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Abstract. We study the diameter of Lévy trees that are random compact metric spaces obtained as the scaling limits of Galton–
Watson trees. Lévy trees have been introduced by Le Gall & Le Jan (Ann. Probab. 26 (1998) 213–252) and they generalise Aldous’
Continuum Random Tree (1991) that corresponds to the Brownian case. We first characterize the law of the diameter of Lévy trees
and we prove that it is realized by a unique pair of points. We prove that the law of Lévy trees conditioned to have a fixed diameter
r ∈ (0,∞) is obtained by glueing at their respective roots two independent size-biased Lévy trees conditioned to have height r/2
and then by uniformly re-rooting the resulting tree; we also describe by a Poisson point measure the law of the subtrees that are
grafted on the diameter. As an application of this decomposition of Lévy trees according to their diameter, we characterize the joint
law of the height and the diameter of stable Lévy trees conditioned by their total mass; we also provide asymptotic expansions
of the law of the height and of the diameter of such normalised stable trees, which generalises the identity due to Szekeres (In
Combinatorial Mathematics, X (Adelaide, 1982) (1983) 392–397 Springer) in the Brownian case.

Résumé. Nous étudions le diamètre des arbres de Lévy qui sont des espaces métriques compacts obtenus comme limites d’échelle
des arbres de Galton–Watson. Les arbres de Lévy ont été introduits par Le Gall & Le Jan (Ann. Probab. 26 (1998) 213–252) et
ils généralisent le Continuum Random Tree (1991) d’Aldous qui correspond au cas brownien. Nous caractérisons d’abord la loi
du diamètre des arbres de Lévy et nous prouvons qu’une unique paire de points le réalise. Nous prouvons ensuite que la loi des
arbres de Lévy conditionnés à avoir leur diamètre égal à r ∈ ]0,∞[ est obtenu en collant à leurs racines respectives deux arbres de
Lévy indépendants conditionnés chacuns à avoir une hauteur égale à r/2, et à réenraciner uniformément au hasard l’arbre obtenu
par ce collage ; nous décrivons également en termes d’une mesure ponctuelle de Poisson, la loi des sous-arbres qui sont attachés
le long du diamètre. En application de cette décomposition des arbres de Lévy le long de leur diamètre, nous caractérisons la loi
jointe de la hauteur et du diamètre des arbres de Lévy stables conditionnés à avoir une masse totale unité. Nous donnons aussi des
développements asymptotiques des lois de la hauteur et du diamètre de ces arbres stables normalisés, ce qui généralise une identité
due à Szekeres (In Combinatorial Mathematics, X (Adelaide, 1982) (1983) 392–397 Springer) dans le cas brownien.
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1. Introduction and main results

Lévy trees are random compact metric spaces that are the scaling limits of Galton–Watson trees. The Brownian tree,
also called the continuum random tree, is a particular instance of Lévy tree; it is the limit of the rescaled uniformly
distributed rooted labelled tree with n vertices. The Brownian tree has been introduced by Aldous in [5] and further
studied in Aldous [6,7]. Lévy trees have been introduced by Le Gall & Le Jan [28] via a coding function called
the height process that is a local time functional of a spectrally positive Lévy process. Lévy trees (and especially
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stable trees) have been studied in Duquesne & Le Gall [14,15] (geometric and fractal properties, connection with
superprocesses), see Duquesne & Winkel [17] and Marchal [29] for alternative constructions, see also Miermont [30,
31], Haas & Miermont [22], Goldschmidt & Haas [20] for applications to stable fragmentations, and Abraham &
Delmas [1,2], Abraham, Delmas & Voisin [4] for general fragmentations and pruning processes on Lévy trees.

In this article, we study the diameter of Lévy trees. As observed by Aldous (see [6], Section 3.4), in the Browian
case the law of the diameter has been found by Szekeres [34] by taking the limit of the generating function of the diam-
eter of uniformly distributed rooted labelled tree with n vertices. Then, the question was raised by Aldous that whether
we can derive the law of the diameter directly from the normalised Brownian excursion that codes the Brownian tree
(see also Pitman [32], Exercise 9.4.1). This question is now answered in Wang [36].

In this article we compute the law of the diameter for general Lévy trees (see Theorem 1.1). We also prove that the
diameter of Lévy trees is realized by a unique pair of points. In Theorem 1.2, we describe the coding function (the
height process) of the Lévy trees tree rerooted at the midpoint of their diameter that plays the role of an intrinsic root.
The proof of Theorem 1.2 relies on the invariance of Lévy trees by uniform rerooting, as proved by Duquesne & Le
Gall in [16], and on the decomposition of Lévy trees according to their height, as proved by Abraham & Delmas in [3]
(this decomposition generalizes Williams decomposition of the Brownian excursion). Roughly speaking, Theorem 1.2
asserts that a Lévy tree that is conditioned to have diameter r and that is rooted at its midpoint is obtained by glueing
at their root two size-biased independent Lévy trees conditioned to have height r/2; Theorem 1.2 also explains the
distribution of the subtrees that are grafted on the diameter. As an application of this theorem, we characterize the
joint law of the height and the diameter of stable trees conditioned on their total mass (see Proposition 1.3) and we
provide asymptotic expansions for the distribution of the law of the height (Theorem 1.5) and for the law of the
diameter (Theorem 1.7). These two asymptotic expansions generalize the identities due to Szekeres in the Brownian
case which involves theta functions (these identities are recalled in (51) and (52)). Theorem 1.8 also provides precise
asymptotics of the tail at zero of the law of the height and that of the diameter of normalised stable trees. Before
stating precisely our main results we need to recall definitions and to set notations.

Real trees

Real trees are metric spaces extending the definition of graph-trees: let (T , d) be a metric space; it is a real tree iff the
following holds true.

(a) For any σ1, σ2 ∈ T , there is a unique isometry f : [0, d(σ1, σ2)] → T such that f (0) = σ1 and f (d(σ1, σ2)) = σ2.
Then, we shall use the following notation: �σ1, σ2 � := f ([0, d(σ1, σ2)]).

(b) For any continuous injective function q : [0,1] → T , q([0,1]) = �q(0), q(1)�.

When a point ρ ∈ T is distinguished, (T , d,ρ) is said to be a rooted real tree, ρ being the root of T . Among connected
metric spaces, real trees are characterized by the so-called four-point condition that is expressed as follows: let (T , d)

be a connected metric space; then (T , d) is a real tree iff for any σ1, σ2, σ3, σ4 ∈ T , we have

d(σ1, σ2) + d(σ3, σ4) ≤ (
d(σ1, σ3) + d(σ2, σ4)

) ∨ (
d(σ1, σ4) + d(σ2, σ3)

)
. (1)

We refer to Evans [18] or to Dress, Moulton & Terhalle [11] for a detailed account on this property. Let us briefly
mention that the set of (pointed) isometry classes of compact rooted real trees can be equipped with the (pointed)
Gromov–Hausdorff distance that makes it a Polish space: see Evans, Pitman & Winter [19], Theorem 2, for more
details on this intrinsic point of view on trees that we shall not use here.

The coding of real tree

Let us briefly recall how real trees can be obtained thanks to continuous functions. To that end we denote by
C(R+,R+) the space of R+-valued continuous function equipped with the topology of the uniform convergence
on compact subsets of R+. We shall denote by H = (Ht )t≥0 the canonical process on C(R+,R+). We first assume
that H has a compact support, that H0 = 0 and that H is distinct from the null function: we call such a function a
coding function and we then set ζH = sup{t > 0 : Ht > 0} that is called the lifetime of the coding function H . Note
that ζH ∈ (0,∞). Then, for every s, t ∈ [0, ζH ], we set

bH (s, t) = inf
r∈[s∧t,s∨t]Hr and dH (s, t) = Hs + Ht − 2bH (s, t). (2)
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It is easy to check that dH satisfies the four-point condition: namely, for all s1, s2, s3, s4 ∈ [0, ζH ], dH (s1, s2) +
dH (s3, s4) ≤ (dH (s1, s3)+dH (s2, s4))∨(dH (s1, s4)+dH (s2, s3)). By taking s3 = s4, we see that dH is a pseudometric
on [0, ζH ]. We then introduce the equivalence relation s ∼H t iff dH (s, t) = 0 and we set

TH = [0, ζH ]/ ∼H . (3)

Standard arguments show that dH induces a true metric on the quotient set TH that we keep denoting by dH . We
denote by pH : [0, ζH ] → TH the canonical projection. Since H is continuous, so is pH and (TH ,dH ) is therefore
a compact connected metric space that satisfies the four-point condition: it is a compact real tree. We next set ρH =
pH (0) = pH (ζH ) that is chosen as the root of TH .

We next define the total height and the diameter of TH that are expressed in terms of dH as follows:

�(H) := sup
σ∈TH

dH (ρH ,σ ) = sup
t∈[0,ζH ]

Ht and

(4)
D(H) := sup

σ,σ ′∈TH

dH

(
σ,σ ′) = sup

0≤s<t≤ζH

(
Hs + Ht − 2 inf

r∈[s,t]Hr

)
.

For any σ ∈ TH , we denote by n(σ ) the number of connected components of the open set TH \ {σ }. Note that n(σ ) is
possibly infinite. We call this number the degree of σ . We say that σ is a branching point if n(σ ) ≥ 3; we say that σ is
a leaf if n(σ ) = 1 and we say that σ is simple if n(σ ) = 2. We shall use the following notation for the set of branching
points and the set of leaves of TH :

Br(TH ) := {
σ ∈ TH : n(σ ) ≥ 3

}
and Lf(TH ) := {

σ ∈ TH : n(σ ) = 1
}
. (5)

In addition to the metric dH and to the root ρH , the coding function yields two additional useful features: first, the mass
measure mH that is the pushforward measure of the Lebesgue measure on [0, ζH ] induced by pH on TH ; namely, for
any Borel measurable function f : TH →R+,

∫
TH

f (σ )mH (dσ) =
∫ ζH

0
f

(
pH (t)

)
dt. (6)

This measure plays an important role in the study of Lévy trees (that are defined below): in a certain sense, the mass
measure is the most spread out measure on TH . The coding H also induces a linear order ≤H on TH that is inherited
from that of [0, ζH ]: namely for any σ1, σ2 ∈ TH ,

σ1 ≤H σ2 ⇐⇒ inf
{
t ∈ [0, ζH ] : pH (t) = σ1

} ≤ inf
{
t ∈ [0, ζH ] : pH (t) = σ2

}
. (7)

Roughly speaking, the coding function H is completely characterized by (TH ,dH ,ρH ,mH ,≤H ): see Duquesne [13]
for more detail about the coding of real trees by functions.

