows that when θ is the indepen-
dent variable in an analysis, θ must be conditioned on all of the covariates in the
structural equation. However, if the response variable Y or any other variable as-
sociated with Y conditional on θ that is not already in the structural equation is
in the conditioning set, bias will ensue [see Schofield et al. (2015) for a proof,
though the Law of Total Probability as in (5) suggests this result]. Thus, the condi-
tioning model in MESE is designed to include only the covariates in the structural
equations. Misspecification of which covariates are in the conditioning model will
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cause bias [Schofield et al. (2015)], though the size and direction of the bias varies
based on the measurement error and the correlation between the covariates and θ .

3.3. The structural model. The structural equation (6) is the equation of pri-
mary interest. The estimates of the latent constructs θ are noisy, but they are treated
as a random variable in a mixed-effects regression. The functional form of the
structural model is dependent on the substantive question of interest and the re-
sponse variable, Y . The MESE model provides enough flexibility such that the
structural model can accommodate several models, among them, any generalized
linear model. In the example in Section 4, I use a logistic model.

4. Undergraduate STEM retention in the United States. Over the past
twenty years, there has been a rising concern about the underrepresentation, and
specifically the retention, of minorities and women in science, technology, engi-
neering and mathematics (STEM) disciplines in higher education. The National
Center for Education Statistics [NCES (2009)] reports in 2008 only 31.7% and
33.1% of black and Hispanic students persist3 respectively compared to 43.9% of
whites. Griffith (2010) studied students who were in their first year of college in
1999 and found only 37% of women versus 43% of men persist to graduate with
a STEM major. Several studies [e.g., Riegle-Crumb et al. (2012); Xie and Shau-
man (2003); Seymour and Hewitt (1997)] have examined the underlying reasons
for the differentials in STEM persistence by examining persistence after control-
ling for (latent) variables, such as academic achievement [e.g., Maltese and Tai
(2011)], math and science identity [Chang et al. (2011)], interest [Sullins, Her-
nandez and Fuller (1995)], future time perspective [Husman et al. (2007)], sense
of community [Espinosa (2011)], goals [Leslie, McClure and Oaxaca (1998)] or
personality traits [Korpershoek, Kuyper and van der Werf (2012)].

Most scholars agree there is a strong positive correlation between math profi-
ciency and STEM retention. While racial differences in STEM retention are often
explained by the comparative disadvantage in academic background that under-
represented minorities (URMs) have relative to their white peers, several recent
studies [Weinberger (2012); Riegle-Crumb et al. (2012)] question the explanation
that gender gaps in STEM retention are due to gaps in math achievement. Oth-
ers [e.g., Korpershoek, Kuyper and van der Werf (2012)] suggest STEM retention
gender gaps may be better explained by personality trait differences.

Many of the studies noted above use batteries and surveys with small numbers
of items to measure their latent traits [e.g., Chang et al. (2011) develop a five-
item factor to assess student’s science identity and Leslie, McClure and Oaxaca
(1998) use a one-item measure of “goal commitments”]. Because the number of
items is small, I expect the measurement error of these latent traits to be large,

3Here I define persistence to mean the student declared and then completed a STEM major.
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suggesting the estimates of the latent variables’ effects and the effects of any other
covariates correlated with them will be biased when the model does not account
for measurement error.

In the remainder of this section, I estimate a typical logistic regression model for
“explaining” racial and gender differentials. The central idea is to control for the
latent traits in a model that includes 0/1 indicator variables for the racial or gender
focal group. If after controlling for these latent traits, the regression coefficients in
front of the indicator variables are smaller, then social scientists argue the latent
trait may “explain away” some of the racial or gender differential. The model takes
the form

Yi = 1 ∼ Bernoulli(pi),
(12)

log
pi

1 − pi

= β0 + β1θi + β2Zi,

where Yi is a binary measure of STEM persistence, θi = (θ1i , θ2i , . . . , θki) is a
vector of k latent variables measuring cognitive and noncognitive traits, and Zi is a
vector of demographic variables including indicator variables for underrepresented
minorities (URMs) and female gender. I estimate this model under two different
measurement error models for θ . In the first case, θ is replaced by θ̂ , the test
score published by the survey institution, and no measurement error is modeled. In
the second model, the regression coefficient estimates are modeled simultaneously
with θ , using the MESE approach for which I advocated in Section 2.

