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VERTEX NOMINATION SCHEMES FOR
MEMBERSHIP PREDICTION1

BY D. E. FISHKIND, V. LYZINSKI, H. PAO, L. CHEN AND C. E. PRIEBE

Johns Hopkins University

Suppose that a graph is realized from a stochastic block model where
one of the blocks is of interest, but many or all of the vertices’ block labels
are unobserved. The task is to order the vertices with unobserved block labels
into a “nomination list” such that, with high probability, vertices from the in-
teresting block are concentrated near the list’s beginning. We propose several
vertex nomination schemes. Our basic—but principled—setting and develop-
ment yields a best nomination scheme (which is a Bayes–Optimal analogue),
and also a likelihood maximization nomination scheme that is practical to
implement when there are a thousand vertices, and which is empirically near-
optimal when the number of vertices is small enough to allow comparison to
the best nomination scheme. We then illustrate the robustness of the likeli-
hood maximization nomination scheme to the modeling challenges inherent
in real data, using examples which include a social network involving human
trafficking, the Enron Graph, a worm brain connectome and a political blog
network.

1. Article overview. In a stochastic block model, the vertices of the graph are
partitioned into blocks, and the existence/nonexistence of an edge between any
pair of vertices is an independent Bernoulli trial, with the Bernoulli parameter be-
ing a function of the block memberships of the pair of vertices. We are concerned
here with a graph realized from a stochastic block model such that many or all of
the vertices’ block labels are hidden (i.e., unobserved). Suppose that one partic-
ular block is of interest, and the task is to order the vertices with a hidden block
label into a “nomination list” with the goal of having vertices from the interest-
ing block concentrated near the beginning of the list. Forming such a nomination
list can be assisted by any available knowledge about the underlying model pa-
rameters, as well as by utilizing knowledge of block membership for any of the
vertices for which such block labels are observed. A vertex nomination scheme is
a function that, to each such possible observed graph, assigns an associated nom-
ination list. In this paper we present, analyze, and illustrate the effectiveness of
several vertex nomination schemes. Some of these vertex nomination schemes uti-
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lize graph matching and spectral partitioning machinery. See Coppersmith (2014),
Coppersmith and Priebe (2012) and Lee and Priebe (2012) for recent work on
vertex nomination, as well as a survey of closely related problems.

One illustrative example of vertex nomination would be a social network with
vertices representing people, some of whom are engaged in human trafficking, the
rest of whom are not engaged in human trafficking, and with edges representing
a working relationship between the individuals. Law enforcement may have as a
priority separating human trafficking from mundane sex work, because not all ille-
gal acts represent the same level of overall coercion. If several of these people are
known to law enforcement as human traffickers, several are known to law enforce-
ment to not be human traffickers, and there are very limited resources to scrutinize
the remainder as yet ambiguous people to see if they are human traffickers, then a
task would be to use the available information and the adjacencies so as to order
the as yet ambiguous vertices into a nomination list that would prioritize these ver-
tices for this further scrutiny through other investigative means. In particular, the
nomination task here is a task which is not simply classification—it is prioritiza-
tion. Later, in Section 9, we highlight a much more elaborate real-data application
of vertex nomination in a social network involving actual human trafficking.

In Section 2 we formally and carefully define the setting and the concept of a
vertex nomination scheme. Although prioritization is a ubiquitous need that can
be treated in an ad hoc fashion specific to individual applications, we here for-
mally set the problem in the stochastic block model setting, which has gained so
much popularity in recent literature [e.g., see Airoldi et al. (2009), Bickel and Chen
(2009), Nowicki and Snijders (2001)] and is a useful model for real data. This for-
mal setting will be useful for principled development of techniques that have solid
theoretical foundations and are also robust to the modeling challenges inherent in
real data.

In Section 3 we introduce the canonical vertex nomination scheme. It is anal-
ogous to the Bayes classifier in the setting of classification. Indeed, we prove in
Proposition 1 that the canonical vertex nomination scheme is at least as effective
as every other vertex nomination scheme, and it thus serves the valuable role of
a “gold standard” with which to gauge the success of other vertex nomination
schemes. However, it is computationally practical to implement only when there
are on the order of a very few tens of vertices.

In Section 4 we introduce the likelihood maximization vertex nomination
scheme, which fundamentally utilizes graph matching machinery. The graph
matching problem is to find a bijection between the vertex sets of two graphs that
minimizes the number of induced adjacency disagreements; there is a vast litera-
ture dedicated to this problem, for example, see the article Thirty Years of Graph
Matching in Pattern Recognition [Conte et al. (2004)] for an excellent survey. Al-
though graph matching is intractable in theory, there have been recent advances in
approximate graph matching algorithms that are both tractable and effective; for
example, see Lyzinski, Fishkind and Priebe (2014), Vogelstein et al. (2015) and
Zaslavskiy, Bach and Vert (2009). In particular, the very recent SGM algorithm of
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Lyzinski, Fishkind and Priebe (2014) has been shown in Lyzinski et al. (2015b)
to be theoretically and practically superior to convex relaxation approaches. Us-
ing the SGM algorithm of Lyzinski, Fishkind and Priebe (2014) for approximate
graph matching, the likelihood maximization vertex nomination scheme is practi-
cal to implement for on the order of 1000 vertices. In Sections 8.1, 8.2 and 8.3, we
illustrate the robustness of the likelihood maximization vertex nomination scheme
to the model misspecifications inherent in real data. Furthermore, we demonstrate
in Section 7 that likelihood maximization performs nearly as well as the canoni-
cal “gold standard”—on graphs that have few enough vertices so that canonical is
indeed computable.

In Section 5 we introduce the spectral partitioning vertex nomination scheme;
it is practical to implement for tens of thousands of vertices or more. Based on the
results in Sussman et al. (2012) and Fishkind et al. (2013), then followed up in
Lyzinski et al. (2014b), the spectral partitioning vertex nomination scheme nomi-
nates perfectly as the number of vertices goes to infinity, under mild conditions.

In Section 7 we perform illustrative simulations at three different scales, that is,
a “small scale” experiment with ten ambiguous vertices, a “medium scale” exper-
iment with 500 ambiguous vertices, and a “large scale” experiment with 10,000
ambiguous vertices. With respect to nomination effectiveness and practicality of
implementation, the canonical vertex nomination scheme dominates at the small
scale, the likelihood maximization scheme dominates at the medium scale, and the
spectral partitioning scheme dominates at the large scale.

