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THE LATENT STATE HAZARD MODEL, WITH APPLICATION
TO WIND TURBINE RELIABILITY

BY RAMIN MOGHADDASS AND CYNTHIA RUDIN

Massachusetts Institute of Technology

We present a new model for reliability analysis that is able to distinguish
the latent internal vulnerability state of the equipment from the vulnerabil-
ity caused by temporary external sources. Consider a wind farm where each
turbine is running under the external effects of temperature, wind speed and
direction, etc. The turbine might fail because of the external effects of a spike
in temperature. If it does not fail during the temperature spike, it could still
fail due to internal degradation, and the spike could cause (or be an indication
of) this degradation. The ability to identify the underlying latent state can help
better understand the effects of external sources and thus lead to more robust
decision-making. We present an experimental study using SCADA sensor
measurements from wind turbines in Italy.

1. Introduction. One of the most important decisions that many companies
face is when to turn off mechanical equipment in order to perform preventive main-
tenance. Considering wind farm maintenance, for instance, it is much more cost
effective to shut a turbine off before it fails than to repair extensive damage caused
by a failure. The goal then becomes one of prediction: if we stop the turbine too
early before it would have failed, we lose valuable operating time. If we stop it
too late, the turbine may have sustained a catastrophic failure that is expensive to
repair. While the equipment is operating, its vulnerability to failure depends not
only on external factors such as temperature, wind direction and speed, but also
on latent degradation due to wear-and-tear. If it can be well estimated, this latent
vulnerability state would be important to decision-makers because: (i) it would
provide insight into the health state of the equipment without the influence of ad-
ditional external factors, (ii) it would determine whether the turbine is likely to
sustain extreme external conditions such as high temperatures, (iii) it would reveal
how the various external factors influence the degradation levels of the equipment,
and (iv) it would help provide maintenance decision-makers with a tool that can
help prevent too many early or late warnings. Ideally, we would like to decouple
the latent vulnerability state from the vulnerability due to external sources, making
as few distributional assumptions as possible.

Like many other types of large mechanical equipment (e.g., oil drilling equip-
ment, electrical feeders), wind turbines are usually equipped with supervisory con-
trol and data acquisition (SCADA) sensors that record various measurements of
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the dynamic environment every few minutes. For each of the 28 turbines in Italy
that we are considering, there are over 30 different measurements collected ev-
ery 10 minutes, including temperatures inside and outside the turbine, wind speed,
measurements of the yaw system, and so on. These can be environmental mea-
surements, measurements that reflect the degradation state, or summary statistics
of these measurements. Wind farm operators make critical decisions on a regular
basis that depend on condition monitoring; this is because failures occur fairly fre-
quently, once every 2–6 weeks on average. The frequency of these failures makes
statistically motivated decision-making strategies very relevant.

Our model is a generalization of the Cox proportional hazard model (PHM) in
that there are two separate terms in the hazard function, the latent hazard μ and the
transient hazard g. The main aspects of the model can be summarized as follows:

(1) Latent State (Degradation) Term μ: This term is monotonically nondecreas-
ing over time, reflecting the fact that mechanical equipment like a turbine does not
self-heal. This term takes into account the full history of the turbine as an integral
of the degradation. In contrast, to include the full history in the regular Cox PHM,
one would need to include a large number of terms and constrain their influence to
prevent the appearance of the nonphysical self-healing.

(2) Transient Hazard Term g: The second element of the hazard function (g) re-
flects the instantaneous contribution to vulnerability due to current measurements.
For instance, a spike in temperature would be reflected as a spike in the general g

term and as a permanent rise in the μ term.
(3) Form of the Model: Our model generalizes the Cox proportional hazard

model, which uses only the g term. Our model is a mixed hazard model [see,
e.g., Lin and Ying (1995)] whose form permits data-driven parameter fitting using
convex optimization techniques.

(4) Use in Decision-Making for Maintenance: Because we can isolate the latent
state, we can better estimate the resilience of our equipment: the latent state would
not be as sensitive to sudden but normal changes in the covariates. By triggering
warnings using knowledge of the latent state, decision-makers may be able to issue
better-timed warnings and alarms. We also provide an optimization procedure to
assist with decision-making.

The paper is organized as follows: Section 2 includes the motivation for this
work and reviews the literature on using analytical techniques for covariate-
dependent degradation models, particularly for wind turbines using SCADA data.
Section 3 describes the model and its derivation, along with an optimization proce-
dure for making maintenance decisions. Section 4 discusses important properties
and inference. Section 5 shows the result of applying the proposed model and the
warning generation technique on turbines in Italy. Section 6 provides a set of nu-
merical experiments, including a simulation study and comparisons with previous
models. In the Supplementary Materials Moghaddass and Rudin (2015), we pro-
vide an interpretation of our model and motivation with respect to discrete multi-
state degradation models.
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2. Related work. The literature of degradation monitoring and failure anal-
ysis using time-varying covariates can be divided into three main categories,
namely, (1) degradation-only modeling, (2) hazard modeling with diagnostic co-
variates, and (3) degradation modeling with partial information. Our work is re-
lated to all three categories.

Degradation-only models assume that the covariates are noisy versions of the
degradation state itself [e.g., Bian and Gebraeel (2012, 2013), Gebraeel and Pan
(2008), Flory, Kharoufeh and Gebraeel (2014), Kharoufeh (2003), Kharoufeh and
Cox (2005), Zhou, Serban and Gebraeel (2011)]. In this way, one can assume, for
instance, that each covariate could be generated separately from the degradation
state plus random noise. Some of these studies have assumed that a failure occurs
precisely when the degradation signal exceeds a predefined threshold [e.g., Bian
and Gebraeel (2012, 2013), Gebraeel and Pan (2008)]. For example, Bian and Ge-
braeel (2013) presented a stochastic modeling framework for sensor-based degra-
dation signals for systems operating under a time-varying environment. They as-
sumed that the rate of degradation directly depends on the environment profile that
is known, deterministic and evolves continuously. The overall degradation signal
is defined as the sum of the effect of environmental factors and a time-dependent
Brownian motion process.

For the case of wind turbines, it is not realistic to assume that we simply have
noisy measurements of the degradation state. Our measurements all stem from
(a possibly complicated) combination of external sources of vulnerability and the
degradation state itself (e.g., temperature within the turbine); it is our job to sep-
arate these two sources, and we cannot assume that the signals are directly corre-
lated with the underlying physical degradation processes. In our case, the degra-
dation process is assumed to be unobservable, and there are no prior distributional
assumptions on the parameters of the model. We also do not require a predefined
failure threshold, which is often not available in real-world systems.

Works within the second group (hazard modeling with diagnostic covariates)
assume that the hazard rate is influenced by internal and/or external time-varying
covariates and aim to estimate the hazard rate. The Cox proportional hazard model
(PHM) [Cox (1972)], its time-dependent version [Fisher and Lin (1999)] and its
other extensions [see, e.g., Gorjian et al. (2009)] are examples of this second group.
Works in the second group primarily aim to predict the hazard rate, and do not
necessarily model degradation. Those that do model degradation generally take the
perspective of the first category, where some of the signals are known to be noisy
versions of the degradation state [e.g., Banjevic and Jardine (2006), Banjevic et al.
(2001), Jardine, Anderson and Mann (1987), Makis and Jardine (1991), Qian and
Wu (2014), Wu and Ryan (2011), Zhao et al. (2010)].

Some works consider Markov failure time processes [e.g., Banjevic and Jardine
(2006), Banjevic et al. (2001)] where a predetermined subset of the covariates
changes over time. Finite state space models are useful in that the vulnerability
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states are finite and meaningful, but the assumption of a finite state space is re-
strictive and not particularly realistic. At the same time, relaxing the assumptions
of finite state space and considering multiple covariates yield too many states and
transitions, making it difficult to estimate all of the transition probabilities.

The model in this work, by contrast, does not require the number of states to be
known a priori, and the unobservable vulnerability state is modeled as a function of
past measurements. Furthermore, the model in this work does not prespecify which
variables contribute to the degradation state, allowing this to be learned from data.

Our model is a particular time-dependent, additive-multiplicative mixed haz-
ard model (AMMHM), containing both additive and multiplicative terms. There
are examples of additive hazard models [e.g., Pijnenburg (1991)] and multiplica-
tive hazard models [e.g., Kalbfleisch and Prentice (2002)] in different applica-
tion domains. A review of hazard models with covariates, with an explanation
of AMMHM, is given by Gorjian et al. (2009). Few studies have developed
special-purpose mixed hazard models. Martinussen and Scheike (2002) proposed
an additive-multiplicative model consisting of two components. The first compo-
nent contains additive covariates through an additive Aalen model and the sec-
ond component contains a multiplicative covariate effect through a Cox regression
model. Two different feature sets were used to separately model baseline mortality
and dose effects. Andersen and Vaeth (1989) considered a mixed model with addi-
tive and multiplicative terms, where one term is proportional to a known population
mortality. They illustrated their model by predicting survival of medical patients
after an operation for malignant melanoma. Another example of a mixed hazard
model was proposed by Höhle (2009) for spatial and temporal infectious disease
surveillance. For a theoretical analysis of AMMHM, interested readers may refer
to the work of Lin and Ying (1995). Our model leverages the multiplicative and
additive terms for a specific purpose: to separate the latent hazard state from the
external risk factors. Our particular multiplicative term (μ) acts as a concise rep-
resentation of the full history of covariates. It is unclear how one would encode the
full history of covariates within, for instance, the Cox proportional hazards model,
without introducing a large number of variables.

The third group of related models are partially observable degradation models.
These models differ from the other two types in that the degradation process is
assumed to be unobservable (hidden). Instead, covariates with an indirect relation-
ship to the degradation process are monitored over time. These are also referred to
as degradation processes with incomplete information [Hontelez, Burger and Wijn-
malen (1996)] or partially-observed degradation processes [Ghasemi, Yacout and
Ouali (2007)]. Most works in this category have used hidden Markov and hidden
semi-Markov models with discrete unobservable degradation states [Moghaddass
and Zuo (2012), Peng and Dong (2011)]. Our model is similar to those in this cat-
egory in that it also provides insight into the latent degradation state. Our model is
different from those in this category in that we do not need to specify the number
of states, the transition probability distribution between states or the structure of
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the stochastic relationship between the covariates and the degradation process. The
covariates used in our work, by contrast, are not necessarily assumed to reflect the
hidden degradation level.

