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TRACKING RAPID INTRACELLULAR MOVEMENTS:
A BAYESIAN RANDOM SET APPROACH

BY VASILEIOS MAROULAS AND ANDREAS NEBENFÜHR1

University of Tennessee

We focus on the biological problem of tracking organelles as they move
through cells. In the past, most intracellular movements were recorded man-
ually, however, the results are too incomplete to capture the full complexity
of organelle motions. An automated tracking algorithm promises to provide a
complete analysis of noisy microscopy data. In this paper, we adopt statistical
techniques from a Bayesian random set point of view. Instead of consider-
ing each individual organelle, we examine a random set whose members are
the organelle states and we establish a Bayesian filtering algorithm involv-
ing such set states. The propagated multi-object densities are approximated
using a Gaussian mixture scheme. Our algorithm is applied to synthetic and
experimental data.

1. Introduction. Most plant cells display a striking phenomenon called “cy-
toplasmic streaming,” a process that has been recognized since the late 18th cen-
tury by Corti (1774). During cytoplasmic streaming, most subcellular organelles
move rapidly through the cell, resulting in constant mixing of the soluble com-
ponents of the cytoplasm. The function of these movements is not known, al-
though a potential role in better distribution of metabolites has been proposed in
Shimmen and Yokota (1994). The movements are driven by myosin motor proteins
[Shimmen (2007)] and appear to be necessary for normal growth of plant cells and
ultimately the whole plant [Ojangu et al. (2012), Peremyslov et al. (2008)]. The
molecular mechanisms that connect the intracellular movements with cell growth
are not known [Madison and Nebenführ (2013)]. Better understanding of these cel-
lular processes requires the targeted manipulation of the movements followed by
quantitative assessment of the resulting changes at the subcellular, cellular and
whole-plant levels. Recent results have identified additional regulatory mecha-
nisms that influence intracellular movements, although the precise nature of these
mechanisms is still unknown [Vick and Nebenführ (2012)]. This is due, at least in
part, to the astounding complexity of these movements and the technical difficulty
of describing them accurately [Hamada et al. (2012), Nebenführ et al. (1999)].
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Recent advances in molecular biology and fluorescence microscopy imaging
have made possible the detailed observation of these intracellular dynamics and the
acquisition of large multidimensional image data sets [Danuser (2011)]. Paredez,
Somerville and Ehrhardt (2006) noted that these time-lapse observations reveal a
large number of nearly identical particles that move with high velocities in close
proximity to each other. Combined with the saltatory, or stop-and-go, nature of
their motions, these features make automated tracking of these movements an ex-
tremely difficult task as discussed in Nebenführ et al. (1999). As a result, most pre-
vious analyses have relied on manual tracking of a few individual particles, for ex-
ample, Collings et al. (2002), Gutierrez et al. (2009), Hamada et al. (2012), Logan
and Leaver (2000), Nebenführ et al. (1999). A full understanding of the observa-
tions, however, requires accurate tracking of a large number of bright spots in noisy
image sequences, which can be accomplished only by an automated algorithm
that is able to analyze the data completely [Danuser (2011)]. This complete anal-
ysis will require reliable identification of organelle positions (coordinates) from
the bright spots in fluorescent microscope images taken at different times and the
correct linking of these positions into continuous movement trajectories over all
time points. One benefit of such an algorithm could be the emergence of recurring
patterns such as the recent discovery, based on manual tracking, that organelles
preferentially pause their motions at microtubules [Hamada et al. (2012)]. Thus,
it seems likely that a comprehensive and accurate tracking algorithm will unearth
additional regulatory events that in turn can be studied experimentally. Moreover,
from a statistical point of view, an automated tracking algorithm will reduce the
bias since manual tracking depends solely on experts’ decision of linking the po-
sitions of bright spots at subsequent time points.

Mathematical and statistical models that require knowledge from statistics,
probability, scientific computing and statistical mechanics have been developed
for reliably tracking multiple objects in space. There are a great number of studies
addressing the problem of tracking multiple targets in various settings. A partial
list of such works is Bar-Shalom and Blair (2000), Blackman and Popoli (1999),
Doucet, de Freitas and Gordon (2001), Fortmann, Bar-Shalom and Scheffe (1983),
Gilks and Berzuini (2001), Goodman, Mahler and Nguyen (1997), Liu (2008),
Liu and Chen (1998), Maroulas and Stinis (2012), Vo, Vo and Cantoni (2007),
Mahler (2007, 2003), Mahler and Maroulas (2013). However, only a small num-
ber of multi-object models have been considered for specific microscopy image
data, for example, Jaqaman et al. (2008), Sbalzarini and Koumoutsakos (2005),
Smal (2009), Smal, Niessen and Meijering (2006). Movement of subcellular par-
ticles in living cells poses a highly complex problem for automated tracking al-
gorithms. Even at high magnification, the true position of a particle within a cell
can be only measured to within 50–200 nm due to limitations in optical resolu-
tion, and given the inevitable image noise, it is likely that some organelles are
not detected. Moreover, not only can individual organelles move independently,
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they also can change their behavior rapidly, their paths are not static, and or-
ganelles in close proximity can display strikingly different behaviors [Collings
et al. (2002), Nebenführ et al. (1999)]. Commercial automated tracking algorithms
such as Perkin–Elmer’s “Volocity” were sometimes used to gain insights into over-
all movement patterns or derive average movement velocities; for example, see
Avisar et al. (2008), Peremyslov et al. (2008). However, these algorithms often in-
troduced mis-assignments in the tracks [e.g., Figure 3A in Avisar et al. (2008)] and,
therefore, cannot be used to obtain an accurate global view of organelle motility.

In general, from a statistical point of view, tracking of multiple objects is an
inherently difficult problem and consists of computing the best estimate of the ob-
jects’ trajectories based on noisy observations. The estimates are propagated by
a posterior distribution which considers organelles’ dynamics and combines them
with data. The greater the number of objects that are being tracked, the more com-
plicated the tracking algorithm becomes. There are several techniques, for exam-
ple, Kalman filters and their derivatives, particle filters, for addressing this prob-
lem statistically. The reader may refer to Gordon, Salmond and Smith (1993), Liu
(2008) and the references therein.