Re-rooting trees

Several statements of our article involve a re-rooting procedure at the level of the coding functions that is recalled
here from Duquesne & Le Gall [15], Lemma 2.2 (see also Duquesne & Le Gall [16]). Let H be a coding function as
defined above and recall that ζH ∈ (0,∞). For any t ∈ R+, denote by t the unique element of [0, ζH ) such that t − t

is an integer multiple of ζH . Then for all t0 ∈R+, we set

∀t ∈ [0, ζH ], H
[t0]
t = dH (t0, t + t0) and ∀t ≥ ζH , H

[t0]
t = 0. (8)

Note that ζH [t0] ≤ ζH , with an equality if H is not constant on all left neighbourhoods of t0. Observe that

∀t, t ′ ∈ [0, ζH ], dH [t0]
(
t, t ′

) = dH

(
t + t0, t ′ + t0

)
. (9)
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Then, Lemma 2.2 [15] asserts that there exists a unique isometry φ : TH [t0] → TH such that φ(pH [t0](t)) = pH (t + t0)

for all t ∈ [0, ζH ]. This allows to identify canonically TH [t0] with the tree TH re-rooted at pH (t0):

(TH [t0], dH [t0] , ρH [t0]) ≡ (
TH ,dH ,pH (t0)

)
. (10)

Note that up to this identification, mH [t0] is the same as mH . Roughly speaking, the linear order ≤H [t0] is obtained
from ≤H by a cyclic shift after pH (t0).

Spinal decomposition

The law of the Lévy tree conditioned by its diameter that is discussed below is described as a Poisson decomposition
of the trees grafted along the diameter. To explain such a decomposition in terms of the coding function of the tree,
we introduce the following definitions and notations.

Let h ∈ C(R+,R+) have compact support. Note that h(0) > 0 possibly. We first define the excursions of h above
its infimum as follows. For any a ∈ [0, h(0)], we first set

�a(h) := inf
{
t ∈ R+ : h(t) = h(0) − a

}
and ra(h) := ζh ∧ inf

{
t ∈ (0,∞) : h(0) − a > h(t)

}
,

with the convention that inf∅ = ∞, so that rh(0)(h) = ζh. We then set

∀s ∈R+, Es(h, a) := h
((

�a(h) + s
) ∧ ra(h)

) − h(0) + a.

See Figure 1. Note that E(h, a) is a nonnegative continuous function with compact support such that E0(h, a) = 0.
Moreover, if �a(h) = ra(h), then E(h, a) = 0, the null function.

Let H be a coding function as defined above. Let t ∈R+, we next set

∀s ∈R+, H−
s = H(t−s)+ and H+

s = Ht+s .

Note that H−
0 = H+

0 = Ht . To simplify notation we also set

∀a ∈ [0,Ht ], ←−
H a := E

(
H−, a

)
and

−→
H a := E

(
H+, a

)
and J0,t := {a ∈ [0,Ht ] : either �a(H

−) < ra(H
−) or �a(H

+) < ra(H
+)}, that is countable. We then define the fol-

lowing point measure on [0,Ht ] × C(R+,R+)2:

M0,t (H) =
∑

a∈J0,t

δ
(a,

←−
H a,

−→
H a)

, (11)

Fig. 1. The figure on the left-hand side illustrates the definition of E(h, a); the figure on the right-hand side represents the spinal decomposition of
H at times t0 and t1 in terms of the tree T coded by H .
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with the convention that M0,t (H) = 0 if J0,t = ∅. In Lemma 2.2, we see that if mH is diffuse and supported by the
set of leaves of TH , then there is a measurable way to recover (t,H) from M0,t (H).

For all t1 ≥ t0 ≥ 0, we also set

Mt0,t1(H) := M0,t1−t0

(
H [t0]) =:

∑
a∈Jt0,t1

δ
(a,

←−
H a,

−→
H a)

. (12)

This point measure on [0, dH (t0, t1)] × C(R+,R+)2 is the spinal decomposition of H between t0 and t1.

Remark 1.1. Let us interpret this decomposition in terms of the tree TH (more precisely in terms of the tree TH [t0] ,
see Figure 1). Let us set γ0 = pH (t0) and γ1 = pH (t1); to simplify our explanation, we assume that γ0 and γ1 are
leaves. Recall that �γ0, γ1 � is the geodesic path joining γ0 to γ1; then Jt0,t1 = {d(σ, γ1);σ ∈ Br(TH ) ∩ �γ0, γ1 �}. For
any positive a ∈ Jt0,t1 , there exists σ ∈ Br(TH ) ∩ �γ0, γ1 � such that the following holds true.

• ←−T a := {σ } ∪ {σ ′ ∈ TH : γ0 <H σ ′ <H γ1 and �γ0, σ � = �γ0, σ
′� ∩ �γ0, γ1 �} is the tree grafted at σ on the left-hand

side of �γ0, γ1 � and the tree (
←−T a, d, σ ) is coded by

←−
H a .

• −→T a := {σ } ∪ {σ ′ ∈ TH : either σ ′ <H γ0 or γ1 <H σ ′ and �γ0, σ � = �γ0, σ
′� ∩ �γ0, γ1 �} is the tree grafted at σ on

the right-hand side of �γ0, γ1 � and the tree (
−→T a, d, σ ) is coded by

−→
H a .

Height process and Lévy trees

The Brownian tree (also called Continuum Random Tree) has been introduced by Aldous [5–7]; this model has been
extended by Le Gall & Le Jan: in [28], they define the height process (further studied by Duquesne & Le Gall [14])
that is the coding function of Lévy trees. Lévy trees appear as scaling limits of Galton–Watson trees and they are the
genealogical structure of continuous state branching processes. Let us briefly recall here the definition of the height
process and that of Lévy trees.

The law of the height process is characterized by a function 
 : R+ → R+ called branching mechanism; we shall
restrict our attention to the critical and subcritical cases, namely when the branching mechanism 
 is of the following
Lévy–Khintchine form:

∀λ ∈ R+, 
(λ) = αλ + βλ2 +
∫

(0,∞)

(
e−λr − 1 + λr

)
π(dr), (13)

where α,β ∈ R+ and where π is the Lévy measure on (0,∞) that satisfies
∫
(0,∞)

(r ∧ r2)π(dr) < ∞. The height
process is derived from a spectrally positive Lévy process whose Laplace exponent is 
 . It shall be convenient to
work with the canonical process X = (Xt )t≥0 on the space of càdlàg functions D(R+,R) equipped with the Skorohod
topology. Let us denote by P the law of a spectrally positive Lévy process starting from 0 and whose Laplace exponent
is 
 . Namely,

∀t, λ ∈R+, E
[
exp(−λXt)

] = exp
(
t
(λ)

)
.

Note that the form (13) ensures that X under P does not drift to ∞: see for instance Bertoin [8], Chapter VII for more
details. Under the following assumption:

∫ ∞

1

dλ


(λ)
< ∞, (14)

Le Gall & Le Jan [28] (see also Duquesne & Le Gall [14]) have proved that there exists a continuous process H =
(Ht )t≥0 such that for all t ∈ R+, the following limit holds in P-probability:

Ht = lim
ε→0

1

ε

∫ t

0
ds1{I s

t <Xs<Is
t +ε}, (15)
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where I s
t := infs<r<t Xr . The process H is called the 
-height process. In the Brownian case, namely when 
(λ) =

λ2, easy arguments show that H is distributed as a reflected Brownian motion. Le Gall & Le Jan [28] have proved a
Ray–Knight theorem for H , which shows that the height process H codes the genealogy of continuous state branching
processes (see also Duquesne & Le Gall [14], Theorem 1.4.1). Moreover, the 
-height process H appears as the
scaling limit of the discrete height process and the contour function of Galton–Watson discrete trees: see Duquesne &
Le Gall [14], Chaper 2, for more details.

For all x ∈ (0,∞), we set Tx = inf{t ∈ R+ : Xt = −x}, that is P-a.s. finite since X under P does not drift to ∞. We
next introduce the following law Px on C(R+,R+):

Px is the law of (Ht∧Tx )t≥0 under P. (16)

The tree TH under Px(dH) is called the 
-Lévy forest starting from a population of size x. Then, the mass measure
of TH under Px(dH) satisfies the following important properties:

Px(dH)-a.s. mH is diffuse and mH

(
TH \ Lf(TH )

) = 0, (17)

where we recall from (5) that Lf(TH ) stands for the set of leaves of the tree TH . The 
-Lévy forest (TH ,dH ,ρH ,mH )

is therefore a continuum tree according to the definition of Aldous [7].
Each excursion above 0 of H under Px corresponds to a tree of the Lévy forest. Let us make this point precise

by introducing a Poisson decomposition of H into excursions above 0. To that end, denote by I the infimum process
of X:

∀t ∈ R+, It = inf
0≤r≤t

Xr .

Observe that (14) entails that either

β > 0 or
∫

(0,1)

rπ(dr) = ∞, (18)

which is equivalent for the Lévy process X to have unbounded variation sample paths; basic results of fluctuation
theory (see for instance Bertoin [8], Section VI.1) entail that X − I is a strong Markov process in [0,∞) and that 0 is
regular for (0,∞) and recurrent with respect to this Markov process. Moreover, −I is a local time at 0 for X − I (see
Bertoin [8], Theorem VII.1). We denote by N the corresponding excursion measure of X − I above 0.

It is not difficult to derive from (15) that Ht only depends on the excursion of X − I above 0 which straddles t .
Moreover, we get {t ∈ R+ : Ht > 0} = {t ∈ R+ : Xt > It } and if we denote by (ai, bi), i ∈ I , the connected compo-
nents of this set and if we set Hi

s = H(ai+s)∧bi
, s ∈ R+, then the point measure

∑
i∈I

δ(−Iai
,H i) (19)

is a Poisson point measure on R+ × C(R+,R+) with intensity dxN(dH), where, with a slight abuse of notation,
N(dH) stands for the ‘distribution’ of H(X) under N(dX). In the Brownian case, up to scaling, N is Itô positive
excursion of Brownian motion and the decomposition (19) corresponds to the Poisson decomposition of a reflected
Brownian motion above 0.

In what follows, we shall mostly work with the 
-height process H under its excursion N that is a sigma-finite
measure on C(R+,R+). We simply denote by ζ the lifetime of H under N and we easily check that

N-a.e. ζ < ∞, H0 = Hζ = 0 and Ht > 0 ⇐⇒ t ∈ (0, ζ ). (20)

Also note that X and H under N have the same lifetime ζ and basic results of fluctuation theory (see for instance
Bertoin [8], Chapter VII) also entail the following:

∀λ ∈ (0,∞), N
[
1 − e−λζ

] = 
−1(λ), (21)
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where 
−1 stands for the inverse function of 
 .
Note that (20) shows that H under N is a coding function as defined above. Duquesne & Le Gall [15] then define

the 
-Lévy tree as the real tree coded by H under N.