There are other types of degradation models that make particular generative as-
sumptions for specific types of environmental processes. For example, Kharoufeh,
Finkelstein and Mixon (2006) considered a single-unit degrading system affected
by its operating environment with a deterministic degradation threshold value.
They considered a random shock process where the rate of wear is modulated by a
discrete-space, continuous-time Markov chain, and additional damage is induced
by a Poisson shock process. The total degradation is assumed to be the sum of
the degradation due to wear and that due to shocks. For other types of degradation
models used in reliability modeling, interested readers may refer to the works of
Gorjian et al. (2009) and Si et al. (2011).

For wind farms, keeping maintenance costs low is essential; it is difficult to be
competitive against the costs of other energy sources, such as oil and gas. There
are several reviews on condition monitoring and fault detection at wind farms [e.g.,
Hameed et al. (2009), Kusiak, Zhang and Verma (2013), Lu et al. (2009), Marquez
et al. (2012)]. In the wind industry, SCADA (supervisory control and data acquisi-
tions) systems are the most commonly used mechanism for turbine health monitor-
ing [Marquez et al. (2012)]. Although SCADA systems are relatively inexpensive
to install and are used at almost all wind farms, relatively very little research effort
has been devoted to analytics using wind turbine SCADA measurements. There
are several potential reasons for this. For instance, one is that SCADA sampling
frequency is too low to be used for spectral analysis, and another is that it does
not collect all the information needed for full condition monitoring of any partic-
ular wind turbine component. On the other hand, since SCADA measurements do
provide ample and cheap indirect information about the health state of the turbine,
some research has begun to determine how to leverage these measurements for
health monitoring. Qiu et al. (2012) proposed an alarm analysis and prioritization
methodology using descriptive statistics of SCADA data. A method for process-
ing SCADA data and a condition monitoring technique were developed by Yang,
Court and Jiang (2013) using a regression approach to anomaly detection. Several
papers [e.g., Marvuglia and Messineo (2012), Zaher et al. (2009)] proposed using
machine learning techniques for condition monitoring using SCADA data. Guo
et al. (2009) proposed a time-dependent reliability analysis based on the three-
parameter Weibull distribution for wind turbine failure time data. A recent review
of challenges for wind turbine maintenance was provided by Yang et al. (2014).

To summarize, the benefits of our model beyond those of previous works are that
(i) it decouples the (unobserved) degradation state from the hazard due to transient
sources, without having to specify anything about the relationship of the features
to the degradation state, (ii) it takes the full history of measurements into account
in a concise way, which cannot be done easily in a Cox proportional hazard model
without including a large number of terms, (iii) it provides a new decision-making
methodology through latent state inference.
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3. The latent state hazard model. Although this work focuses on turbine
modeling, our approach can be applied to any type of nonself-healing degrading
system. Our notation is as follows:

N : Total number of units (turbines).
P : Number of features (SCADA measurements) used for monitoring.
Ti : The total lifetime of the ith unit.
�: Measurement interval.

xi,k(j): The value of the kth covariate at time j� for the ith unit.
xi (j) = [xi,1(j), xi,2(j), . . . , xi,P (j)]�: Feature measurements at time j� for

the ith unit.
xh
i (j) = [xi (1),xi (2), . . . ,xi(j)]: History of features up to time j� for the ith

unit.

We will assume, mainly for notational convenience, that hazard rates are con-
stant over each small unit of time � and can be presented as piecewise constant
functions of time. The hazard rate in each interval can thus be approximated by
the hazard rate at the endpoint of that interval. Given the full history of covariate
values xh

i (t), the notation for the hazard rate is λ(t |xh
i (t)), which we model with

two terms as follows:

λ
(
t |xh

i (t)
) = μ

(
t |xh

i (t)
) + g

(
t |xi (t)

)
,(1)

where, assuming t is a multiple of �, we set

μ
(
t |xh

i (t)
) =

∫ t

0
μ0(τ ) exp

(
β0 + β�xi (τ )

)
dτ

≈ ∑
l∈{�,2�,3�,...,t}

μ0(l) exp
(
β0 + β�xi (l)

)
�(2)

= μ
(
t − �|xh

i (t − �)
) + μ0(t) exp

(
β0 + β�xi (t)

)
�.

The μ term is the latent state term. Because it is an integral of exponentials, it is
monotonically nondecreasing in t . The approximation in the second line of equa-
tion (2) shows the discrete form of the integral (which we use in practice since our
measurements are taken at discrete times), and the third line in equation (2) shows
that it can be written as a recursion. The other term of λ is the g term, referred to
in this paper as the transient hazard term, which is not necessarily monotonically
increasing. The mathematical expression of the g term is

g
(
t |xi (t)

) = g0(t) exp
(
α0 + α�xi (t)

)
.(3)

In our notation, the feature vector xi (t) depends on time t , but xh
i (t) could

have components that are feature values from the previous times, or nonlin-
ear transformations of measurements taken either at the current time or in the
past. The coefficients β0 and α0 are intercept terms and β = {β1, . . . , βP }� and
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α = {α1, . . . , αP }� are each the vector of regression coefficients associated with
P features in μ and g, respectively. The functions μ0(t) and g0(t) are, respec-
tively, the baseline hazard functions associated with μ and g. We note here that β0
and α0 could be absorbed into the baseline hazard functions. Similarly, μ0(t) and
g0(t) could be absorbed into the exponential term. The function μ depends on the
full history of covariates and encodes the latent hazard state. We conjecture that μ

is often smooth, but will include jumps in the presence of fast-changing external
factors to the degradation state. The g term should similarly fluctuate as a function
of current external conditions (e.g., temperatures and wind speeds). It is possible
to make the transient hazard term g depend on μ by adding terms within g related
to μ. The main parameters of the model are the intercepts α0 and β0, and the α

and β vectors, each of size P , which encode the history of the degradation process
and the temporary influences of the covariates.

In expressions (2) and (3) the covariates, such as temperature, pressure, etc., are
not assumed to follow a certain distribution or well-structured time series. Figure 1
shows an example of the total hazard rate, latent vulnerability rate μ and transient
vulnerability g, that we estimated from two of the wind turbines. For the first
turbine shown in Figure 1(a)–(c), the total hazard rate is formed from a fairly
balanced mix of both degradation and temporary sources. For the second turbine
shown in Figure 1(d)–(f), the total hazard rate comes mainly from degradation, and
there is minimal contribution from transient sources. The model parameters used
for both turbines are the same, and were learned from a separate training set that
did not include either of the turbines.

FIG. 1. Estimated hazard rates (λ, μ and g in columns 1–3, resp.) for turbine No. 1 (1st row) and
turbine No. 2 (2nd row), decomposed into the latent degradation (μ) and the transient vulnerability
(g), using the model presented in this study. (a) Turbine No. 1 (λ), (b) turbine No. 1 (μ), (c) turbine
No. 1 (g), (d) turbine No. 2 (λ), (e) turbine No. 2 (μ), (f) turbine No. 2 (g).
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3.1. Cost-benefit analysis and decision-making. We propose to use our model
for generation of warnings. It is important that our warning generation method is
accurate. For instance, alarm and warning rates that are too conservative can not
only increase downtime and decrease productivity, but they can also reduce the
operators’ sensitivity to failure, which can have catastrophic consequences. We can
define “warning generation” as a decision process that depends on the estimated
hazard of each unit over time. Let us define d as the ideal lead time between the
warning point and the failure point determined by decision-makers. In other words,
the warning generation system is considered efficient if it generates warnings when
the actual time to failure (also called remaining useful life—RUL) is very close to
d time units. To find the optimal warning policy, we can define γd as the threshold
for warning generation, so that a warning is put in place as soon as the estimated
hazard exceeds this threshold. To define the quality of the decision framework,
we define a cost function Cd(ξ), ξ ≥ 0, to represent the cost of a warning at ξ

units before the actual failure time. We should note that Cd(d) = 0, and there is a
positive cost for warnings that are too early or too late. The cost of an actual failure
without warning in advance, that is, when the warning time equals the failure time,
is Cd(0). We refer to this cost as the cost of warning at failure. Our model is
general in the sense that any kind of cost function can be considered depending on
the application (e.g., hinge, quadratic, logistic, exponential, etc.). A very simple
form of this function is shown in Figure 2 and is typically called the “pinball loss”
or “newsvendor cost” [see, e.g., Rudin and Vahn (2014)].

We define Ri,γd
as the model’s warning time for the ith available lifetime based

on the lead time d and threshold γd . For any d , one can determine the optimal
policy γ ∗

d such that the expected average cost of the warning generation process is

FIG. 2. An example of the function Cd(ξ), as explained in the text. The cost of warning at exactly
d units before failure is zero, and there is a positive cost for warnings that are too early (i.e., for
ξ > d) or too late (i.e., for ξ < d). The unit costs of late warning and early warning are c1 and c2,
respectively.
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FIG. 3. Hazard rates (solid lines), decision thresholds (γd , dashed lines), warning times (Ri,γd
)

and failure times (Ti ) for a single lifecycle of a turbine. The hazard rates have been estimated using
(top) the μ term from the latent state hazard model and (bottom) the hazard rate from the Cox pro-
portional hazard model. The decisions based on the latent state tend to be more robust to fluctuations
earlier on in the timeline, possibly leading to more accurate lifecycle estimates.

minimized. We find the optimal solution γ ∗
d using an empirical risk model (ERM).