A popular approach to tracking is particle filtering. Smal et al. (2008) intro-
duced a particle filtering algorithm for the tracking problem using microtubule
dynamics, which overall follow a priori known and fairly straight paths and can
therefore be conveniently modeled. In general, the particle filter approach is an
importance sampling method which approximates the posterior distribution by a
discrete set of weighted samples (particles). However, it is often found in prac-
tice that most samples’ contribution to the posterior distribution will be negligible.
Therefore, carrying them along does not contribute significantly to finding an esti-
mate. Hence, one may resample the particles to create more copies of samples with
significant weights [Gordon, Salmond and Smith (1993)]. However, even with the
resampling step, the particle filter might still need a large number of samples in
order to approximate accurately the target distribution. Typically, a few samples
dominate the weight distribution, while the rest of the samples are in statistically
insignificant regions [Snyder et al. (2008)]. Thus, some studies [see, e.g., Gilks and
Berzuini (2001), Kang and Maroulas (2013), Maroulas and Stinis (2012), Weare
(2009)] have used an additional Markov Chain Monte Carlo step which helps to
move more samples into statistically significant regions and thus to improve the
diversity of samples. This extra step can improve estimates for multi-target track-
ing scenarios [Kang, Maroulas and Schizas (2014), Maroulas and Stinis (2012)],
but at the price of adding an additional layer of complexity.

In this manuscript, we attempt to avoid the technical algorithmic steps which
depend on the specific nature of different applications. Instead, we create an auto-
mated statistical tracking algorithm for independently evolving intracellular move-
ments by considering a pertinent multi-object statistical framework. This frame-
work adopts a Bayesian random set filtering technique. The key innovation in
our approach is to conceptually view the evolving collection of organelles as a
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single set-valued state and the collection of the experimental measurements as a
single set-valued observation. A set-valued state contains not only the position of
existing organelles but also the states of new biological entities which enter the
tracking domain. Using Random Finite Set (RFS) theory and modeling the col-
lection of organelles and their corresponding experimental measurements as sets
result in generalizing single-object filtering to a rigorous formulation of Bayesian
multi-object filtering. Multi-object filtering, similar to the single-object case, con-
sists of two stages, the prediction stage using modeled or experimentally derived
dynamics, and the update stage using the observed data. Both these steps involve
multi-object distributions which lead to the multi-object Bayesian filtering poste-
rior distribution,

f (X|Z1, . . . ,Zt ) ∝ f (Zt |X)f (X|Z1, . . . ,Zt−1),

where X,Z1, . . . ,Zt are appropriate random sets, formally defined in Section 2.
The general multi-object Bayes filtering distribution, f (X|Z1, . . . ,Zt ), is, how-

ever, computationally intractable in most applications and thus it needs to be ap-
proximated. In this paper, we consider a Gaussian mixture Cardinalized Proba-
bility Hypothesis Density (CPHD) approximation. The CPHD, first introduced by
Mahler (2007), propagates two estimates, the cardinality distribution of a random
set which yields an estimate of the number of objects per time step, and the in-
tensity of a random finite set or otherwise the so-called probability hypothesis
density (PHD) [Mahler (2003)]. The PHD is similar to the first-moment density or
intensity density in point process theory; for example, see Daley and Vere-Jones
(1988). The PHD first monitors multiple objects as clusters, and then attempts to
resolve individual objects only as the quality and quantity of data permits. One
could also estimate the number of objects at a given time step using the PHD,
however, such an estimate is unstable when the experimental scene is highly dy-
namic, that is, with rapid entry and exit of organelles from the region of interest.
A Gaussian mixture approximation of the CPHD was introduced by Vo, Vo and
Cantoni (2007) whose algorithmic complexity was of the order O(m3n), where m

is the number of data points (acquired positions of organelles) and n the true num-
ber of objects of interest. However, the cubic dependency on the number of data
points is disadvantageous for our biological framework due to their large number.

In our manuscript, we consider a Gaussian mixture CPHD based on the ex-
perimental fact that data are generated only when organelles are present in the
tracking domain. A false alarm is generated in signal detection when a nontar-
get event exceeds the detection threshold. Our experiments did not suffer from
any false alarm, and thus a pertinent approximation of the CPHD is established in
Propositions 2.1 and 2.2. The associated algorithmic implementation cost reduces
to the order of O(mn), that is, the cost is linear with respect to the number of
data and organelles. In brief, Proposition 2.1 propagates the predicted cardinality
and the predicted intensity estimate (PHD) of a random finite set which follows a
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Gaussian mixture density. Taking into consideration a new random set of data (po-
sitions of organelles), Proposition 2.2 updates the two predictions by considering
a Bayesian set formulation. The posterior PHD follows an appropriate Gaussian
mixture whose components are derived with the aid of Proposition 2.2.

A similar algorithm was analyzed in Mahler and Maroulas (2013) for the special
case of monitoring two fixed objects that spawn several objects along their ballis-
tic trajectories. These secondary objects fall under gravity, and thus they are not
of tracking interest. Precisely, a distance criterion was computed to distinguish the
two primary objects from the spawned ones. When this distance exceeded a certain
threshold, the corresponding objects were declared debris and they were discarded.
This assumption cannot be incorporated herein. Thus, in our framework, we relax
this condition and, moreover, we incorporate several experimental biophysical fea-
tures to understand the unknown dynamics of organelles. For instance, based on
the organelles’ acceleration data analysis (see Section 3), we discover that the ac-
celeration follows a normal distribution with mean-zero. Assuming that the mass
of the observed organelles did not change significantly between individual images
(a valid assumption), we are able to deduce interesting results about the developed
biomechanics within a cell.

Section 2 focuses on the methodology that was followed to establish an auto-
mated tracking algorithm for organelle movement data. Definitions of the Cardi-
nalized Probability Hypothesis Density (CPHD) and approximation schemes are
also presented. Section 3 describes the implementation of an appropriate version
of the Gaussian mixture CPHD filter suited for the biological data (synthetic and
experimental). Section 3.2 describes the biophysical conditions under which the
experimental data were collected and the process of manual tracking. Finally, our
results are summarized in Section 4 and a discussion for future research and de-
velopments is offered.