4.1. The data. The data come from the 1997 National Longitudinal Survey
of Youth (NLSY97) which is a nationally representative sample of almost 8900
youths who were 12 to 16 years old as of December 31, 1996. The youth have
been surveyed yearly since 1997. The survey collects detailed information on many
topics, including the following: youth demographics, educational experiences, per-
sonality measures and cognitive assessments.

The NLSY97 data set offers several benefits. First, the NLSY97 is longitudinal
and paints a detailed account of the timing, progression and types of degrees of
those surveyed. Second, the NLSY97 is a nationally-representative survey, mak-
ing generalizations possible to the same cohort of students nationwide. Third, the
NLSY97 contains item level data to certain academic tests that measure mathemat-
ics proficiency and personality measure surveys. Unfortunately, the NLSY97 does
not contain certain variables which have been shown to have an effect on STEM
retention (such as motivation or future-time perspective). I cannot examine these
variables in this study, but I can extrapolate what kinds of bias may exist in other
studies.

The variable of interest, Yi , is a categorical variable which identifies each in-
dividual as: a “stayer,” someone who persisted in a STEM4 major; or a “leaver,”

4STEM is defined to include biological sciences, computer/information science, engineering,
mathematics and physical sciences.



CORRECTING FOR MEASUREMENT ERROR IN LATENT VARIABLES 2143

someone who declared a STEM major but did not persist to graduation. Race is
operationalized as a 0/1 indicator variable for underrepresented minority (URM).
URMs include those who self-identify as black, Hispanic, Native American or of
mixed race. Non-URMs self-identify as either white or Asian.5 Gender is similarly
operationalized as a 0/1 variable indicating Female gender.

There are a total of six latent variables: one a measure of cognitive proficiency in
mathematics and the other five are measures of the Big Five [Costa, Jr. and McCrae
(1992)] personality characteristics of Extraversion, Agreeableness, Conscientious-
ness, Emotional Stability and Openness. Measures of mathematics proficiency and
personality traits both have been shown to predict STEM retention.

The mathematical proficiency measure is the mathematics Peabody Individual
Achievement Test [PIAT; Markwardt (1998)]. The observed item responses, Xij ,
for the PIAT are binary (correct/incorrect) responses to the 100 multiple choice
items written to test mathematics concepts and facts for individuals between the
ages of 6–18 years. The PIAT-R Math Assessment was selected by the NLSY97
to represent a cross-section of various curricula in use across the United States.
In addition, previous studies show the PIAT math test’s concurrent validity corre-
lates reasonably with other tests of intelligence and math achievement [Davenport
(1976); Wikoff (1978)].

The noncognitive trait measures are the Ten Item Personality Inventory [TIPI,
Gosling et al. (2003)]. The TIPI inventory contains two items for each of the five
personality traits for a total of a 10-item survey. The observed item responses Xij

for the TIPI are an ordinal scale of 7 Likert-type responses. The subscale scores are
an average of the two items that pertain to each of the Five Factors. Research [e.g.,
Felder, Felder and Dietz (2002); Major, Holland and Oborn (2012); Korpershoek,
Kuyper and van der Werf (2012); Van Langen (2005)] notes personality traits such
as the Big Five may have an effect on gender differences in STEM retention. For
the purposes of showing the measurement error bias, the TIPI (in which J = 2 for
each of the five latent personality traits) serves as a good example.

Attention is restricted to only those youth who completed either a two or four
year college degree by 2010, declared a STEM major at some point in their col-
lege career and for whom there are both PIAT and TIPI measures. Table 1 provides
some demographic statistics of the NLSY97 sample. Approximately two-fifths of
those who initially declare a STEM major leave. Men and nonURMs are more
likely to be “stayers” than women and URMs respectively. PIAT math scores are
lowest on average for URMs. Similar to findings in Riegle-Crumb et al. (2012),

5There is evidence to argue against placing all underrepresented minority students into a single
category [Palmer, Davis and Maramba (2011)]. Analyses were also conducted separating blacks and
Hispanics and similar results were found, except with much lower power, so only the results with the
URMs grouped together are reported.
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TABLE 1
Sample characteristics, 1997 National Longitudinal Survey (NLSY97)

