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Abstract. Loop Ensemble (CLEκ ) in doubly connected domains: annuli, the punctured disc, and the punctured plane. We restrict
attention to CLEκ for which the loops are simple, i.e. κ ∈ (8/3,4]. In (Ann. of Math. (2) 176 (2012) 1827–1917), simple CLE in
the unit disc is introduced and constructed as the collection of outer boundaries of outermost clusters of the Brownian loop soup.
For simple CLE in the unit disc, any fixed interior point is almost surely surrounded by some loop of CLE. The gasket of the
collection of loops in CLE, i.e. the set of points that are not surrounded by any loop, almost surely has Lebesgue measure zero. In
the current paper, simple CLE in an annulus is constructed similarly: it is the collection of outer boundaries of outermost clusters of
the Brownian loop soup conditioned on the event that there is no cluster disconnecting the two components of the boundary of the
annulus. Simple CLE in the punctured disc can be viewed as simple CLE in the unit disc conditioned on the event that the origin
is in the gasket. Simple CLE in the punctured plane can be viewed as simple CLE in the whole plane conditioned on the event
that both the origin and infinity are in the gasket. We construct and study these three kinds of CLE’s, along with the corresponding
exploration processes.

Résumé. Nous étudions l’ensemble des boucles conformes (CLEκ ) dans des domaines connexes du type : anneau, disque percé et
plan percé. Nous considérons les cas CLEκ pour lesquels les boucles sont simples, i.e. κ ∈ (8/3,4]. Dans (Ann. of Math. (2) 176
(2012) 1827–1917), l’ensemble CLE dans le disque unité est introduit et construit comme la collection de frontières extérieures des
amas les plus excentrés de la soupe de boucles Browniennes. Dans le cas du disque unité, n’importe quel point intérieur est presque
sûrement entouré par une boucle du CLE. L’ensemble des points qui ne sont entourés par aucune boucle a une mesure de Lebesgue
nulle presque sûrement. Dans notre article, le CLE dans un anneau est construit de façon similaire : il s’agit de la collection
de frontières extérieures des amas de la soupe de boucles Browniennes conditionnés sur l’évènement qu’il n’existe pas d’amas
séparant les deux composantes de la frontière de l’anneau. Dans le cas du disque percé, le CLE correspond au conditionnement par
le fait que l’origine n’est pas entourée par une boucle. Dans le cas du plan percé, le conditionnement est tel que l’origine et l’infini
ne sont pas entourés. Nous construisons et étudions ces trois types de CLE et les processus d’exploration correspondants.
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1. Introduction

Schramm Loewner Evolution (SLE) curves were introduced by Oded Schramm [8] as candidates for the scaling limit
of various interfaces in discrete statistical physics models. For each κ ≥ 0, SLEκ is a random curve in a simply con-
nected domain (which is non-empty and is not the whole plane) connecting one boundary point to another boundary
point that satisfies certain conformal symmetry and so-called domain Markov property [8]. Since their introduction,
SLEκ have been proved to be the scaling limits of many discrete models. For example, SLE3 has been proved to be
the scaling limit of the interface in critical Ising model [1,2]; SLE4 has been proved to be the scaling limit of a level
line of the discrete Gaussian Free Field [9,10].
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When one studies the scaling limit of the collection of all interfaces in a discrete statistical physics models (as
opposed to a single interface), one is led to the notion of Conformal Loop Ensemble (CLE). For each κ ∈ (8/3,8],
one can define CLEκ in the unit disc which is a random countable collection of loops that are contained in the unit
disc. Only for κ ∈ (8/3,4], the loops are simple and disjoint. We occasionally use the term “simple CLE” to refer to a
non-nested disjoint Conformal Loop Ensemble CLEκ for κ ∈ (8/3,4], and we will focus exclusively on these CLE’s
for κ ∈ (8/3,4]. In [11,13], simple CLE in the unit disc is defined and studied. The Brownian loop soup is a random
collection of the Brownian loops which are Brownian paths start and end at the same point (see Section 2.2). In [13],
simple CLE in the unit disc is constructed from Brownian loop soup and the authors prove that CLEκ for κ ∈ (8/3,4]
is the only one-parameter family of collections of loops that satisfies conformal invariance and the domain Markov
property (as we will define in Section 2.3.1), and each loop of which looks locally like an SLEκ . Now CLE3 is
conjectured to be the scaling limit of the collection of interfaces in the critical Ising model; CLE4 has been proved
to be the collection of level lines of Gaussian Free Field. (The details have not all written, but a reasonably detailed
proof appears in Jason Miller’s lecture slides [6].) Later in [3], the nested CLE in Riemann sphere is defined and
studied. Most of the effort in [3] is devoted to showing that the nested CLE in whole plane is invariant under inversion
z �→ 1/z.

Given a collection of CLE loops in the unit disc, it is natural to ask what is the “distance” between a loop, say the
loop containing the origin denoted by γ (0), and the boundary ∂U, or what is the “distance” between two loops. Since
CLE is conformal invariant, such a distance should also be conformal invariant, and should depend on the collection of
the loops between γ (0) and the boundary. It turns out that the collection of loops between γ (0) and ∂U is a collection
of loops in the annulus. Therefore, to find such a distance between loops, we need to understand the properties of CLE
in the annulus. This is the motivation for this paper.

We construct CLE in the annulus as the collection of the outer boundaries of outermost clusters of Brownian loop
soup in the annulus conditioned on the event that there is no cluster disconnecting the two components of the boundary
of the annulus. Our main results about CLE in the annulus can be summarized as follows:

• CLE in the annulus satisfies an annulus version of conformal invariance and the domain Markov property (detailed
description in Section 3).

• CLE in the annulus and CLE in the unit disc are related in the following way: for a CLE in the unit disc, fix the loop
containing a particular interior point. Then, given this loop, the conditional law of the collection of loops between
this particular loop and the boundary of the domain has the same law as CLE in the annulus.

Consider CLE in the annulus with inradius r ∈ (0,1) and outradius 1. We show that, as r goes to zero, CLE in
the annulus converges, and the limit object can be viewed as CLE in the unit disc “conditioned” on the event that the
origin is in the gasket. This is a variant of CLE in which the origin plays a special role. We call it CLE in the punctured
disc. This version of CLE has the nice properties as we would expect:

• CLE in the punctured disc satisfies conformal invariance and the domain Markov property (see Section 4).
• The law of the set of loops that are “near to the boundary of the disc” is approximately the same for CLE in the unit

disc and CLE in the punctured disc (in a sense we will make precise in Proposition 4.5).

In the construction of CLE in the punctured disc, we let the inradius of the annulus go to zero. We can also let the
outradius go to infinity at the same time as the inradius goes to zero: Consider CLE in the annulus with inradius r

and outradius 1/r . When r goes to zero, CLE in the annulus also converges, and we call the limit object CLE in the
punctured plane. For CLE in the punctured plane, there is no loop separating the origin from infinity, and we define
the gasket to be the set of points that are not separated by any loop from infinity (or equivalently, not separated by
any loop from the origin). For CLE in punctured plane, the invariance under inversion z �→ 1/z is true by construction
(which is not trivially true for nested CLE in whole plane [3]).

We use the name “CLE in doubly connected regions” to indicate the above three versions of CLE: CLE in the
annulus, CLE in the punctured disc, and CLE in the punctured plane.

In [13], the authors describe an exploration procedure to discover the loops in CLE progressively. The conformal
invariance and domain Markov property of CLE make this exploration procedure easy to control. In our paper, we
use the same procedure to explore the loops in CLE in the punctured disc. We will give a precise quantitative relation
between the continuous exploration process of CLE in the punctured disc and the continuous exploration process of
CLE in the unit disc. The authors are in the process of carrying out a program to define a conformal invariant distance
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on CLE4 and other CLE loop configurations which includes [12,15–17]. The continuous exploration process is an
important ingredient in describing the “distance” between loops, and this quantitative relation between exploration
processes would shed lights on the asymptotic of the “distance.”

Outline. In Section 2, we give preliminaries about CLE in the unit disc and other tools. We construct and study
CLE in the annulus in Section 3, CLE in the punctured disc in Section 4, and CLE in the punctured plane in Section 5.