2. Random finite sets and approximations. We motivate this section by
considering first the problem of tracking only one object. Suppose that an or-
ganelle, whose state is x′ at time t , moves following the dynamics below,

xt+1 = φt

(
x′, ut

)
,(2.1)

where ut is a randomly distributed noise and φt :RN × R
N → R

N is a family of
nonlinear, nonsingular functions. Let z1:t .= {z1, z2, . . . , zt } denote the data history
up to time t and let ft |t (x′|z1:t ) represent the posterior probability density func-
tion (p.d.f.) at a given time t . Furthermore, consider the posterior predictive p.d.f.,
ft+1|t (x|z1:t ), which merely yields the probability that an organelle will move to
state x at time t +1 given the available data z1:t . Using the Chapman–Kolmogorov
equation, the posterior predictive distribution is given by

ft+1|t (x|z1:t ) =
∫

ft+1|t
(
x|x′)ft |t

(
x′|z1:t

)
dx′,(2.2)
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where ft+1|t (x|x′) is the Markov transition density associated with the dynamics
expressed of equation (2.1). At given time t + 1, a new microscopy observation is
collected, zt+1 ∈ R

M . Typically, the dimension of organelle states, N , and the di-
mension of data, M , are not identical, N �= M . For example, the state of organelles
involves their position on the xy-plane and the corresponding velocities, that is,
N = 4, whereas only the positions (M = 2) are available from the experimental
data. The prediction (2.2) needs to be updated using the datum zt+1. The collected
measurement is a function of the true organelle’s state perturbed by noise, that is,

zt+1 = ηt+1(x, ξt+1),(2.3)

where ξt+1 is a randomly distributed noise, independent from vt , and the func-
tion ηt+1 :RN ×R

M →R
M is a family of nonsingular, nonlinear transformations.

Based on the Bayesian rule, the posterior p.d.f. at a given time t + 1 is given by

ft+1|t+1(x|z1:t+1) = ft+1(zt+1|x)ft+1|t (x|z1:t )∫
ft+1(zt+1|x)ft+1|t (x|z1:t ) dx

,(2.4)

where ft+1(z|x) is the likelihood function associated with (2.3) and the posterior
predictive distribution, ft+1|t (x|z1:t ), is defined in (2.2).

REMARK 2.1. The widely-known Kalman filter is a special case of the
Bayesian filtering formulation given in equation (2.4). Indeed, if one considered
that φt , ηt were linear and vt ,wt were normally distributed, then equations (2.2)
and (2.4) would enjoy a closed-form solution which would be the same as in the
Kalman filter.

On the other hand, our focus is on tracking multiple objects which move simul-
taneously. Motivated by the single object tracking framework described in equa-
tions (2.2) and (2.4), we consider a statistical framework which allows us to gen-
eralize the prediction equation (2.2) and the corresponding update equation (2.4),
both suitable for tracking one object to pertinent equations for tracking one set of
objects. We view for the first time in this biological problem the evolving collec-
tion of the organelles as a single set-valued state, Xt = {x1

t , x2
t , . . . , x

nt
t } ∈F(RN),

where nt represents the number of objects at time t , and F(RN) is the collec-
tion of all finite subsets of R

N . Similarly, the collection of experimental mi-
croscopy measurements at time t is viewed as a single set-valued observation,
Zt = {z1

t , z
2
t , . . . , z

mt
t } ∈ F(RM), where mt is the number of generated measure-

ments at time t . Based on equation (2.3), each member zi
t ∈ Zt+1 is a noisy per-

turbation of the true state x of an organelle j at time t , where i is not necessarily
equal to j .

Furthermore, the randomness in this multi-object framework is represented by
modeling multi-object states, �t , and multi-object measurements, Mt , as random
finite sets (RFS) on the single-object state and observation spaces, RN and R

M ,
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respectively. The corresponding multi-object dynamics and observations are de-
scribed below.

Given a realization, Xt , of the RFS, �t , at time t , the multi-object state at time
t + 1 is modeled by the RFS,

�t+1 =
{ ⋃

x∈Xt

St+1|t (x)

}
∪ Bt+1,(2.5)

where St+1|t is the RFS representing the objects which survive with probability
pS,t+1|t (x), from the previous time t , and Bt is the RFS which represents the
objects which enter the scene at time t + 1 (“newborn” organelles). Hence, the
RFS, �t+1, includes all information of set dynamics, such as the number of objects
that vary over time and an individual organelle’s motion [see equation (2.1)] and
birth/death. Now, given a realization Xt+1 of �t+1 at time t + 1, the multi-object
measurements are modeled via the following RFS,

Mt+1 = ⋃
x∈Xt

�t+1(x),(2.6)

where �t+1(x) is the RFS of measurements generated by the object x ∈ Xt .
The RFS Mt+1 encapsulates all characteristics of the measurements from the mi-
croscopy image, for example, measurement noise.

Next, let ft |t (X′|Z1:t ) denote the multi-object posterior density at a given time
step t conditioned on the observation sets, Z1:t .= {Z1,Z2, . . . ,Zt }. The multi-
object Bayes filter propagates the multi-object filtering distribution via the follow-
ing recursion:

ft+1|t (X|Z1:t ) =
∫

ft+1|t
(
X|X′)ft+1|t

(
X′|Z1:t

)
δX′,(2.7)

ft+1|t+1(X|Z1:t+1) = ft+1(Zt+1|X)ft+1|t (X|Z1:t )∫
ft+1(Zt+1|X)ft+1|t (X|Z1:t )δX

,(2.8)

where
∫

δX is the set integral [see, e.g., Goodman, Mahler and Nguyen (1997),
Definition 10], ft+1|t (X|X′) is the multi-object transition density associated with
the dynamics given in equation (2.5), and ft+1(Zt+1|X) is the multi-object like-
lihood obtained by equation (2.6). One may show that densities and likelihoods
expressed in equations (2.7) and (2.8) are well defined using techniques of finite
set statistics (FISST) and extending the concept of the Radon–Nikodym derivative
[Goodman, Mahler and Nguyen (1997), Chapter II.5].

REMARK 2.2. One may compare the analogy between equations (2.7), (2.8)
and equations (2.2), (2.4), respectively. Therefore, our statistical framework gen-
eralizes the problem from tracking a single object to tracking a single set.
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However, the multi-object filter described in equations (2.7) and (2.8) is in-
tractable in most applications and the Cardinalized Probability Hypothesis Den-
sity (CPHD) approximation is considered. The CPHD produces estimates on the
number of organelles and their states. A formal definition is below.

DEFINITION 2.1. The CPHD filter recursively propagates the posterior car-
dinality distribution pt |t (n|Z1:t ) on object-number n and the intensity function or
Probability Hypothesis Density (PHD) Dt |t (x|Z1:t ). Given any region S ⊆ R

N ,
the expected number of objects in S is derived by the integral

∫
S Dt |t (x|Z1:t ) dx.