The optimization problem is

argmin
γd

Jd(γd) where Jd(γd) = 1

|N1|
∑

i∈N1,Ti≥d

Cd(Ti − Ri,γd
),

(4)
where Ri,γd

= min
{
Ti, inf

{
j |λ̂(

j |xh
i (j)

) ≥ γd, j ≥ 0
}}

, i ∈ N1, γd ≥ 0,

where N1 are the lifetimes used for training, inf{j |λ̂(j |xh
i (j)) ≥ γd, j ≥ 0} is the

time at which the estimated hazard rate (λ̂) of the ith unit exceeds the threshold,
and γd is the only decision variable. The warning time Ri,γd

is either the time at
which the unit fails (Ti) or the time at which its estimated hazard rate exceeds the
threshold γd , whichever occurs first.

Figure 3 shows how decisions can be made using the latent state μ for our
model, in contrast with how decisions would be made using the (more common)
time-dependent proportional hazard model, where hazard rate is employed as the
decision criteria. This figure also illustrates why decisions made using the latent
degradation state μ tend to be more robust; they are resilient to fluctuations in the
hazard rate earlier in the lifecycle of the turbine. This can lead to longer (more
accurate) lifecycles and thus lower costs.

4. Properties and inference. In this section we discuss how to fit the model
to data.
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4.1. Model training. We use the method of maximum likelihood to infer the
coefficients of the model. Given lifetimes with stopping times Ti for each turbine i,
the continuous time version of the likelihood is

LN(θ |X) =
N∏

i=1

(
exp

(
−

∫ Ti

0
λ
(
t |xh

i (t)
)
dt

))
× λ

(
Ti |xh

i (Ti)
)
,(5)

where λ depends on θ = {α0,α, β0,β} through the definition of the model in equa-
tions (1), (2) and (3). If the lifetime associated with unit r (r ∈ {1,2, . . . ,N}) is
censored at time Sr (Sr < Tr), then its contribution to the likelihood function is
exp(− ∫ Sr

0 λ(t |xh
r (t)) dt). From now on, we assume all lifetimes are complete. For

discretized time units, the likelihood has the following form:

LN(θ |X) =
N∏

i=1

Ti−1∏
j=1

exp
(−λ

(
j |xh

i (j)
)
�

)
︸ ︷︷ ︸

probability of survival

× (
1 − exp

(−λ
(
Ti |xh

i (Ti)
)
�

))
︸ ︷︷ ︸

probability of failure

,(6)

where � is the length of each measurement interval. For mathematical conve-
nience, we let � = 1 and also define an indicator variable yi,j as

yi,j =
{

1, j = Ti ,
0, j �= Ti .

(7)

Then the log-likelihood function may be written as follows:

logLN(θ |X) =
N∑

i=1

Ti−1∑
j=1

−λ
(
j |xh

i (j)
) +

N∑
i=1

log
(
1 − exp

(−λ
(
Ti |xh

i (Ti)
)))

(8)

=
N∑

i=1

Ti∑
j=1

log
(
yi,j + (1 − 2yi,j ) exp

(−λ
(
j |xh

i (j)
)))

,

where θ is the set of parameters of the model. It is now clear that we have

θ̂ ∈ arg max
θ

logLN(θ |X),

where θ̂ is the maximum likelihood estimate of the parameters. We will show later
that, under some regularity conditions, θ̂ converges to the true parameter set θ0 in
probability when N is large. The procedure outlined above will produce a point
estimate for θ . (If full Bayesian inference is desired, we could assume a normal
prior on θ and sample from the posterior distribution over θ . However, this would
lose the interpretability of the single point estimate, be far less computationally
tractable, and the mechanism for making decisions using the full posterior would
likely require us to choose a point estimate anyway.)
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4.2. Regularization. We use 	2 regularization or, equivalently, a normal prior
on model parameters α and β . Regularization helps prevent overfitting, and makes
the log of the objective function strictly convex. In particular, we optimize

WN(θ |X) = − logLN(θ |X) + C‖θ‖2
2

(9)
= − logLN(θ |X) + C1‖α‖2

2 + C2‖β‖2
2.

Setting C1 very large will cause the model to ignore the internal state. Similarly,
setting C2 very large will result in ignoring the transient hazard term g. In practice,
we set C1 and C2 using cross-validation; however, they can be set manually, to
force more weight to internal degradation or vice versa. As usual, the regularization
constants should effectively vanish as N tends to infinity.

4.3. Convexity of the loss function.

PROPOSITION 1. The loss function − logLN({α,β}|X) + C1‖α‖2
2 + C2‖β‖2

2
derived from equation (9) is strictly convex when C1 > 0, C2 > 0.

The proof is given in Appendix A.

4.4. Coordinate descent method for model training. Since the optimization
problem is convex and differentiable, coordinate descent is a natural fit. The direc-
tion is provided by a Fréchet (directional) derivative. Denoting C1‖α‖2

2 + C2‖β‖2
2

by C‖θ‖2
2, we have

∂

∂θk

[− logLN(θ |X) + C‖θ‖2
2
]

=
N∑

i=1

Ti∑
j=1

(1 − 2yi,j )
exp(−λ(j |xh

i (j)))

yi,j + (1 − 2yi,j ) exp(−λ(j |xh(j)))

∂λ(j |xh
i (j))

∂θk

(10)

+ ∂

∂θk

C‖θ‖2
2,

where θk is the kth parameter of θ , and

∂

∂θk

λ
(
j |xh

i (j)
) = ∂

∂θk

μ
(
j |xh

i (j)
) + ∂

∂θk

g
(
j |xi (j)

)
.(11)

Now, for the coefficients of β (denoting θk = βk1 ), we have

∂

∂βk1

λ
(
j |xh

i (j)
) =

j∑
l=1

xi,k1(l) exp
(
β0 + β�xi (l)

)
.(12)

Similarly, for the coefficients of α (denoting θk = αk2 ), we have

∂

∂αk2

λ
(
j |xh

i (j)
) = xi,k2(j) exp

(
α0 + α�xi (j)

)
.(13)
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Algorithm 1 Coordinate Descent Algorithm

Let WN(θ |X) = − logLN(θ |X) + C‖θ‖2
2 as in equation (9), then:

1. Select the starting point θ (1) and the convergence parameter ε and let k = 1.
2. Compute ∂

∂θi
[WN(θ (k)|X)] for all i from equation (10).

3. Choose ik ∈ arg maxi | ∂
∂θi

[WN(θ (k)|X)]|.
4. Find the positive step size (ϕk) as

ϕk ∈ arg min
x

WN

(
θ (k) − x

∂

∂θik

[
WN

(
θ (k)|X)]

eik |X
)
.(14)

Here, ei is the ith coordinate vector in R
2P+2.

5. Update the current point as

θ (k+1) = θ (k) − ϕk

∂

∂θik

[
WN

(
θ (k)|X)]

eik .

6. Evaluate WN(θ (k+1)|X). If the condition |WN(θ (k+1)|X)−WN(θ (k)|X)| < ε is
satisfied, then terminate the algorithm and output θ∗ = θ (k+1). Otherwise, set
k = k + 1 and return to step 2.

In Algorithm 1, the steps for optimizing the loss function using the Coordinate
Descent method are described.

4.5. Asymptotic properties. In this section we state a result (whose proof is in
Appendix B) about the consistency properties of the maximum likelihood estima-
tors of the parameters of our model.

THEOREM 1. Let X = (Xi, Ti),1 ≤ i ≤ N , be i.i.d. with the likelihood func-
tion LN(θ |X) given in equation (6) with independent parameter set α and β where
(α,β) = θ ∈ �, |α| < M , and |β| < M , where M is a finite positive constant inde-
pendent of N . Then with probability tending to 1 as N tends to infinity, there exist
solutions θ̂N = (θ̂N,1, . . . , θ̂N,p) of the likelihood equations such that:

(i) θ̂N,j is consistent for estimating θj ,
(ii)

√
N(θ̂N − θ0) is asymptotically normal with (vector) mean zero and co-

variance matrix [I(θ)]−1, and
(iii) θ̂N,j is asymptotically efficient in the sense that its variance attains the

Cramér–Rao lower bound as N goes to infinity.

The proof is a consequence of Theorems 2 and 3, which are given in Ap-
pendix B.
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5. Application to wind turbine data. Our collaboration is with Accenture
(a consulting company) and ENEL (Italy’s largest power company). Our data are
from a wind farm in Europe that collects SCADA data from N = 28 (with N

defined as in Section 3) pitch-regulated 2 mega-watt wind turbines. The original
measurements used in this work were collected every 10 minutes over the course
of a year, and values were averaged over the course of a day. Averaging smooths
out small variations and is much more computationally efficient. However, too
much averaging can potentially remove the effect of g. In order to make sure that
we prevent this from happening, we repeated some of our experiments on smaller
portions of our data, averaging over 12-hour intervals and 6-hour intervals. The
estimates for μ and g for these experiments were similar to those for the 24-hour
interval, implying that our choice of one day was reasonable.

The original data consist of P = 49 (with P defined as in Section 3) differ-
ent signals including internal and external covariates. External covariates are those
generated by an independent process that can influence (accelerate or decelerate)
the degradation state, such as environmental covariates (humidity, wind speed, ex-
ternal temperature, time, etc.) and operational covariates (load). Also, external co-
variates include the nontime-varying covariates, such as turbine age in years, lo-
cation and manufacturer. Internal covariates are those relevant to estimating the
degradation process. Examples are oil temperature, gear box temperature and volt-
age. There were many missing observations in the data, resulting from the SCADA
sensors being turned off or other SCADA malfunctions. We chose 95 lifetimes that
had few missing points to minimize the bias of the SCADA malfunctions, though
since we averaged data over each day, even a few hours of missing points would not
change our results very much. A “lifetime” is a time interval between the time point
at which the turbine is restarted after a work order ticket and when it fails. Thus,
there are possibly multiple lifetimes for each turbine. This implicitly models the
effect of maintenance as returning the turbine’s condition to a similar “restored”
condition at the beginning of each lifetime, though in reality we cannot always
know the state of the turbine exactly after a particular type of maintenance was
performed. We have assumed that these lifetimes are independent; if one has more
information about the state of the system after a repair, our model can be modified
to consider an initial degradation level [see Moghaddass and Rudin (2015)]. Fig-
ure 4 displays the histogram for 95 lifetimes associated with the 28 turbines (also
shown are the mean and the standard deviation of the 95 lifetimes).