Convention When there is no risk of confusion, we simply write

(T , d, ρ,m,≤,p,�,D) := (
TH ,dH ,ρH ,mH ,≤H ,pH ,�(H),D(H)

)
when H is considered under N, Px or under other measures on C(R+,R+).

Recall from (5) that Lf(T ) stands for the set of leaves of T . Then the mass measure has the following properties:

N-a.e. m is diffuse and m
(
T \ Lf(T )

) = 0. (22)

The 
-Lévy tree (T , d, ρ,m) is therefore a continuum tree according to the definition of Aldous [5].

Diameter decomposition

Recall from (4) the definition of the total height � and that of the diameter D. Let us first briefly recall results on the
total height. One checks that the total height is N-a.s. realized at a unique time (see Duquesne & Le Gall [15] and also
Abraham & Delmas [3]). Namely,

N-a.e. there exists a unique τ ∈ [0, ζ ] such that Hτ = �. (23)

Moreover, the distribution of the total height � under N is characterized as follows:

∀t ∈ (0,∞), v(t) := N(� > t) satisfies
∫ ∞

v(t)

dλ


(λ)
= t. (24)

Note that v : (0,∞) → (0,∞) is a bijective decreasing C∞ function and (24) implies that on (0,∞), N(� ∈ dt) =

(v(t)) dt .

Recall from (16) that Px is the law of (Ht∧Tx )t≥0 under P, where Tx = inf{t ∈ R+ : Xt = −x}. The Poisson
decomposition (19) implies that supt∈[0,Tx ] Ht = max{�(Hi); i ∈ I : −Iai

≤ x} and since � under N has a density,
then (23) and (24) entail that

Px-a.s. there is a unique τ ∈ [0, ζ ] such that Hτ = � and Px(� ≤ t) = e−xv(t), t ∈R+. (25)

In [3], Abraham & Delmas generalize Williams’ decomposition of the Brownian excursion to the excursion of the

-height process: they first make sense of the conditioned law N(· | � = r). Namely they prove that N(· | � = r)-a.s.
� = r , that r �→ N(· | � = r) is weakly continuous on C(R+,R+) and that

N =
∫ ∞

0
N(� ∈ dr)N(· | � = r). (26)

Moreover they provide a Poisson decomposition along the total height of the process: see Section 2.2 where a more
precise statement is recalled.

The first two results of our article provide a similar result for the diameter D of the 
-Lévy tree under N. Recall
that p : [0, ζ ] → T stands for the canonical projection.

Theorem 1.1. Let 
 be a branching mechanism of the form (13) that satisfies (14). Let T be the 
-Lévy tree that
is coded by the 
-height process H under the excursion measure N as defined above. Then, the following holds true
N-a.e.

(i) There exists a unique pair τ0, τ1 ∈ [0, ζ ] such that τ0 < τ1 and D = d(τ0, τ1). Moreover, either Hτ0 = � or
Hτ1 = �. Namely, either τ0 = τ or τ1 = τ , where τ is the unique time realizing the total height as defined by
(23).
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(ii) Set γ0 = p(τ0) and γ1 = p(τ1). Then γ0 and γ1 are leaves of T . Let γmid be the mid-point of �γ0, γ1 �: namely, γmid
is the unique point of �γ0, γ1 � such that d(γ0, γmid) = D/2. Then, there are exactly two times 0 ≤ τ−

mid < τ+
mid ≤ ζ

such that p(τ−
mid) = p(τ+

mid) = γmid, and γmid is a simple point of T : namely, it is neither a branching point nor
a leaf of T .

(iii) For all r ∈ (0,∞), we get

N(D > 2r) = v(r) − 

(
v(r)

)2
∫ ∞

v(r)

dλ


(λ)2
. (27)

This implies that N(D ∈ dr) = ϕ(r) dr on (0,∞) where the density ϕ : (0,∞) → (0,∞) is given by

∀r ∈ (0,∞), ϕ(2r) = 

(
v(r)

) − 

(
v(r)

)2

 ′(v(r)

) ∫ ∞

v(r)

dλ


(λ)2
. (28)

The second main result of our paper is a Poisson decomposition of the subtrees of T grafted on the diameter
�γ0, γ1 �. This result is stated in terms of coding functions and we first need to introduce the following notation: let
H,H ′ ∈ C(R+,R+) be two coding functions as defined above; the concatenation of H and H ′ is the coding function
denoted by H ⊕ H ′ and given by

∀t ∈ R+,
(
H ⊕ H ′)

t
= Ht if t ∈ [0, ζH ] and

(
H ⊕ H ′)

t
= H ′

t−ζH
if t ≥ ζH . (29)

Moreover, to simplify notation we write the following:

∀r ∈ (0,∞), N�
r = N(· | � = r). (30)

Theorem 1.2. Let 
 be a branching mechanism of the form (13) that satisfies (14). For all r ∈ (0,∞), we denote
by Qr the law on C(R+,R+) of H ⊕ H ′ under N�

r/2(dH)N�
r/2(dH ′), where N�

r/2 is defined by (30). Namely, for all
measurable functions F : C(R+,R+) → R+,

Qr

[
F(H)

] =
∫ ∫

C(R+,R+)2
N�

r/2(dH)N�
r/2

(
dH ′)F (

H ⊕ H ′). (31)

Then Qr satisfies the following properties.

(i) Qr -a.s. D = r and there exists a unique pair of points τ0, τ1 ∈ [0, ζ ] such that D = d(τ0, τ1).
(ii) For all r ∈ (0,∞), Qr [ζ ] = 2N�

r/2[ζ ] ∈ (0,∞). Moreover, the application r �→ Qr is weakly continuous and for
all measurable functions F : C(R+,R+) → R+ and f : R+ →R+,

N
[
f (D)F(H)

] =
∫ ∞

0

N(D ∈ dr)

Qr [ζ ] f (r)Qr

[∫ ζ

0
F

(
H [t])dt

]
, (32)

where H [t] is defined by (8).
(iii) Recall the notation τ−

mid and τ+
mid from Theorem 1.1(ii). Then, for all r ∈ (0,∞),

N
[
F

(
H [τ−

mid]) | D = r
] = 1

N�
r/2[ζ ]

∫ ∫
C(R+,R+)2

N�
r/2(dH)N�

r/2

(
dH ′)ζH ′F

(
H ⊕ H ′), (33)

where N(· | D = r) makes sense for all r ∈ (0,∞) thanks to (32).
(iv) Recall from (16) the notation Py . To simplify notation, we write for all y, b ∈ (0,∞)

Nb = N
(· ∩ {� ≤ b}) and Py

b = Py
(· ∩ {� ≤ b}). (34)

Then, under Qr , Mτ0,τ1(da d
←−
H d

−→
H ), defined by (12), is a Poisson point measure on [0, r]× C(R+,R+)2 whose

intensity is

β1[0,r](a) da
(
δ0(d

←−
H )Na∧(r−a)(d

−→
H ) + Na∧(r−a)(d

←−
H )δ0(d

−→
H )

)
+ 1[0,r](a) da

∫
(0,∞)

π(dz)

∫ z

0
dxPx

a∧(r−a)(d
←−
H )Pz−x

a∧(r−a)
(d

−→
H ), (35)
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where β and π are defined in (13) and where 0 stands for the null function.

Remark 1.2. As already mentioned, the previous theorem makes sense of N(· | D = r) and for all measurable func-
tions F : C(R+,R+) →R+, we have

∀r ∈ (0,∞), N
[
F(H) | D = r

] = Qr

[∫ ζ

0
F

(
H [t])dt

]/
Qr [ζ ]. (36)

Namely, Theorem 1.2(i) entails that N(· | D = r)-a.s. D = r . Then (31) combined with the already mentioned conti-
nuity of r �→ N(· | � = r/2) easily implies that r �→ N(· | D = r) is weakly continuous on C(R+,R+). Moreover, (32)
can be rewritten as

N =
∫ ∞

0
N(D ∈ dr)N(· | D = r) (37)

that is analogous to (26). We mention that the proof of Theorem 1.2 relies on the decomposition (26) due to Abraham
& Delmas [3].

Remark 1.3. It is easy to check from (8) that for all t0, t , (H [t])[t0] = H [t+t0]. Therefore, (32) implies that H under N
is invariant under rerooting. Namely, for all measurable functions F : C(R+,R+) → R+,

∀t0 ∈R+, N
[
1{ζ≥t0}F

(
H [t0])] = N

[
1{ζ≥t0}F(H)

]
, (38)

which is quite close to Proposition 2.1 in Duquesne & Le Gall [16], that is used in the proof of Theorem 1.2.

Remark 1.4. As shown by (36), N(· | D = r) is derived from Qr by a uniform rerooting. This property suggests that
the law of the compact real tree (T , d) coded by H under Qr , without its root, is the scaling limit of natural models
of labeled unrooted trees conditioned by their diameter.

Remark 1.5. Another reason for introducing the law Qr is the following: we deduce from (36) that for all measurable
functions F : C(R+,R+) →R+,

N
[
F

(
H [τ0]) | D = r

] = Qr

[
ζF

(
H [τ0])]/Qr [ζ ], (39)

where τ0 is as in Theorem 1.1. As shown by Theorem 1.2(iv), H under Qr enjoys a Poisson decomposition along its
diameter, which is not the case of H under N(· | D = r) by (39).

The law of the height and of the diameter of stable Lévy trees conditioned by their total mass

In application of Theorem 1.2, we compute the law of � and D under N(· | ζ = 1) in the cases where 
 is a stable
branching mechanism. Namely, we fix γ ∈ (1,2] and


(λ) = λγ , λ ∈ R+,

that is called the γ -stable branching mechanism. We first recall the definition of the law N(· | ζ = 1) for such a
branching mechanism.