If S = R
N , then Nt |t = ∫

Dt |t (x|Z1:t ) dx is the total expected number of objects in
the scene.

The CPHD filter produces stable (low-variance) estimates of object number, as
well as better estimates of the states of individual objects [Mahler (2007), Vo, Vo
and Cantoni (2007)]. This gain in performance is achieved with increased com-
putational cost. For instance, Vo, Vo and Cantoni (2007) implemented a Gaussian
mixture CPHD whose algorithmic cost was of the order O(m3n), where m is the
number of data points and n the number of objects of interest. However, the number
of data points is large and the number of organelles is a priori unknown and varies
in time. Therefore, the alternative Gaussian mixture implementation of Mahler and
Maroulas (2013) is considered herein which decreases the computational cost to
the order of O(mn). In fact, our technique is based on the experimental observation
that all data are produced by the organelles and no false alarms exist. If false alarms
were collected, for instance, due to human intervention, then equations (2.5) and
(2.6) would need to be suitably formulated.

Before proceeding with the dynamics and Bayesian formulations as expressed
in Propositions 2.1 and 2.2, respectively, we list the assumptions on which our
Gaussian mixture approach to the CPHD is based.

ASSUMPTION 2.1. Consider a realization Xt = {x1
t , x2

t , . . . , x
nt
t } of the RFS,

�t , and the associated data collection Zt = {z1
t , z

2
t , . . . , z

mt
t }. The state of each

organelle xi
t ∈ Xt, i = 1, . . . , nt is normally distributed given by

xt |xt−1 ∼ N(x;Ft−1xt−1,Qt−1),(2.9)

where Ft−1 is the state transition matrix and Qt−1 is the process noise covari-
ance. Similarly, each observation z

j
t j = 1, . . . ,mt , j �= i, is normally distributed

according to

zt |xt ∼ N(z;Htxt ,Rt ),(2.10)

where Ht is the observation matrix and Rt is the observation noise covariance.
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ASSUMPTION 2.2. The survival probability, pS,t+1|t (x), of an organelle with
state x at time t to be present at time t + 1 is state independent, that is,
pS,t+1|t (x) = pS . The detection probability, pD|t+1(x), to collect an observation
associated with an organelle whose state is x at a given time t , is state independent,
that is, pD|t+1(x) = pD .

ASSUMPTION 2.3. The intensity measure of the birth RFS which encom-
passes the dynamics of newborn organelles is a Gaussian mixture of the form

bt (x) =
Jb,t∑
i=1

w
(i)
b,tN

(
x;μ(i)

b,t , P
i
b,t

)
,(2.11)

where w
(i)
b,t ,μ

(i)
b,t , P

i
b,t are the weights, means and covariances of the mixture birth

intensity and Jb,t is the number of Gaussian components associated with the new-
born organelles at a given time t .

REMARK 2.3. Assumptions 2.1–2.3 are crucial for establishing a closed form
for the multi-object densities defined in equations (2.7) and (2.8). However, if the
linearity of Assumption 2.1 is violated, then one could consider implementing a
CPHD filter introduced by Vo, Vo and Cantoni (2007), which employs a pertinent
approximation of the nonlinearities. However, Assumptions 2.1–2.3 are satisfied
using our experimental data. Further discussion of this topic is delegated to Sec-
tion 3.

The propositions below involve the main equations of the Gaussian mixture
implementations of the CPHD filter without considering any false alarms. For pre-
sentation’s sake, the time index is suppressed in the cardinality of the state sets
and measurement sets in the propositions below, that is, nt = n and mt+1 = m.
The reader should refer to Mahler and Maroulas (2013) and the references therein
for their proofs.

PROPOSITION 2.1 (Prediction). Assume that at a given time t , the posterior
cardinality distribution, pt |t (n), is given and that the posterior PHD is a Gaussian

mixture of the form Dt |t (x) = ∑Jt

i=1 w
(i)
t N(x;μ(i)

t , P
(i)
t ), where Jt is the number

of Gaussian components at t . Then the posterior predicted PHD, Dt+1|t , is also a
Gaussian mixture,

Dt+1|t (x) = bt (x) + DS,t+1|t (x),(2.12)

where bt (x) is given in (2.11) and DS,t+1|t (x) = pS

∑Jt

i=1 w
(i)
t N(x;μ(i)

S,t+1|t ,
P

(i)
S,t+1|t ) is the PHD which arises from the “survived” organelles. The correspond-

ing mean and covariance equal μS,t+1|t = Ftμt and PS,t+1|t = Qt + FtPtF
T
t ,
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respectively. The posterior predictive cardinality distribution is

pt+1|t (n|Z1:t ) =
n∑

j=0

pB(n − j)

∞∑
l=j

(
l

j

)
p

j
S(1 − pS)l−jpt |t (l),(2.13)

where pB(·) is the cardinality distribution of the RFS responsible for the or-
ganelles’ appearance and pS is the survival probability of an organelle.

We denote the permutations P n
m = n!

(n−m)! with the convention that P n
m = 0, if

n < m, and we define qD = 1−pD the probability of not detecting an intracellular
movement. Furthermore, assume that at time t + 1, a new measurement random
set, Zt+1, is received with cardinality |Zt+1| = m. Then the predicted PHD (2.12)
and cardinality distribution (2.13) will be updated according to Proposition 2.2.

PROPOSITION 2.2 (Update). Suppose that the predicted PHD, Dt+1|t , and the
cardinality distribution, pt+1|t (n|Z1:t ), satisfy Proposition 2.1. Then, the posterior
PHD, Dt+1|t+1, at a given time t +1 is a Gaussian mixture, and the corresponding
CPHD update equations are listed below:

Dt+1|t+1 = qD

[
1∑Jt+1|t

i=1 w
(i)
t+1|t

∑∞
n=m+1 P n

m+1pt+1|t (n)q
n−(m+1)
D∑∞

n=m P n
mpt+1|t (n)qn−m

D

]
Dt+1|t (x)

(2.14)

+ pD

∑
z∈Zt+1

Jt+1|t∑
i=1

w̄
(i)
t+1|t (z)N

(
x;μ(i)

t+1(z),P
(i)
t+1

)
,

where

w̄
(i)
t+1|t (z) = w

(i)
t+1|t q

(i)
t+1(z)∑Jt+1|t

i=1 w
(i)
t+1|t q

(i)
t+1(z)

,

q
(i)
t+1(z) = N

(
z;Ht+1μ

(i)
t+1|t ,Rt+1 + Ht+1P

(i)
t+1|tH

T
t+1

)
.