Female Male URM NonURM Total

N 163 265 133 295 428
Proportion stayers 0.49 0.67 0.50 0.65 0.60
Mean PIAT score 102.6 (16.6) 104.1 (16.3) 97.2 (16.7) 106.4 (15.4) 103.5 (16.4)
Mean TIPI-extraversion score 4.64 (1.49) 4.46 (1.42) 4.48 (1.39) 4.55 (1.47) 4.53 (1.45)
Mean TIPI-agreeableness score 5.23 (1.09) 4.75 (1.10) 4.85 (1.08) 4.96 (1.14) 4.93 (1.12)
Mean TIPI-conscientiousness 5.94 (0.95) 5.68 (0.99) 5.78 (0.96) 5.78 (0.99) 5.78 (0.98)

score
Mean TIPI-emotional stability 5.04 (1.22) 5.50 (1.10) 5.21 (1.17) 5.38 (1.16) 5.33 (1.17)

score
Mean TIPI-openness score 5.67 (0.91) 5.44 (1.07) 5.62 (1.00) 5.48 (1.03) 5.52 (1.02)

Notes: Author’s calculations, 1997 National Longitudinal Survey of Youth. Sample of only those
youth who have completed a two- or four-year college degree and declared a STEM major at some
point in their college career.

there is little difference in the distribution of PIAT math scores by gender. Little
variation exists in any of the TIPI subscale scores by URM status. Like Schmitt
et al. (2008), females tend to have higher agreeableness scores and lower emo-
tional stability scores. The high relation between PIAT scores and URM status
and between TIPI scores and gender suggest there will be bias in estimates of the
racial and gender gaps when using fixed estimates of the PIAT and TIPI scores as
predictors.

4.2. Methods. To examine the extent of the measurement error in examining
STEM retention, I compare three “unadjusted” models that do not adjust for mea-
surement error with three “adjusted” models in which the measurement error is
modeled. I control for math proficiency (the PIAT) alone, personality traits (the
TIPI) alone, and the two together (in which I allow them to correlate) to under-
stand the effect of each latent trait individually and together. Below, I describe the
full model in which I control for both math proficiency and personality traits. The
simpler models should be altered accordingly.

I specify the unadjusted model as (12), where Yi = 1 for “stayers” and Yi = 0
for the “leavers.” The covariates include Zi which is a vector that contains two
0/1 indicator variables: one which indicates Female status and one which indi-
cates URM status and θi = (θMi, θEi, θAi, θCi, θESi, θOi) which is a vector of six
latent traits where θMi is the latent math proficiency, θEi is the latent extraversion
personality trait, θAi is the latent agreeableness personality trait, θCi is the latent
conscientiousness personality trait, θESi is the latent emotional stability personal-
ity trait, and θOi is the latent openness personality trait.
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To estimate the “adjusted” models in which I account for measurement error,
I specify the MESE model as

Yi = 1 ∼ Bernoulli(pi),(13)

log
pi

1 − pi

= β0 + β1θi + β2Zi,(14)

Xijl|θil ∼ IRT(Xijl|θil, γjl),(15)

θi |Zi ∼ MVN(μi,
i),(16)

where θ represents the vector of l ∈ {1, . . . ,6} true PIAT and TIPI subscores of
individual i, μ is a vector of the means of the six latent traits, and 
 is a 6x6
variance–covariance matrix of the six latent traits. The measurement model for the
PIAT scores is the 3-PL model, (9).6 The measurement model for the five TIPI
scores is the GRM, (10).

It is necessary to estimate item parameters in the IRT models for each of the
latent variables because test publishers have not disclosed them. I estimate the
item parameters for the full NLSY97 sample and then fix them at their estimates
following standard practice [Ayers and Junker (2008)]. In practice, this is how
PIAT and TIPI prediction would occur: problems are fixed for the entire sample of
test takers, but proficiencies and latent traits may change from year to year.

Both models (adjusted and unadjusted) are estimated using an MCMC algo-
rithm specified in WinBUGS [Spiegelhalter, Thomas and Best (2000)] software.7

Bayesian estimates for the unadjusted models are extremely similar to frequentist
ML estimates. For both the unadjusted and adjusted models, N(0,10) priors were
assigned to each β coefficient. In the adjusted models, the prior on the latent vari-
ables is assumed to be multivariate normal and conditioned on race and gender
[following Schofield et al. (2015)]. The hyperprior for 
 is a Wishart (Ik, k) dis-
tribution and μk has a flat N(0,1) prior. The MCMC procedure was run with 3
chains with 10,000 iterations each, with the first half of the simulations used for
burn-in and a thinning interval of 15. Model fit is compared using the DIC fit statis-
tic [Spiegelhalter et al. (2002)]. Following Gelman and Hill (2007), convergence
was assessed using the general rules that R̂ < 1.1 (the potential scale reduction
factor) for each parameter and the effective number of simulations neff > 100.