In addition to the modeling efforts discussed in this work, a lot of the effort for
this project went into the derivation of appropriate features and labels. In particular,
our SCADA data do not always include an automated failure “flag” that indicates
what part of the turbine failed or whether the turbine had been shut off for reasons
other than failure (e.g., inspection). We used a separate database of “work orders”
written by the wind farm company to help us determine whether the turbine had
been shut off due to failure; however, those data were not sufficient to differen-
tiate reasons for the shut-offs or identify the particular parts of the turbines that
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FIG. 4. Histogram for the 95 lifetimes associated with the 28 turbines.

failed. As a result, we chose to predict whether any failure mode will occur, and
thus categorized the work orders into those that represented failures and those that
represented nonfailures. Table 1 provides the list of covariates we used and which
part of the turbine was measured to obtain each covariate. Since these covariates
are completely typical of data collected by SCADA systems for wind turbines, we
believe our approach could be widely applied by the wind industry.

In Figure 5, the SCADA measurements of 14 covariates for a single turbine
are plotted for a period of three months. The dotted lines in each plot represent
work order events (maintenance actions). No obvious trend can be discerned from
any individual signal. We normalized each signal to be between zero and one,
where the minimum and maximum used in the normalization were calculated over
the training set and the same values were used for the test set. This helps with
numerical stability and improves convergence speed for parameter estimation.

In addition to the features above, we added another class of features that com-
pares the signal values of each turbine to the other turbines in the wind farm. For
example, if the power output of one turbine is much lower than the average gener-

TABLE 1
Covariates selected for turbine health monitoring and the part of the turbine used to measure them

Feature name Location Feature name Location

Pitch average Rotor Bus voltage Generator
Hydraulic pressure Hydraulic Temperature transformer max Generator
Nacelle temperature Nacelle Temperature radiator 2 Generator
Ambient temperature Ambient Temperature drive end bearing Gearbox
Active power Counter Temperature nondrive end bearing Gearbox
Power loss Counter Temperature gear oil Gearbox
Temperature generator windings avg Generator Generator speed Generator
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FIG. 5. Original feature values displayed for a period of 3 months for a sample turbine. The dotted
vertical lines in each plot represent work order events (maintenance actions).

ated power of the other turbines, it could be an indication of a mechanical problem
and a precursor to failure. One class of features (denoted by M1) is the differences
in percentile value of each signal from the median among other turbines within
the wind farm. That is, we subtracted 0.5 from the normalized rank and took the
absolute value to compute differences from the median. The second class of fea-
tures (denoted by M2) is the z-scores of the signal values. The formulas for these
features are given below:

M1(i, j, t) =
∣∣∣∣
∑

j ′ 1{xi,j (t)<xi,j ′ (t)}
n(t)

− 0.5
∣∣∣∣,

M2(i, j, t) =
∣∣∣∣xi,j (t) − x̄:,j (t)

sd(x:,j )(t)

∣∣∣∣, ∀(i, j, t),

where n(t) is the total number of turbines with nonnull measurements at time t ,
xi,j (t) is the j th signal value associated with the ith lifetime at time t , and x̄:,j (t)
and sd(x:,j )(t) are the average and the standard deviation of signal j collected
from all available turbines at time t , respectively.

We used cross-validation to evaluate performance. We randomly divided our
data set into five folds of equal size (19 lifetimes per fold). These sets are referred
to as Test Set 1 (TS1) through Test Set 5 (TS5) hereafter. We trained the model
with 4 folds and used the last fold for testing. This process was repeated 5 times
so that all folds were used for testing. We used Cox–Snell residuals [see, for more
details, Collett (2003)] to check if the estimated hazard functions model the set
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of turbines’ lifetimes adequately. If the model fits the data well, the Cox–Snell
residuals should approximately follow a unit exponential distribution. We used
the Kolmogorov–Smirnov (K–S) test on each test fold to compare the estimated
cumulative hazard function (Cox–Snell residuals) with the exponential distribution
with mean 1. Since all calculated p-values of the associated K–S test for the 5 folds
are large (i.e., 0.14, 0.26, 0.30, 0.31, 0.19), we do not reject the hypothesis that the
model fits the data well. We should point out that the power of the test increases
rapidly away from a unit exponential distribution with 19 lifetimes, which indicates
that the K–S test results are reasonable.

5.1. Interpretability. In Figure 6, the estimated hazard function and its sepa-
ration into μ and g are shown for eight lifetimes in the first test set. The model
was trained on 76 lifetimes, using 0.1 for both regularization constants; the reg-
ularization constant was found via a validation set of 19 training lifetimes. The
interesting feature of Figure 6 is that it shows a clear separation between internal
and external effects, where some of the lifetimes are driven mainly by the μ term,
others by the g term, and some by both terms. Some of these effects may be at-
tributed to regularization, but not all. This means that some of the lifetimes may
have been more robust than others to external factors. The increased robustness
could be because the equipment is in a better mechanical state and/or it is possible

FIG. 6. Estimated λ (solid lines), μ (dashed-star lines) and g (dashed-circle lines) for eight life-
times in Test Set No. 1.
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that the external effects are mitigated due to the physical location of the turbine
during that lifetime. These possibilities may be explored further by the wind tur-
bine company, who may better be able to understand the cause of the failures of
the turbines and to use this information for planning (locations of future turbines,
maintenance policies, replacement policies, etc.).

5.2. Examining the hazard rate at the point of failure. We wanted to know
whether the hazard rates were high at the times when the turbines actually failed.
We used rank statistics to do this. In particular, for each lifetime, we evaluated the
hazard rank percentile when it failed. That is, we took each lifetime of length (Ti)
and considered it a part of a cohort of all other lifetimes equal to or exceeding Ti .
Then at time Ti , we calculated the rank percentile of the turbine that failed, which
is the fraction of turbines whose hazard rate was lower. The higher the percentiles,
the better our prediction method performed in terms of distinguishing failures from
nonfailures.

Figure 7(a) presents the hazard rank percentile for all turbines in the five test sets
(TS1–TS5) for one day and one week before failure. Figure 7(b) shows the same
information, but in the form of box plots. It can be observed from these figures
that the hazard percentile of the failed turbine is generally higher than those of the
other operating turbines with the same age. This is particularly true one day before
the turbine fails, but even one week before failure, the hazard rank percentile of
many turbines is still high, with the median percentile rank well above 50. This
indicates that our model is performing well.

FIG. 7. (a) Hazard rank percentile for the five test sets, with each point representing the percentile
rank of one turbine relative to all working turbines with the values sorted by the percentile rank one
day before failure and (b) the box plots for the rank percentile for the five test sets; the first box
plot in each test set is for 1 day before failure. The dashed horizontal lines are located at the 50th
percentiles. In all test sets, most of the rank percentile distribution is above the 50th percentile.
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5.3. Comparison between our model and the Cox proportional hazard model.
We compared our model with the feature-based time-dependent Cox proportional
hazard model (Cox PHM). We expect that the hazard rate from our model and from
the Cox PHM should be of similar accuracy; however, if our assumption is true that
the hazard rate can be split into an external and an internal vulnerability state, the
Cox PHM should not be able to predict failures in advance as accurately as our
model, which uses the internal state to make decisions rather than the total hazard.
The Cox PHM tends to be very sensitive to the covariate values at the previous
time step, making its hazard rate fluctuate and leading to possible problems with
decision-making. We used a time-dependent Cox PHM with a Weibull-based base-
line hazard function, trained on the same training sets as our model. The Weibull
distribution is the most commonly used distribution in reliability and degradation
analysis, and is often used with the Cox PHM [Boutros and Liang (2011)]. We
repeated the experiments on all 5 splits of data, tuning the regularization constant
to 0.1 through cross-validation. To compare our model with the Cox PHM, we cal-
culated the hazard rank percentiles at the failure point for both our model and for
the Cox PHM for all five test sets. We then counted the number of times in each
test set that our model gives a higher hazard rank, and then performed the sign test
to assess whether our model significantly outperformed the Cox PHM, which it
did (p-value = 0.0480). The individual hazard ranks of each lifetime using both
models are shown in Figure 8(a). In Figure 8(b), we show the box plots of rank
percentile for our model and the Cox PHM. These figures show that our method
outperformed the Cox PHM for most lifetimes and, in particular, that the vulnera-
bility levels of failed turbines were higher in our model than for the Cox PHM.

FIG. 8. Comparison between our model and Cox on the wind turbine data set, (a) hazard rank per-
centile for the five test sets, with each point representing the percentile rank of one turbine relative to
all working turbines with the values sorted by our model and (b) the box plots for the rank percentile
for the five test sets; the first box plot in each test set is for our model. The dashed horizontal lines
are located at the 50th percentiles.
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5.4. Cost-benefit analysis and decision-making. As discussed in Section 3.1,
the value of these techniques lies in their power for maintenance decisions. We
considered cost function Cd(ξ), shown in Figure 2. We let c1 and c2 denote the
unit cost of a late and early warning, respectively. We assumed that early warnings
are preferred over late warnings, that is, c1 ≥ c2. We applied the above model on
all five training sets to find the optimal threshold of d = 5 days and then calculated
the associated cost on the test sets. The summary of results is given in Table 2.
We have also reported the total cost associated with warning at the failure point,
the cost associated with the Cox PHM, and the mean and standard deviation (sd)
of each model over the five folds. We repeated this experiment on three differ-
ent combinations of c1 and c2. As c1 was increased, the costs for all models also
increased. Table 2 indicates that our model performs slightly better (across these
combinations of c1 and c2) than the Cox PHM with respect to cost; this is in ad-
dition to its distinct benefit of being more interpretable. As expected, both models
perform substantially better than warning at failure.