The mean and the covariance matrix are μ
(i)
t+1(z) = μ

(i)
t+1|t +K

(i)
t+1(z−Ht+1μ

(i)
t+1|t ),

P
(i)
t+1 = [I − K

(i)
t+1Ht+1]P (i)

t+1|t , respectively, where K
(i)
t+1 = P

(i)
t+1|tHT

t+1(Rt+1 +
Ht+1P

(i)
t+1|tHT

t+1)
−1. Furthermore, the posteriorcardinality distribution is propa-

gated via the following equation:

pt+1|t+1(n) = pt+1|t (n)
P n

mqn−m
D∑∞

l=m P l
mpt+1|t (l)ql−m

D

.(2.15)

REMARK 2.4. If there were only one intracellular movement during the track-
ing time and neither a birth nor a death of an organelle were allowed, then Propo-
sitions 2.1 and 2.2 would yield the special case of monitoring a random singleton,
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that is, one organelle in our experiments. Furthermore, if the probability of detec-
tion pD = 1 (thus qD = 0) and there was one component in the Gaussian mixture,
then equation (2.14) would yield the typical Kalman filter update equation and in
this special case the matrix K would play the role of the Kalman gain matrix.

3. Results. Having established the theoretical framework, we present our bi-
ological data analysis and tracking in this section. We start with a summary of our
algorithm.

Step 0: Initialization. The initial intensity, D0|0, is considered as a Gaussian
mixture with J0 components. Furthermore, the initial cardinality distribution,
p0|0(n), is considered a priori to a single object.

Step 1: Prediction. At time t the predicted intensity Dt+1|t is a Gaussian mix-
ture whose components’ weights, means and covariance matrices are derived in
equation (2.12). Equation (2.13) yields the corresponding posterior predictive car-
dinality distribution, pt+1|t (n).

Step 2: Update. At time t + 1, the predictions generated in Step 1 are updated
based on new measurements. More precisely, the posterior PHD, Dt+1|t+1, is a
Gaussian mixture whose weight, mean and covariance matrix is derived by equa-
tion (2.14). The posterior cardinality distribution, pt+1|t+1(n), is estimated accord-
ing to equation (2.15).

Step 3: Merging and pruning. The number of Gaussian components increases
as time progresses. In fact, at a given time, t , the Gaussian mixture will require
O(Jt−1|Zt |) components, where Jt−1 is the number of components of the poste-
rior intensity Dt−1|t−1 at time t − 1. Since components with low weight do not
provide any significant contribution to the approximation of the posterior multi-
target density, we eliminate the components whose weights are negligible and be-
low some preset threshold, T (e.g., T = 10−5). The remaining components of the
mixture are renormalized such that their sum equals 1.

Furthermore, there are components which are close to each other and prac-
tically could be approximated by a single Gaussian distribution. Indeed, if two
components of the mixture with weight, state and covariance, (wi, xi,Pi) and
(wj , xj ,Pj ), respectively, have distance di,j

.= (xi − xj )P
−1
i (xi − xj )

t less than
some threshold, U , then these mixing components are merged into one [Clark,
Panta and Vo (2006)]. The threshold U should be chosen much smaller (e.g.,
U = 0.004) than the standard deviation of the observations’ noise so that the filter-
ing algorithm does not consider two different objects as one when they are close
together, such as when their paths are crossing each other.

Step 4: Multi-object state extraction. To extract the organelles’ states, we fo-
cus on only the modes of the corresponding Gaussian mixture. The number of
organelles is estimated from the cardinality distribution using a maximum a poste-
riori (MAP) estimator n̂ = arg supn p(n|Z1:t ).

Schematically, the algorithm works in the following way, for all t = 0,1, . . .:

(Dt |t , pt |t )
Proposition 2.1−→ (Dt+1|t , pt+1|t )

Proposition 2.2−→ (Dt+1|t+1,pt+1|t+1),
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where the PHD, D·|·, is estimated via the triplet of weights, mean and covari-
ance.

3.1. Synthetic data. This section illustrates a simulated scenario with respect
to organelle movements. Consider a set Xt = {x1

t , x2
t , . . . , x

nt
t } whose members

are 4-dimensional state vectors of the nt organelles at time t . Precisely, an or-
ganelle’s state vector is xi

t
.= [px,t , vx,t , py,t , vy,t ]T for any i = 1, . . . , nt , where

(px,t , py,t ) denote the spatial coordinates of the organelle on the xy-plane and the
corresponding velocities are denoted as (vx,t , vy,t ). The movements in a cell may
be considered to take place in a force field which is on average inactive. However,
when a molecular motor exerts a pushing force on an organelle, then there is a pos-
itive deviation from the mean zero. By the same token, when friction and/or other
large enough backward-acting forces occur, then the organelles will slow down
and eventually stop, and thus a symmetric negative deviation from the mean-zero
force field is caused. Therefore, one may consider that the force field is normally
distributed with mean zero and pertinent covariance. This consideration is actually
validated in Section 3.2 where experimental data are analyzed. Given that the mass
is conservative over time frames considered here (a valid assumption), Newton’s
second law yields that the acceleration, a, follows a normal distribution. The ve-
locity changes in turn are also normally distributed where the covariance depends
on the size of the time intervals. Given the fact that ṗx,t = vx,t and ṗy,t = vy,t , we
can formally state the following linear stochastic differential equations system:⎛

⎜⎜⎜⎝
dpx,t

dvx,t

dpy,t

dvy,t

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

vx,t

0
vy,t

0

⎞
⎟⎟⎟⎠ dt +

⎛
⎜⎜⎜⎝

0 0
σx 0
0 0
0 σy

⎞
⎟⎟⎟⎠

(
dux,t

duy,t

)
,(3.1)

where ux,t , uy,t are independent Brownian motions and the driving noises σxu̇x,t

and σyu̇y,t are Gaussian noises with covariances σ 2
x δ(t) and σ 2

y δ(t), respectively,
where δ(t) is the delta function. Discretizing and approximating the system (3.1),
we have a two-dimensional model given below:

⎛
⎜⎜⎜⎝

px,t

vx,t

py,t

vy,t

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 � 0 0
0 1 0 0
0 0 1 �

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

px,t−1

vx,t−1

py,t−1

vy,t−1

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝

�2

2
0

� 0

0
�2

2
0 �

⎞
⎟⎟⎟⎟⎟⎟⎠

ξt−1,(3.2)

where the model noise, ξt−1, is a collection of independent Gaussian random
variables with covariance matrix 	 = diag{σ 2

x , σ 2
y }. The sampling time is con-

sidered � = 1 s since data from organelles’ movements are collected every one
second. The velocity changes are normally distributed with mean zero, and thus
99.7% of the data are within three standard deviations from zero. Taking into
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consideration the biological finding that organelles may move up to 7 μm/s (in
both directions) [Tominaga et al. (2003)], the standard deviation coefficients are
chosen σx = σy = 2.33 μm/s2. If one decreased or increased drastically the
variance, then the estimates would not be accurate. Small noise dynamics (e.g.,
σx = σy = 0.1 μm/s2) yield predictions based on almost perfect linear dynamics
which could lead to erroneous estimation in case organelles exhibit a slightly curvy
behavior. By the same token, a large standard deviation (e.g., σx = σy = 5 μm/s2)
produces a wide range of samples which lead to inaccurate estimates.

Furthermore, each object is considered with survival probability, pS,t = 0.99,
such that any organelle within the tracking domain is under monitoring unless
its signal disappears. The maximum number of involved Gaussian components
is considered to be fairly large, Nmax = 200. The object-birth process is a Pois-
son RFS with intensity defined as in (2.11), where wb = 0.25, μ

(1)
b = [3 0 5 0]T ,

μ
(2)
b = [4 0 −6 0]T ,μ

(3)
b = [−3 0 −2 0]T , μ

(4)
b = [−4 0 8 0]T , and Pb = 10I4.

The four different means, μ
(i)
b , i = 1, . . . ,4 are selected to ensure that births on all

four quadrants are considered with equal probability wb = 0.25. The covariance
of the birth intensity is also large such that a vast candidate area of newborn or-
ganelles is covered. Given that our experimental environment did not suffer from
low signal-to-noise ratio and no false alarm occurred, the probability of detecting
an organelle is state independent and equals pD,t = 0.98.

We first focus on the synthetic data which consist of the spatial coordinates.
Consider at given time t +1 the random set, Zt+1 = {z1

t+1, z
2
t+1, . . . , z

mt+1
t+1 }, where

for each i the data zi
t+1 = (px,t+1,py,t+1), i = 1, . . . ,mt , is a two-dimensional

vector whose likelihood is defined in (2.10), with

Ht =
(

1 0 0 0
0 0 1 0

)
, Rt = σ 2

o I2,(3.3)

and σo = 0.2 μm is the standard deviation of the measurement noise due to optical
limitations and experimental noise. For example, there is a fundamental maximum
to the resolution of any optical system due to diffraction. The diffraction defines
the microscope’s point-spread function which describes the response of an imaging
system to a point light source. Furthermore, our procedure uses a weight threshold
T = 10−5 for the pruning procedure and a threshold U = 0.004 for the merging
part of the algorithm (step 3 in the algorithm).

The synthesized organelles’ trajectories, which play the role of the true trajecto-
ries, are created by evolving a number of organelles according to dynamics (3.2),
and the corresponding observations were created after perturbing the true trajecto-
ries by a normally distributed noise with covariance Rt as in (3.3).

Figure 1 shows that there are twelve organelles (in total) which are monitored
for 100 time steps. At any given time t , the number of organelles is unknown a
priori and is not fixed, that is, random birth and death of organelles are allowed
with pertinent dynamics based on Assumption 2.3. In fact, the organelles’ number
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FIG. 1. Number of organelles per time step.

increases and decreases drastically during the first thirty steps and the last twenty
ones as well. This makes the problem a rather formidable one by keeping in mind
that previous studies have monitored simultaneously a fixed and a priori known
number of intracellular movements with overall known dynamics, for example,
Smal, Niessen and Meijering (2006). In contrast, our algorithm assumes an initial
cardinality of 1 (see step 1 of the algorithmic description) and updates its estimate
based on available data. Thus, our algorithm captures accurately all modifications
in the number of organelles and it gives an accurate estimate.

Figure 2 shows a three-dimensional graph of the trajectories’ estimates of the
organelles across time. As we can see, there are several crossings, often in the y-
direction. Tracking methods for intracellular movements that assume one-to-one
correspondence between a measurement and an object fail to resolve the most am-
biguous track interaction scenarios, for example, when objects are in close prox-

FIG. 2. Linear trajectories of organelles in the xy-plane over time.
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imity. However, in our case, we do not assume any sort of prior one-to-one corre-
spondence, instead we employ a multi-object statistical framework by considering
a single set of objects, thereby producing accurate estimates even during the diffi-
cult occasions such as crossings.

Indeed, the estimates are very close to the true trajectories, but to quantify
any sort of error a multi-object error distance is considered. The characteris-
tics of a multi-object distance should (1) be a metric on the space of finite sets,
(2) capture cardinality and state errors and (3) have a physical interpretation. To-
ward this end, we employ a metric from point processes theory in order to mea-
sure the discrepancy between the estimates and the true values [Brémaud (1981),
Møller and Waagepetersen (2004)]. A formal definition of this metric according to
Schuhmacher, Vo and Vo (2008) is given below.

DEFINITION 3.1. Let W ⊂ R
N be a closed and bounded observation window

and d denote the Euclidean metric. For c > 0, let d(c)(x, y)
.= min(c, d(x, y)) de-

note the distance between x, y ∈ W and Pn denote the set of permutations on
{1,2, . . . , n} for any n ∈ N. For 1 ≤ 
 < ∞, c > 0 and arbitrary finite subsets
X = {x1, . . . , xm} and Y = {y1, . . . , yn} of W , where m,n = 0,1,2, . . . , define
for m ≤ n,

d̄
(c)

 (X,Y )

.=
(

1

n

(
min
π∈Pn

m∑
i=1

d(c)(xi, yπ(i))

 + c
(n − m)

))1/


,(3.4)

and d̄
(c)

 (X,Y ) = d̄

(c)

 (Y,X) if m > n. Moreover, if 
 = ∞, then

d̄(c)∞ (X,Y ) = min
π∈Pn

max
1≤i≤n

d(c)(xi, yπ(i)) if m = n

(3.5)
= c if m �= n.