2. Preliminaries

In this paper, we denote the disc, circle and annulus as follows: for 0 < r < R, x ∈ C,

B(x, r) = {
z ∈ C : |z − x| < r

}
, D= B(0,1),

C(x, r) = {
z ∈C : |z − x| = r

}
, Cr = C(0, r),

A(r,R) = {
z ∈C : r < |z| < R

}
, Ar = A(r,1).

Denote the punctured disc and punctured plane in the following way

D
† =D \ {0}, C

† =C \ {0}.

Throughout the paper, we fix the following constants:

κ ∈
(

8

3
,4

]
, β = 8

κ
− 1, α = (8 − κ)(3κ − 8)

32κ
, c = (6 − κ)(3κ − 8)

2κ
. (2.1)

For general positive functions f and g, we write f � g if f/g is bounded from above by some universal constant;
f � g if g � f ; and f � g if f � g and f � g.

2.1. Conformal radius and conformal modulus

In this section, we are interested in two kinds of domains: non-trivial simply connected domains and annuli.
A non-trivial simply connected domain D is a non-empty open subset of C, which is not all of C, such that both

D and its complement in the Riemann sphere are connected. From the Riemann mapping theorem, we know that, for
any non-trivial simply connected domain D and an interior point z ∈ D, there exists a unique conformal map � from
D onto the unit disc D such that �(z) = 0 and �′(z) > 0. We define the conformal radius of D seen from z as

CR(D; z) = 1/�′(z).

We write CR(D) = CR(D; z) if z = 0.
Consider a closed subset K of D such that D \ K is simply connected and 0 ∈ D \ K . There exists a unique

conformal map �K from D \ K onto D normalized at the origin: �K(0) = 0, and �′
K(0) > 0. In fact �′

K(0) ≥ 1, and

CR(D \ K) = 1/�′
K(0) ≤ 1.

The Schwarz lemma and the Koebe one quarter theorem imply that

d ≤ CR(D \ K) ≤ 4d, (2.2)

where d = dist(0,K) is the Euclidean distance from the origin to K .
Define the capacity of K in D seen from the origin as

cap(K) = − log CR(D \ K) ≥ 0.
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By convention, if 0 ∈ K , we set CR(D \ K) = 0 and cap(K) = ∞. When K is small, i.e. the diameter R(K) of K is
less than 1/2, we have that1

cap(K) � R(K)2.

An annular domain A is a connected open subset of C such that its complement in the Riemann sphere has two
connected components and both of them contain more than one point. Then there exists a unique constant r ∈ (0,1)

such that A can be conformally mapped onto the standard annulus Ar . We define the conformal modulus of A, denoted
as CM(A), to be this unique constant r . Note that two annuli with different conformal radii cannot be conformally
mapped onto each other.

The following lemma describes the relation between the conformal radius of a non-trivial simply connected domain
and the conformal modulus of an annulus.

Lemma 2.1. Suppose K is a closed subset of D such that D \ K is simply connected and 0 ∈ D \ K . Clearly Ar \ K

is an annulus for r small enough. We have that

CM(Ar \ K)

CM(Ar )
→ CR(D \ K)−1, as r → 0.

Proof. Suppose � is the conformal map from D \ K onto D normalized at the origin: �(0) = 0, and �′(0) > 0. Note
that �(Ar \ K) equals D \ �(rD), the inner hole of which is asymptotically a disk of radius �′(0)r as r → 0. Thus
we have that

lim
r→0

CM(Ar \ K)

CM(Ar )
= lim

r→0

1

r
CM

(
�(Ar \ K)

) = �′(0).

This implies the conclusion. �

2.2. Brownian loop soup

We now briefly recall some results from [5]. It is well known that Brownian motion in C is conformal invariant. Let
us now define, for all t ≥ 0, the law μt(z, z) of the two-dimensional Brownian bridge of time length t that starts and
ends at z and define

μloop =
∫
C

∫ ∞

0
d2z

dt

t
μt (z, z),

where d2z is the Lebesgue measure in C. We stress that μloop is a measure on unrooted loops modulo time-
reparameterization (see [5]). And μloop inherits a striking conformal invariance property. Namely, if for any subset
D ⊂ C, one defines the Brownian loop measure μ

loop
D in D as the restriction of μloop to the set of loops contained in

D, then it is shown in [5] that:

• For two domains D′ ⊂ D, μ
loop
D restricted to the loops contained in D′ is the same as μ

loop
D′ (this is a trivial conse-

quence of the definition of these measures).
• For two connected domains D1,D2, suppose � is a conformal map from D1 onto D2, then the image of μ

loop
D1

under

� has the same law as μ
loop
D2

(this non-trivial fact is inherited from the conformal invariance of planar Brownian
motion).

Suppose D is a domain and V1,V2 are two subsets of D. We denote by

�(V1,V2;D)

the measure of the set of Brownian loops in a domain D that intersect both V1 and V2.

1We may assume K is contained in B(1,R(K)). Then cap(K) ≤ cap(B(1,R(K)) ∩D) � R(K)2.
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Proposition 2.2 ([4], Lemma 3.1, Equation (22)). Suppose 0 < r < 1,R ≥ 2. Then we have that

�(C1,CR;C \Dr ) = 2
∫ 1

r

s−1ρ(R/s) ds,

where the function ρ satisfies the following estimate: there exists a universal constant C < ∞ such that, for u ≥ 2

∣∣∣∣ρ(u) − 1

2 logu

∣∣∣∣ ≤ C

u logu
.

For a fixed domain D ⊂ C and a constant c > 0, a Brownian loop-soup with intensity c in D is a Poisson point
process with intensity cμ

loop
D . From the properties of Brownian loop measure, we have the following: Fix a domain

D and a constant c > 0, and suppose D′ is a subset of D. Suppose L is a Brownian loop-soup in D, let L1 be the
collection of loops in L that are totally contained in D′ and let L2 = L\L1. Then L1 has the same law as the Brownian
loop soup in D′, and L1 and L2 are independent.

2.3. CLE in the unit disc

2.3.1. Definition and properties
A simple loop in the plane is the image of the unit circle under a continuous injective map. The Jordan Theorem
says that a simple loop L separates the plane into two connected components that we call its interior int(L) (the
bounded one) and its exterior (the unbounded one). We will use the σ -field � generated by all the events of the type
{O ⊂ int(L)} where O spans the set of open sets in the plane. Consider (at most countable) collections � = (Lj , j ∈ J )

of non-nested disjoint simple loops that are locally finite, i.e., for each ε > 0, only finitely many loops Lj have a
diameter greater than ε. The space of collections of locally finite, non-nested, disjoint simple loops is equipped with
the σ -field generated by the sets {� : #� ∩A = k} where A ∈ � and k ≥ 0. Therefore, to characterize the law of �, we
only need to characterize the laws of macroscopic loops in �. In other words, if we characterize the law of all loops
in � with diameter greater than ε for each ε > 0, then the law of � is determined.

Let us now briefly recall some features of CLE for κ ∈ (8/3,4] – we refer to [13] for details (and the proofs) of
these statements. A CLE in D is a collection � of non-nested disjoint simple loops (γj , j ∈ J ) in D that possesses a
particular conformal restriction property. In fact, this property, which we will now recall, characterizes these CLE’s:

• (Conformal Invariance) For any Möbius transformation � of D onto itself, the laws of � and �(�) are the same.
This makes it possible to define, for any non-trivial simply connected domain D (that can therefore be viewed as the
conformal image of D via some map �̃), the law of CLE in D as the distribution of �̃(�) (because this distribution
does not depend on the actual choice of conformal map �̃ from D onto D).

• (Domain Markov Property) For any non-trivial simply connected domain D ⊂ D, define the set D∗ = D∗(D,�)

obtained by removing from D all the loops (and their interiors) of � that do not entirely lie in D. Then, conditionally
on D∗, and for each connected component U of D∗, the law of those loops of � that do stay in U is exactly that of
a CLE in U .

As we mentioned in Section 1, the loops in a given CLE are SLEκ type loops for some value of κ ∈ (8/3,4] (and
they look locally like SLEκ curves). In fact for each such value of κ , there exists exactly one CLE distribution that
has SLEκ type loops.

As explained in [13], a construction of these particular families of loops can be given in terms of outer boundaries
of outermost clusters of the Brownian loops in a Brownian loop soup with intensity c ∈ (0,1] which is a function in κ

given by:

c = c(κ) = (6 − κ)(3κ − 8)

2κ
.