When 
 is γ -stable, the Lévy process X under P satisfies the following scaling property: for all r ∈ (0,∞),
(r−1/γ Xrt )t≥0 has the same law as X, which easily entails by (15) that under P, (r−(γ−1)/γ Hrt )t≥0 has the same law
as H and the Poisson decomposition (19) implies the following:

(
r−(γ−1)/γ Hrt

)
t≥0 under r1/γ N

(law)= H under N. (40)

We then easily derive from (21) that

N(ζ ∈ dr) = pγ (r) dr, where pγ (r) = cγ r−1−1/γ with 1/cγ = γ�e

(
γ − 1

γ

)
. (41)
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Here �e stands for Euler’s Gamma function. By (40), there exists a family of laws on C(R+,R+) denoted by N(· |
ζ = r), r ∈ (0,∞), such that r �→ N(· | ζ = r) is weakly continous on C(R+,R+), such that N(· | ζ = r)-a.s. ζ = r

and such that

N =
∫ ∞

0
N(· | ζ = r)N(ζ ∈ dr). (42)

Moreover, by (40), (r−(γ−1)/γ Hrt )t≥0 under N(· | ζ = r) has the same law as H under N(· | ζ = 1). We call
N(· | ζ = 1) the normalized law of the γ -stable height process and to simplify notation we set

Nnr := N(· | ζ = 1). (43)

Thus, for all measurable functions F : C(R+,R+) → R+,

N
[
F(H)

] = cγ

∫ ∞

0
drr−1−1/γ Nnr

[
F

((
r(γ−1)/γ Ht/r

)
t≥0

)]
. (44)

When γ = 2, Nnr is, up to scaling, the normalized Brownian excursion that is, as shown by Aldous [7], the scaling
limit of the contour process of the uniform (ordered rooted) tree with n vertices as n → ∞; Aldous [7] also extends
this limit theorem to Galton–Watson trees conditioned to have n vertices and whose offspring distribution has a second
moment. This result has been extended by Duquesne [12] to Galton–Watson trees conditioned to have n vertices and
whose offspring distribution is in the domain of attraction of a γ -stable law, the limiting process being in this case the
normalized excursion of the γ -stable height process. See also Kortchemski [26] for scaling limits of Galton–Watson
tree conditioned to have n leaves.

We next introduce w : (0,∞) → (1,∞) that is the unique C∞ decreasing bijection that satisfies the following
integral equation:

∀y ∈ (0,∞),

∫ ∞

w(y)

du

uγ − 1
= y. (45)

We refer to Section 3.1 for a probabilistic interpretation of w and further properties. The following proposition char-
acterizes the joint law of � and D under Nnr by means of Laplace transform.

Proposition 1.3. Fix γ ∈ (1,2] and 
(λ) = λγ , λ ∈R+. Recall from (43) the definition of the law Nnr of the normal-
ized excursion of the γ -stable height process. We then set

∀λ,y, z ∈ (0,∞), Lλ(y, z) := cγ

∫ ∞

0
e−λrr−1−1/γ Nnr

(
r(γ−1)/γ D > 2y; r(γ−1)/γ � > z

)
dr, (46)

where we recall from (41) that 1/cγ = γ�e(
γ−1
γ

), �e standing for Euler’s Gamma function. Note that

∀λ,y, z ∈ (0,∞), L1(y, z) = λ−1/γ Lλ

(
λ−(γ−1)/γ y, λ−(γ−1)/γ z

)
. (47)

Recall from (45) the definition of w. Then,

L1(y, z) = w(y ∨ z) − 1 − 1

γ
1{z<2y}

(
w(y)γ − 1

)2
(

w(y ∧ (2y − z))

w(y ∧ (2y − z))γ − 1
− (γ − 1)

(
y ∧ (2y − z)

))
. (48)

In particular, for all y, z ∈ (0,∞),

L1(0, z) = w(z) − 1 and L1(y,0) = w(y) − 1 − 1

γ

(
w(y)γ − 1

)(
w(y) − (γ − 1)y

(
w(y)γ − 1

))
. (49)
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Fig. 2. Numerical evaluations of Nnr[�] and Nnr[D] for γ ∈ (1,2]. On the left-hand side, the graphs of γ �→ Nnr[D] (above) and γ �→ Nnr[�]
(below). On the right-hand side, the graph of γ �→ Nnr[D]/Nnr[�].

Remark 1.6. Proposition 1.3 allows explicit computations of Nnr[�] and Nnr[D] in terms of γ : we refer to Propo-
sition 3.4 and Proposition 3.5 in Section 3.3 for precise results. In the Brownian case γ = 2, we recover that
Nnr[�] = √

π and Nnr[D] = 4
3

√
π , therefore Nnr[D]/Nnr[�] = 4

3 . This ratio between the height and diameter of the
Brownian tree is first observed in [34] and later Aldous gives an explanation of this fact in [6]. In the non-Brownian
stable cases this explanation breaks down: as a consequence of Proposition 3.4 and Proposition 3.5, as γ → 1+, we
prove that

Nnr[�] = 1

γ − 1
+ γe + 1 +O(γ − 1) and Nnr[D] = 2

γ − 1
+ 2γe − 1 +O(γ − 1), (50)

where γe stands for the Euler–Mascheroni constant. Thus, limγ→1+ Nnr[D]/Nnr[�] = 2. See Figure 2. We refer to
Section 3.3 for more details.

Proposition 1.3 is known in the Brownian case, where w(y) = coth(y): see Wang [36] for the joint law. In the
Brownian case, standard computations derived from (49) imply the following power expansions that hold true for all
r ∈ (0,∞):

Nnr(� > r) = 2
∑
n≥1

(
2n2r2 − 1

)
e−n2r2

(51)

and

Nnr(D > r) =
∑
n≥2

(
n2 − 1

)(1

6
n4r4 − 2n2r2 + 2

)
e−n2r2/4. (52)

These results can be derived from expressions in Szekeres [34] (see also Wang [36] for more details).
We next provide similar asymptotic expansions in the non-Brownian stable cases. To that end, we introduce sγ :

(0,∞) → (0,∞) as the continuous version of the density of the spectrally positive γ−1
γ

-stable distribution; more
precisely, sγ is characterized by the following:

∀λ ∈ R+,

∫ ∞

0
e−λxsγ (x) dx = exp

(−γ λ(γ−1)/γ
)
. (53)
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The following asymptotic expansion of sγ at 0 is due to Zolotarev (see Theorem 2.5.2 [38]): for all integers N ≥ 1,

(
2π

(
1 − 1

γ

))1/2

x(γ+1)/2e1/xγ−1
sγ

(
(γ − 1)x

) = 1 +
∑

1≤n<N

Snx
n(γ−1) +ON,γ

(
xN(γ−1)

)
, as x → 0. (54)

The coefficients Sn depend on γ (but we skip it to simplify notation) and they are given in Zolotarev [38] by formula
(2.5.8), Lemma 2.5.1, p. 95; the symbol ON,γ in (54) means that the expansion depends on N and γ .

Remark 1.7. In the Brownian case where γ = 2, it is well known that

s2(x) = π−1/2x−3/2e−1/x, x ∈R+.

Then, S0 = 1 and Sn = 0, for all n ≥ 1.

For generic γ ∈ (1,2), this asymptotic expansion does not yield a converging power expansion (although it is the
case if γ = 2). See Section 4.1 for more details on sγ . To state our result we first need to introduce an auxiliary
function derived from sγ as follows.

Proposition 1.4. Let γ ∈ (1,2]. Recall from (53) the definition of sγ . We introduce the following function:

∀x ∈ R+, θ(x) := (γ − 1)x−1sγ (x) − γ − 1

γ
x−1−1/γ

∫ x

0
dyy1/γ−1sγ (y). (55)

Then, the following holds true.

(i) θ is well defined, continuous,

∫ ∞

0
dx

∣∣θ(x)
∣∣ < ∞ and

∫ ∞

0
dxe−λxθ(x) = λ1/γ e−γ λ(γ−1)/γ

, λ ∈R+. (56)

(ii) Recall from (54) the definition of the sequence (Sn)n≥0, with S0 = 1. Let (Vn)n≥0 be a sequence of real numbers
recursively defined by V0 = 1 and

∀n ∈ N, Vn+1 = Sn+1 +
(

n − 1

2
− 1

γ − 1

)
Sn −

(
n − 1

2
− 1

γ

)
Vn. (57)

Then, for all integers N ≥ 1,

(
2π

(
1 − 1

γ

))1/2

x(γ+3)/2e1/xγ−1
θ
(
(γ − 1)x

) = 1 +
∑

1≤n<N

Vnx
n(γ−1) +ON,γ

(
xN(γ−1)

)
, (58)

as x → 0.

We use θ to get the asymptotic expansion of the law of the total height of the normalized γ -stable tree as follows.

Theorem 1.5. Let γ ∈ (1,2]. We introduce the following function:

∀r ∈ R+, ξ(r) := r−(γ+1)/(γ−1)θ
(
r−γ /(γ−1)

)
, (59)

where θ is defined in (55). Then, there exists a real valued sequence (βn)n≥1 and x1 ∈ (0,∞) such that

∑
n≥1

|βn|xn
1 < ∞ and ∀r ∈ (0,∞),

∑
n≥1

|βn| sup
s∈[r,∞)

∣∣ξ(ns)
∣∣ < ∞, (60)
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and such that

∀r ∈ (0,∞), cγ Nnr(� > r) =
∑
n≥1

βnξ(nr), (61)

where we recall from (41) that 1/cγ = γ�e(
γ−1
γ

), �e standing for Euler’s gamma function. Moreover, for all integers
N ≥ 1, as r → ∞,

1

C1
r−1−γ /2erγ

Nnr
(
� > r(γ − 1)−(γ−1)/γ

) = 1 +
∑

1≤n<N

Vnr
−nγ +ON,γ

(
r−Nγ

)
, (62)

where C1 := (2π)−1/2(γ − 1)1/2+1/γ γ 3/2�e(
γ−1
γ

) exp(C0), where

C0 := γ

∫ ∞

1

du

(u + 1)γ − 1
−

∫ 1

0

du

u

(u + 1)γ − 1 − γ u

(u + 1)γ − 1
, (63)

and where the sequence (Vn)n≥1 is recursively defined by (57) in Proposition 1.4.

Remark 1.8. The convergence in (61) is rapid. Indeed, by (58), we see that ξ(nr) is of order

(nr)1+γ /2 exp
(−nγ (γ − 1)γ−1rγ

)
.

Then, the asymptotic expansion (62) is that of the first term of (61) that is c−1
γ β1ξ(r).

Remark 1.9. The definition of the sequence (βn)n≥0 is involved: see Lemma 4.6 and its proof for a precise definition.
However, in the Brownian case, everything can be explicitly computed: for all n ≥ 1, βn = 2, ξ(r) = (4π)−1/2 ×
(2r2 − 1)e−r2

, c2 = (4π)−1/2, and we recover (51) from (61); moreover, C0 = log 2, C1 = 4, V0 = 1, V1 = − 1
2 and

Vn = 0, for all n ≥ 2.

To state the result concerning the diameter, we need precise results on the derivative of the γ−1
γ

-stable density.

Proposition 1.6. Let γ ∈ (1,2]. Recall from (53) the definition of the density sγ . Then sγ is C1 on R+,

∫ ∞

0
dx

∣∣s′
γ (x)

∣∣ < ∞ and
∫ ∞

0
dxe−λxs′

γ (x) = λe−γ λ(γ−1)/γ

, λ ∈R+. (64)

Moreover, s′
γ has the following asymptotic expansion: recall from (54) the definition of the sequence (Sn)n≥0, with

S0 = 1; let (Tn)n≥0 be a sequence of real numbers recursively defined by T0 = 1 and

∀n ∈ N, Tn+1 := Sn+1 +
(

n − 1

2
− 1

γ − 1

)
Sn. (65)

Then, for all positive integers N , we have

(
2π

(
1 − 1

γ

))1/2

x(3γ+1)/2e1/xγ−1
s′
γ

(
(γ − 1)x

) = 1 +
∑

1≤n<N

Tnx
n(γ−1) +ON,γ

(
xN(γ−1)

)
, (66)

as x → 0.