For any 
 ∈ [1,∞] the distance is equal to zero if m = n = 0. The function
d̄

(c)

 (X,Y ) is called the Optimal SubPattern Assignment (OSPA) metric of order 


with cutoff parameter c.

REMARK 3.1. Schuhmacher and Xia (2008) examined the special case for

 = c = 1 and Schuhmacher, Vo and Vo (2008) generalized it for any 
, c. The
metric d̄

(c)

 is based on a Wasserstein construction. The advantage of this metric is

that equation (3.4) takes into consideration the error due to localization and cardi-
nality at the same time. An alternative measure of discrepancy is the Haussdorff
distance [Møller and Waagepetersen (2004)], however, it is relatively insensitive
to difference in cardinality as was noted in Hoffman and Mahler (2002). The or-
der parameter 
 is similar to the parameter of the 
th order Wasserstein metric
between the empirical distributions of the point patterns X and Y . Furthermore,
given that c is fixed, the parameter 
 in (3.4) assigns more weight to outliers.
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FIG. 3. Error measured via the OSPA metric. The error can be as large as the cutoff parameter
c = 30.

The metric d̄
(c)

 (X,Y ) ∈ [0, c] for any c > 0 in turn gives us a measure of perfor-

mance with respect to the worst possible distance 
. Also, if 0 < c1 < c2 < ∞, then
d̄

(c1)

 ≤ d̄

(c2)

 . Moreover, the cutoff parameter c determines the weighting of how

the metric penalizes cardinality errors as opposed to localization errors. Smaller
values of c tend to put emphasis on the localization error and make the metric
unchanged by cardinality errors. Thus, the designer can determine how strongly a
false or missing estimate will be penalized by modifying the value of c. Here, we
have chosen 
 = 1 and c = 30 such that the OSPA is sensitive enough in both lo-
calization and cardinality errors. The choice of the value 
 = 1 has the benefit that
the OSPA-metric measures a first order per-object error and that the sum of local-
ization and cardinality components equals the total metric. The reader should refer
to Schuhmacher, Vo and Vo (2008) and the references therein for further details on
the OSPA metric.

The top picture in Figure 3 depicts the error using the OSPA metric given in
equation (3.4). We observe that large errors (peaks in the figure) occur when the
organelles are crossing and when there is a change of the number of organelles
(e.g., at t = 20). This is expected since these are the most difficult situations. The
OSPA error cannot exceed the value 30 since the cutoff parameter is set at c = 30,
however, even in the most difficult cases, the error remains well below 10. The two
subsequent pictures are showing localization and cardinality error. The localization
errors for two patterns X = (x1, . . . , xm) and Y = (y1, . . . , yn) with m ≤ n and

 < ∞ are given by

ē
(c)

,loc(X,Y ) =

(
1

n

(
min
π∈Pn

m∑
i=1

d(c)(xi, yπ(i))



))1/


,
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FIG. 4. Peroxisomes movements.

ē
(c)

,card(X,Y ) =

(
c
(n − m)

n

)1/


.

Strictly speaking, the two errors, ē
(c)

,loc and ē

(c)

,card, are not metrics on the space of

finite subsets, but one may still gain some insight about the performance of the
filter [Schuhmacher, Vo and Vo (2008)].

3.2. Experimental data. Before outlining our results, we will briefly describe
the conditions under which the movement data were retrieved. Organelles were la-
beled with fluorescent protein fusions in root cells of the model plant Arabidopsis
thaliana and cells on the surface of roots were observed on a fluorescent micro-
scope as described in Nelson, Cai and Nebenführ (2007). Images were taken with
a digital camera at regular intervals (1 s) to generate time-lapse sequences of 1
to 2 minute duration (i.e., 60 to 120 images). These image sequences (e.g., Fig-
ure 4) displayed bright spots of different sizes and intensities depending on the
size and position of the organelle relative to the focal plane. Movements of indi-
vidual organelles were readily apparent by comparing the changes in position of
spots between image frames (arrow in Figure 4). Specifically, Figure 4 shows the
movement of peroxisomes, small spherical organelles involved in detoxification
of reactive oxygen species which have recently emerged as important regulators of
plant growth and stress responses [Klaus and Heribert (2004)]. Similar movements
can also be observed for other organelles, such as Golgi stacks [Nebenführ et al.
(1999)] and mitochondria [Van Gestel, Köhler and Verbelen (2002)].

Images were analyzed quantitatively by manually marking the center of each
spot in every frame of the time-lapse sequence which was then recorded by the
Manual Tracking plugin in ImageJ [Schneider, Rasband and Eliceiri (2012)]. This
procedure produced a series of (x, y) coordinates per image frame that were man-
ually linked to specific (x, y) coordinates in subsequent frames. The procedure of
manually linking is typically slow (about 1 hour for the data set that is analyzed
herein) and bias due to human decision in linking can be a frequent disadvan-
tage. In our case, the resulting two-dimensional vectors declaring the position of
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TABLE 1
p-values of two Kolmogorov–Smirnov
tests for the acceleration data points of

peroxisomes

Acceleration p-value H0

ax 0.31 Accept
ay 0.3265 Accept

organelles on the xy-plane at every time point were used (1) to calculate the instan-
taneous velocities of the organelles over time; (2) to provide experimental values
for the accelerations’ distributions; and (3) to provide the raw data to the statistical
tracking algorithm without knowing a priori which data (coordinates) correspond
to which organelle.

In the following, we focus on the motions of eight peroxisomes retrieved in
experiments in the second author’s lab. First, we decompose the acceleration,
and we investigate the distributional behavior of the accelerations per coordinate
separately based on the experimental data. There are m = 284 acceleration data
points from the eight peroxisomes with mean and standard deviation on the x-axis,
μa

x = −0.0326, σ a
x = 0.9998, respectively. The corresponding mean and standard

deviation on the y-axis are μa
y = 0.0429, σ a

y = 0.6922. Next, we test if the acceler-
ations follow a normal distribution using a Kolmogorov–Smirnov test and visually
by plotting two normality plots, one per coordinate. As we can see from the results
of the Kolmogorov–Smirnov tests presented in Table 1, and the normal probability
plots in Figure 5, the two accelerations of the eight peroxisomes follow a Gaussian
distribution. Thus, the arguments of Section 3.1 imply that the dynamics of the
eight peroxisomes can be described by the discrete system in (3.2).