Throughout the paper, we will denote the law of CLE in a non-trivial simply connected domain D by μ
�
D .
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2.3.2. Exploration of CLE in the unit disc
In [13], the authors introduce a discrete exploration process of CLE loop configuration. The conformal invariance and
the domain Markov property make the discrete exploration much easier to control. Consider a CLE in the unit disc,
draw a small disc B(x, ε) and let γ ε be the loop that intersects B(x, ε) with largest radius. Define the quantity

u(ε) = P
[
γ ε contains the origin

]
. (2.3)

In fact, u(ε) = εβ+o(1) as ε goes to zero where β = 8/κ − 1.

Proposition 2.3 ([13, Section 4]). The law of γ ε normalized by 1/u(ε) converges towards a bubble measure, denoted
as νbub

D;x which we call SLE bubble measure in D rooted at x. This νbub
D;x is an infinite σ -finite measure, and we have:

(1) νbub
D;x[γ contains the origin] = 1;

(2) For r small enough, νbub
D;x[R(γ ) ≥ r] � r−β where R(γ ) is the smallest radius r such that γ is contained in

B(x, r).

Because of the conformal invariance and the domain Markov property, we can repeat the “small semi-disc explo-
ration” until we discover the loop containing the origin: Suppose we have a CLE loop configuration in the unit disc D.
We draw a small semi-disc of radius ε whose center is uniformly chosen on the unit circle. The loops that intersect
this small semi-disc are the loops we discovered. If we do not discover the loop containing the origin, we refer to the
connected component of the remaining domain that contains the origin as the to-be-explored domain. Let f ε

1 be the
conformal map from the to-be-explored domain onto the unit disc normalized at the origin. We also define γ ε

1 as the
loop we discovered with largest radius. Because of the conformal invariance and the domain Markov property of CLE,
the image of the loops in the to-be-explored domain under the conformal map f ε

1 has the same law as simple CLE in
the unit disc. Thus we can repeat the same procedure for the image of the loops under f ε

1 . We draw a small semi-disc
of radius ε whose center is uniformly chosen on the unit circle. The loops that intersect the small semi-disc are the
loops we discovered at the second step. If we do not discover the loop containing the origin, define the conformal
map f ε

2 from the to-be-explored domain onto the unit disc normalized at the origin. The image of the loops in the
to-be-explored domain under f ε

2 has the same law as CLE in the unit disc, etc. At some finite step N , we discover
the loop containing the origin, we define γ ε

N as the loop containing the origin discovered at this step and stop the
exploration. We summarize the properties and notations in this discrete exploration below.

• Before N , all steps of discrete exploration are i.i.d.
• The number of the step N , when we discover the loop containing the origin, has the geometric distribution:

P[N > n] = P
[
γ ε does not contain the origin

]n = (
1 − u(ε)

)n
.

• Define the conformal map

�ε = f ε
N−1 ◦ · · · ◦ f ε

2 ◦ f ε
1 .

As ε goes to zero, the discrete exploration will converge to a Poisson point process of bubbles with intensity measure
given by

νbub
D

=
∫

∂D

dxνbub
D;x,

where dx is Lebesgue length measure on ∂D. See [13] for details.
Now we can reconstruct CLE loops from the Poisson point process of SLE bubbles. Let (γt , t ≥ 0) be a Poisson

point process with intensity νbub
D

. Namely, let ((γj , tj ), j ∈ J ) be a Poisson point process with intensity νbub
D

×[0,∞),
and then arrange the bubble according to the time tj , i.e. denote γt as the bubble γj if t = tj , and γt is empty set if
there is no tj that equals t . Clearly, there are only countably many bubbles in (γt , t ≥ 0) that are not empty set. Define

τ = inf{t : γt contains the origin}.
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For each t < τ , the bubble γt does not contain the origin. Define ft to be the conformal map from the connected
component of D \ γt containing the origin onto the unit disc and normalized at the origin: ft (0) = 0, f ′

t (0) > 0. For
this Poisson point process, we have the following properties [13, Section 4, Section 7]:

• The time τ has the exponential law: P[τ > t] = e−t .
• For r > 0 small, let t1(r), t2(r), . . . , tj (r) be the times t before τ at which the bubble γt has radius greater than r . De-

fine �r = ftj (r) ◦ · · · ◦ft1(r). Then �r almost surely converges towards some conformal map � in the Carathéodory
topology seen from the origin as r goes to zero. And � can be interpreted as � = ◦t<τ ft .

• Generally, for each t ≤ τ , we can define �t = ◦s<tfs . Then

(
Lt := �−1

t (γt ),0 ≤ t ≤ τ
)

is a collection of loops in the unit disc and Lτ is a loop containing the origin.

The relation between this Poisson point process of bubbles and the discrete exploration process we described above
is given via the following result.

Proposition 2.4 ([13, Section 4]). �ε converges in distribution to � in the Carathéodory topology seen from the
origin. And Lτ has the same law as the loop of CLE in D containing the origin.

Write

Dt = �−1
t (D), t ≤ τ.

We call the sequence of domains (Dt , t ≤ τ) the continuous exploration process of CLE in D (targeted at the origin).

3. CLE in the annulus

3.1. Definition and properties of CLE in the annulus

In this section, we will construct CLE loop configuration in the annulus Ar for r ∈ (0,1). We want to use the same
idea of constructing CLE in D from the Brownian loop soup. Suppose L(Ar ) is a Brownian loop soup in Ar . Note
that L(Ar ) can have clusters that disconnect the inner boundary Cr from the outer boundary C1 and this is the case
we will not address in the current paper. We will consider the loop-soup conditioned on the event E(L(Ar )) that there
is no cluster of L(Ar ) that disconnects the inner boundary from the outer boundary.

On the event E(L(Ar )), let �(Ar ) be the collection of the outer boundaries of outermost clusters of L(Ar ). Clearly,
�(Ar ) is a collection of disjoint simple loops in Ar . We define CLE in the annulus Ar as the law of �(Ar ) conditioned
on the event E(L(Ar )). Since the event E(L(Ar )) has positive probability, the above CLE in the annulus is well-
defined.

For any annulus A, suppose its conformal modulus is r and ϕ is a conformal map from Ar onto A. Then CLE in
the annulus A can be defined as the image of CLE in the annulus Ar under the map ϕ. And we denote the law of CLE
in the annulus A as μ�(A).

We denote p(Ar ) as the probability of the event E(L(Ar )). Clearly, p(Ar ) only depends on r , so we may also
denote it by p(r). The following lemma summarizes the asymptotic behavior of p(r) as r goes to zero. Recall the
relation in Equation (2.1).

Proposition 3.1 ([7, Lemma 7, Corollary 8]). Suppose p(r) is the probability of the event E(L(Ar )). Then p is
nondecreasing and there exists a universal constant C < ∞ such that, for 0 < r, r ′ < 1,

1

C
p(r)p

(
r ′/C

) ≤ p
(
rr ′) ≤ p(r)p

(
r ′). (3.1)

Furthermore, we have that
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• There exists a constant C ≥ 1 such that, for r small enough,

rα ≤ p(r) ≤ Crα. (3.2)

• For any constant λ ∈ (0,1), we have

lim
r→0

p(λr)

p(r)
= λα. (3.3)

Proof. Equation (3.1) is proved in [7, Lemma 7] and Equation (3.2) is proved in [7, Corollary 8], and we will give
a short proof of Equation (3.3). Suppose Lλr is a Brownian loop soup in the annulus A(λ,1/r) and let Lr be the
collection of loops in Lλr that are contained in A(1,1/r). Denote by E(Lλr) (resp. E(Lr )) the event that there is no
cluster in Lλr (resp. Lr ) that disconnects the origin from infinity. Note that

p(λr)

p(r)
= p(A(λ,1/r))

p(A(1,1/r))
= P

[
E(Lλr )|E(Lr )

]
,

thus the limit of p(λr)/p(r) exists as r → 0. We denote this limit by f (λ). Then clearly, for any λ,λ′ ∈ (0,1), we
have that

f
(
λλ′) = f (λ)f

(
λ′).

This implies that there exists some constant α′ > 0 such that f (λ) = λα′
for all λ ∈ (0,1). From Equation (3.2), we

know that α′ = α. �

By the conformal invariance of the Brownian loop soup, we have the following:

Proposition 3.2. The CLE in the annulus A(r, 1
r
) is invariant under z �→ 1/z.