In Section 8.1 we illustrate our vertex nomination schemes on the “Enron
Graph,” a graph with email addresses of former employees of the failed Enron
Corporation as vertices, and edges indicating email contact between the associated
vertices over a time interval. Our vertex nomination schemes are used to nominate
higher-echelon former Enron employees. Then, in Sections 8.2 and 8.3 we illus-
trate on examples with a worm-brain connectome (to nominate motor neurons) and
a blog network (to nominate political affiliation).

In Section 9 we illustrate the impact of our vertex nomination machinery on
a real-data social network involving human trafficking. The data are associated
with the DARPA Memex and XDATA programs. We have a graph of web adver-
tisements, some of them with known association to human trafficking. Using the
machinery developed in this manuscript, we were able to nominate ambiguous ad-
vertisements for human trafficking in a manner that was operationally significant.

2. Vertex nomination schemes; setting and definition. In this article we as-
sume for simplicity that graphs are simple (i.e., edges are not directed, there are no
parallel edges and no single-edge loops), but much of what we do is generalizable.

We begin by describing the stochastic block distribution SB(K,m,n, b,�),
which will be our random graph setting; its parameters are a positive integer K

(the number of blocks), a nonnegative integer m (the number of seeds), a posi-
tive integer n (the number of ambiguous vertices), an arbitrary but fixed function
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b : {1,2, . . . ,m + n} → {1,2, . . . ,K} (the block membership function) and a sym-
metric matrix � ∈ [0,1]K×K (the adjacency probabilities). A random graph with
distribution SB(K,m,n, b,�) has the vertex set W := {1,2, . . . ,m + n} and, for
each unordered pair of distinct vertices {w,w′} ∈ (W

2

)
, w is adjacent to w′ (w ∼ w′)

according to an independent Bernoulli trial with parameter �b(w),b(w′).
The vertex set W is partitioned into two sets, the set U := {1,2, . . . ,m} (the

seeds) and the set V := {m + 1,m + 2, . . . ,m + n} (the ambiguous vertices). For
each i = 1,2, . . . ,K , define mi := |{u ∈ U : b(u) = i}| and ni := |{v ∈ V : b(v) =
i}|. The function b is only partially observed; its values are known on U , but not
on V . In other words, the block memberships of the seeds are known, and the
block memberships of the ambiguous vertices are unknown, but we will assume
for simplicity that � is known, and that n1, n2, . . . , nK are known. Given a ran-
dom graph from SB(K,m,n, b,�), the most general inferential task would be to
estimate b on W , but we will fine tune this task very soon. (Note that if � and
n1, n2, . . . , nK were not known then, if there are enough seeds, � could be ap-
proximated from edge densities of subgraphs induced by various subsets of the
seeds and, in addition, the values of n1, n2, . . . , nK might be approximated if it
just so happens to be known that they are roughly proportional to the respective
values of m1,m2, . . . ,mK . Of course, m1,m2, . . . ,mK are known by virtue of the
fact that b is known on U .)

Define � to be the set of bijective functions from W to W that fix the elements
of U ; of course, |�| = n!. Any two graphs G and H on the vertex set W are
called equivalent if G is isomorphic to H under some function ξ ∈ �; if G is
also asymmetric (i.e., its automorphism group is trivial), then such a ξ is unique
to G,H , denote it ξG,H . For any graph G on vertex set W , the equivalence class
of equivalent-to-G graphs on vertex set W will be denoted 〈G〉; in particular, 〈G〉
is an event. The set of all such equivalence classes is denoted �; the events in �

partition the sample space.
A vertex nomination scheme � is a mapping that, to each asymmetric graph

G with vertex set W , associates a linear ordering of the vertices in V —called
the nomination order, and denoted as a list (�G(1),�G(2), . . . ,�G(n))—such
that for every H equivalent to G it holds that (ξG,H (�G(1)), ξG,H (�G(2)), . . . ,

ξG,H (�G(n))) = (�H (1),�H (2), . . . ,�H (n)). In other words, and described
somewhat informally, if each equivalence class of graphs is viewed as a (sin-
gle) graph whose vertex set is comprised of labeled vertices U and unlabeled
vertices V , then to each equivalence class (i.e., partially vertex-labeled graph) �

associates a list of unlabeled vertices of V .
Note that the fraction of all graphs on vertex set W which are symmetric goes

very quickly to zero as |W | goes to infinity [Erdős and Rényi (1963), Pólya
(1937)]. Although symmetric graphs are thus negligibly many, it is helpful for
notation to extend the domain of � to include symmetric graphs, and this can be
done in many different ways. For simplicity of analysis we will simply say for
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now that, to every symmetric graph G on the vertex set W , the associated nomi-
nation list is declared to be (m + 1,m + 2, . . . ,m + n) (and we do not require the
nomination list in this case to meet the property mentioned above).

In this article, we assume that only membership in the first block is of interest;
the specific task we are concerned with is to find vertex nomination schemes under
which there will be, with high probability, an abundance of members of the first
block that are near the beginning of the nomination list. As an illustrative example
related to the Enron Graph example in Section 8.1, consider a corporation with
m + n = m1 + m2 + n1 + n2 employees, of which m1 + n1 are involved in fraud
and m2 + n2 are not involved in fraud. The probability of communication between
fraudsters is fixed, as is the probability of communication between nonfraudsters,
as is the probability of communication between any fraudster and any nonfraud-
ster. Of the m1 + n1 fraudsters, m1 have been identified as fraudsters and, among
the m2 + n2 nonfraudsters, m2 have been identified as nonfraudsters. Based on
observing all of the employee communications (together with knowledge of the
identities of m1 fraudsters and m2 nonfraudsters), we wish to draw up a nomina-
tion list of the n1 + n2 ambiguous employees so that there are many fraudsters
early in the list.

The effectiveness of a vertex nomination scheme � is quantified in the following
manner. For any graph G with vertex set W , and for any integer j such that 1 ≤
j ≤ n, the precision at depth j of � for G is defined to be |{1≤i≤j :b(�G(i))=1}|

j
; for

the corporate illustration, this represents the fraction of the first j employees on
the nomination list that are actual fraudsters in truth. The average precision of �

for G is defined to be 1
n1

∑n1
j=1

|{1≤i≤j :b(�G(i))=1}|
j

; it has a value between 0 (per
the corporate example, if none of the first n1 nominated employees are fraudsters)
and 1 (if all of the first n1 nominated employees are fraudsters). Note that the
average precision of � for G is equal to

∑n1
i=1(

1
n1

∑n1
j=i

1
j
)δb(�G(i))=1, where δ is

the usual indicator function. In particular, the average precision of � for G is a
convex combination of the indicators δb(�G(i))=1, with more weight in this convex
combination for indicators associated with lower values of i. The mean average
precision of the vertex nomination scheme � is the expected value of the average
precision for a random graph G distributed SB(K,m,n, b,�). The closer that this
number is to 1, the more effective a vertex nomination scheme � is deemed. Note
that a “chance” vertex nomination scheme would have the value n1

n
as its mean

average precision.
We point out that our definition of average precision is slightly different than a

definition commonly used in the information retrieval community; our definition
is a pure average precision, whereas the other definition is actually an integral of
the precision over recall.