The asymptotic expansion of the law of the diameter of the normalized γ -stable tree is then given in the following
theorem.
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Theorem 1.7. Let γ ∈ (1,2]. Recall from (59) the definition of the function ξ . We also introduce the following func-
tion:

∀r ∈ R+, ξ(r) := r−(γ+1)/(γ−1)s′
γ

(
r−γ /(γ−1)

)
, (67)

where s′
γ is the derivative of the density sγ defined in (53). Then there exist two real valued sequences (γn)n≥2 and

(δn)n≥2 and x2 ∈ (0,∞) such that

∑
n≥2

(|γn| + |δn|
)
xn

2 < ∞ and ∀r ∈ (0,∞),
∑
n≥2

|γn| sup
s∈[r,∞)

∣∣ξ(ns)
∣∣ + |δn| sup

s∈[r,∞)

∣∣ξ(ns)
∣∣ < ∞, (68)

and such that

∀r ∈ (0,∞), cγ Nnr(D > 2r) =
∑
n≥2

γnξ(nr) + δnξ(nr), (69)

where we recall from (41) that 1/cγ = γ�e(
γ−1
γ

), �e standing for Euler’s gamma function. Moreover, for all integers
N ≥ 1, as r → ∞,

1

C2
r−1−3γ /2erγ

Nnr
(
D > r(γ − 1)−(γ−1)/γ

) = 1 +
∑

1≤n<N

Unr
−nγ +ON,γ

(
r−Nγ

)
, (70)

where C2 := (8π)−1/2(γ − 1)3/2+1/γ γ 5/2�e(
γ−1
γ

) exp(2C0), where C0 is defined by (63) and where the sequence
(Un)n≥1 is recursively defined by U0 = 1 and

∀n ≥ 1, Un = Tn − γ + 1

γ (γ − 1)
Vn−1. (71)

Here (Tn)n≥0 is defined by (65) and (Vn)n≥0 is defined by (57).

Remark 1.10. The convergence in (69) is rapid. Indeed, by (66) and (58) we see that ξ(nr/2) and ξ(nr/2) are of
respective order

(nr)1+3γ /2 exp
(−nγ 2−γ (γ − 1)γ−1rγ

)
and (nr)1+γ /2 exp

(−nγ 2−γ (γ − 1)γ−1rγ
)
.

Then the asymptotic expansion (70) is that of c−1
γ γ2ξ(r) + c−1

γ δ2ξ(r).

Remark 1.11. The definitions of the sequences (γn)n≥0 and (δn)n≥0 are involved: see the proof of Lemma 4.7 for a
precise definition. However, in the Brownian case, everything can be computed explicitly:

∀n ≥ 2, γn = 4

3

(
n2 − 1

)
, δn = −2

(
n2 − 1

)
and ξ(r) = π−1/2r2

(
r2 − 3

2

)
e−r2

,

which allows to recover (52) from (69). Moreover, C2 = 8, U0 = 1, U1 = −3, U2 = − 3
4 and Un = 0, for all n ≥ 3.

The tail at 0+ of the law of the total height and of the diameter of the normalised stable tree

In the Brownian case γ = 2, it is not straightforward to derive from (51) and (52) an asymptotic expansion of
Nnr(� ≤ r) and Nnr(D ≤ r) when r → 0. To that end, we use Jacobi’s identity on theta functions and we get

Nnr(� ≤ r) = 4π5/2

r3

∑
n≥1

n2e−n2π2/r2 ∼
r→0

4π5/2r−3e−π2/r2
(72)
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Table 1
Asymptotic exponents for the height and the diameter of stable trees

γ ∈ (1,2) γ = 2

r → ∞ − log Nnr(� > r) ∼ (γ − 1)γ−1rγ r2

− log Nnr(D > r) ∼ (γ − 1)γ−1rγ r2

r → 0+ − log Nnr(� ≤ r) ∼ (
γ sin(π/γ )

π r)−γ /(γ−1) π2/r2

− log Nnr(D ≤ r) ∼ (
γ sin(π/γ )

2π
r)−γ /(γ−1) 4π2/r2

and

Nnr(D ≤ r) =
√

π

3

∑
n≥1

(
8

r3

(
24an,r − 36a2

n,r + 8a3
n,r

) + 16

r
a2
n,r

)
e−an,r ∼

r→0

1

3
212π13/2r−9e−4π2/r2

, (73)

where we have set an,r = 4(πn/r)2 for all r ∈ (0,∞) and for all n ≥ 1. See Szekeres [34] and Aldous [6] for more
detail and see Wang [36] for the joint law of D and � in the Brownian case.

In the non-Brownian stable cases, when γ ∈ (1,2), the asymptotic expansions (61) in Theorem 1.5 and (68) in
Theorem 1.7 are useless to get asymptotics of Nnr(� ≤ r) and Nnr(D ≤ r) when r → 0. In these cases we only prove
the following result.

Theorem 1.8. We fix γ ∈ (1,2) (in particular, γ �= 2). Then, as r → 0+,

Nnr(� ≤ r) ∼ Crγ+2+1/(γ−1) exp
(−λcrr

−γ /(γ−1)
)

and (74)

Nnr(D ≤ 2r) ∼ C′rγ+1 exp
(−λcrr

−γ /(γ−1)
)
, where (75)

λcr :=
(

π/γ

sin(π/γ )

)γ /(γ−1)

, C := (γ − 1)γ+2�e(1 − 1/γ )

γ γ−1λcr�e(2 − γ )
and C′ := 2λcrC. (76)

In Table 1, we summarize the exponents of the tail probabilities for the total height and the diameter in the different
asymptotic regimes. We make two remarks.

Remark 1.12. First note that − log Nnr(� > r) ∼ − log Nnr(D > r) as r → ∞, while − log Nnr(� ≤ r) ∼
− log Nnr(D ≤ 2r) as r → 0. This can be explained informally as follows: roughly speaking, Theorem 1.2 asserts
that a stable tree conditioned by its total diameter D is obtained by glueing at their roots two independent trees
conditioned to have height D/2, the root is uniformly chosen according to the mass measure in the resulting tree and
the height is the distance of the root from the most distant extremity of the diameter. When r is large, one of the two
trees has a much larger mass that is concentrated near its height, thus the root is close to one of the extremities of the
diameter and � is comparable to D. When r is small, both trees have a comparable mass that is concentrated near
their root (corresponding to the midpoint of the diameter). So the root of the tree conditioned by its diameter is close
to the midpoint of the diameter and � is comparable to D/2. It is possible to make these observations rigorous by an
argument based on Proposition 1.3. In the Brownian case, they are easily derived from the expressions for the joint
law of � and D given in Wang [36].

Remark 1.13. In the asymptotic regime r → 0+, there is a discontinuity of the exponents as γ → 2. This comes from
the fact that −λcr, as defined by (76) is a singular point of the continuation extension of λ �→ Lλ(0,1) when γ ∈ (1,2),
which is not the case when γ = 2: for more details, we refer to the proof of Theorem 1.8 and Remark 5.1.

The paper is organized as follows. Section 2 is devoted to the proofs of Theorem 1.1 and of Theorem 1.2: in
Section 2.1, we discuss an important geometric property of the diameter of real trees (Lemma 2.1) and we explain the
spinal decomposition according to the total height, the result of Abraham & Delmas [3] being recalled in Section 2.2
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where the proofs of Theorem 1.1 and Theorem 1.2 are actually given. Proposition 1.3, that characterizes the joint law
of the total height and the diameter of normalized stable trees, is proved in Section 3. Theorem 1.5 and Theorem 1.7
are proved in Section 4. Theorem 1.8 is proved in Section 5. There is the Appendix in two parts: the first part is devoted
to the proof of a technical lemma (Lemma 2.2); the second part briefly recalls various results in complex analysis that
are used in the proofs of Theorem 1.5, Theorem 1.7 and Theorem 1.8.

2. Proof of the diameter decomposition

2.1. Geometric properties of the diameter of real trees; height decomposition

In this section we gather deterministic results on real trees and their coding functions: we first prove a key lemma
on the diameter of real trees; we next discuss how to reconstruct the coding function H from a spinal decomposition
M0,t (H), under a specific assumption on the mass measure mH on TH ; then we discuss a decomposition related to
the total height.

Total height and diameter of compact rooted real trees
The following result connects the total height and the diameter of a compact rooted real tree.

Lemma 2.1. Let (T , d,ρ) be a compact rooted real tree. We denote by � and D resp. its total height and its diameter:
� := supσ∈T d(ρ,σ ) and D = supσ,σ ′∈T d(σ,σ ′). Then, the following holds true.

(i) There exist σ,σ0, σ1 ∈ T , such that � = d(ρ,σ ) and D = d(σ0, σ1). This entails

� ≤ D ≤ 2�. (77)

(ii) Let σ0, σ1 ∈ T be such that D = d(σ0, σ1). Then, max(d(ρ,σ0);d(ρ,σ1)) = �.

Proof. First note that γ ∈ T �→ d(ρ, γ ) and (γ, γ ′) ∈ T 2 �→ d(γ, γ ′) are real valued continuous functions defined
on compact spaces; basic topological arguments entail the existence of σ,σ0, σ1 ∈ T as in (i). The inequality � ≤ D

is an immediate consequence of the definitions of � and D. The triangle inequality next entails that D ≤ d(σ0, ρ) +
d(ρ,σ1) ≤ 2�, which completes the proofs of (77) and of (i).

Let σ,σ0, σ1 ∈ T be as in (i). By the four-point condition (1) and basic inequalities, we get

� + D = d(ρ,σ ) + d(σ0, σ1) ≤ max
(
d(ρ,σ0) + d(σ,σ1);d(ρ,σ1) + d(σ,σ0)

)
≤ max

(
d(ρ,σ0);d(ρ,σ1)

) + max
(
d(σ,σ1);d(σ,σ0)

)
.

If max(d(ρ,σ0);d(ρ,σ1)) < �, then the previous inequality implies that D < max(d(σ,σ1);d(σ,σ0)), which is ab-
surd. Thus, max(d(ρ,σ0);d(ρ,σ1)) = �. �

Coding functions and their spinal decompositions
Recall that 0 stands for the null function of C(R+,R+). We denote by Cc(R+,R+) the functions of C(R+,R+) with
compact support.