The following is the annulus version of the domain Markov property:

Proposition 3.3. Suppose that � is a CLE in the annulus Ar , and that D is an open subset of Ar . Let D∗ be the set
obtained by removing from D all the loops (and their interiors) in � that are not totally contained in D.

(1) If D is simply connected, then each connected component of D∗ is also simply connected; and given D∗, for each
connected component U of D∗, the conditional law of the loops in � that stay in U is the same as CLE in U .

(2) If D is an annulus, then the connected components of D∗ can be simply connected or annular; and given D∗, for
each connected component U of D∗, the conditional law of the loops in � that stay in U is the same as CLE in U .

Proof. We only prove the case when both D and U are annuli. Other cases can be proved similarly. Let Un ⊂ U be an
approximation of U whose boundary is a simple path in the lattice 2−n

Z
2 (see Figure 1). Suppose F is any bounded

function on loop configurations that only depends on macroscopic loops (i.e. the loops with diameter greater than
4 × 2−n). Then, for any deterministic set Vn such that the probability of {Un = Vn} is strictly positive, we only need
to show that, when � is a CLE in the annulus Ar , and �|Vn is the collection of loops of � that are contained in Vn, we
have that

μ
�

Ar

[
F(�|Vn)|Un = Vn

] = μ
�
Vn

[F ].
Suppose L is a Brownian loop soup in Ar . Let E(L) be the event that no cluster of L that disconnects Cr from C1,

and let �(L) be the collection of outer boundaries of outermost clusters of L. Then we have that

μ
�

Ar

[
F(�|Vn)1Un=Vn

]
= E

[
F

(
�(L)|Vn

)
1Un=Vn1E(L)

]
/p(r)

= E
[
F

(
�(L)|Vn

)
1Un=Vn1E11E2

]
/p(r),
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Fig. 1. The first panel indicates the annular region D. The second panel indicates a CLE loop configuration in the annulus Ar . The third panel
indicates one annular connected component U of D∗. The last panel indicates the approximation Un of U .

where the events E1,E2 are defined in the following way: Consider the loops in �(L) that are contained in Vn, the
event E1 is that no loop disconnects Cr from C1. Consider the loops in �(L) that are not totally contained in Vn, the
event E2 is that no loop disconnects Cr from C1. Note that the event E1 is measurable with respect to L|Vn , which
are the loops of L that are contained in Vn. The event E2 is measurable with respect to the event {Un = Vn} which is
independent of L|Vn . Thus we have

E
[
F

(
�(L)|Vn

)
1Un=Vn1E11E2

]
/p(r)

= E
[
μ

�
Vn

[F ]p(Vn)1Un=Vn1E2

]
/p(r)

= μ
�
Vn

[F ]p(Vn)P[Un = Vn,E2]/p(r).

Thus

μ
�

Ar

[
F(�|Vn)|Un = Vn

]

= μ
�

Ar
[F(�|Vn)1Un=Vn]
μ

�

Ar
[1Un=Vn]

= μ
�
Vn

[F ]p(Vn)P[Un = Vn,E2]/p(r)

p(Vn)P[Un = Vn,E2]/p(r)

= μ
�
Vn

[F ]. �

Propositions 3.4 and 3.5 describe two ways to find CLE in annuli from CLE in simply connected domains.

Proposition 3.4. Suppose � is a CLE in D and D ⊂ D is an annulus. Let D∗ be the set obtained by removing from
D all the loops (and their interiors) in � that are not totally contained in D. Note that the connected components of
D∗ can be simply connected or annular. Then given D∗, for each connected component U of D∗, the conditional law
of the loops in � that stay in U is the same as CLE in U .

Proof. We only prove the case when U is an annulus. Suppose L is a Brownian loop soup in D, and let � be the
collection of the outer boundaries of outermost clusters of L. Then � has the law of simple CLE in D. Suppose
Un ⊂ U is the approximation of U whose boundary is a simple path in the lattice 2−n

Z
2 (see Figure 2). Suppose F

is any bounded function on loop configurations that only depends on macroscopic loops (i.e. the loops with diameter
greater than 4 × 2−n). Then, for any deterministic annular set Vn such that the probability of {Un = Vn} is strictly
positive, we only need to show that

E
[
F(�|Vn)|Un = Vn

] = μ
�
Vn

[F ], (3.4)

where �|Vn is the collection of loops of � that are contained in Vn.
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Fig. 2. The first panel indicates the annulus region D. The second panel indicates a simple CLE loop configuration. The third panel indicates one
annulus connected component U of D∗ . The last panel indicates the approximation Un of U .

Denote by L|Vn the collection of loops in L that are totally contained in Vn; and denote by E(L|Vn) the event that
there is no loop cluster in L|Vn disconnecting the two components of the boundary of Vn. Then we can see that, given
E(L|Vn), the event [Un = Vn] is conditionally independent of L|Vn . Thus we have that

E
[
F(�|Vn)1Un=Vn

] = μ
�
Vn

[F ]p(Vn)P
[
Un = Vn|E(L|Vn)

]
.

This implies Equation (3.4). �

Proposition 3.5. Suppose � is a CLE in D and γ (0) is the loop in � that contains the origin. Let D∗ be the subset of
D obtained by removing from D the loop γ (0) and its interior. Then given D∗, the conditional law of the loops in �

that stay in D∗ is the same as CLE in the annulus D∗.

Proof. The conclusion can be derived by setting D =Ar in Proposition 3.4 and then letting r go to zero. �

3.2. The SLE bubble measure in the annulus

Suppose � is a simple CLE in D. Recall the discrete exploration of �: we fix x ∈ ∂D, and explore the loops in �

that intersect B(x, ε), suppose γ ε is the loop we discovered with largest radius. The probability of the event that γ ε

surrounds the origin is u(ε) = εβ+o(1) and the law of γ ε normalized by 1/u(ε) converges to the bubble measure νbub
D;x

(recall Proposition 2.3).
We use a similar idea to define the bubble measure of CLE in the annulus. Fix r ∈ (0,1) and suppose �r is a

CLE in the annulus Ar . We fix x ∈ ∂D and explore the loops in �r that intersect B(x, ε); suppose γ ε
r is the loop we

discovered with largest radius. Then we have the following conclusion which is a counterpart of Proposition 2.3 for
CLE in the annulus (recall the definitions of u(ε) in Equation (2.3) and the constant c in Equation (2.1)):

Proposition 3.6. The law of γ ε
r normalized by 1/u(ε) converges to a bubble measure in Ar , denoted as νbub

Ar ;x which

we call SLE bubble measure in Ar rooted at x. Furthermore, the Radon–Nikodym derivative between νbub
Ar ;x and νbub

D;x
is given by

νbub
Ar ;x
νbub
D;x

[dγ ] = 1{γ⊂Ar }∩E(γ )

p(Ar \ γ )

p(Ar )
exp

(
c�(rD, γ ;D)

)
,

where E(γ ) is the event that γ does not surround the origin and Ar \ γ indicates the subset of Ar obtained by
removing γ and its interior from Ar .

Proof. Suppose L is a Brownian loop soup in D, and let � be the collection of the outer boundaries of outermost
clusters of L. Consider the loops in � that intersect B(x, ε), let γ ε be the loop with largest radius. Suppose L1 is the
collection of loops in L that are totally contained in Ar . On the event E(L1), let �1 be the collection of the outer
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boundaries of outermost clusters of L1. Consider the loops in �1 that intersect B(x, ε), let γ ε
1 be the loop with largest

radius. Denote L2 = L \L1. Note that L1 and L2 are independent. Then, for any integrable test function F , we have
that

μ
�

Ar

[
F

(
γ ε
r

)
exp

(−c�
(
rD, γ ε

r ;D))]
= E

[
F

(
γ ε

1

)
exp

(−c�
(
rD, γ ε

1 ;D))
1E(L1)

]
/p(r)

= E
[
F

(
γ ε

1

)
exp

(−c�
(
rD, γ ε

1 ;D))
1E1

1
1E2

1

]
/p(r),

where the events E1
1,E2

1 are defined in the following way: Consider the loops in �1 that intersect B(x, ε), the event
E1

1 is that no loop disconnects Cr from C1; consider the loops in �1 that are totally contained in Ar \ B(x, ε), the
event E2

1 is that no loop disconnects Cr from C1. Note that, given the loops in �1 that intersect B(x, ε) and the event
E1

1 , the event E2
1 has probability p(D∗

1,ε) where D∗
1,ε is the set obtained by removing from Ar all loops (with their

interiors) in �1 that intersect B(x, ε). We also know that the quantity exp(−c�(rD, γ ε
1 ;D)) is the probability of the

event that no loop in L2 that intersects γ ε
1 , which is equivalent to the event that {γ ε = γ ε

1 }. Thus we have

E
[
F

(
γ ε

1

)
exp

(−c�
(
rD, γ ε

1 ;D))
1E1

1
1E2

1

]
/p(r)

= E
[
F

(
γ ε

1

)
exp

(−c�
(
rD, γ ε

1 ;D))
1E1

1
p
(
D∗

1,ε

)]
/p(r)

= E
[
F

(
γ ε

1

)
1{γ ε=γ ε

1 }1E1
1
p
(
D∗

1,ε

)]
/p(r).