3. The canonical vertex nomination scheme. In this section we define the
canonical vertex nomination scheme, which is analogous to the Bayes classifier in
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the Bayes classifier’s setting of classification. Indeed, we prove in Proposition 1
that the mean average precision of the canonical vertex nomination scheme is
greater than or equal to the mean average precision of every other vertex nomi-
nation scheme. Unfortunately, because of its computational intractability (a visi-
bly exponential runtime as the number of vertices increases), the canonical vertex
nomination scheme is only practical to implement for up to a few tens of vertices.
Nonetheless, because of Proposition 1, the canonical vertex nomination scheme
serves as a valuable “gold standard” to evaluate the performance of other more
computationally tractable vertex nomination schemes. (This is analogous to the
role of the Bayes classifier in the classification setting.) Our ongoing research seeks
to approximate the canonical vertex nomination scheme in a scalable fashion.

3.1. Definition of the scheme. Consider the random graph G distributed
SB(K,m,n, b,�). When G is asymmetric then, for any v ∈ V , the conditional
probability

P
[{

H ∈ 〈G〉 : b(
ξG,H (v)

) = 1
}|〈G〉](1)

may be described as the probability, given the event that we observe a graph equiv-
alent to G, that the vertex corresponding to v would be in the first block. The
canonical vertex nomination scheme, which we denote as �C , orders the vertices
of V as �C

G(1),�C
G(2), . . . ,�C

G(n) in decreasing order of this conditional proba-
bility; that is, we define �C so that, for all i = 1,2, . . . , n − 1,

P
[{

H ∈ 〈G〉 : b(
ξG,H

(
�C

G(i)
)) = 1

}|〈G〉]
(2)

≥ P
[{

H ∈ 〈G〉 : b(
ξG,H

(
�C

G(i + 1)
)) = 1

}|〈G〉].
To more easily compute the conditional probability in equation (1), let( V

n1,n2,...,nK

)
denote the collection of all the

( n
n1,n2,...,nk

)
partitions of the elements of

V into subsets called V1,V2, . . . , VK with respective cardinalities n1, n2, . . . , nK .
Given any such partition (V1,V2, . . . , VK) ∈ ( V

n1,n2,...,nK

)
, let us create the follow-

ing notation. For any k = 1,2, . . . ,K and � = k + 1, k + 2, . . . ,K , let ek,� denote
the number of edges in G with one endpoint in Vk ∪ {u ∈ U : b(u) = k} and the
other endpoint in V� ∪ {u ∈ U : b(u) = �}, and define ck,� := (mk + nk)(m� +
n�) − ek,�. Let ek,k denote the number of edges in G with both endpoints in
Vk ∪ {u ∈ U : b(u) = k}, and define ck,k := (mk+nk

2

) − ek,k . Then, in the stochastic
block model, the conditional probability in equation (1) can be computed as∑

(V1,V2,...,VK)∈( V
n1,n2,...,nK

) such that v∈V1

∏K
k=1

∏K
�=k(�k,�)

ek,�(1 − �k,�)
ck,�

∑
(V1,V2,...,VK)∈( V

n1,n2,...,nK
)

∏K
k=1

∏K
�=k(�k,�)

ek,�(1 − �k,�)
ck,�

.(3)

Although we are not able to evaluate the probability of G since the block member-
ship function b is not fully observed, nonetheless, the conditional probabilities in
equation (1) can indeed be evaluated via equation (3) by just knowing the values
of the parameters n1, n2, . . . , nK and �.
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3.2. Optimality of the canonical vertex nomination scheme.

THEOREM 1. For any vertex nomination scheme �, the mean average preci-
sion of the canonical vertex nomination scheme �C is greater then or equal to the
mean average precision of �.

PROOF. For each i = 1,2, . . . , n1, define αi := 1
n1

∑n1
j=i

1
j

and, for each i =
n1 + 1, n1 + 2, . . . , n, define αi := 0. The sequence α1, α2, . . . , αn is clearly a non-
negative, nonincreasing sequence. Note that if a1, a2, . . . , an is any (other) nonin-
creasing, nonnegative sequence of real numbers, and a′

1, a
′
2, . . . , a

′
n is any permu-

tation of the sequence a1, a2, . . . , an, then

n∑
i=1

αia
′
i ≤

n∑
i=1

αiai .(4)

Indeed, this is easily verified by first considering particular sequences a1, a2, . . . ,

an of the form 1,1, . . . ,1,0, . . . ,0,0 (i.e., j consecutive 1’s followed by n − j

consecutive 0’s, for different values of j = 1,2, . . . , n) and then noting that the
nonnegative combinations of such particular sequences indeed comprise all non-
increasing, nonnegative sequences with n entries.

Consider the random graph G distributed SB(K,m,n, b,�). Recall that � de-
notes the set of equivalence classes of graphs on the vertex set W .

Expanding the mean average precisions of �, then bounding and simplifying,
yields

E

(
n∑

i=1

αiδb(�G(i))=1

)
=

n∑
i=1

αiP
(
b
(
�G(i)

) = 1
)

=
n∑

i=1

αi

( ∑
G∈�

P(G)P
(
b
(
�G(i)

) = 1
∣∣∣G))

= ∑
G∈�

P(G)

(
n∑

i=1

αiP
(
b
(
�G(i)

) = 1
∣∣∣G))

(5)

≤ ∑
G∈�

P(G)

(
n∑

i=1

αiP
(
b
(
�C

G(i)
) = 1

∣∣∣G))

=
n∑

i=1

αiP
(
b
(
�C

G(i)
) = 1

) = E

(
n∑

i=1

αiδb(�C
G(i))=1

)
,

where the inequality in equation (5) follows from equations (4) and (2), (and from
our assumption that all nomination schemes agree when G is symmetric). The
desired result is shown. �
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4. Likelihood maximization vertex nomination scheme. In this section we
define the likelihood maximization vertex nomination scheme. It will be practical
to implement even when there are on the order of a thousand vertices. We will see
in Section 7 that it is a very effective vertex nomination scheme, when compared to
the canonical vertex nomination scheme “gold standard” on graphs small enough
to make the comparison. In Sections 8.1, 8.2 and 8.3 we will see that likelihood
maximization appears to be nicely robust to the modeling challenges inherent in
real data.