Figure 9 illustrates another mechanism for making decisions. It shows the trade-
off between the percentage of missing operating time and the percentage of unex-
pected failures. Here, the percentage of missing operating time is the fraction of
total potential operating time when the turbine does not operate due to early warn-
ings. The percentage of unexpected failures is the fraction of replacements that
happen as a result of late warnings. That is, it is the number of failures that happen
while the turbine is operating divided by the total number of replacements. This
trade-off is shown for the 19 lifetimes in one test set. A figure like this can be used
to determine the desired cost-benefit trade-off between early and late warnings.
Using the training data, we can then find the corresponding threshold for the haz-
ard rate to generate warnings, which depends on the cost of failure replacements

TABLE 2
Summary of results (total cost) for the warning generation process given our model and the Cox

PHM for three combinations of c1 and c2

c1 = c2 c1 = 5c2 c1 = 10c2
cost of failure cost of failure cost of failure
warning = 95 warning = 475 warning = 950

Test set Our Cox Our Cox Our Cox
No. model PHM model PHM model PHM

1 89 99 291 306 421 425
2 95 91 180 210 255 198
3 92 87 193 223 215 198
4 92 95 364 393 404 484
5 95 98 197 209 223 221

Mean (sd) 92.6 (2.51) 94.00 (5.0) 245.0 (79.8) 268.2 (80.5) 303.60 (100.7) 305.20 (138.2)
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FIG. 9. Trade-off between the percentage of missing operating time and the percentage of unex-
pected failures. This is shown over various hazard thresholds using data from one of the test sets.
Here, the percentage of missing operating time is the fraction of total potential operating time when
the turbine does not operate due to early warnings. The percentage of unexpected failures is the frac-
tion of replacements that happen as a result of late warnings. That is, it is the number of failures that
happen while the turbine is operating divided by the total number of replacements. This trade-off is
shown for the 19 lifetimes in one test set.

and the cost of nonfailure replacements. One might choose the threshold on the
hazard rate for which the long-run average unit cost of the system is minimized.

6. Numerical experiments. In this section we provide a set of numerical ex-
periments, including a simulation study and comparisons with previous models.

6.1. Simulation study. In this section we demonstrate through simulation ex-
periments (1) the motivation of this work and (2) the empirical consistency of the
parameter estimation method for recovering true parameters. In our simulation, a
single feature is used as the observable signal over time (we might consider this
variable as representing the external temperature near a wind farm). The rest of the
parameters associated with μ and g used in this example are as follows: β0 = −7,
β1 = 0.5, α0 = −14, and α1 = 5. These values were chosen so that the parameters
μ and g were different, but both would be on approximately the same scale. These
four parameters specify the internal and external effects. Therefore, the overall
hazard rate for the ith lifetime at time t is

λ
(
t |xi(1), . . . , xi(t)

) =
[ ∑
	∈{1,2,3,...,t}

exp
(−7 + 0.5xi(	)

)] + exp
(−14 + 5xi(t)

)
,

where each xi(t) ∼ N (0,1). To generate a survival time Ti for each lifetime i given
the covariate measurements, we first draw a random number v from U(0,1). The
failure time is the time point at which the conditional survival function [which can
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FIG. 10. True (solid lines) overall hazard rates (λ), internal (μ) and external (g) hazard curves
for 5 lifetimes (rows 1–5) and their estimates (dashed lines) based on parameter estimation using
N = 50 sample lifetimes.

be computed at time t as exp(− ∫ t
0 λ(u|xi(1), . . . , xi(u)) du)] equals v. We then

used N (50, 100, 200, 400, 800) simulated trajectories to estimate the parameters
of the model. In Figure 10, the true internal and external terms, and the overall
hazard rates are shown as solid lines. Their estimated values based on parameter
estimation with N = 50 sample lifetimes are shown as dashed lines. Figure 10
shows that the model was able to approximately capture both μ and g terms. In
this particular experiment, the model slightly underestimated β0 and β1, leading
to a small bias in estimates for μ and λ in all of the lifetimes. The discrepancy
between the actual and the estimated rate increases as a function of time (due to
the cumulative nature of the hazard rate).

To evaluate the efficiency of the parameter estimation method, we sampled life-
times and used our method to recover the true parameters. The simulation was re-
peated for N = 50, 100, 200, 400 and 800 lifetimes to assess the convergence rate
to the underlying true values. To assess variance, the experiment was performed
for 100 simulation runs for each choice of N . We used the squared error between
the simulated and true parameter values to evaluate the estimation results. In Fig-
ure 11, the mean estimate from the 100 runs and its 95% prediction interval (the
upper and lower bounds are denoted by UB and LB, resp.) are shown for different
values of N and the parameters of the model (α0, α1, β0, β1). Figure 11 illustrates
that the prediction intervals narrow and the estimated values converge to the true
values as N increases. Table 5 in Appendix C presents numerical values for the
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FIG. 11. The true value of each of the 4 model parameters α0, α1, β0 and β1 (solid blue lines in
the middle), the corresponding mean estimate based on 100 runs (middle dashed lines in blue) and
the 95% prediction interval (the outer two dashed lines in red), as a function of the number of sample
lifetimes N used for estimation.

mean, the standard deviation and the mean squared error of estimation over the
100 simulation runs for the various choices of N .

To demonstrate the quality of the estimation for the overall hazard rate, we
show the result of estimating λ (overall hazard rate) using N simulated lifetimes
for one randomly chosen lifetime and various N in Figure 12. We can observe

FIG. 12. Estimated results for λ = μ + g for one simulated lifetime (dashed lines). The average
percent errors for N = 50, 100, 200, 400 and 800 are 19.06%, 13.97%, 5.59%, 2.42% and 1.40%,
respectively. This figure shows that the estimation error decreases as N increases.
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that the estimated hazard rates converge to the actual hazard rate as the number of
training data used for estimation increases. However, the discrepancy between the
actual and the estimated rate goes up as a function of time (due to the cumulative
nature of the hazard rate), and this is particularly pronounced for the smaller values
of N .

6.2. Comparison with existing models. In this subsection we illustrate possi-
ble benefits of our model as compared to the models in each of the three categories
described in Section 2. The purpose is not to show that our model outperforms
previous methods with respect to the estimation of the hazard rate; here, we aim
to show that our model possesses the complexity to reproduce behavior generated
by existing approaches. We will also show that our model has some additional
benefits, such as fewer assumptions and parameters.

6.2.1. Comparison with models with degradation signals. We first show that
our model can be easily made to reproduce behaviors of other models that employ
explicit degradation signals for degradation modeling. We compare our model with
one of the recent papers in this category [Bian and Gebraeel (2013)], which em-
ploys historical and real-time signals related to environmental conditions, as well
as an observable degradation signal representing the underlying degradation pro-
cess. The model of the degradation signal denoted by si(t) corresponding to the
ith unit is expressed as

si(t) =
∫ t

0

[
αi + βiω(v)

]
dv + γiB(t),(15)

where α,β and γ are parameters of the model with normal prior distributions, ω(t)

is a deterministic environmental condition that evolves according to a sine func-
tion: ω(t) = 2 + sin(πt

12 ), and B(t) is a standard Brownian Motion process. Unlike
the assumptions for our model, Bian and Gebraeel (2013) assumed (i) a prede-
fined formula for the degradation signal itself, (ii) a predefined threshold for failure
(predict failure when s exceeds a predefined value), (iii) a known time-dependent
distribution with a sine function for the environmental condition, and (iv) a Brow-
nian noise distribution, and normal priors on all other parameters. We simulated
1000 signals (500 for training and 500 for testing) from their model, and then used
the simulated degradation signals [si(t),1 ≤ i ≤ 500] and the environmental ob-
servations to train our model. In Figure 13, three sample degradation signals and
their corresponding estimates of log(μ̂) and ĝ using our model are presented. Our
model managed to decompose the hazard rate perfectly into a monotonic latent
degradation function and a transient vulnerability rate—without needing to make
the assumptions of Bian and Gebraeel (2013) for the form of signal si . To assess
whether the trained model is useful for decision-making, we used five different
levels of leading time d (assuming c1 = c2), and calculated the warning generation
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FIG. 13. Three lifetimes of degradation signals (column 1) generated from the model of Bian and
Gebraeel (2013), and estimated log μ̂ (column 2) and ĝ from our model (column 3). (a) Degradation
signal, (1) γ = 1; (b) degradation signal, (2) γ = 5; (c) degradation signal, (3) γ = 10.

cost reduction percentage using our model with respect to warning at failure. From
Figure 14 we can observe that the cost reduction distribution mostly (though not
always) takes positive values; in particular, the medians of the cost reductions are

FIG. 14. Box plots for the cost reduction (%) using our model for three levels of noise (γ ) and five
levels of d0. (a) γ = 1, (b) γ = 5, (c) γ = 10.
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always positive and become larger as γ decreases (i.e., when there is less noise).
This figure shows that, on average, using the latent degradation state of our model
to choose warning times actually achieves reasonable performance with respect to
the warning generation process, despite the data being generated from the model
of Bian and Gebraeel (2013).

Bian and Gebraeel (2013) aimed to predict the remaining useful life, so we
used our model to do the same. We evaluated predictions at the time of the 75th
percentile of the true lifetime. We first calculated d as the remaining life at the 75th
percentile of the lifetime (we calculated this for each simulated signal). Then, using
the corresponding threshold value of d (called γd ), we calculated the warning time
(Ri,γd

) as explained in Section 3.1. This means our estimated lifetime is Ri,γd
+ d .

Then, we computed the prediction error using the relative percentage difference,
in the same way as Bian and Gebraeel (2013), which is

Prediction error = 100 × |Actual lifetime—Estimated lifetime|
Actual lifetime

.

The box plots in Figure 15 show that our model provides remaining useful life pre-
dictions that are approximately as accurate as those of Bian and Gebraeel’s [see
Figure 3 in Bian and Gebraeel (2013)]. These results indicate that our model could
potentially represent a degradation model as complex as that given by Bian and
Gebraeel (2013), using fewer parameters and without making heavy distributional
assumptions on the parameters or the structure of the degradation signal or envi-
ronmental conditions. Our model also has the advantage that it does not require a
predetermined failure threshold, making the implementation of our model easier
in real-world problems.