4.3. Results. In Table 2, I report the mean and standard deviation of the
MCMC chains for the parameters in the structural model for seven analyses:
a baseline model including only indicator variables for the demographic groups
(model a); “unadjusted” and “adjusted” models controlling for the PIAT alone

6Junker, Schofield and Taylor (2012) note even though the PIAT is not constructed using the 3-PL
model, the 3-PL is a suitable IRT model that provides a good direct model for measurement error.

7R and WinBUGS code are available from the author.
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TABLE 2
Logistic regression of persistence in STEM (NLSY97)

PIAT TIPI TIPI & PIAT

Adjusted for ME? Baseline N Y N Y N Y

(a) (b) (c) (d) (e) (f) (g)
URM −0.584∗ −0.427∗ −0.375 −0.641∗ −0.894∗ −0.472 −0.690

(0.223) (0.217) (0.235) (0.222) (0.474) (0.237) (0.411)

Female −0.704∗ −0.717∗ −0.728∗ −0.594∗ −0.128 −0.612∗ −0.270
(0.203) (0.210) (0.212) (0.226) (0.616) (0.223) (0.526)

PIAT 0.330∗ 0.324∗ 0.341∗ 0.400∗
(0.109) (0.121) (0.113) (0.200)

TIPI extraversion −0.284∗ −0.625 −0.280∗ −0.661
(0.111) (0.652) (0.115) (0.546)

TIPI agreeableness −0.227 −0.943 −0.242∗ −0.957∗
(0.117) (0.745) (0.115) (0.489)

TIPI conscientiousness 0.082 0.432 0.081 0.444
(0.107) (0.327) (0.106) (0.312)

TIPI emo. stability 0.036 0.397 0.017 0.215
(0.114) (0.460) (0.116) (0.388)

TIPI openness −0.083 −0.177 −0.083 0.354
(0.113) (0.948) (0.116) (0.857)

N 428 428 428 428 428 428 428
DIC 560 552 554** 555 505** 547 507**
Error rate∗∗∗ 36.9% 35.7% 36.4% 32.7% 23.1% 32.7% 22.7%

Notes: Estimates reported are the mean and standard deviation of the MCMC chains of the parameters
in the structural model for a sample of those youth who have completed a two- or four-year college
degree and who declared a STEM major at some point. All estimates of latent variables have been
standardized such that the regression coefficients represent a 1 standard deviation change in the
latent trait for comparison purposes. ∗Statistical significance at the 5% alpha level. ∗∗This represents
the contribution to DIC (deviance information criteria) that the logistic regression makes. WinBUGS
separately reports the contribution to DIC for each separate node or array [Spiegelhalter et al. (2002)].
This enables the individual contributions from different parts of the model to be assessed. Because
the MESE model is so much more complex than a model that does not model error at all, we want
to compare the fit of the structural model in the MESE model with that of the structural model with
no error distribution of θ . The total DIC (including the estimation of the latent variables) is 12,620,
13,734 and 25,817. ∗∗∗The error rate is the misclassification rate of the model which equals the sum
of the false positives and the false negatives in the model divided by the total number of individuals
in the data set.

(models b–c); the TIPI alone (models d–e); and the PIAT and the TIPI together
(models f–g). Estimates in Table 2 demonstrate the bias in assessing the effect of
math proficiency and personality traits on STEM retention when not accounting
for measurement error. It is notable the bias is much larger in models that adjust
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for the measurement error of the TIPI scores which contain only two items per
scale, versus the PIAT scores.

As in other work on STEM retention, I find a strong positive correlation between
math proficiency and persistence in a STEM discipline, which may be slightly un-
derestimated in the previous literature. A one standard deviation increase in PIAT
scores results in a log odds increase of only 0.341 before adjusting for measure-
ment error (model f) and an increase of 0.400 (model g) after adjusting.

The findings also reveal a strong effect of personality. When the measurement
error in the TIPI score is not modeled, the effect of personality is highly attenu-
ated. The estimate of the effect of agreeableness in the models that account for
measurement error is four times that of the estimates when there is no adjustment
for measurement error. The results in model (g) suggest individuals who are less
agreeable (i.e., more critical) have a higher probability of persisting in STEM.
Korpershoek, Kuyper and van der Werf (2012) find similar results in examining
school subject choices for high school students in the Netherlands.

Note, the standard errors of the estimates of the effect of the personality traits
are quite large when the measurement error is modeled. The MESE model will
tend to have larger standard errors of the structural model parameters than when
the measurement error is not modeled. When the information on θ is small (i.e.,
the number of items is low as in the TIPI where J = 2), the estimates of θi will
be highly variable and less identifiable, resulting in high variation in the estimates
of their effect on outcomes. This is easily seen in the substantial increase in the
standard errors of the estimates of the parameters in models (e) and (g) in which
the measurement error of the TIPI scores is modeled versus models (d) and (f)
where the measurement error is not considered.