4.1. Definition of the scheme. Suppose the random graph G is distributed
SB(K,m,n, b,�). There are two stages in defining—and computing—the like-
lihood maximization vertex nomination scheme.

The first stage is concerned with estimating the block assignment function b. Let
B denote the set of functions b : W → {1,2, . . . ,K} such that b agrees with b on
U , and such that it also holds, for all i = 1,2, . . . ,K , that |{v ∈ V : b(v) = i}| = ni .
For any b ∈B, and for all k = 1,2, . . . ,K and � = k + 1, k + 2, . . . ,K , let ek,�(b)

denote the number of edges in G with one endpoint in {w ∈ W : b(w) = k} and the
other endpoint in {w ∈ W : b(w) = �}, and also denote ck,�(b) := (mk + nk)(m� +
n�) − ek,�(b). For all k = 1,2, . . . ,K , let ek,k(b) denote the number of edges in G

with both endpoints in {w ∈ W : b(w) = k}, and also denote ck,k(b) := (mk+nk

2

) −
ek,k(b). In the SB(K,m,n, b,�) distribution, if b had been replaced with b ∈ B,
then the probability of realizing the graph G would have been

p(b,G) :=
K∏

k=1

K∏
�=k

(�k,�)
ek,�(b)(1 − �k,�)

ck,�(b).(6)

Define b̂, the maximum likelihood estimator of b, to be the member of B such
that the probability of G is maximized. In other words (then taking logarithms and
ignoring additive constants),

b̂ := arg max
b∈B p(b,G) = arg max

b∈B

K∑
k=1

K∑
�=k

ek,�(b) log
(

�k,�

1 − �k,�

)
(7)

= arg max
b∈B

∑
{w,w′}∈(W

2 )

δw∼Gw′ log
(

�b(w),b(w′)
1 − �b(w),b(w′)

)
.

The optimization problem in equation (7) is an example of seeded graph matching,
and we can efficiently and effectively approximate its solution. The details of this
are deferred to the next section, Section 4.2, and we now continue on to the second
stage of defining and computing the likelihood maximization vertex nomination
scheme, assuming that we have computed b̂.

For any v, v′ ∈ V such that b̂(v) = 1 and b̂(v′) �= 1, define b̂v↔v′ ∈ B such that
b̂v↔v′ agrees with b̂ for all w ∈ W except that b̂v↔v′(v′) = 1 and b̂v↔v′(v) = b̂(v′).
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For any v, v′ ∈ V such that b̂(v) = 1 and b̂(v′) �= 1, we can interpret a low/high

value of the quantity p(b̂v↔v′ ,G)

p(b̂,G)
as a measure of our conviction/lack-of-conviction

that b̂ should be used to estimate b, as opposed to estimating b with specifically
b̂v↔v′ . In this spirit, for all v ∈ V such that b̂(v) = 1, a low/high value of the
geometric mean

( ∏
v′∈V :b̂(v′) �=1

p(b̂v↔v′,G)

p(b̂,G)

)1/(n−n1)

(8)

can be interpreted as a measure (for the purpose of ordering) of our conviction/lack-
of-conviction in our estimation that b(v) is 1. Also, for all v′ ∈ V such that
b̂(v′) �= 1, a low/high value of the geometric mean

( ∏
v∈V :b̂(v)=1

p(b̂v↔v′,G)

p(b̂,G)

)1/n1

(9)

can be interpreted as a measure (just for the purpose of ordering) of our
conviction/lack-of-conviction in our estimation that b(v′) is not 1.

We now define the likelihood maximization vertex nomination scheme �L to be
such that it satisfies �L

G(1),�L
G(2), . . . ,�L

G(n1) are the v ∈ V such that b̂(v) = 1,
listed in increasing order of the geometric mean in equation (8), and �L

G(n1 +
1),�L

G(n1 + 2), . . . ,�L
G(n) are the v′ ∈ V such that b̂(v′) �= 1, listed in decreasing

order of the geometric mean in equation (9).

4.2. Solving the seeded graph matching problem. In this section we discuss
how to compute b̂ in the likelihood maximization vertex nomination scheme �L

defined in the previous section.
Given any A,B ∈ R

(m+n)×(m+n), the quadratic assignment problem is to mini-
mize ‖A − PBP T ‖2

F over all permutation matrices P ∈ {0,1}(m+n)×(m+n), where
‖ · ‖F denotes the Frobenius matrix norm. If A and B are, respectively, adjacency
matrices for two graphs, then this is called the graph matching problem; it is clearly
equivalent to finding a bijection from the vertex set of one graph to the vertex set
of the other graph so as to minimize the number of adjacency disagreements in-
duced by the bijection. If P is further constrained so that the upper left corner is
the m × m identity matrix, then the problem is called the seeded quadratic assign-
ment problem/seeded graph matching problem; for graphs, this further restriction
just means that part of the bijection between the vertex sets is fixed.

Note that the objective function can be simplified (under the restriction that P is
a permutation matrix) as ‖A−PBP T ‖2

F = ‖A‖2
F +‖B‖2

F − 2〈A,PBP T 〉, where
〈·, ·〉 is the usual inner product 〈C,D〉 := ∑

i,j CijDij . Thus, the above problems
can be phrased as maximize 〈A,PBP T 〉 over all permutation matrices P .
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The optimization problem in equation (7), for which b̂ is the solution, is pre-
cisely the seeded quadratic assignment problem above, where A ∈ R

(m+n)×(m+n)

is the adjacency matrix for the graph G, that is, Ai,j := δi∼Gj for all i, j ∈
W ≡ {1,2, . . . ,m + n}, and B ∈ R

(m+n)×(m+n) is the matrix wherein Bi,j :=
log(

�b′(i),b′(j)

1−�b′(i),b′(j)
) for all i, j ∈ W , where b′ is the member of B for which the se-

quence b′(m+ 1),b′(m+ 2), . . . ,b′(m+n) are 1’s contiguously, then 2’s contigu-
ously, . . . , then K’s contiguously. The b ∈ B—over which the objective function
in equation (7) is maximized—correspond precisely to the permutation matrices
P in the seeded quadratic assignment problem, where the upper left corner of P is
restricted to be the m×m identity matrix. We will call this problem a seeded graph
matching problem because A is an adjacency matrix. (And we can also choose to
think of B as a weighted adjacency matrix for a graph.)