FIG. 15. Results (prediction errors) of remaining useful life prediction as a function of the level of
noise γ . These were evaluated at the 75th percentile of the true lifetime (given that the true remaining
useful life is known).
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6.2.2. Comparison with hazard models with time-varying covariates. We per-
formed a set of experiments on prognostic turbofan engine data from the publicly
available NASA Prognostic Data Repository [DeCastro, Litt and Frederick (2008),
Saxena et al. (2008)]. The data set, FD001, includes run-to-failure time series sig-
nals that were collected from a dynamic simulation process for 100 engines. These
represent data from a modern dual-spool, high-bypass ratio turbofan engine, which
has been the focus of many controls and diagnostics/health management studies
over the past few years [see Saxena et al. (2008) and references therein]. To gener-
ate condition monitoring features, NASA developed a comprehensive logical order
of events that is similar to that of real engines. The engine operates normally at the
start of each time series and the fault grows in magnitude until the system fails.
Each record is a 24-element vector that is a run-to-failure lifetime corresponding
to a given operation cycle. The vector consists of three values for the operational
settings and 21 values for engine performance measurements, which are averaged
over three cycles. We chose 3 cycles because it was computationally more effi-
cient to perform repeated experiments. We did a small-scale study with averaging
removed, and we also considered averaging over 2 cycles. In both cases, the re-
sults were the same as averaging over 3 cycles. All failures are caused by HPC
(High-Pressure Compressor) degradation. We randomly divided our data set into
five folds (subsets) of equal size (20 engines per fold). We trained the model with
4 folds and used the last fold for testing, where 20 engines from the training set
were used as a validation set to fit the regularization constant. This process was
repeated 5 times so that all folds were used for testing.

An interesting observation made from the trained models is that the latent state
hazard rate (μ) dominates the transient hazard term (g), which means that failures
are mainly the result of soft degradation. This is consistent with the procedure by
which these data were generated (i.e., all failures are due to soft degradation) as
described by Saxena et al. (2008). The trained models suggest that the hazard rate
is very low during the early life of the engines but increases significantly during
the last 10% of the lifetimes. We have also observed that the hazard rate of each
engine has some significant jumps during its lifetime, which can potentially be
an indication of different damage levels. We present an assessment of the failure
prediction ability of our model. We calculated the hazard rank percentile at the
failure points and 10 cycles before failure for all engines in the 5 test sets. Results
reported in Table 3 show that our method performed well on all test sets, that
is, at almost all cases the hazard rank at the failure point and the hazard rank at
10 cycles before the failure point were higher than those of other engines with
longer lifetimes. Our model and the Cox PHM performed comparably on all test
sets.

To demonstrate the potential of using our model for warning generation, we
applied the model to all 5 splits of training data to find the optimal threshold when
d = 5 cycles and then calculated the associated cost on the test sets. The summary
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TABLE 3
Summary of the hazard rank percentile on the turbofan data set (TS1–TS5) given by our model and

the Cox PHM calculated at 1 and 10 cycles before failure

1 cycle before failure 10 cycles before failure

Test set No. Our model Cox PHM Our model Cox PHM

TS1 99.4 100.00 91.0 86.4
TS2 97.9 100.0 79.8 86.1
TS3 99.3 99.7 74.0 78.9
TS4 98.5 99.3 84.8 85.9
TS5 99.5 100.0 90.0 92.8

Mean (sd) over 5 folds 98.9 (0.6) 99.8 (0.3) 84 (7.1) 86 (4.9)

of results given in Table 4 and Figure 16 indicates that our model, as expected,
performs better than warning at failure. Compared to the Cox PHM, although the
differences between the two models may not be significantly different, our model
generally tends to result in a lower average cost and standard deviation than the
Cox PHM.

The remaining cycles to failure calculated at the suggested warning times given
by our model and the Cox PHM for the 20 engines in the first training set are
shown in Figure 17. It can be seen from this figure that the remaining cycles to
failure at the warning point given by our model are closer to the desired one, which
is 5 cycles. The Cox PHM had some predictions that were very poor, where the
warning time was much too early. This is due to problems with robustness of the

TABLE 4
Summary of results (total cost for warning generation on turbofan data set) given by our model and

the Cox PHM for three combinations of c1 and c2

c1 = c2 c1 = 5c2 c1 = 10c2
cost of failure cost of failure cost of failure
warning = 100 warning = 500 warning = 1000

Set Our Cox Our Cox Our Cox
No. model PHM model PHM model PHM

TS1 31 33 73 76 102 223
TS2 27 30 64 70 88 77
TS3 37 72 51 174 76 254
TS4 44 41 81 87 103 87
TS5 32 32 80 72 100 97

Mean (sd)
over 5
folds 34.20 (6.5) 41.60 (17.5) 69.80 (12.5) 95.80 (44.2) 93.80 (11.6) 147.60 (84.0)
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FIG. 16. Total cost for warning generation on the turbofan data set (TS1–TS5) given by our model
and the Cox PHM for three combinations of c1 and c2. The mean and standard deviation (sd) of the
total cost for our model for the three cases of c1 = c2, c1 = 5c2 and c1 = 10c2 are 34.20 (6.5), 69.80
(12.5) and 93.8 (11.6), respectively. The mean and standard deviation (sd) of the total cost in the Cox
PHM model for the three cases of c1 = c2, c1 = 5c2 and c1 = 10c2 are 41.6 (17.5), 95.80 (44.2) and
147.6 (84), respectively. (a) c1 = c2, (b) c1 = 5c2, (c) c1 = 10c2.

Cox PHM that our model does not generally have due to its natural regularization
resulting from the use of the internal state. As shown in Figure 18, our model is
more robust with respect to changes in covariates, which leads to better decision-
making.

FIG. 17. The remaining cycles to failure calculated at warning points from our model and the Cox
PHM. Ideally, the warning should be issued as close as possible to 5 cycles before failure (dashed
line). The suggested warning times for Engines 2, 5 and 9 are too early using the Cox PHM. For
instance, for Engine 2, the Cox PHM model issued a warning over 53 cycles too early, whereas our
model issued a warning that was near the ideal of 5 cycles before failure.
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FIG. 18. Sample estimated log of the hazard rates from our model (solid lines) and the Cox PHM
(dashed lines).

6.2.3. Comparison with partially-observed degradation models. We com-
pared our model with one of the recent models in the literature [Ghasemi, Yacout
and Ouali (2010)], which used a discrete, hidden multistate stochastic process for
degradation modeling. The degradation process Z(t) is assumed to be a three-state
Markov process with a transition matrix P. The states are only indirectly observ-
able through condition monitoring. The output of condition monitoring at time t ,
denoted by yt , is one of five possible values, and yt is stochastically related to the
actual level of degradation. This stochastic relationship is represented by matrix
Q = [qj,i], where qj,i is the probability of getting the ith output (i ∈ {1,2, . . . ,5})
while the system is in degradation state j , j ∈ {1,2,3}. From the degradation state,
failures are generated according to a time-dependent proportional hazard model.
The hazard function is

λ
(
t,Z(t)

) = ζ

η

(
t

η

)ζ−1

exp
(
γZ(t)

)
,

where ζ and η are the scale and shape parameters associated with a Weibull base-
line and γ is the regression coefficient. The parameters used in our analysis are
given in Appendix D. We simulated 1000 lifetimes based on this model, 500 for
training and 500 for testing. We used log(t) and yt as our covariates. We com-
pared the cost reduction of using our model with that of the model of Ghasemi,
Yacout and Ouali (2010) over multiple combinations of d and c1/c2. Figure 19
shows that (i) as c1/c2 increases, there is more cost reduction for both models
and (ii) our model has very similar performance to that of Ghasemi, Yacout and
Ouali (2010). Our model has the benefits that it has fewer parameters, and training
our model is computationally less expensive. Our model has only 5 parameters
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FIG. 19. Cost reduction comparison between (a.1)–(a.3) our model and (b.1)–(b.3) hidden multi-
state models for three values of c1/c2. The upper plots are similar to their corresponding lower plots.
The same trends are visible within each upper plot and lower plot.

(α0, α1, α2, β0, β1, β2), but the hidden Markov process described here has 27 pa-
rameters (9 for P3×3, 15 for Q3×5 and 3 for η, ζ and γ ).

7. Concluding remarks. We presented a method for separating the latent in-
ternal hazard rate from the temporary hazard due to external sources. We showed
that the method has some major advantages over the Cox proportional hazard
model, in that it can encode the full history of the turbine within the estimated
degradation state in a natural way that the Cox PHM cannot. Further, because the
latent degradation state is estimated, it can be used for making maintenance de-
cisions. There are many possible extensions and uses for this model. Although
we designed the model for predictive maintenance at wind farms, it can be used
for any type of equipment failure prediction, health condition maintenance and in
many other application domains (e.g., healthcare). It is also possible that additional
prior knowledge is available about the influence of the external factors on the la-
tent state, which can be incorporated in an extended version of the model. In cases
where self-healing is possible due to external factors, a third term (in addition to
μ and g) that reduces the hazard rate could be introduced. The latent state hazard
model has the benefit that it requires very few distributional assumptions and can
be trained in a computationally efficient way through convex optimization.

APPENDIX A: PROOF OF PROPOSITION 1

The proof relies on the fact that the composition of convex functions is convex,
as follows.
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LEMMA 1. Composition rule for convex functions. Suppose

f (x) = h
(
ω1(x),ω2(x), . . . ,ωk(x)

)
,

where h : Rk → R is convex, and ω : Rn → R. The function f is convex if one of
the following holds:

• h is nondecreasing in the ith argument, and ωi is convex.
• h is nonincreasing in the ith argument, and ωi is concave.