Definition 2.1. We introduce the set of coding functions:

Exc= {
H ∈ Cc(R+,R+) : H0 = 0,H �= 0,mH is diffuse and mH

(
TH \ Lf(TH )

) = 0
}
, (78)

where we recall from (3) the definition of the real tree TH coded by H , where we recall from (5) that Lf(TH ) stands
for the set of leaves of TH and where we recall from (6) that mH stands for the mass measure of TH . Then, we set

H = {
B ∩ Exc;B Borel subset of C(R+,R+)

}
, (79)

that is the trace sigma field on Exc of the Borel sigma field of C(R+,R+).
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Remark 2.1. Let H ∈ Exc and let s0, s1 ∈ (0, ζH ) be such that s0 < s1 and dH (s0, s1) = 0. Then, we easily check that
H

[s0]
·∧(s1−s0)

∈ Exc.

Remark 2.2. Recall from (17) and from (22) that Px and N are supported by Exc.

Definition 2.2. We introduce the following subset of R+ × C(R+,R+)2:

E := R+ × (
Exc× (

Exc∪ {0}) ∪ (
Exc∪ {0}) × Exc

)
(80)

and we denote by Mpt(E) the set of point measures

M(da d
←−
H d

−→
H ) =

∑
a∈J

δ
(a,

←−
H a,

−→
H a)

on E that satisfy the following conditions:

∃r ∈R+ such that the closure of the countable set J is [0, r] and

∀ε, η ∈ (0,∞), #
{
a ∈ J : �(←−

H a
) ∨ �

(−→
H a

)
> η or ζ←−

H a ∨ ζ−→
H a > ε

}
< ∞. (81)

We then equip Mpt(E) with the sigma field G generated by the applications M ∈ Mpt(E) �→ M(A), where A ranges
among the Borel subsets of R+ × C(R+,R+)2.

The following lemma, whose proof is postponed in Appendix, asserts that H can be recovered in a measurable way
from the spinal decomposition M0,t (H), as defined in (11).

Lemma 2.2. Recall from above the definition of the measurable spaces (Exc,H) and (Mpt(E),G). Then, the follow-
ing holds true.

(i) For all t ∈ (0,∞), we set {ζ > t} := {H ∈ Exc : ζH > t}. Then, {ζ > t} ∈H and

H ∈ {ζ > t} �−→M0,t (H) ∈ Mpt(E) is measurable.

(ii) There exists a measurable function � : Mpt(E) → R+ × Exc such that

∀H ∈ Exc,∀t ∈ (0, ζH ), �
(
M0,t (H)

) = (t,H).

Proof. See Appendix A. �

Decomposition according to the total height
Let us fix H ∈ Exc. Recall from (4) the definition of �(H), the height of H . We introduce the first time that realises
the total height:

τ(H) = inf
{
t ∈ R+ : Ht = �(H)

}
. (82)

For all x ∈ (0,�(H)) we also introduce the following times:

τ−
x (H) := sup

{
t < τ(H) : Ht < �(H) − x

}
and τ+

x (H) := inf
{
t > τ(H) : Ht < �(H) − x

}
. (83)

Recall from (8) the definition of H [s]. We then set

∀t ∈ R+, H�x
t = H

[τ−
x ]

t∧(τ+
x −τ−

x )
and H⊕x

t = H
[τ+

x ]
t∧(ζ−(τ+

x −τ−
x ))

, (84)

where we denote τ−
x := τ−

x (H), τ+
x := τ+

x (H) and ζ := ζH to simplify notation. See Figure 3.
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Fig. 3. The left-hand side figure illustrates the decomposition of H into H�x and H⊕x ; the right-hand side figure represents this decomposition
in terms of the tree coded by H .

Let us interpret H�x and H⊕x in terms of TH . To that end, we recall that pH : [0, ζ ] → TH stands for the canonical
projection and we set γ := pH (τ(H)). We first note that dH (τ−

x , τ+
x ) = 0. Then we set γ (x) := pH (τ−

x ) = pH (τ+
x )

that is the unique point of �ρ,γ � such that x = d(γ, γ (x)) and thus, d(ρ, γ (x)) = �(H) − x. We denote by T o the
connected component of TH \ {γ (x)} that contains the root ρ and we set

T −x = TH \ T o and T +x = {
γ (x)

} ∪ T o.

Thus (T −x, d, γ (x)) is coded by H�x and (T +x, d, γ (x)) is coded by H⊕x . See Figure 3.
Recall from (8) the spinal decomposition of H at a time t . We shall use the following notation:

M0,τ (H)(H) =
∑

a∈J0,τ (H)

δ
(a,

←−
H a,

−→
H a)

.

This is a measure on [0,�(H)] × Exc× Exc that provides the spinal decomposition along the geodesic realising the
total height. Let us first make the following remark.

Remark 2.3. Let x ∈ (0,�(H)) and recall the notation γ (x) = pH (τ−
x (H)) = pH (τ+

x (H)). Observe that if x /∈
J0,τ (H), then Ht > �(H) − x, for all t ∈ (τ−

x (H), τ+
x (H)) and thus, τ−

x (H), τ+
x (H) are the only time t ∈ [0, ζH ]

such that pH (t) = γ (x), which implies that γ (x) is not a branching point of TH : since it is not a leaf, it has to be a
simple point of TH .

For all x ∈ (0,�(H)), we next introduce the following restriction of M0,τ (H)(H):

M−x
0,τ (H)(H) =

∑
a∈J0,τ (H)∩[0,x]

δ
(a,

←−
H a,

−→
H a)

and M+x
0,τ (H)(H) =

∑
a∈J0,τ (H)∩(x,�(H)]

δ
(a,

←−
H a,

−→
H a)

, (85)

so that M0,τ (H)(H) =M−x
0,τ (H)(H) +M+x

0,τ (H)(H). Observe that

τ(H) = τ−
x (H) + τ

(
H�x

)
and M0,τ (H�x)

(
H�x

) =M−x
0,τ (H)

(H). (86)
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For all H ′ ∈ Exc, we next denote by �(H ′) := (H ′
(ζH ′−t)+)t≥0 the function that reverses H ′ at its lifetime. We

easily check that � : Exc→ Exc is measurable; with a slight abuse of notation, we also set:

�
(
M+x

0,τ (H)(H)
) =

∑
a∈J0,τ (H)∩(x,�(H)]

δ
(�(H)−a,�(

−→
H a),�(

←−
H a))

.

It is easy to check first that �(M+x
0,τ (H)(H)) is a measurable function of M+x

0,τ (H)(H) and next that

M0,ζH −τ+
x (H)

(
H⊕x

) = �
(
M+x

0,τ (H)(H)
)
. (87)

This combined with (86) and Lemma 2.2 immediately implies the following lemma.

Lemma 2.3. There are two measurable functions �,�′ : Mpt(E) → R+ × Exc such that

∀H ∈ Exc,∀x ∈ (
0,�(H)

)
, �

(
M−x

0,τ (H)(H)
) = (

τ(H) − τ−
x (H),H�x

)
and

�′(M+x
0,τ (H)(H)

) = (
ζH − τ+

x (H),H⊕x
)
,

where τ(H) is defined by (82), τ−
x (H) and τ+

x (H) by (83), H�x and H⊕x by (84) and M−x
0,τ (H)(H) and M+x

0,τ (H)(H)

by (85).

2.2. Proofs of Theorem 1.1 and of Theorem 1.2

As already mentioned, Abraham & Delmas in [3] make sense of the conditioned law N(· | � = r): namely they prove
that N(· | � = r)-a.s. � = r , that r �→ N(· | � = r) is weakly continuous on C(R+,R+) and that (26) holds true. Recall
from (30) and (34) the short-hand notations

∀r, b, y ∈ (0,∞), N�
r = N(· | � = r), Nb = N

(· ∩ {� ≤ b}) and Py
b = Py

(· ∩ {� ≤ b}), (88)

where we recall from (16) the notation Py . Also recall from (23) that N�
r -a.s. there exists a unique τ ∈ [0, ζ ] such

that Hτ = �. Recall from (11) that M0,τ (H) gives the excursions coding the subtrees grafted on �ρ,p(τ)� listed
according to their distance of their grafting point from p(τ) (here p : [0, ζ ] → T stands for the canonical projection).
In the following lemma, we recall from Abraham & Delmas [3] the following Poisson decomposition of H under N�

r

at its maximum, which extends Williams’ decomposition that corresponds to the Brownian case.

Lemma 2.4 (Abraham & Delmas [3]). Let 
 be a branching mechanism of the form (13) that satisfies (14). We keep
the previous notation. Let r ∈ (0,∞). Then, under N�

r ,

M0,τ (da d
←−
H d

−→
H ) =

∑
a∈J0,τ

δ
(a,

←−
H a,

−→
H a)

(89)

is Poisson point process on [0, r] × C(R+,R+)2 whose intensity is

nr (da d
←−
H d

−→
H ) := β1[0,r](a) da

(
δ0(d

←−
H )Na(d

−→
H ) + Na(d

←−
H )δ0(d

−→
H )

)
+ 1[0,r](a) da

∫
(0,∞)

π(dz)

∫ z

0
dxPx

a(d
←−
H )Pz−x

a (d
−→
H ), (90)

where β and π are defined in (13) and where 0 stands for the null function.

We first discuss several consequences of Lemma 2.4. To that end, we set

νr,a(d
←−
H d

−→
H ) = βδ0(d

←−
H )Na(d

−→
H ) + βNa(d

←−
H )δ0(d

−→
H ) +

∫
(0,∞)

π(dz)

∫ z

0
dxPx

a(d
←−
H )Pz−x

a (d
−→
H ),
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so that nr (da d
←−
H d

−→
H ) = 1[0,r](a) daνr,a(d

←−
H d

−→
H ). Denote by 〈νr,a〉 the total mass of νr,a . We claim that 〈νr,a〉 = ∞.

Indeed, first recall that N is an infinite measure. Since N(� > a) < ∞ (by (24)), Na is also an infinite measure.
Thus, if β > 0, 〈νr,a〉 = ∞. Suppose now that β = 0. Then by (25), we get 〈νr,a〉 = ∫

(0,∞)
π(dz)ze−zv(a) = ∞, since∫

(0,∞)
zπ(dz) = ∞, by (18).

Therefore, standard results on Poisson point measures entail that N�
r -a.s. the closure of J0,τ is [0, r]. This point

combined with the fact that H is N�
r -a.s. continuous with compact support implies that N�

r -a.s. M0,τ ∈ Mpt(E),
where the set of point measures Mpt(E) is defined in Definition 2.2.

Recall from (78) the definition of Exc and recall from (17) and from (22) that Px and N are supported by Exc. We
easily derive from (26) that N�

r -a.s. H ∈ Exc.
Next recall that � : Exc → Exc, its the functional that reverses excursions at their lifetime: namely for all H ∈

Exc, we denote by �(H) = (H(ζH −t)+)t≥0. Then, Corollary 3.1.6 [14] asserts that H and �(H) have the same
distribution under N. This also implies that H and �(H) have the same law under Px and by (26) we easily see that
H and �(H) have the same law under N�

r .
We thus have proved the following.