Note that, when ε is very small, D∗
1,ε is very close to the set Ar \ γ ε

1 . We have

lim
ε→0

1

u(ε)p(r)
E

[
F

(
γ ε

1

)
1{γ ε=γ ε

1 }1E1
1
p
(
D∗

1,ε

)]

= lim
ε→0

1

u(ε)p(r)
E

[
F

(
γ ε

)
1{γ ε=γ ε

1 }1E1p
(
Ar \ γ ε

)]

= lim
ε→0

1

u(ε)p(r)
E

[
F

(
γ ε

)
1{γ ε⊂Ar }1E1p

(
Ar \ γ ε

)]

= lim
ε→0

1

u(ε)p(r)
E

[
F

(
γ ε

)
1{γ ε⊂Ar }1E(γ ε)p

(
Ar \ γ ε

)]
,

where the events E1 and E(γ ε) are defined in the following way: consider the loops in � that intersect B(x, ε), the
event E1 is that no loop disconnects Cr from C1; the event E(γ ε) is that γ ε does not disconnect Cr from C1.

Combining all these relations, we have

lim
ε→0

1

u(ε)
μ

�

Ar

[
F

(
γ ε
r

)
exp

(−c�
(
rD, γ ε

r ;D))]

= lim
ε→0

1

u(ε)p(r)
E

[
F

(
γ ε

)
1{γ ε⊂Ar }1E(γ ε)p

(
Ar \ γ ε

)]

= νbub
D;x

[
F(γ )1{γ⊂Ar }1E(γ )

p(Ar \ γ )

p(r)

]
. �

4. CLE in the punctured disc

4.1. Construction of CLE in the punctured disc

We are going to define CLE in the punctured disc. Roughly speaking, it is the limit of CLE in the annulus Ar as
the inradius r goes to zero. There is another natural way to define CLE in the punctured disc: the limit of CLE in
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the disc conditioned on the event that the loop containing the origin has diameter at most ε as ε goes to zero. From
Proposition 3.5, we could check that the two limiting procedures would give the same limit. Thus, we also refer to
CLE in the punctured disc as CLE in the unit disc conditioned that the origin is in the gasket.

Lemma 4.1. There exists a universal constant C < ∞ such that the following is true. For any δ ∈ (0,1),0 < r ′ < r <

δ2, and any subset D ⊂ Aδ , suppose �r (resp. �r ′ ) is a CLE in the annulus Ar (resp. Ar ′ ), and D∗
r (resp. D∗

r ′ ) is the
set obtained by removing from D all loops (and their interiors) of �r (resp. �r ′ ) that are not totally contained in D.
Then there exists a coupling between �r and �r ′ such that the probability of the event {D∗

r = D∗
r ′ } is at least

1 − C
log(1/δ)

log(1/r)
.

Furthermore, on the event {D∗
r = D∗

r ′ }, the collection of loops of �r restricted to D∗
r is the same as the collection of

loops of �r ′ restricted to D∗
r ′ .

Proof. Suppose L is a Brownian loop soup in Ar ′ . Denote by L1 the collection of loops of L that are totally contained
in Ar , and write L2 = L \L1. Note that L1 and L2 are independent. On the event E(L), define � (resp. �1) to be the
collection of outer boundaries of outermost clusters of L (resp. L1). Note that, conditioned on E(L), the collection �

(resp. �1) has the same law as CLE in the annulus Ar ′ (resp. Ar ). Let D∗ (resp. D∗
1 ) be the set obtained by removing

from D all loops (and their interiors) of � (resp. �1) that are not totally contained in D. Clearly

D∗ ⊂ D∗
1 ⊂Aδ.

Here is a simple observation: on the event E(L), if there is no loop of L2 that intersects D∗
1 , then we have D∗ = D∗

1 .
Define S(L2,Aδ) as the event that there exists loop of L2 intersecting Aδ . Thus we have

P
[
D∗ �= D∗

1 ,E(L)
]
/p

(
r ′)

≤ P
[
S(L2,Aδ),E(L)

]
/p

(
r ′)

≤ P
[
S(L2,Aδ),E1,E2

]
/p

(
r ′),

where the events E1 and E2 are defined in the following way: the event E1 is that no loop of �1 that disconnects Cr

from C1; consider the loops of L that are totally contained in the annulus A(r ′, r), the event E2 is that there is no
cluster that disconnects Cr ′ from Cr . Clearly, the events E1, E2, S(L2,Aδ) are independent, and the probability of E1

(resp. E2) is p(r) (resp. p(r ′/r)). Thus we have

P
[
S(L2,Aδ),E1,E2

]
/p

(
r ′)

≤ P
[
S(L2,Aδ)

]
p(r)p

(
r ′/r

)
/p

(
r ′)

� P
[
S(L2,Aδ)

]
,

where the constant in � can be decided from Proposition 3.1 and is universal. To complete the proof, we only need to
show that

P
[
S(L2,Aδ)

]
� log(1/δ)

log(1/r)
.

Note that the event S(L2,Aδ) is the same as the event that there exists a loop in L intersecting both Cr and Cδ . The
latter event has the probability

1 − exp
(−c�(Cr,Cδ;Ar ′)

)
.
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From Proposition 2.2, we have that

P
[
S(L2,Aδ)

]
= 1 − exp

(−c�(Cr,Cδ;Ar ′)
)

� �(Cr,Cδ;Ar ′)

= �
(
Cr,Cδ;C \ r ′

D
) − �

(
Cr,C1;C \ r ′

D
)

= 2
∫ r

r ′
1

s

(
ρ

(
δ

s

)
− ρ

(
1

s

))
ds

�
∫ r

r ′
1

s

log(1/δ)

(log 1
s
)2

ds

� log(1/δ)

log(1/r)
. �

Theorem 4.2. There exists a unique measure on collections of disjoint simple loops in the punctured disc, which we
call CLE in the punctured disc or CLE in D conditioned on the event that the origin is in the gasket, to which CLE in
the annulus Ar converge in the following sense. There exists a universal constant C < ∞ such that for any δ > 0, any
subset D ⊂ Aδ , suppose �† is a CLE in the punctured disc and �r is a CLE in the annulus Ar , and D†,∗ (resp. D∗

r )
is the set obtained by removing from D all loops of �† (resp. �r ) that are not totally contained in D, then �† and �r

can be coupled so that the probability of the event {D†,∗ = D∗
r } is at least

1 − C
log(1/δ)

log(1/r)
.

Furthermore, on the event {D†,∗ = D∗
r }, the collection of loops of �† restricted to D†,∗ is the same as the collection

of loops of �r restricted to D∗
r .

Proof. Define rk to be the sequence of positive values so that:

log log
1

rk
= k.