The seeded graph matching problem is computationally hard; indeed, the
quadratic assignment problem is NP-hard, and even deciding if two graphs are iso-
morphic is notoriously of unknown complexity [Garey and Johnson (1979), Read
and Corneil (1977)]. However, approximate solutions can be found efficiently with
the SGM (Seeded Graph Matching) Algorithm of Lyzinski, Fishkind and Priebe
(2014), which is a seeded version of the FAQ algorithm of Vogelstein et al. (2015).
[Indeed, SGM is more effective than convex relaxation techniques, as was recently
shown in Lyzinski et al. (2015b).] We employ the SGM algorithm to obtain an ap-
proximate solution to b̂ for use in the likelihood maximization vertex nomination
scheme. It runs in time O(n3), and can be implemented even when n is approxi-
mately 1000.

5. The spectral partitioning vertex nomination scheme. In this section
we introduce the spectral partitioning vertex nomination scheme. Suppose G is
distributed SB(K,m,n, b,�). We do not need to assume here that we know
n1, n2, . . . , nK , nor the entries of �; we just need to know the value of K and
d := the rank of �. [Indeed, by the results in Fishkind et al. (2013), even just
knowing an upper bound on d will be sufficient to obtain good performance.]

Say that the adjacency matrix for G is A ∈ {0,1}(m+n)×(m+n), that is, Ai,j :=
δi∼Gj for all i, j ∈ W ≡ {1,2, . . . ,m+ n}. Compute d eigenvectors associated, re-
spectively, with the d largest-modulus eigenvalues of A. Scale these eigenvectors
so that their respective lengths are the square roots of the absolute values of their
corresponding eigenvalues, and define X ∈ R

(m+n)×d to have these scaled eigen-
vectors as its respective columns. The rows of X are low-dimensional embeddings
of the corresponding vertices. Now, cluster the rows of X into K clusters; that is,
solve the problem minimize ‖X − C‖F over all matrices C ∈ R

(m+n)×d with the
property that each row of C is equal to one of just K row vectors, and the values
of these K row vectors are also variables to be optimized over.

Say that c is the most frequent value of row vector in the optimal C among
the rows corresponding to the vertices {u ∈ U : b(u) = 1}. (In other words, c is
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the centroid associated with the most vertices known to be in the first block.) The
spectral partitioning vertex nominating scheme, denoted by �S , associates with G

the ordering (of vertices in V ) �S
G(1),�S

G(2), . . . ,�S
G(n) in increasing order of

Euclidean distance between c and their corresponding row in X.
Suppose we consider a sequence of graphs realized from the distributions

SB(K,m,n, b,�) for, successively, m + n = 1,2,3, . . . , where K and � are
fixed, and � is positive semi-definite with the property that no two of its rows
are equal. Also, assume that m1 ≥ 1, and there exists a positive constant γ such
that, for all i = 1,2, . . . ,K , it holds that mi +ni ≥ γ (m+n)3/4+γ . It was recently
shown in Lyzinski et al. (2014b) [following the work in Sussman et al. (2012) and
Fishkind et al. (2013)] that almost surely there are no incorrectly clustered vertices
in the limit. This implies that the mean average precision of �S converges to 1 as
m + n → ∞.

It will be computationally convenient to approximately (but very quickly) solve
the clustering subproblem. This approximate clustering can be done with the k-
means algorithm or with the mclust procedure [Fraley and Raftery (1999), Fraley
and Raftery (2003)]. In both cases, the vertices are nominated based on distance to
cluster centroids; in k-means this amounts to the usual Euclidean distance, while
for mclust this amounts to nominating based on the Mahalonobis distance.

6. The OTS vertex nomination scheme. The chief contribution of this
manuscript is the formulation of the likelihood maximization vertex nomination
scheme, along with our demonstration of its effectiveness; indeed, it is compara-
bly effective to the “gold standard” canonical vertex nomination scheme (on graphs
small enough to practically make this comparison, as we demonstrate in Section 7)
and it is relatively robust to pathologies inherent in real data (as we demonstrate
later in Section 8).

However, it is worthwhile to point out that classification algorithms for stochas-
tic block models can often be naturally modified for use in nomination, by uti-
lizing algorithm-inherent numeric scores to perform vertex ranking. For an excel-
lent survey of the literature on community detection in networks—including the
setting of stochastic block models—and available algorithms, see the very com-
prehensive survey article Fortunato (2010) and the papers cited therein, such as
Newman and Girvan (2004) and the classic article Nowicki and Snijders (2001).
Also, see Latent Dirichlet Allocation (LDA) [Blei, Ng and Jordan (2003)]. Be-
cause of the vast number of citations to it in the literature, we next choose to
focus on the paper Airoldi et al. (2009), titled “Mixed membership stochastic
blockmodels,” and the associated R code which we call “MMSB” located at
http://cran.r-project.org/web/packages/lda/lda.pdf [Chang and Dai (2010)]; in the
setting of a mixed membership block model, MMSB assigns to each vertex a pos-
terior probability of block membership in each of the various blocks. With this, we
now define the OTS vertex nomination scheme, denoted �O , which uses MMSB to

http://cran.r-project.org/web/packages/lda/lda.pdf
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order the vertices of V in decreasing order of posterior probability of membership
in the specific block indicated by the most seeds.

We call this nomination scheme OTS “Off The Shelf” to emphasize that we use
MMSB as a black box without getting under the hood of the code; as such, the use
of the seeds is only to identify the block of interest. Indeed, under the hood modifi-
cations of existing community detection algorithms such as MMSB and LDA and
LDA-based methodologies are expected to yield new vertex nomination schemes
that will be increasingly effective and fast. We also expect even more effective
vertex nomination schemes to come from merging vertex nomination techniques,
perhaps similar in spirit to the work in Lyzinski et al. (2015a), where graph match-
ing and spectral partitioning are merged into a more effective avenue of graph
matching for large graphs.

7. Simulations: Comparing the vertex nomination schemes at three dif-
ferent scales. In this section we compare and contrast these vertex nomination
schemes using three simulation experiments—essentially the same experiment at
three different scales, “small scale,” “medium scale” and “large scale.” For each of
the three experiments, we have K = 3 blocks in the stochastic block model. The
matrix of Bernoulli parameters � is

�(ϑ) := ϑ

⎡
⎣ 0.5 0.3 0.4

0.3 0.8 0.6
0.4 0.6 0.3

⎤
⎦ + (1 − ϑ)

⎡
⎣ 0.5 0.5 0.5

0.5 0.5 0.5
0.5 0.5 0.5

⎤
⎦ ,

with the value ϑ = 1 for the small scale experiment, ϑ = 0.3 for the medium scale
experiment, and ϑ = 0.1 for the large scale experiment, in order to decrease the
signal when the number of vertices is larger.