H and �(H) have the same law under N�
r and N�

r -a.s. H ∈ Exc and M0,τ ∈ Mpt(E). (91)

Recall from (82) the definition of τ(H), from (83) that of τ−
x (H) and τ+

x (H), from (84) that of H�x and H⊕x , and
from (85) that of M−x

0,τ (H)(H) and M+x
0,τ (H)(H). To simplify notation we simply write τ , τ−

x , τ+
x , M−x

0,τ and M+x
0,τ .

We then prove the following lemma.

Lemma 2.5. We keep the same assumptions as in Lemma 2.4 and the notation therein. Let x ∈ (0, r). Then, the
following holds true.

(i) Under N�
r , M−x

0,τ and M+x
0,τ are independent Poisson point measures.

(ii) N�
r -a.s. x /∈ J0,τ .

(iii) M−x
0,τ under N�

r has the same law as M0,τ under N�
x . Thus the law of H�x under N�

r is N�
x .

Proof. Point (i) is a consequence of Lemma 2.4 and of basic results on Poisson point measures. Moreover, M−x
0,τ

under N�
r has intensity 1[0,x](a) daνr,a(d

←−
H d

−→
H ) which is equal to nx . This implies that M−x

0,τ under N�
r has the same

law as M0,τ under N�
x . By Lemma 2.2 and Lemma 2.3, it implies that

(
τ − τ−

x ,H�x
) = �

(
M−x

0,τ

)
under N�

r
law= (τ,H) = �(M0,τ ) under N�

x ,

which entails (iii). Since the intensity measure nr (da d
←−
H d

−→
H ) is diffuse in the variable a, standard results on Poisson

point measures entail (ii). �

Proof of Theorem 1.1(i). We keep the previous notation and we set

∀b ∈ (0,∞),∀←−
H ,

−→
H ∈ Exc, �

b,
←−
H ,

−→
H

= b + �(
←−
H ) ∨ �(

−→
H ). (92)

Recall from (24) and (25) that the distributions of � under N and under Px are diffuse. Thus, for all a ∈ (0,∞),
the distributions of � under Na and under Px

a are also diffuse. Recall the notation (89) for M0,τ . Then, Lemma 2.4
combined with Lemma 2.1 implies that N�

r -a.s. there exists a unique Y ∈ (0, r) ∩J0,τ such that

D = Y + �
(←−
H Y

) ∨ �
(−→
H Y

) = �
Y,

←−
H Y ,

−→
H Y > sup

a∈J0,τ \{Y }
�

a,
←−
H a,

−→
H a . (93)

Then either �(
←−
H Y ) < �(

−→
H Y ) or �(

←−
H Y ) > �(

−→
H Y ). Let us consider these two cases.

• If �(
←−
H Y ) < �(

−→
H Y ) then by (23) and (25) there exists a unique point t∗ such that

−→
H Y

t∗ = �(
−→
H Y ). This entails

Theorem 1.1(i) in this case under N�
r and we have τ0 = τ and

τ1 = τ + t∗ +
∑

a∈J0,τ ∩[0,Y )

ζ−→
H a .
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• If �(
←−
H Y ) > �(

−→
H Y ) then by (23) and (25) there exists a unique point t∗ such that

←−
H Y

t∗ = �(
←−
H Y ). This entails

Theorem 1.1(i) in this case under N�
r and we have τ1 = τ and

τ0 = t∗ +
∑

a∈J0,τ ∩(Y,r]
ζ←−
H a .

Theorem 1.1(i) is then proved under N�
r , for all r ∈ (0,∞), which implies Theorem 1.1(i) (under N) by (26). �

Proof Theorem 1.1(ii). Recall from (85) the notation M−x
0,τ and M+x

0,τ . We shall use the following lemma.

Lemma 2.6. We keep the same assumptions as in Lemma 2.4 and the notation therein. Recall from Definition 2.2 the
notation Mpt(E). Then, for all r ∈ (0,∞) and for all measurable functions G1,G2 : Mpt(E) → R+,

N�
r

[
1{τ=τ0}G1

(
M−(1/2)D

0,τ

)
G2

(
M+(1/2)D

0,τ

)] = N�
r

[
1{τ=τ0}N�

(1/2)D

[
G1(M0,τ )

]
G2

(
M+(1/2)D

0,τ

)]
,

with a similar statements where τ0 is replaced by τ1. Moreover, by (26) a similar statement holds true under N.

Before proving this lemma, we first complete the proof of Theorem 1.1. Recall from the notation (89) and from
(85) that

M0,τ =
∑

j∈J0,τ

δ
(a,

←−
H a,

−→
H a)

and M−(1/2)D

0,τ =
∑

j∈J0,τ ∩[0,(1/2)D]
δ
(a,

←−
H a,

−→
H a)

.

We next note the event { 1
2D ∈ J0,τ } is the event that M−(1/2)D

0,τ has an atom “at” 1
2D. By Lemma 2.6 with G2 ≡ 1 we

then get

N
(

1

2
D ∈ J0,τ

)
=

∫ ∞

0
N(D ∈ dr)N�

(1/2)r

(
1

2
r ∈ J0,τ

)
= 0

because for any b ∈ (0,∞), Lemma 2.4 asserts that under N�
b , M0,τ is a Poisson point measure with intensity nb ,

which implies that N�
b -a.s. b /∈ J0,τ . We next use Remark 2.3 with x = 1

2D that asserts that

τ−
mid := τ−

(1/2)D and τ+
mid := τ+

(1/2)D (94)

are the only times t ∈ [0, ζ ], such that d(p(τ1),p(t)) = 1
2D, which completes the proof of Theorem 1.1(ii). �

Proof Theorem 1.1(iii). Let r, y ∈ (0,∞) be such that 1
2y < r < y. We first work under N�

r . Recall from (89) the
notation for M0,τ and recall notation (92). Then (93) combined with Lemma 2.4 that asserts that under N�

r , M0,τ is
a Poisson point measure with intensity nr , we get

N�
r (D ≤ y) = N�

r

(
sup{�

a,
←−
H a,

−→
H a ;a ∈ J0,τ } ≤ y

) = exp

(
−

∫
nr (da d

←−
H d

−→
H )1{�

a,
←−
H a,

−→
H a >y}

)
, (95)

where nr is given by (90). Recall from (24) that N(� > t) = v(t) and from (25) that Px(� ≤ t) = e−xv(t). Thus,
∫

nr (da d
←−
H d

−→
H )1{�

a,
←−
H a,

−→
H a >y}

= 2β

∫ r

0
daN(y − a < � ≤ a)

+
∫ r

0
da

∫
(0,∞)

π(dz)

∫ z

0
dx

∫
Px

a(d
←−
H )

∫
Pz−x

a (d
−→
H )(1 − 1{�(

←−
H )≤y−a}1{�(

−→
H )≤y−a}).
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If a < 1
2y, then N(y − a < � ≤ a) = 0 and if a > 1

2y, then N(y − a < � ≤ a) = v(y − a) − v(a). Recall that the total
mass of Px

a is Px(� ≤ a) = exp(−xv(a)) and observe that Px
a(� ≤ y − a) = Px(� ≤ a ∧ (y − a)) = exp(−xv(a ∧

(y − a))). Thus
∫

Px
a(d

←−
H )

∫
Pz−x

a (d
−→
H )(1 − 1{�(

←−
H )≤y−a}1{�(

−→
H )≤y−a}) = e−zv(a) − e−zv(a∧(y−a)),

which is null if a < 1
2y. Note that this expression does not depend on x. Consequently,

∫
nr (da d

←−
H d

−→
H )1{�

a,
←−
H a,

−→
H a >y}

=
∫ r

(1/2)y

da2β
(
v(y − a) − v(a)

) +
∫ r

(1/2)y

da

∫
(0,∞)

π(dz)z
(
e−zv(a) − e−zv(y−a)

)

=
∫ r

(1/2)y

da
(

 ′(v(y − a)

) − 
 ′(v(a)
)) =

∫ (1/2)y

y−r

db
 ′(v(b)
) −

∫ r

(1/2)y

db
 ′(v(b)
)

by (13). Recall that v satisfies
∫ ∞
v(b)

dλ/
(λ) = b. The change of variable λ = v(b) entails

∫
nr (da d

←−
H d

−→
H )1{�

a,
←−
H a,

−→
H a >y} =

∫ v(y−r)

v((1/2)y)

dλ

 ′(λ)


(λ)
−

∫ v((1/2)y)

v(r)

dλ

 ′(λ)


(λ)

= log

(v(y − r))


(v((1/2)y))
− log


(v((1/2)y))


(v(r))
.

By (95), we get

∀r ∈ (0,∞),∀y ∈ (r,2r), N�
r (D ≤ y) = 
(v((1/2)y))2


(v(r))
(v(y − r))
. (96)

Now observe that N�
r (D > y) = 0, if y ≥ 2r and that N�

r (D ≥ y) = 1, if y ≤ r . Thus by (26),

N(D > y) =
∫ ∞

0
N(� ∈ dr)N�

r (D > y) = N(� > y) +
∫ y

(1/2)y

dr

(
v(r)

)(
1 − 
(v((1/2)y))2


(v(r))
(v(y − r))

)

= v

(
1

2
y

)
− 


(
v

(
1

2
y

))2 ∫ y

(1/2)y

dr


(v(y − r))
= v

(
1

2
y

)
− 


(
v

(
1

2
y

))2 ∫ ∞

v((1/2)y)

dλ


(λ)2
,

where we use the change of variable λ = v(y − r) in the last equality. This proves (27) that easily entails (28), which
completes the proof of Theorem 1.1(iii). �

Proof of Lemma 2.6. To complete the proof of Theorem 1.1, it remains to prove Lemma 2.6 that is also the key
argument to prove Theorem 1.2. We first work under N�

r . Recall the notation (89) for M0,τ and J0,τ and recall from
(85) the following definitions (with x = 1

2D),

M0,τ =
∑

j∈J0,τ

δ
(a,

←−
H a,

−→
H a)

, M−(1/2)D

0,τ =
∑

j∈J0,τ ∩[0,(1/2)D]
δ
(a,

←−
H a,

−→
H a)

and

M+(1/2)D

0,τ =
∑

j∈J0,τ ∩((1/2)D,r]
δ
(a,

←−
H a,

−→
H a)

.