Note that rk → 0 as k → ∞. For k ≥ 1, suppose �k is a CLE in the annulus Ark and D∗
k is the set obtained by

removing from D all loops of �k that are not totally contained in D. From Lemma 4.1, �k and �k+1 can be coupled
so that the probability of {D∗

k �= D∗
k+1} is at most

Ce−k log(1/δ),

and on the event {D∗
k = D∗

k+1}, the collection of loops of �k restricted to D∗
k is the same as the collection of loops

of �k+1 restricted to D∗
k+1. Suppose that, for each k ≥ 1, �k and �k+1 are coupled in this way. Then with probability

1, for all but finitely many couplings, we have that D∗
k = D∗

k+1. Suppose that this is true for all k ≥ l, and define, for
k ≥ l,

D†,∗ = D∗
k ,

and define �† restricted to D†,∗ to be the collection of loops of �k restricted to D∗
k . Then, for any k0 ≥ 1, the

probability of {D†,∗ �= D∗
k0

} is at most

∑
k≥k0

Ce−k log(1/δ) � e−k0 log(1/δ).
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For any r > 0, suppose rk0 ≤ r ≤ rk0−1. Then CLE in the annulus Ar , denoted by �r , can be coupled with �k0 so that
the probability of {D∗

r �= D∗
k0

} is at most

C
log(1/δ)

log(1/r)
,

where D∗
r is the set obtained by removing from D all loops of �r that are not totally contained in D. And on the event

{D∗
r = D∗

k0
}, the collection of loops of �r restricted to D∗

r is the same as the collection of loops of �k0 restricted to

D∗
k0

. Therefore, the probability of the event {D†,∗ �= D∗
r } is at most

C log(1/δ)e−k0 + C
log(1/δ)

log(1/r)
� log(1/δ)

log(1/r)
.

This completes the proof. �

4.2. Properties of CLE in the punctured disc

Clearly, CLE in the punctured disc is invariant under rotation. Thus, it is possible to define CLE in any non-trivial
simply connected domain D with a singular point z ∈ D via conformal image, and we call it CLE in D conditioned
on the event that z is in the gasket. Propositions 4.3 and 4.4 describe the domain Markov properties of CLE in the
punctured disc.

Proposition 4.3. Suppose �† is a CLE in the punctured disc. For any subset D ⊂D such that 0 is an interior point of
D \ D and that D is either simply connected or an annulus, let D†,∗ be the set obtained by removing from D all loops
of �† that are not totally contained in D. Then, given D†,∗, for each connected component U of D†,∗, the conditional
law of the loops in �† that stay in U is the same as CLE in U .

Proof. The conclusion is a direct consequence of the construction of CLE in the punctured disc in Theorem 4.2 and
the domain Markov property of CLE in the annulus in Proposition 3.3. �

Proposition 4.4. Suppose �† is a CLE in the punctured disc. For any simply connected domain D ⊂ D such that
0 ∈ D, let D†,∗ be the set obtained by removing from D all loops of �† that are not totally contained in D. Suppose
U is the connected component of D†,∗ that contains the origin. Then, given D†,∗, the conditional law of loops in �†

that stay in U is the same as CLE in U conditioned on the event that the origin is in the gasket.

Proof. For r > 0 small, denote Dr = D ∩ Ar , and denote by D∗
r the set obtained by removing from Dr all loops of

�† that are not totally contained in Dr . Note that, when r is small, it is unlikely that �† has a loop intersecting both
D \ D and rD. Suppose there is no such loop and let Ur be the connected component of D∗

r that is contained in U

(see Figure 3). From Proposition 4.3, we know that, given Ur , the collection of loops of �† restricted to Ur has the
same law as CLE in the annulus. To complete the proof, we only need to point out that, almost surely, CM(Ur) → 0
as r → 0. �

We will describe the relation between CLE in the disc and CLE in the punctured disc. Roughly speaking, if the
loops we are interested are far from the singular point, then these loops in the punctured disc are close to those in the
disc. We switch from the unit disc to the upper-half plane so that it is easier to describe “the loops are far away from
the singular point.”

Proposition 4.5. Denote D =D∩H, and let y > 0 be large. Suppose �
†
y is a CLE in H conditioned on the event that

iy is in the gasket and � is a CLE in H, and denote D
†,∗
y (resp. D∗) as the subset of D obtained by removing from D

all loops of �
†
y (resp. �) that are not totally contained in D. Then there exists a universal constant C < ∞ such that

�
†
y and � can be coupled so that the probability of the event {D†,∗

y = D∗} is at least

1 − C

logy
.
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(a) The first panel indicates the domain D who contains the origin. The second panel indicates a sample of CLE in the punctured disc.

The third panel indicates the corresponding set D∗. The last panel indicates the connected component U .

(b) The first panel indicates the set Dr = D ∩Ar . The second panel indicates the corresponding D∗
r .

The last panel indicates the connected component Ur .

Fig. 3. The domain Markov property of CLE in the punctured disc.

Furthermore, on the event {D†,∗
y = D∗}, the collection of loops of �

†
y restricted to D

†,∗
y is the same as the collection

of loops of � restricted to D∗.

Proof. Suppose � is a simple CLE in H and γ (iy) is the loop in � that contains the point iy. In this proof we write
γ (iy) to refer to the union of the loop and its interior. We fix a constant η > 1/β , and set

R = y

(logy)η
.

From Proposition 3.5, we know that, given γ (iy), the collection of loops in � restricted to H \ γ (iy), denoted by
�1, has the same law as CLE in the annulus. Given γ (iy) and on the event that γ (iy) ∩ CR =∅, we have {D∗ = D∗

1}
where D∗ (resp. D∗

1 ) is the set obtained by removing from D all loops of � (resp. �1) that are not totally contained
in D.

With the similar idea in the proof of Lemma 4.1, �1 can be coupled with CLE in the annulus H \B(iy,1), denoted
by �2, so that the probability of {D∗

1 �= D∗
2} is at most

C�
(
γ (iy),C1;H \ B(iy,1)

)
,

where D∗
2 is the set obtained by removing from D all loops of �2 that are not totally contained in D. On the event

{γ (iy) ∩ CR =∅}, this quantity is less than

C�(CR,C1;H).

By [4, Lemma 4.5], we have that

�(CR,C1;H)� 1

logR
.
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From Theorem 4.2, �2 can be coupled with �
†
y in H \ {iy} so that, the probability of {D∗

2 �= D
†,∗
y } is at most

C

logy
.

Combining all these, we conclude that � and �
†
y can be coupled so that the probability of {D∗ �= D

†,∗
y } is less than

C

((
R

y

)−β+o(1)

+ 1

logy
+ 1

logR

)
� 1

logy
.

This completes the proof. �

4.3. Exploration of CLE in the punctured disc

We will explore CLE in the punctured disc in a way similar to the discrete exploration of simple CLE described
in Section 2.3.2. Suppose �† is CLE in the punctured disc. We explore the loops of �† that intersect B(x, ε) for
some x ∈ ∂D. Let γ †,ε be the loop of �† with the largest radius. Then we have the following conclusion which is a
counterpart of Proposition 2.3, recall the definition of u(ε) in Equation (2.3):

Proposition 4.6. The law of γ †,ε normalized by 1/u(ε) converges to a measure, denoted by νbub
D†;x which we call the

SLE bubble measure in D
† rooted at x. Furthermore, the Radon–Nikodym derivative of νbub

D†;x with respect to the SLE

bubble measure νbub
D;x in D rooted at x is given by

νbub
D†;x
νbub
D;x

[dγ ] = 1E(γ ) CR(D \ γ )−α,

where E(γ ) is the event that γ does not surround the origin and D \ γ indicates the subset of D obtained by removing
from D the bubble γ and its interior.

Proof. Combination of Proposition 3.6 and Lemma 2.1 implies the conclusion. �

Suppose γ is a bubble in D rooted at x, and recall that R(γ ) is the smallest r for which γ is contained in B(x, r).
Recall the constants defined in Equation (2.1); we have the following quantitative results for νbub

D;x and νbub
D†;x :

Lemma 4.7.∫
1E(γ )∩[R(γ )≥1/2] CR(D \ γ )−ηνbub

D;x[dγ ] < ∞ as long as η < 1 − κ/8.

In particular, this implies that

νbub
D†;x

[
R(γ ) ≥ 1/2

]
< ∞.

Proof. Conditioned on {R(γ ) > 1/2}∩E(γ ), we can parameterize the bubble γ clockwise by the capacity seen from
the origin starting from the root and ending at the root: (γ (t),0 ≤ t ≤ T ). Suppose S is the first time that γ exits the
ball B(x,1/2). Then we know that, given γ [0, S], the future part of the curve γ [S,T ] has the same law as a chordal
SLE in D \ γ [0, S] from γ (S) to x. Thus we only need to show that the integral is finite when we replace the curve
by a chordal SLE curve.

Precisely, suppose γ = (γt , t ≥ 0) is a chordal SLE in the upper-half plane H from 0 to ∞ (parameterized by the
half-plane capacity). We only need to show that

E
[
CR(H \ γ ; i)−η

]
< ∞, (4.1)
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where CR(H \ γ ; i) is the conformal radius of H \ γ in H seen from i. This is true for chordal SLE, see [14, Equa-
tion (6.9)]. �

Lemma 4.8.
∫

R(γ )ηνbub
D†;x[dγ ] < ∞ as long as η > β.