Specifically, the matrix � for the small scale experiment, for the medium scale
experiment and for the large scale experiment are, respectively,

�(1) =
⎡
⎣ 0.5 0.3 0.4

0.3 0.8 0.6
0.4 0.6 0.3

⎤
⎦ , �(0.3) =

⎡
⎣ 0.50 0.44 0.47

0.44 0.59 0.53
0.47 0.53 0.44

⎤
⎦ ,

�(0.1) =
⎡
⎣ 0.50 0.48 0.49

0.48 0.53 0.51
0.49 0.51 0.48

⎤
⎦ ,

so that as the number of vertices increases we have that ϑ gets closer to zero,
which means that the blocks become less and less stochastically differentiable one
from the other. Another notable feature of the � here is that the block of interest—
the first block—is the intermediate density block, that is, the Bernoulli adjacency
parameter for vertices in the first block is between the Bernoulli adjacency param-
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eter for vertices in the second block and in the third block. This makes it more
challenging to identify the vertices of the first block, which is the block of inter-
est.

The values of (n1, n2, n3) are taken to be multiples of (4,3,3), specifi-
cally, in the small-scale experiment (n1, n2, n3) = (4,3,3), in the medium-
scale experiment (n1, n2, n3) = (200,150,150) and in the large-scale experiment
(n1, n2, n3) = (4000,3000,3000). As for the seeds, the values of (m1,m2,m3) in
the respective experiments were taken as (4,0,0), (20,0,0) and (40,0,0).

These three experiments were performed as follows. We independently realized
50,000 graphs from the associated distribution of the small-scale experiment, 200
graphs in the medium-range experiment and 100 graphs in the large-scale exper-
iment. To each observed graph we applied each of the following: the canonical
vertex nomination scheme �C , the likelihood maximization vertex nomination
scheme �L, the OTS vertex nomination scheme �O and the spectral partition-
ing vertex nomination scheme �S . Then, for each vertex nomination scheme, we
recorded the fraction of the realizations for which the first nominee of the nomi-
nation list was a member of the block of interest, the fraction of the realizations
for which the second nominee was a member of the block of interest, . . . , the frac-
tion of the realizations for which the nth nominee was a member of the block of
interest. In Figure 1(a), (b) and (c) these empirical probabilities are plotted against
nomination list position, for the three respective experiments and the nomination
schemes.

In the small-scale experiment, where n = 10, the likelihood maximization nom-
ination scheme performed about as well as the (“gold standard”) canonical nomi-
nation scheme, and the spectral partitioning nomination scheme performed very
poorly—near chance. Then, in the medium-scale experiment, where n = 500,
the canonical nomination scheme was no longer practical to compute, and the
OTS and the spectral partitioning nomination scheme performed nearly as well
as the likelihood maximization nomination scheme. For a few thousand vertices
it was not practical to implement the likelihood maximization nomination scheme
nor OTS, so in the large-scale experiment, where n = 10,000, the only nomina-
tion scheme that could be implemented was the spectral partitioning nomination
scheme.

The empirical mean average precision for the canonical, likelihood maximiza-
tion and spectral partitioning vertex nomination schemes in the three experiments
were as follows (note that the mean average precision for chance is 0.4):

Mean average precision Canonical Likeli-max OTS Spectral

Small-scale exper., n = 10, ϑ = 1 0.6958 0.6725 0.4763 0.3993
Medium-scale exper., n = 500, ϑ = 0.3 * 0.9543 0.7846 0.7330
Large-scale exper., n = 10,000, ϑ = 0.1 * * * 0.9901
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(a) Small-scale; n = 10

(b) Medium-scale; n = 500 (c) Large-scale n = 10,000

FIG. 1. The canonical vertex nomination scheme is in red, the likelihood maximization vertex nom-
ination scheme is in blue, the OTS vertex nomination scheme is in purple, and the spectral partition-
ing vertex nomination scheme is in green. (Canonical scheme not shown in medium- and large-scale
figures, liklihood maximization and OTS schemes not shown in large-scale figure.)

The running times in seconds were as follows:

Running time per simulation Canonical Likeli-max. OTS Spectral

Small-scale experiment, n = 10 ≈ 0.52 ≈ 0.03 ≈ 0.30 ≈ 0.01
Medium-scale experiment, n = 500 * ≈ 332 ≈ 58 ≈ 0.17
Large-scale experiment, n = 10,000 * * * ≈ 106

Indeed, each of the canonical, likelihood maximization and spectral vertex nom-
ination schemes is superior (in the sense of effectiveness, given practical com-
putability limitations) to the other two at one of the three scales. At a small scale
you should use the canonical vertex nomination scheme, at a medium scale you
should use the likelihood maximization vertex nomination scheme, and at a large
scale you should use the spectral partitioning vertex nomination scheme.
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8. Real data examples. While the stochastic block model is often useful for
modeling real data, many times real data does not fit the model particularly well. In
the following real-data experiments we see that the likelihood maximization vertex
nomination scheme is robust to the lack of idealized conditions hypothesized and
other pathologies inherent in real data. All of the data and code used in these
experiments can be accessed at http://www.cis.jhu.edu/~parky/vn/.

8.1. Example: The enron graph. The Enron Corporation was a highly re-
garded, large energy company that went spectacularly bankrupt in the early 2000s
amid systemic internal fraud. Enron has since become a popular exemplar of
corporate fraud and corruption. In the wake of Enron’s collapse, the US En-
ergy Regulatory Commission collected a corpus of more than 600,000 emails
sent between Enron employees, and this corpus was made public by the US De-
partment of Justice and is available online at a number of websites, including
http://research.cs.queensu.ca/home/skill/siamworkshop.html.

In Priebe et al. (2005), the authors restrict their attention to a 189 week pe-
riod from the year 1998 through the year 2002; they identify 184 distinct email
addresses in the Enron email corpus over this time interval, and they identify the
pairs of these email addresses that had email communication with each other. Our
“Enron Graph” that we use here is based on the graph in Priebe et al. (2005); our
vertex set W consists of the 128 active email addresses for which the employee’s
job title in Enron was known. For every pair of such vertices, the pair of vertices
are declared adjacent to each other when there was at least one email sent from
either of the email addresses to the other. We then divided the vertices into two
blocks: The “upper-echelon” set of vertices {w ∈ W : b(w) = 1} are the vertices
whose job titles were designated as CEO, president, vice president, chief man-
ager, company attorney and chief employee. The “lower-echelon” set of vertices
{w ∈ W : b(w) = 2} are the vertices whose job titles were designated as employee,
employee administrative, specialist, analyst, trader, director and manager (besides
chief manager, which we designated upper echelon). We chose to group the job
titles of manager and director with lower-echelon because a by-eye assessment
of the graph indicated that their adjacency affinity was closer to the rest of the
lower-echelon vertices. Indeed, this graph is certainly not a realization of an ac-
tual two-block stochastic block model, but for the purpose of illustration we will
view it as very roughly having some two-block structure. The adjacency matrix is
pictured in Figure 2(a).