PROOF OF PROPOSITION 1. It is sufficient to prove that

Hi,j (θ) = − log
(
yi,j + (1 − 2yi,j ) exp

(−λ
(
j |xh

i (j)
)))

is convex in θ for all (i, j), based on the fact that the sum of convex functions is
also convex. Now, if yi,j = 0, then

Hi,j (θ) = λ
(
j |xh

i (j)
)
,

which is convex in θ due to the fact that the sum of two convex functions μ(t |xh
i (t))

and g(t |xi (t)) is convex. Recall that g(t |xi (t)) is the exponential of an affine func-
tion and μ(t |xh

i (t)) is a sum of exponentials of affine functions, which are both
convex in θ . If yi,j = 1, then

Hi,j (θ) = − log
(
1 − exp

(−λ
(
j |xh

i (j)
)))

.

We will invoke Lemma 1. Since − log(·) is nonincreasing, we have that − logf (·)
is convex if f is concave and positive. That is, Hi,j (θ) for yi,j = 1 is convex
only if (1 − exp(−λ(j |xh

i (j)))) is concave and positive. Now, since the haz-
ard rate is always nonnegative by its definition, then λ(j |xh

i (j)) > 0 and,thus,
exp(−λ(j |xh

i (j))) < 1, so

(
1 − exp

(−λ
(
j |xh

i (j)
)))

> 0.

Also, since λ(j |xh
i (j)) is convex in θ (i.e., the sum of two convex functions of μ

and g is also convex), then (1 − exp(−λ(j |xh
i ))) is concave in θ . We can conclude

that for yi,j = 1, Hi,j (θ) is convex in θ . We now have that Hi,j (θ) is convex
in θ for all (i, j). Also, note that the 	2 regularization term is strictly convex and,
therefore,

WN(θ |X) = − logLN(θ |X) + C1‖α‖2
2 + C2‖β‖2

2

is strictly convex. �
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APPENDIX B: ASYMPTOTIC PROPERTIES

To our knowledge, no work on AMMHM has studied asymptotic properties for
a class of models that includes ours. Thus, we prove basic asymptotic properties
of the maximum likelihood estimators of the parameters of our model here. There
are regularity conditions for the maximum likelihood estimate that can guarantee
consistency and asymptotic normality [Lehmann and Casella (1998)]. We verify
these regularity conditions for our model. Similar analysis was done in Rashid
and Shifa (2009) for the logistic regression model. Let Xi,1 ≤ i ≤ N be i.i.d.
random variables with a p.d.f. f (θ ,Xi) that depends on parameters θ ∈ � ⊆ R

p .
The regularity conditions are as follows:

(C0) The distributions f (θ ,X) of the observations are distinct (otherwise, θ

cannot be estimated consistently).
(C1) The distributions f (θ ,X) have common support.
(C2) The random variables are X = (X1, . . . ,XN), where the Xi’s are i.i.d.

with probability density f (θ ,Xi) with respect to probability measure μ.
(C3) There exists an open subset ω of � containing the true parameter point

θ0 such that for almost all x the density f (θ,X) admits all third derivatives
( ∂3

∂θk∂θj ∂θz
f (θ ,X)) for all θ ∈ ω.

(C4) The first and second logarithmic derivatives of f (θ ,X) satisfy the equa-
tions

E

[
∂

∂θk

logf (θ ,X)

]
= 0 ∀k,(16)

Ijk(θ) = E

[
∂

∂θj

logf (θ ,X)
∂

∂θk

logf (θ ,X)

]
(17)

= E

[
− ∂2

∂θj ∂θk

logf (θ,X)

]
∀j, k.

(C5) Since the p ×p matrix I(θ) is a covariance matrix, it is positive semidefi-
nite. We shall assume that the Ij,k(θ)′s are finite and that the matrix I(θ) is positive
definite for all θ in ω, and hence that the statistics

∂

∂1
logf (θ,X), . . . ,

∂

∂p

logf (θ ,X)

are affinely independent with probability 1.
(C6) Finally, we will assume that there exists function Mk,m,z such that

∣∣∣∣ ∂∂3

∂θk ∂θm ∂θz

logf (θ ,X)

∣∣∣∣ ≤ Mk,m,z(X) for all θ ∈ ω,

where mk,m,z = E[Mk,m,z(X)] < ∞ for all k,m, z.



THE LATENT STATE HAZARD MODEL 1855

If the above assumptions are satisfied, the following theorem obtained from
Lehmann and Casella (1998) can be used for the asymptotic properties of the max-
imum likelihood estimator.

THEOREM 2. Let X1, . . . ,XN be i.i.d. each with a density f (θ ,X), with
bounded θ and X, which satisfies (C0)–(C6). Then with probability tending to 1
as N tends to infinity, there exist solutions θ̂N = (θ̂N,1, . . . , θ̂N,p) of the likelihood
equations such that:

(i) θ̂N,j is consistent for estimating θj ,
(ii)

√
N(θ̂N − θ0) is asymptotically normal with (vector) mean zero and co-

variance matrix [I(θ)]−1, and
(iii) θ̂N,j is asymptotically efficient in the sense that its variance attains the

Cramér–Rao lower bound as N goes to infinity.

The following theorem states that the regularity conditions are satisfied in our
model. Here, f (θ ,X) should be replaced with the likelihood probability given in
equation (6).

THEOREM 3. Let X = (Xi, Ti),1 ≤ i ≤ N , be i.i.d. with the likelihood func-
tion LN(θ |X) given in equation (6) with independent parameter set θ ∈ �, |α| <

M , and |β| < M , where M is a finite positive constant independent of N . Then,
the regularity conditions (C0), . . . ,(C6) are satisfied for this model.

PROOF. Each regularity condition is verified separately as follows:

(C0) The condition (C0), also called identifiability, refers to the fact that the
true but unknown parameters of the model (θ0) should be identified (estimable).
The parameters θ are identified if for any parameter vector θ ′ (θ ′ �= θ0), for some
X, LN(θ ′|X) �= LN(θ0,X). The log-likelihood of our model is an additive multi-
index model, which is a linear combination of nonlinear transformations of a linear
combination of explanatory variables. Since the parameter space is convex and
the regularized log-likelihood function is strictly convex, then the solution of the
maximum likelihood problem is unique and, therefore, the true parameter set θ0 is
identified.

(C1) To show that all distributions Pθ have common support, we can prove
without loss of generality that the set A = {x|LN(θ |X) > 0} is independent of θ .
For the probability distribution of our model, since |αi | < M , |βi | < M , and feature
values are also bounded, then LN(θ |X) is always greater than zero [i.e., the two
elements of the likelihood function given in equation (6) are greater than zero
regardless of θ ]. The only exception is when all feature values are 0, which would
make the likelihood 0 regardless of θ .
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(C2) This condition is one of the assumptions of the model whereby unit life-
times are assumed to be i.i.d. with probability distribution generated from the haz-
ard rate function given in equations (1). Thus, condition (C2) is satisfied.

(C3) As the log-likelihood function is a linear combination of other nonlinear
functions for each (i, j), it is sufficient to prove that the third derivative exists for
each choice of (i, j) with respect to θ . It is easy to show that the third derivative
of each observation in LN(θ |X) exists if the first, second and the third derivatives
of λ(j |xh

i (j)) exist for all (i, j). Since λ = μ + g, then we can show that condi-
tion (C3) is met if the first, second, and the third derivative of μ and g exists for
all θ ∈ ω. Now, we can show that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂λ(j |xh
i (j))

∂αk

= xi,k(j) exp
(
α�xi (j)

)
,

∂2λ(j |xh
i (j))

∂αk ∂αm

= xi,k(j)xi,m(j) exp
(
α�xi (j)

)
,

∂3λ(j |xh
i (j))

∂αk ∂αm ∂αz

= xi,k(j)xi,m(j)xi,z(j) exp
(
α�xi (j)

)
,

(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂λ(j |xh
i (j))

∂βk

=
j∑

l=1

xi,k(l) exp
(
β�xi (l)

)
,

∂2λ(j |xh
i (j))

∂βk ∂βm

=
j∑

l=1

xi,k(l)xi,m(l) exp
(
β�xi (l)

)
,

∂3λ(j |xh
i (j))

∂βk ∂βm ∂βz

=
j∑

l=1

xi,k(l)xi,m(l)xi,z(l) exp
(
β�xi (l)

)
.

(19)

Since all of the above derivatives exist for all θ (given that θ and X are bounded),
then (C3) is satisfied for our model.

(C4) This condition shows two properties of the score function and the Hessian
matrix of the log-likelihood function. To verify these relationships, we first rewrite
the first derivative of the log-likelihood function in terms of a sum over time u =
1, . . . ,max{T1, . . . , TN } using equation (10) as

∂

∂θk

(
logLN(θ |X)

)

= ∑
u

∑
i

−Yi(u − 1)(1 − 2yi,u)
exp(−λ(u|xh

i (u)))

yi,u + (1 − 2yi,u) exp(−λ(u|xh
i (u)))

(20)

× ∂λ(u|xh
i (u))

∂θk

,

where u’s are the time points and Yi(u − 1) is a binary indicator function being
one only if unit i has survived until time point u− 1. This allows the sum over u to
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range over all time instead of only until the failure times as in equation (10). The
term E[ ∂

∂θk
(logLN(θ |X))] can now be calculated as

E

[
∂

∂θk

(
logLN(θ |X)

)]

= ∑
u

∑
i

E(21)

×
[
−Yi(u − 1)

(1 − 2yi,u) exp(−λ(u|xh
i (u)))

yi,u + (1 − 2yi,u) exp(−λ(j |xh
i (u)))

∂λ(u|xh
i (u))

∂θk

]
︸ ︷︷ ︸

F(i,u,k)

.