FIG. 5. Testing normality of the organelles’ acceleration. Left panel: Acceleration on the x-axis.
Right panel: Acceleration on the y-axis.
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FIG. 6. Trajectories of organelles. Left panel: Trajectories in the x-direction. Right panel: Trajec-
tories in the y-direction.

Therefore, employing the dynamics (3.2) accompanied by the several hyperpa-
rameters discussed in Section 3.1, we describe our findings for the motions of the
peroxisomes. Figures 6 and 7 show the trajectories based on measurements (line)
and the corresponding estimates represented as dots in the figures. At the initial
time step, Figure 6 shows a greater mismatch between the estimates and the data
than in the next sampling periods. This is expected since the algorithm attempts to
“learn” the pattern of the organelles’ motion. Although the peroxisomes’ overall
trajectories are not linear, they are piecewise linear per time step (1 s), and thus
the dynamics of Section 3.1 perform satisfactorily since sampling occurs every
� = 1 s. If the piecewise linearity was violated and/or the acceleration distribution

FIG. 7. Trajectories of organelles in the xy-plane over time.
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FIG. 8. Number of organelles per time step.

was heavy tailed, then the dynamics in equation (3.2) would produce errors which
would depend on the curvature of the true trajectories and/or the non-Gaussian
noise. Figure 8 depicts the cardinality (number of peroxisomes) per time step. As
we observe, the CPHD filter accurately captures the target number when their num-
ber does not vary, and it takes 1 to 2 sampling time steps to realize the change in
the organelle number. Also, the algorithm correctly estimates that there were not
any organelles to monitor during the time interval [26,29]. The duration of the
automated tracking process based on our algorithm is about 10 s versus roughly
1 hr for the manual tracking of the same eight peroxisomes.

Due to lacking the true trajectories of the organelles (in fact, it is impossible
to know them with the current technology) [Smal, Niessen and Meijering (2006)],
the OSPA measurement of error (and any other metric of this type) cannot be used
since it measures the discrepancy between the algorithmic estimates and the true
trajectories (not the observed measurements). However, according to our simula-
tion results exposed in Section 3.1, we believe that our estimates are very close to
the true trajectories of the eight peroxisomes.

4. Summary and discussion. In this paper we have considered the motion
of organelles as evolving sets. This succeeded by incorporating random sets tech-
niques for multi-object tracking and using the cardinalized probability hypothesis
density filter. Employing a novel Gaussian mixture implementation of the CPHD
filter, we were able to successfully generate an automated method for a quantitative
analysis of intracellular movements, which took about 10 seconds versus about
1 hour for manually linking the same data. The new approach’s computational
cost was linearly dependent on the number of objects multiplied by the number
of data points. Our model was capable of simultaneously monitoring a large num-
ber of organelles, specifically peroxisomes, and distinguishing them even when
they were in close proximity. Consequently, not only did our algorithm monitor
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the organelles but it also gave an accurate estimate on the number of organelles
without assuming a fixed and known number of them. Furthermore, our data anal-
ysis revealed that the acceleration of the peroxisomes are mean-zero normally dis-
tributed, which according to Newton’s second law supports an on average “inac-
tive” force field within a cell where positive (pushing force by the myosin motors)
or backward-acting forces (e.g., friction) are developed in a symmetric fashion
given that mass is conservative. Consequently, the two parameters, myosin power
and local friction, were fairly constant on average over time and space, respec-
tively. On the other hand, large changes in velocity (if any) presumably would
result from a static organelle engaging with a cytoskeletal track, or from a moving
organelle dropping from a cytoskeletal track. We expect these changes to occur
nearly instantaneously, however, technical limitations prevented us from detecting
these very rapid changes if they indeed existed. In particular, we had to employ
exposure times up to 100 ms to obtain sufficient signal for organelle detection.
In addition, images were taken in 1 s intervals and had a nominal resolution of
200 nm per pixel. Given that myosin motors take 35 nm steps and can move up to
7 μm/s, that is, one step every 5 ms, as noted in Tominaga et al. (2003), it is appar-
ent that these imaging parameters do not allow us to capture the anticipated very
fast acceleration and deceleration events directly. Instead we can only compute the
integrated behavior of organelles over many individual myosin steps. Therefore,
this scientific conjecture regarding changes in organelle velocities should be fur-
ther examined on large experimental data sets which could yield a more detailed
distribution of accelerations, dynamics and thus potentially the mechanics within
a cell overall.

Focusing on the algorithm itself, although it captures the organelles’ behavior
accurately, it did not take other scenarios into consideration which would increase
the already severe complexity of the problem. For example, there might be cases
where organelles may move in a more erratic fashion. In this scenario, the accel-
eration distribution might not be normally distributed and thus nonlinear and/or
nonGaussian dynamics could be fruitful for such data. A possible future research
avenue is to use high noise with suitably controlled drift dynamics or a more com-
plex autoregressive model. Another way is to approximate the overall nonlineari-
ties and/or add more experimental features, for example, include information about
the shape and signal intensity of organelles in the linking step [Sbalzarini and
Koumoutsakos (2005), Smal (2009), Smal, Niessen and Meijering (2006), Smal
et al. (2008)]. Moreover, the organelles’ survival and detection probabilities were
presumed state independent and time invariant. On the other hand, these probabil-
ities clearly depend on the position of organelles in a cell. For instance, organelles
in close proximity to each other may not be detected or, given the curvature of
cells, the survival probability of an organelle will decrease as it approaches an out-
of-focus region of the cell. In our experimental data, crossings occurred only a few
times and organelles were always in-focus and “disappeared” when they exited
the focal domain. Attempting to bypass Assumption 2.2, techniques developed in
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Hughes and Fricks (2011), Hughes, Fricks and Hancock (2010) may be fruitful for
these difficult scenarios.

In conclusion, this manuscript offers the establishment of a systematic way of
creating an automated algorithm for monitoring motility within a cell by consid-
ering a unifying statistical framework for multiple objects. In turn, such an auto-
mated tracking algorithm will greatly strengthen the study of motion patterns in
cells. Consequently, understanding the typical behavior of healthy molecular pro-
cesses will have a great impact in quickly recognizing abnormalities associated
with disorders.
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