Note that β ∈ [1,2), thus we have

∫
R(γ )2νbub

D†;x[dγ ] < ∞.

Proof. We divide the integral into two parts:

∫
1[R(γ )≤1/2]R(γ )ηνbub

D†;x[dγ ] and
∫

1[R(γ )≥1/2]R(γ )ηνbub
D†;x[dγ ].

The first part is finite due to Propositions 4.6 and 2.3. The second part is finite by Lemma 4.7. �

Now we can describe the exploration process of CLE in the punctured disc. Most of the proofs are similar to the
proofs in [13] for simple CLE’s. To be self-contained, we rewrite the proofs in the current setting.

Suppose (γ
†
t , t ≥ 0) is a Poisson point process with intensity

νbub
D† =

∫
∂D

dxνbub
D†;x.

For any time t , let f
†
t be the conformal map from D \ γ

†
t onto D normalized at the origin. For any fixed T > 0 and

r > 0, let t1(r) < · · · < tj (r) be the times t before T at which R(γ
†
t ) is greater than r . Define

�
†,r
T = f

†
tj (r) ◦ · · · ◦ f

†
t1(r)

.

Then we have the following:

Lemma 4.9. �
†,r
T converges almost surely in the Carathéodory topology seen from the origin towards some conformal

map, denoted as �
†
T , as r goes to zero.

Proof. Lemma 4.8 guarantees that

E

[∑
t<T

cap
(
γ

†
t

)
1
R(γ

†
t )≤1/2

]

= T νbub
D†

[
cap

(
γ †)1{R(γ †)≤1/2}

]
� T νbub

D†

[
R

(
γ †)21{R(γ †)≤1/2}

]
< ∞.

Since there are only finitely many times t before T at which R(γ
†
t ) ≥ 1/2, we have that, almost surely,

∑
t<T

cap
(
γ

†
t

)
< ∞,

and this implies the convergence in the Carathéodory topology (see [13, Stability of Loewner chains]). �
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Define (D
†
t = (�

†
t )−1(D), t ≥ 0). This is a decreasing sequence of simply connected domains containing the origin,

and we call it the continuous exploration process of CLE in the punctured disc. Write, for t > 0, L
†
t = (�

†
t )−1(γ

†
t ). It

is clear that

D
†
t =

⋂
s≤t

D†
s , D

†
t+ :=

⋃
s>t

D†
s = D

†
t \ L

†
t .

Suppose (γt , t ≥ 0) is a Poisson point process with intensity νbub
D

, and (Dt , t ≤ τ) is the continuous exploration
process of simple CLE in D defined from the process (γt , t ≥ 0) as described in Section 2.3.2. Define, for η > 0,

θ(η) :=
∫ (

eη cap(γ ) − 1
)
1E(γ )ν

bub
D

[dγ ], (4.2)

where E(γ ) is the event that γ does not surround the origin, and we first assume that θ(α) is a positive finite constant.
Then the relation between the process (D

†
t , t ≥ 0) and the process (Dt , t ≤ τ) can be described using the following

proposition.

Proposition 4.10. For any t > 0, the law of (γ
†
s , s < t) is the same as the law of (γs, s < t) conditioned on {τ ≥ t}

and weighted by Mt where

Mt = exp

(
α

∑
s<t

cap(γs) − θ(α)t

)
. (4.3)

In particular, for any t > 0, the law of D
†
t is the same as the law of Dt conditioned on {τ ≥ t} and weighted by

CR(Dt )
−αe−θ(α)t .

Proof. We first note that the process (γs, s < t) conditioned on {τ ≥ t} has the same law as a Poisson point process
with intensity 1E(γ )ν

bub
D

restricted to the time interval [0, t). Suppose (γ̂s, s ≥ 0) is a Poisson point process with
intensity 1E(γ )ν

bub
D

, and define

M̂t = exp

(
α

∑
s<t

cap(γ̂s) − θ(α)t

)
.

We only need to show that, for any function f on bubbles that makes every integral finite, we have

E

[
exp

(
−

∑
s<t

f (γ̂s)

)
M̂t

]
= exp

(
−t

∫ (
1 − e−f (γ )

)
eα cap(γ )1E(γ )ν

bub
D

[dγ ]
)

.

This can be obtained by direct calculation:

− logE

[
exp

(
−

∑
s<t

f (γ̂s)

)
M̂t

]

= − logE

[
exp

(
−

∑
s<t

(
f (γ̂s) − α cap(γ̂s)

))]
+ θ(α)t

= t

∫ (
1 − e−f (γ )+α cap(γ )

)
1E(γ )ν

bub
D

[dγ ] + θ(α)t

= t

∫ (
1 − e−f (γ )

)
eα cap(γ )1E(γ )ν

bub
D

[dγ ].

�

The fact that θ(α) is a positive finite constant is guaranteed by the following lemma.
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Lemma 4.11. The quantity θ(η), which is defined in Equation (4.2), is finite as long as η < 1 − κ/8.
The quantity

∫ (
eη cap(γ ) − 1

)
νbub
D† [dγ ] (4.4)

is finite as long as η < 2/κ − κ/32.

Proof. The integral in θ(η) may explode when R(γ ) is small or when γ is close to the origin. We will control the two
parts separately.

For the first part, we have
∫ (

eη cap(γ ) − 1
)
1{R(γ )≤1/2}νbub

D
[dγ ]

�
∫

cap(γ )1{R(γ )≤1/2}νbub
D

[dγ ]

�
∫

R(γ )21{R(γ )≤1/2}νbub
D

[dγ ] < ∞.

For the second part, by Lemma 4.7, we get
∫ (

eη cap(γ ) − 1
)
1{R(γ )≥1/2}1E(γ )ν

bub
D

[dγ ]

≤
∫

CR(D \ γ )−η1{R(γ )≥1/2}1E(γ )ν
bub
D

[dγ ] < ∞.

The quantity in Equation (4.4) is finite as long as η + α < 1 − κ/8. �

We conclude this section by explaining that the sequence of loops (L
†
t , t ≥ 0) obtained from the sequence of

bubbles (γ
†
t , t ≥ 0) (the Poisson point process with intensity νbub(D†)) does correspond to the loops in CLE in

the punctured disc. Namely, we first remove from D all loops L
†
t (with their interiors) for t ≥ 0, and then, in each

connected component, sample independent simple CLE’s. We will argue that the collection of these loops from simple
CLE together with the sequence (L

†
t , t ≥ 0) has the same law as the collection of loops in CLE in the punctured disc.

The idea is very similar to the one used in [13, Section 7] to show that the loops obtained from the bubbles have the
same law as the loops in CLE.

Suppose �† is a CLE in the punctured disc. Fix a point z ∈ D
†. Let L†(z) be the loop in �† that contains z. Follow-

ing is the discrete exploration of �† to discover L†(z). Fix ε > 0 small and δ > ε small. Sample x1 ∈ ∂D uniformly
chosen from the circle. The loops of �† that intersect B(x1, ε) are the loops we discovered. Call the connected com-
ponent of the remaining domain that contains the origin the to-be-explored domain and let f

†,ε
1 be the conformal

map from the to-be-explored domain onto the unit disc normalized at the origin. Let γ
†,ε
1 be the discovered loop with

largest radius. The image of the loops in the to-be-explored domain under f
†,ε
1 has the same law as CLE in the unit

disc conditioned on the event that the origin is in the gasket. Thus we can repeat the same procedure, define f
†,ε
2 , γ

†,ε
2

etc. For k ≥ 1, define

�
†,ε
k = f

†,ε
k ◦ · · · ◦ f

†,ε
1 .

We also need to keep track of the point z: let zk = �
†,ε
k (z), and let K be the largest k such that z ∈ (�

†,ε
k )−1(D).

Define another auxiliary stopping time K ′ ≤ K as the first step k at which either |zk| ≥ 1 − δ or k = K . If K ′ < K ,
this means that the point z is conformally far from the origin and is likely to be cut off in the discrete exploration.