We consider the following experiment. From the 43 upper-echelon vertices
{w ∈ W : b(w) = 1}, discrete-uniform randomly select m1 = 10 to have their
block labels known, and the remaining n1 = 33 have their block labels obscured.
From the 85 lower-echelon vertices {w ∈ W : b(w) = 2}, independently, discrete-
uniform randomly select m2 = 20 to have their block labels known, and the re-
maining n2 = 65 have their block labels obscured. Then compute �̂1,1, �̂2,2 and
�̂1,2 as, respectively, the number of edges in the graph induced by the known

http://www.cis.jhu.edu/~parky/vn/
http://research.cs.queensu.ca/home/skill/siamworkshop.html
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(a)

(b) (c)

FIG. 2. Adjacency matrices for the real-data examples of Section 8. (a) Vertices partitioned into
the 43 upper-echelon employees, then the 85 lower-echelon employees. (b) Vertices partitioned into
the 110 motor neurons, 76 interneurons, then 67 sensory neurons. (c) Vertices partitioned into the
588 liberal blogs, then the 636 conservative blogs.

upper-echelon vertices, the number of edges in the graph induced by the known
lower-echelon vertices, and the number of edges in the bipartite graph induced by
the known upper-echelon and the known lower-echelon vertices, divided, respec-
tively, by

(n1
2

)
,
(n2

2

)
and n1n2. Then perform likelihood maximization and spectral

partitioning vertex nomination on this graph, using �̂ as a substitute for �.
We independently repeated this experiment 30,000 times; Figure 3 plots the

empirical probabilities of vertex membership in the upper echelon for the respec-
tive 98 positions in the nomination list, using the likelihood maximization vertex
nomination scheme (in blue), the OTS vertex nomination scheme (in purple) and
the spectral partitioning vertex nomination schemes (in green). These three vertex
nomination schemes had empirical mean average precisions 0.7779 (likelihood
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FIG. 3. Vertex nomination in the Enron Graph. The likelihood maximization, spectral partitioning
and OTS vertex nomination schemes are, respectively, in blue, green and purple.

maximization), 0.7619 (spectral partitioning) and 0.5970 (OTS). For comparison,
the mean average precision of chance is 0.3367.

Note here that the overall classification success of spectral partitioning (i.e., the
nominating success averaged over the first 33 positions of the nomination list) is
seen in Figure 3 as being comparable to the classification success of likelihood
maximization. Also, here the mean average precision of spectral partitioning nom-
ination is comparable to that of likelihood maximization nomination. However,
here, very near the top of the nomination list, there is a visible plateau in the spec-
tral partitioning nomination success, whereas maximum-likelihood is nominating
very well; indeed, the first few nominees are nearly always from the block of in-
terest.

8.2. Example: The caenorhabditis elegans connectome. The Caenorhabdi-
tis elegans (C.elegans) is a small roundworm whose connectome (neural-wiring)
has been completely mapped out; see http://www.openconnectomeproject.org/#!
celegans/c5tg. Our graph here has vertex set W consisting of the 253 nonisolated
neurons and, for every pair of vertices, the two vertices are defined to be adjacent
to each other if they are adjoined by a chemical synapse. Each neuron (i.e., vertex)
is exactly one of the following neuron types: motor neuron, interneuron, or sen-
sory neuron. For each w ∈ W , we define the block membership b(w) to be 1,2,3,
respectively, according to whether the neuron is a motor neuron (there are 110 of
these), interneuron (there are 76 of these) or sensory neuron (there are 67 of these).
The adjacency matrix is pictured in Figure 2(b).

Consider the following experiment. Block membership is revealed for 30
discrete-uniformly selected motor neurons, 20 discrete-uniformly selected in-
terneurons and 10 discrete-uniformly selected sensory neurons. We are interested
in forming a nomination list out of the remaining 193 ambiguous neurons so that

http://www.openconnectomeproject.org/#!celegans/c5tg
http://www.openconnectomeproject.org/#!celegans/c5tg
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FIG. 4. Vertex nomination for motor neurons in C. Elegans: Likelihood maximization is colored
blue, OTS is colored purple, spectral partitioning is colored green.

the beginning of the nomination list has an abundance of (the remaining 80) am-
biguous motor neurons.

Perhaps the story behind your desire for this nomination list might be that you
wish to study motor neurons, but have limited resources to biochemically test neu-
ron type for the ambiguous neurons. The nomination list would be used to order the
ambiguous neurons for the testing, to identify as many motor neurons as possible
from the ambiguous neurons before your resources are depleted.

We repeated this experiment 1000 times, each time nominating for motor neu-
rons using the likelihood maximization, the spectral partitioning vertex nomination
scheme and the OTS vertex nomination scheme. In each repetition, we estimated
� with �̂, whose entries reflect the edge densities in the subgraphs induced by
the various blocks intersecting the seeds. The empirical mean average precision
for the likelihood maximization, spectral partitioning and OTS vertex nomination
schemes were, respectively, 0.7272, 0.5096 and 0.5041; the mean average pre-
cision of chance is 0.4145. Figure 4 shows that empirical probability of being a
motor neuron at every position in the vertex nomination list, for the likelihood
maximization (blue), OTS (purple) and spectral partitioning (green) vertex nomi-
nation schemes.

Note that here spectral partitioning performed very erratically and (overall)
poorly. This might be attributed to a lack of our idealized three-block structure
here; that is to say, this graph does not appear to be an instantiation of monolithic
stochastic behavior for vertices within the respective three blocks. In this case here,
likelihood maximization was seen to be more robust to the lack of idealized block
model setting, and still maintained a steady and very pronounced slope in Figure 4.

8.3. Example: A political blog network. The political blogosphere data in our
next example was collected in Adamic and Glance (2005) around the time of the
US presidential election in 2004. This data set consists of 1224 weblogs (“blogs”),
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FIG. 5. Nominating blogs; likelihood maximization vertex nomination scheme is colored blue, OTS
vertex nomination scheme is colored purple, and spectral partitioning vertex nomination scheme is
colored green.

each of which web-links to—or is web-linked from—at least one other of these
blogs. These blogs form the vertex set W of our graph. Each of the blogs was
classified by Adamic and Glance (2005) as being either liberal or conservative; for
each w ∈ W we define b(w) to be 1 or 2, according to whether w was classified
as liberal or conservative. There are 588 liberal blogs and 636 conservative blogs
here. For each pair of vertices/blogs, the pair is adjacent if at least one of the blogs
links to the other. The adjacency matrix is pictured in Figure 2(c).