The estimates of the racial gap are quite different across the seven models. With
no control for either math proficiency or personality traits (model a), the log odds
of a URM persisting in STEM is 0.584. After controlling for math proficiency
without adjusting for measurement error (model b), URMs remain less likely to
persist in STEM, but the log odds decreases to 0.427. When adjusting for measure-
ment error in math proficiency (model c), the estimate on the race coefficient be-
comes insignificant, suggesting comparably skilled URMs and whites are equally
likely to persist in STEM. The racial gap increases when controlling for personal-
ity traits and adjusting for the measurement error; however, the standard error of
the race coefficient also increases.

The gender gap is more influenced by personality traits than math proficiency.
The estimates of the gender gap in STEM retention are similar for the models
that do and do not control for math proficiency [similar to results found in Riegle-
Crumb et al. (2012)]. Models (d) and (f), the unadjusted models that include con-
trols for personality traits, suggest personality traits may account slightly for dif-
ferences between men and women. After adjusting for measurement error, models
(e) and (g) suggest comparably skilled and comparably traited men and women are
equally likely to remain in STEM; gender becomes nonsignificant and the estimate
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drops dramatically. Supplementary analyses (not shown here) were performed in
which each personality subscore was entered into the model separately from the
other personality subscores. These analyses suggest the effect of the agreeableness
subscore may have the largest effect on the STEM gender differential.

The results suggest the effect of prior academic achievement has been previ-
ously underestimated in the literature and that it seemingly accounts for close to
half the gap in STEM retention among URMs and whites. More striking are the
results of the personality measures. Personality measures essentially remove the
gender gap in STEM retention and account for over half of the gap (although they
do not explain any of the racial STEM gaps). Moreover, the effect of personality
is highly attenuated if the measurement error is not modeled.

5. Conclusion. This paper proposes the Mixed Effects Structural Equations
model to appropriately account for measurement error in latent variables when they
are used as predictors in regression analyses. The MESE model follows Richard
and Gilks’s (1993) Bayesian framework to simultaneously estimate the latent vari-
able and the parameters of interest. The MESE model extends other similar SEM
models by modeling several latent traits as correlated conditional on the other co-
variates and modeling each latent trait with a different IRT measurement model.
The IRT model provides a direct model of the heteroskedastic measurement error
inherent in psychometric latent variables.

When latent variables are used to examine future outcomes such as college ma-
jor choice, measurement error will persist. The standard practice in the social sci-
ences of using a point estimate of the latent variable leads to very different results
than those models which account for the measurement error. This is particularly
true for studies that use batteries and tests which have small numbers of items,
such as the TIPI.

The motivating example demonstrates there is both a practically and statistically
significant bias when latent variables measured with error are used as predictors
in STEM retention analyses and the error is not modeled. I find prior mathemat-
ics proficiency and personality have been previously underestimated in the STEM
retention literature. In addition and perhaps more importantly, I find the racial and
gender gaps change substantially when the measurement error of the latent vari-
ables is modeled. When math proficiency is modeled with error, I find an insignif-
icant estimate on the race coefficient, suggesting comparably skilled URMs and
whites are equally likely to persist in STEM. When personality skills are modeled
with error, I find comparably skilled and comparably traited men and women are
equally likely to remain in STEM.

The results presented here suggest interventions aimed at improving persistence
of URMs and females in STEM ought to consider the role of prior math proficiency
and personality traits—in particular, the trait of agreeableness. Individuals who
design such interventions must be mindful of the impact person-environment fit
can have on individual performance. There is a vast literature on the relationship
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between personality and vocational interests [e.g., Walsh (2001); Holland (1997)],
which may have significant application to the design of interventions aimed at
reducing the gender differentials in STEM retention.

This work does not directly examine the clearly critical role of STEM interest,
motivation or instructional practices, but does suggest when these variables are
measured, they are likely measured with error. Future work must examine the ex-
tent of the bias in using these variables as predictors of STEM retention. Models
such as the MESE model offer opportunities for researchers and practitioners to
better understand the complicated influence academic achievement and personal-
ity traits have on STEM retention.

Several other areas of educational research use latent variables as predictors.
The MESE model is applicable to these areas of educational research as well. The
results presented here suggest similar biases will exist in any of these literatures
where latent variables are used as predictors but their error is not modeled.
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