We first address the case that z is discovered at step K + 1. Note that �
†,ε
K will converge in distribution towards

some conformal map �
†
S (with similar explanation as for Proposition 2.4) obtained from the Poisson point process
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(γ
†
t , t ≥ 0). This implies that L†(z) has the same law as (�

†
S)−1(γ

†
S ) as we expected. Now we will deal with the case

that z is cut off from the origin: we stop the discrete exploration at step K ′ − 1. At step K ′, instead of discovering the
loops intersecting the ball of radius ε, we discover the loops intersecting the circle centered at zK ′−1 with radius

√
δ.

After this step, we continue the discrete exploration (of size ε) by targeting at the image of the point z, in the same
way for the discrete exploration of simple CLE targeted at the image of the point z. We will discover the point z at
some step. Let ε and δ go to zero in proper way, we can also prove the conclusion for L†(z) in this case.

We also need to show the conclusion for the joint law of (L†(z1), . . . ,L
†(zk)) where z1, . . . , zk ∈ D†. The argument

is almost the same as above and we leave it to the interested reader.

5. CLE in the punctured plane

In this section we discuss CLE in the punctured plane. The following lemma is analogous to Lemma 4.1, and we delay
its proof to the end of this section.

Lemma 5.1. There exists a universal constant C < ∞ such that the following is true. Let δ ∈ (0,1),0 < r ′ < r < δ2,
and let D ⊂A(δ,1/δ). Suppose �r (resp. �r ′ ) is a CLE in the annulus A(r,1/r) (resp. A(r ′,1/r ′)) and D∗

r (resp. D∗
r ′ )

is the set obtained by removing from D all loops (and their interiors) of �r (resp. �r ′ ) that are not totally contained
in D. Then there exists a coupling between �r and �r ′ such that the probability of the event {D∗

r = D∗
r ′ } is at least

1 − C
log(1/δ)

log(1/r)
.

Furthermore, on the event {D∗
r = D∗

r ′ }, the collection of loops of �r restricted to D∗
r is the same as the collection of

loops of �r ′ restricted to D∗
r ′ .

Theorem 5.2. There exists a unique measure on collections of disjoint simple loops in the punctured plane, which
we call CLE in the punctured plane, or CLE in C conditioned on the event that both the origin and infinity are in
the gasket, to which CLE in the annulus A(r,1/r) converges in the following sense. There exists a universal constant
C < ∞ such that for any δ > 0 and any subset D ⊂ A(δ,1/δ), if �† is a CLE in the punctured plane and �r is a CLE
in the annulus A(r,1/r), and D†,∗ (resp. D∗

r ) is the set obtained by removing from D all loops of �† (resp. �r ) that
are not totally contained in D, then �† and �r can be coupled so that the probability of the event {D†,∗ = D∗

r } is at
least

1 − C
log(1/δ)

log(1/r)
.

Furthermore, on the event {D†,∗ = D∗
r }, the collection of loops of �† restricted to D†,∗ is the same as the collection

of loops of �r restricted to D∗
r .

It is clear that CLE in the punctured plane can also be viewed as the limit of CLE in RD conditioned on the event
that the origin is in the gasket as R → ∞ or the limit of CLE in C \ rD conditioned on the event that infinity is in the
gasket as r → 0.

Proposition 5.3. CLE in the punctured plane satisfies the conformal invariance:

(1) CLE in the punctured plane is invariant under the conformal map: z �→ λz, for any λ ∈C.
(2) CLE in the punctured plane is invariant under the conformal map: z �→ 1/z.

Note that, Lemma 5.1 and Theorem 5.2 are the counterparts of Lemma 4.1 and Theorem 4.2. The proof of Theo-
rem 5.2 from Lemma 5.1 is almost the same as the proof of Theorem 4.2 from Lemma 4.1. The conformal invariance
of CLE in the punctured plane in Proposition 5.3 is then a direct consequence of the construction in Theorem 5.2. The
rest of this subsection is devoted to the proof of Lemma 5.1, since the proof of Lemma 4.1 does not work directly
here, we need some extra effort to complete the proof of Lemma 5.1.
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Fig. 4. The first panel indicates a continuous path γ in the annulus connecting the two pieces of the boundary. The second panel indicates a
Brownian loop soup in the annulus and E(L) holds. The third panel indicates that Eγ (L) does not hold even though E(L) holds.

Proof of Lemma 5.1. We first introduce a quantity q(r) for r > 0 small: Let L be a Brownian loop soup in Ar ,
define E(L) as the event that there is no cluster of L disconnecting Cr from C1. Suppose γ is a continuous path in Ar

connecting Cr to C1. Define Eγ (L) to be the event that there is no cluster of L∪ {γ } disconnecting Cr from C1. See
Figure 4. Clearly, Eγ (L) ⊂ E(L). Define

q(r) = sup
γ

P
[
Eγ (L)|E(L)

]
,

where the sup is taken over all possible continuous paths γ in Ar that connect Cr to C1. We can see that q(r) → 0 as
r goes to zero.

Take r, r ′ > 0 small. Let L be a Brownian loop soup in Arr ′ . Suppose L1 (resp. L2) is the collection of loops of
L that are contained in A(rr ′, r) (resp. Ar ). Let γ be any continuous path in Arr ′ connecting Crr ′ to C1. Suppose γ1
(resp. γ2) is part of γ that is a continuous path in A(rr ′, r) (resp. Ar ) connecting Crr ′ to Cr (resp. connecting Cr to
C1). Then we have that

P
[
Eγ (L)|E(L)

]
= P

[
Eγ (L)

]
/p

(
rr ′)

≤ P
[
Eγ1(L1),Eγ2(L2)

]
/p

(
rr ′)

= P
[
Eγ1(L1)|E(L1)

] × P
[
Eγ2(L2)|E(L2)

] × p
(
r ′)p(r)/p

(
rr ′)

� q(r)q
(
r ′).

Thus, there exists universal constant C so that

q
(
rr ′) ≤ Cq(r)q

(
r ′).

Together with the fact that q(r) → 0 as r goes to zero, we have that there exists some constant α̃ > 0 such that, for
r > 0 small,

q(r) ≤ rα̃.

Now we are ready to complete the proof. Suppose L is a Brownian loop soup in A(r ′,1/r ′). Let L1 be the collection
of loops of L that are contained in A(r,1/r). On the event E(L), let � (resp. �1) be the collection of the outer
boundaries of outermost clusters of L (resp. L1). Let D∗ (resp. D∗

1 ) be the set obtained by removing from D all loops
of � (resp. �1) that are not totally contained in D. Note that, if {D∗ �= D∗

1}, there must exists a loop in L intersecting
both Cr and Cδ or intersecting both C1/r and C1/δ . Define S(L,Cr ,Cδ) to be the event that there exists a loop of L
that intersects both Cr and Cδ . Then we have that

P
[
D∗ �= D∗

1 ,E(L)
]
/p

((
r ′)2)

≤ 2P
[
S(L,Cr ,Cδ),E(L)

]
/p

((
r ′)2)

.
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We divide the loops in L into independent collections: Let L2 be the loops in L that are contained in A(r ′, r),
L3 be the loops in L that are contained in A(r, δ), L4 be the loops in L that are contained in A(δ,1/r ′), and L5
be the collection of loops in L that intersect both Cr and Cδ . Clearly, L2,L3,L4,L5 are independent and the event
S(L,Cr ,Cδ) is the same as {L5 �= ∅}. Define E2 (resp. E3, E4) to be the event that there is no cluster of L2 (resp.
L3, L4) disconnecting Cr ′ from Cr (resp. disconnecting Cr from Cδ , disconnecting Cδ from C1/r ′ ). Then E2, E3, E4
are independent, and their probabilities are p(r ′/r), p(r/δ), p(δr ′) respectively. Thus

P
[
S(L,Cr ,Cδ),E(L)

]
/p

((
r ′)2)

= P
[
L5 �=∅,E(L),E2,E3,E4

]
/p

((
r ′)2)

= P
[
L5 �=∅,E(L)|E2,E3,E4

] × p
(
r ′/r

)
p(r/δ)p

(
δr ′)/p((

r ′)2)
� P

[
L5 �=∅,E(L)|E2,E3,E4

]
≤ P

[
L5 �=∅,E(L3 ∪L5)|E2,E3,E4

]
= P

[
L5 �=∅,E(L3 ∪L5)|E3

]
≤ q(r/δ),

where E(L3 ∪L5) is the event that there is no cluster of L3 ∪L5 disconnecting Cr from Cδ . This implies the conclu-
sion. �
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