So, if Yi(u − 1) is zero, the internal quantity is zero. Otherwise, we can expand
yi,u based on the two possibilities of (1) failure within the next interval (u − 1, u)

with the probability of (1 − exp(−λ(u|xh
i (u)))), and (2) survival within the next

interval with the probability of (exp(−λ(u|xh
i (u)))). Considering the interior of

equation (21), we have

E
(
F(i, u, k)

)

= −Yi(u − 1)E

[
∂λ(u|xh

i (u))

∂θk

× (
exp

(−λ
(
u|xh

i (u)
)))

(22)

− exp(−λ(u|xh
i (u)))

1 − exp(−λ(j |xh
i (u)))

∂λ(u|xh
i (u))

∂θk

× (
1 − exp

(−λ
(
u|xh

i (u)
)))]

= −Yi(u − 1) × 0 = 0,

which proves equation (16) in (C4). We use a similar approach to prove equa-
tion (17). The left-hand side of equation (17) can be calculated as

E

[∑
u

∑
u′

∑
i

∑
i′

F(i, u, k) × F
(
i ′, u′,m

)]

= E

[∑
u

∑
i

F (i, u, k) × F(i, u,m)

]

+E

[∑
u

∑
i

∑
i′ �=i

F (i, u, k) × F
(
i ′, u,m

)]
(23)

+E

[∑
u

∑
u′ �=u

∑
i

F (i, u, k) × F
(
i, u′,m

)]

+E

[∑
u

∑
u′ �=u

∑
i

∑
i′ �=i

F (i, u, k) × F
(
i, u′,m

)]
.
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The first part of the above equation can be rewritten using equation (21) as∑
u

∑
i

E
[
F(i, u, k) × F(i, u,m)

]

= ∑
u

∑
i

E

[
Yi(u − 1)2

(
exp(−λ(u|xh

i (u)))

yi,u + (1 − 2yi,u) exp(−λ(j |xh
i (u)))

)2

× ∂λ(u|xh
i (u))

∂θk

∂λ(u|xh
i (u))

∂θm

]

= ∑
u

∑
i

Yi(u − 1)2 ∂λ(u|xh
i (u))

∂θk

∂λ(u|xh
i (u))

∂θm

(24)

×
[
1 × exp

(−λ
(
u|xh

i (u)
)) +

(
exp(−λ(u|xh

i (u)))

1 − exp(−λ(j |xh
i (u)))

)2

× (
1 − exp

(−λ
(
u|xh

i (u)
)))]

= ∑
u

∑
i

Yi(u − 1)2 ∂λ(u|xh
i (u))

∂θk

∂λ(u|xh
i (u))

∂θm

×
(

exp(−λ(u|xh
i (u)))

1 − exp(−λ(j |xh
i (u)))

)
.

In an analogous way, we can prove that the second element of equation (23) equals
zero. The third element of equation (23) is the sum of two zero terms as follows:

E

[∑
u

∑
u′ �=u

∑
i

F (i, u, k) × F
(
i, u′,m

)]

= E

[∑
u

∑
u′<u

∑
i

F (i, u, k) × F
(
i, u′,m

)]

+E

[∑
u

∑
u′>u

∑
i

F (i, u, k) × F
(
i, u′,m

)]
(25)

=
[ ∑
u′<u

∑
u

∑
i

F
(
i, u′,m

) ×E
[
F(i, u, k)

]
︸ ︷︷ ︸

0

]

+
[ ∑
u<u′

∑
u

∑
i

F (i, u, k) ×E
[
F

(
i, u′,m

)]
︸ ︷︷ ︸

0

]
= 0,

where we used equation (22). In an analogous way, we can prove that the last
element of equation (23) equals zero. Now, from equations (23), (24) and (25), we
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can conclude that

E

[∑
u

∑
u′

∑
i

∑
i′

F(i, u, k) × F
(
i ′, u′,m

)] = E

[∑
u

∑
i

F (i, u, k) × F(i, u,m)

]
.

We have finished simplifying the left-hand side of equation (17). The right-hand
side of equation (17), which equals the expected value of the negative of the Hes-
sian matrix of logLN(θ |X), can be rewritten as follows:

E
[− ∂2

∂θk ∂θm

logLN(θ|X)
]

= ∑
u

∑
i

E

[
Yi(u − 1)

(
(1 − 2yi,u)

exp(−λ(u|xh
i (u)))

yi,u + (1 − 2yi,u) exp(−λ(u|xh
i (u)))

)
(26)

×
(

∂2λ(u|xh
i (u))

∂θk ∂θm

−
∂λ(u|xh

i (u))

∂θk
× ∂λ(u|xh

i (u))

∂θm
× yi,u

yi,u + (1 − 2yi,u) exp(−λ(u|xh
i (u)))

)]
.

Pulling the expectation into the sum and separating cases where yi,u = 1 from
yi,u = 0, we can simplify equation (26) as

E

[
− ∂2

∂θk ∂θm

logLN(θ |X)

]

= ∑
u

∑
i

Yi(u − 1)

[(
∂2λ(u|xh

i (u))

∂θk ∂θm

)
exp

(−λ
(
u|xh

i (u)
))

− exp(−λ(u|xh
i (u)))

1 − exp(−λ(u|xh
i (u)))

(27)

×
(

∂2λ(u|xh
i (u))

∂θk ∂θm

−
∂λ(u|xh

i (u))

∂θk
× ∂λ(u|xh

i (u))

∂θm

1 − exp(−λ(u|xh
i (u)))

)(
1 − exp

(−λ
(
u|xh

i (u)
)))]

= ∑
u

∑
i

Yi(u − 1)
∂λ(u|xh

i (u))

∂θk

∂λ(u|xh
i (u))

∂m

×
(

exp(−λ(u|xh
i (u)))

1 − exp(−λ(j |xh
i (u)))

)
.

Since the last term in equation (27) is equivalent to the last term in equation (24),
and equations (27) and (24) are, respectively, the right- and left-hand sides of equa-
tion (17), we can conclude that equation (17) is satisfied.

(C5) This condition is satisfied since we proved earlier that the log-likelihood
is strictly convex and, therefore, I(θ) (which is the negative of the Hessian matrix)
is positive definite and Ik,m(θ) is finite for all k and m.

(C6) To show that (C6) holds true, we need to show that the third derivatives
are absolutely bounded. We first show that there exits a positive real number M
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such that∣∣∣∣ ∂∂3

∂θk ∂θm ∂θz

logLN(θ |X)

∣∣∣∣ ≤ ∑
i

∑
j

∣∣xi,k(j)
∣∣∣∣xi,m(j)

∣∣∣∣xi,z(j)
∣∣M
for all θ ∈ ω.

Since α,β and X are all bounded, we can assume that there exists a positive real
number M1 such that exp(α�X) < M1 and exp(β�X) < M1 for all X. As a
result, we can conclude using equations (18)–(19) that

∂3λ(j |xh
i (j))

∂θk ∂θm ∂θz

≤
j∑

l=1

∣∣xi,k(l)
∣∣∣∣xi,m(l)

∣∣∣∣xi,z(l)
∣∣M1.

Also, as ∂∂3 logLN(θ |X)
∂θk ∂θm ∂θz

is a linear combination of some nonlinear functions all in-
cluding xi,k(j), xi,m(j) and xi,z(j), and as the sum and the product of bounded
functions are also bounded, there exits a real number M for which∣∣∣∣ ∂∂3

∂θk ∂θm ∂θz

logLN(θ |X)

∣∣∣∣ ≤ ∑
i

∑
j

∣∣xi,k(j)
∣∣∣∣xi,m(j)

∣∣∣∣xi,z(j)
∣∣M ∀θ ∈ ω.

As feature values are all bounded, then

E

[∑
i

∑
j

∣∣xi,k(j)
∣∣∣∣xi,m(j)

∣∣∣∣xi,z(j)
∣∣M

]
= ∑

i

∑
j

E
∣∣xi,k(j)xi,m(j)xi,z(j)

∣∣M
< ∞,

which can be used to prove that (C6) is satisfied. These theorems together provide
an immediate proof for Theorem 1. �

APPENDIX C: TABLE OF RESULTS FOR SIMULATION STUDY

TABLE 5
Table of results for simulation study—[mean, standard deviation (sd) and mean squared error

(MSE)] for 5 values of N

Parameters β0 α0 β1 α1

True values −7 −14 0.5 5

N (Mean, sd, MSE)

50 (−7.19,0.39,0.19) (−15.17,4.68,23.27) (0.46,0.69,0.48) (5.39,1.75,3.22)

100 (−7.13,0.26,0.08) (−14.45,2.52,6.54) (0.45,0.59,0.36) (5.15,0.87,0.77)

200 (−7.05,0.18,0.03) (−14.54,1.53,2.64) (0.49,0.36,0.13) (5.19,0.54,0.32)

400 (−7.00,0.12,0.02) (−14.26,0.94,0.95) (0.44,0.27,0.08) (5.09,0.32,0.11)

800 (−7.01,0.09,0.01) (−14.05,0.66,0.44) (0.49,0.19,0.04) (5.02,0.23,0.05)



THE LATENT STATE HAZARD MODEL 1861

APPENDIX D: INPUT PARAMETERS OF HMM USED IN SECTION 6.2.3

P =
⎡
⎣ 0.9 0.09 0.01

0 0.87 0.13
0 0 1

⎤
⎦ , Q =

⎡
⎣ 0.6 0.3 0.05 0.05 0

0.1 0.2 0.4 0.2 0.1
0 0.05 0.05 0.3 0.6

⎤
⎦ ,

ζ = 20, η = 4.5, and γ = 1.4.

Acknowledgments. We would like to thank the Accenture—MIT Alliance for
funding this work and ENEL for providing the data. We would specifically like to
thank Giuseppe Panunzio, Cristian Corbetti, Andrew Fano and Thania Villatoro
from Accenture. We would also like to thank Şeyda Ertekin and Ken Cohn for
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SUPPLEMENTARY MATERIAL

Supplementary material for “The latent state hazard model, with applica-
tion to wind turbine reliability” (DOI: 10.1214/15-AOAS859SUPP; .pdf). The
supplementary material includes three sections: A: Interpretation of the model;
B: Notes on the relativity assumption, and Supplement; and C: Making the coeffi-
cients interpretable.
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