Consider the following experiment. Discrete-uniform randomly select 80 liberal
and 80 conservative blogs to have their political orientation revealed, and create a
nomination list for the remaining 1064 ambiguous blogs. The story could be that
you work for a political action committee and want to make a report summarizing
liberal blog views on some current event. You have a limited amount of blog-
reading time and only know the content and political affiliations of a few of the
blogs. Thus, you want to create a nomination list which will provide the order for
your reading the ambiguous blogs, so that you read many liberal blogs in your
limited time.

We repeated this experiment 1000 times and calculated the likelihood maxi-
mization, spectral partitioning and OTS vertex nomination schemes for each rep-
etition. See the results in Figure 5. The mean average precision for the likelihood
maximization, spectral partitioning and OTS vertex nomination schemes were,
respectively, 0.8922, 0.7856 and 0.5429; the mean average precision for chance
nomination was 0.4774.

9. Real-data example: Memex and human-trafficking. The Defense Ad-
vanced Research Projects Agency (DARPA) is an agency of the United States De-
partment of Defense which, historically, was responsible for developing computer
networking and NLS (an acronym for “oN-Line System”), which was the first
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hypertext system and an important precursor to the contemporary graphical user
interface (Wikipedia, The Free Encyclopedia, “DARPA”, accessed February 15,
2015).

Today’s web searches use a centralized, one-size-fits-all approach, which is very
successful for everyday, common use. DARPA launched the Memex (a contrac-
tion of “Memory Extender”) Program to create domain-specific index and search,
which promises to be a substantially more powerful search tool, due to its domain
specificity. The first domain that Memex has addressed is the general domain of
human trafficking, which is an important problem for law enforcement, as well as
the military and national intelligence services. Forums, chats, advertisements, job
postings, hidden services, etc., on the web continue to enable a growing industry of
modern slavery. The index curated by Memex for the counter-trafficking domain
includes a rich set of data with millions of attributes that, when analyzed with tech-
nology, can show linkages between content that are not easily discoverable by a
human analyst.

The graph G that we now consider can be accessed at http://www.cis.jhu.edu/
~parky/vn/ and is associated with the DARPA Memex and XDATA programs. It
has 31,248 vertices; each vertex corresponds to a web advertisement. For each pair
of vertices, the pair are defined to be adjacent if the return contact information of
the respective advertisements either share a return phone number or share a return
address region (i.e., city/municipality/metropolitan area). There were 12,387 nodes
whose advertisements had a particular string in the web URL which was ubiqui-
tous to activities associated with human trafficking; these vertices were designated
“red.” The remaining 18,861 vertices were designated “nonred,” and it remains
unknown if the associated advertisements have any association whatsoever with
human trafficking.

The broad goal is, of course, to identify nonred vertices/advertisements that
have association with human trafficking. The direct approach of forming one large
nomination list of the 18,861 nonred vertices is complicated; among the vertex
nomination schemes introduced here, only the spectral partitioning nomination
scheme is practical to directly compute for a graph this large, and the spectral par-
titioning is almost entirely ineffective (the adjusted rand index [Hubert and Arabie
(1985)] between red/nonred and k-means on a two-dimensional embedding was
0.00707). Also, keeping in mind the benefits of model averaging, we decided to
perform 10,000 independent replicates of the following smaller-scale procedure,
using likelihood maximization nomination:

We discrete-uniformly randomly sampled 125 red vertices from among the
12,387 red vertices, and then discrete-uniformly sampled 50 of these 125 red ver-
tices to be seeds (their status as red revealed for what follows) and the other 75 to
be ambiguous (their status as red deliberately and temporarily obscured for what
follows). We then also discrete-uniformly randomly sampled 125 nonred vertices
from among the 18,861 nonred vertices, and then discrete-uniformly sampled 50
of these 125 nonred vertices to be seeds (their status as nonred revealed for what

http://www.cis.jhu.edu/~parky/vn/
http://www.cis.jhu.edu/~parky/vn/
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(a) Red vertices of Memex graph (b) Nonred vertices of Memex graph

FIG. 6. Histograms of average nomination position for red vertices and nonred vertices in Memex.

follows) and the other 75 to be ambiguous (their status as nonred deliberately and
temporarily obscured for what follows). We then used the likelihood maximiza-
tion vertex nomination scheme to nominate the 150 ambiguous vertices (among
the 250 selected).

For each of the 10,000 replications of the procedure described in the preceding
paragraph, we noted the nomination position (from 1 to 150) of each of the am-
biguous vertices and, for each of the 31,248 vertices of the graph, we averaged the
vertex’s nomination position over the many times that the vertex was selected to
be ambiguous. In Figure 6(a) we plotted a histogram of the 12,387 red vertices,
binned according to average nomination position, and in Figure 6(b) we plotted a
histogram of the 18,861 nonred vertices, binned according to average nomination
position. Note that some of the nonred vertices are much more likely to appear
higher in the nomination lists than other nonred vertices; the left spike in the his-
togram of Figure 6(b) identifies nonred vertices that should have a higher priority
for scrutiny to ascertain if they are associated with human trafficking. This out-
come is of operational significance.

10. Discussion. In this paper the currently-popular stochastic block model
setting enables the principled development of vertex nomination schemes. We in-
troduced several vertex nomination schemes: the canonical, likelihood maximiza-
tion, spectral partitioning and OTS vertex nomination schemes. In Section 7 we
compared and contrasted the effectiveness and runtime of these vertex nomination
schemes at small, medium and large scales. In Proposition 1 we proved that the
canonical vertex nomination scheme has maximum possible mean average preci-
sion among all vertex nomination schemes, and thus it should be used as long as it
is computationally feasible, which is up to a few tens of vertices. (The runtime vis-
ibly grows exponentially in the number of vertices.) The likelihood maximization
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vertex nomination scheme, which utilizes state-of-the-art graph matching machin-
ery, should be used next (i.e., when the canonical vertex nomination scheme can
not be used), as long as it is computationally feasible, which is up to around 1000
or 1500 vertices. Sections 8.1, 8.2 and 8.3 then feature illustrations with real data
and illustrate robustness of maximum-likelihood nomination to model pathology
inherent in real data. Section 9 highlights an important contemporary application
to stopping human trafficking.

These vertex nomination schemes are simple, yet effective. The likelihood max-
imization, spectral partitioning and OTS vertex nomination schemes are grown
from basic block estimation strategies. Going forward, we expect to see the next
generation of vertex nomination schemes build on similar such adaptations of
block estimation strategies.
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