Recall from (93) the definition of the random variable Y : since �(
←−
H Y ) ∨ �(

−→
H Y ) < Y , we get Y > 1

2D and
(Y,

←−
H Y ,

−→
H Y ) is an atom of M+(1/2)D

0,τ . This argument, combined with (93) and the Palm formula for Poisson point
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measures, implies

N�
r

[
1{τ=τ0}F

(
Y,

←−
H Y ,

−→
H Y

)
G1

(
M−(1/2)D

0,τ

)
G2

(
M+(1/2)D

0,τ

)]

=
∫

nr

(
dy dH ′ dH ′′)1{�(H ′′)>�(H ′)}F

(
y,H ′,H ′′)

× N�
r

[
G1

(
M−(1/2)�y,H ′,H ′′

0,τ

)
G2

(
M+(1/2)�y,H ′,H ′′

0,τ + δ(y,H ′,H ′′)
)
1{�y,H ′,H ′′>sup{�a,

←−
H a,

−→
H a ;a∈J0,τ }}

]
, (97)

where we recall that τ0 = τ iff �(
−→
H Y ) > �(

←−
H Y ). Then observe that nr ⊗ N�

r -a.e. for all a ∈ J0,τ ∩ [0, 1
2�y,H ′,H ′′ ],

we have �
a,

←−
H a,

−→
H a < 2a ≤ �y,H ′,H ′′ . Thus, nr ⊗ N�

r -a.e.

1{�y,H ′,H ′′>sup{�a,
←−
H a,

−→
H a ;a∈J0,τ }} = 1{�y,H ′,H ′′>sup{�a,

←−
H a,

−→
H a ;a∈J0,τ ∩((1/2)�y,H ′,H ′′ ,r]}}

that only depends on y,H ′,H ′′ and of M+(1/2)�y,H ′,H ′′
0,τ . By (97) with F ≡ 1 and by Lemma 2.5(i) and (iii) with

x = 1
2�y,H ′,H ′′ , we get

N�
r

[
1{τ=τ0}G1

(
M−(1/2)D

0,τ

)
G2

(
M+(1/2)D

0,τ

)]
=

∫
nr

(
dy dH ′ dH ′′)1{�(H ′′)>�(H ′)}N�

(1/2)�y,H ′,H ′′
[
G1(M0,τ )

]

× N�
r

[
G2

(
M+(1/2)�y,H ′,H ′′

0,τ + δ(y,H ′,H ′′)
)
1{�y,H ′,H ′′>sup{�

a,
←−
H a,

−→
H a ;a∈J0,τ }}

]
= N�

r

[
1{τ=τ0}N�

(1/2)D

[
G1(M0,τ )

]
G2

(
M+(1/2)D

0,τ

)]
,

which completes the proof of Lemma 2.6 when τ = τ0 under N�
r . When τ = τ1, the proof is quite similar. Then, (26)

immediately entails the same result under N. �

Proof of Theorem 1.2(iii). Recall from (84) the definition of H�x and H⊕x . Then, Lemma 2.6 under N and
Lemma 2.3 imply that for all measurable functions F1,F2 : C(R+,R+) → R+, f : R+ →R+,

N
[
1{τ=τ0}f (D)F1

(
H�(1/2)D

)
F2

(
H⊕(1/2)D

)] = N
[
1{τ=τ0}f (D)N�

(1/2)D

[
F1(H)

]
F2

(
H⊕(1/2)D

)]
. (98)

Here we can include f (D) in the previous equality because 1
2D is the total height of H�(1/2)D . We get a similar

statement with τ = τ1. To simplify notation, we next set

H� := H�(1/2)D and H⊕ := H⊕(1/2)D. (99)

By adding (98) with the analogous equality with τ = τ1, we get

N
[
f (D)F1

(
H�)

F2
(
H⊕)] = N

[
f (D)N�

(1/2)D

[
F1(H)

]
F2

(
H⊕)]

. (100)

Recall from (94) that τ−
mid = τ−

(1/2)D and τ+
mid = τ+

(1/2)D ; rewriting (84) with x = 1
2D yields

H� = H
[τ−

mid]
·∧(τ+

mid−τ−
mid)

, H⊕ = H
[τ+

mid]
·∧(ζ−(τ+

mid−τ−
mid))

and thus H [τ−
mid] = H� ⊕ H⊕, (101)

where we recall from (29) that H ′ ⊕ H ′′ stands for the concatenation of the functions H ′ and H ′′.
Let us briefly interpret H� and H⊕ in terms of the tree T . To that end, first recall that γ = p(τ), γ0 = p(τ0)

and γ1 = p(τ1), where p : [0, ζ ] → T stands for the canonical projection. Recall that γmid is the mid point of the
diameter �γ0, γ1 �: namely d(γ0, γmid) = d(γ1, γmid) = 1

2D. Recall from Theorem 1.1(ii) that τ−
mid and τ+

mid are the
only times t ∈ [0, ζ ] such that p(t) = γmid; thus, γmid is a simple point of T ; namely, T \ {γmid} has only two



562 T. Duquesne and M. Wang

connected components. Denote by T o the connected component containing γ : it does not contain the root; if we set
T − = {γmid} ∪ T o and T + = T \ T o, then H� codes (T −, d, γmid) and H⊕ codes (T +, d, γmid).

In the following lemma we recall Proposition 2.1 from Duquesne & Le Gall [16] that asserts that H is invariant
under uniform re-rooting. Recall from (8) the definition of H [t].

Lemma 2.7 (Duquesne & Le Gall [16]). For all measurable functions F : R+ × C(R+,R+) → R+ and g : R+ →
R+,

N
[
g(ζ )

∫ ζ

0
dtF

(
t,H [t])] = N

[
g(ζ )

∫ ζ

0
dtF (t,H)

]
.

By applying this property we first get

N
[
ζF1

(
H�)

F2
(
H⊕)] = N

[∫ ζ

0
dtF1

(
H�)

F2
(
H⊕)] = N

[∫ ζ

0
dtF1

((
H [t])�)

F2
((

H [t])⊕)]
. (102)

Next observe the following: if t ∈ (τ−
mid, τ

+
mid), then (H [t])� = H⊕ and (H [t])⊕ = H�, and if t ∈ (0, τ−

mid)∪ (τ+
mid, ζ ),

then (H [t])� = H� and (H [t])⊕ = H⊕. Thus,
∫ ζ

0
dtF1

((
H [t])�)

F2
((

H [t])⊕) = (
τ+

mid − τ−
mid

)
F1

(
H⊕)

F2
(
H�) + (

ζ − τ+
mid + τ−

mid

)
F1

(
H�)

F2
(
H⊕)

= ζH�F1
(
H⊕)

F2
(
H�) + ζH⊕F1

(
H�)

F2
(
H⊕)

.

This equality, (102) and (100) with f ≡ 1 imply the following:

N
[
ζF1

(
H�)

F2
(
H⊕)] = N

[
ζH�F1

(
H⊕)

F2
(
H�)] + N

[
ζH⊕F1

(
H�)

F2
(
H⊕)]

= N
[
N�

(1/2)D

[
ζF2(H)

]
F1

(
H⊕)] + N

[
N�

(1/2)D

[
F1(H)

]
ζH⊕F2

(
H⊕)]

. (103)

Next observe that ζH� + ζH⊕ = ζ . Thus, by (100) we also get

N
[
ζF1

(
H�)

F2
(
H⊕)] = N

[
ζH�F1

(
H�)

F2
(
H⊕)] + N

[
ζH⊕F1

(
H�)

F2
(
H⊕)]

= N
[
N�

(1/2)D

[
ζF1(H)

]
F2

(
H⊕)] + N

[
N�

(1/2)D

[
F1(H)

]
ζH⊕F2

(
H⊕)]

. (104)

Then by (103) and (104), we get N[N�
(1/2)D[ζF1(H)]F2(H

⊕)] = N[N�
(1/2)D[ζF2(H)]F1(H

⊕)]. Since the total height

of H� and H⊕ is 1
2D, for all measurable functions F1,F2 : C(R+,R+) →R+, f :R+ →R+, we get

N
[
f (D)N�

(1/2)D

[
ζF1(H)

]
F2

(
H⊕)] = N

[
f (D)N�

(1/2)D

[
ζF2(H)

]
F1

(
H⊕)]

. (105)

By taking in (105) F1 ≡ 1 and by substituting f (D) with f (D)/N�
(1/2)D[ζ ], we get

N
[
f (D)F2

(
H⊕)] = N

[
f (D)N�

(1/2)D

[
ζF2(H)

]
/N�

(1/2)D[ζ ]],
and by (100), it entails

N
[
f (D)F1

(
H�)

F2
(
H⊕)] = N

[
f (D)N�

(1/2)D

[
F1(H)

]
N�

(1/2)D

[
ζF2(H)

]
/N�

(1/2)D[ζ ]]. (106)

Recall from (101) that H [τ−
mid] = H� ⊕ H⊕. Then, (106) implies for all measurable functions F : C(R+,R+) → R+,

f : R+ →R+, that

N
[
f (D)F

(
H [τ−

mid])]
=

∫ ∞

0
N(D ∈ dr)

f (r)

N�
r/2[ζ ]

∫ ∫
C(R+,R+)2

N�
r/2(dH)N�

r/2

(
dH ′)ζH ′F

(
H ⊕ H ′), (107)
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which implies Theorem 1.2(iii) as soon as one makes sense of N(· | D = r). �

Proof of Theorem 1.2(ii). Recall that � : Exc → Exc is the functional that reverses excursions at their lifetime:
namely for all H ∈ Exc, �(H) = (H(ζH −t)+)t≥0. Recall from (91) that for all r ∈ (0,∞), H and �(H) have the
same law under N�

r , which entails the following by (106):

(
�

(
H�)

,�
(
H⊕))

and
(
H�,H⊕)

have the same distribution under N. (108)

Next, observe that D(�(H)) = D, τ(�(H)) = ζ − τ , τ0(�(H)) = ζ − τ1 and τ1(�(H)) = ζ − τ0. Moreover,
(�(H))� = �(H�) and (�(H))⊕ = �(H⊕). This combined with (108) and (106) implies that

1

2
N

[
f (D)F1

(
H�)

F2
(
H⊕)] = N

[
1{τ=τ0}f (D)F1

(
H�)

F2
(
H⊕)]

= N
[
1{τ=τ1}f (D)F1

(
H�)

F2
(
H⊕)]

. (109)

We then define

τ ∗ := τ−
mid if τ = τ0 and τ ∗ := τ+

mid if τ = τ1.

By (101), we get

H [τ∗] = H� ⊕ H⊕ on {τ = τ0} and H [τ∗] = H⊕ ⊕ H� on {τ = τ1}.
This, combined with (109) and (106) entails

N
[
f (D)F

(
H [τ∗])]

=
∫ ∞

0
N(D ∈ dr)

f (r)

2N�
r/2[ζ ]

∫ ∫
C(R+,R+)2

N�
r/2(dH)N�

r/2

(
dH ′)(ζH + ζH ′)F

(
H ⊕ H ′). (110)

Recall from (31) the definition of the law Qr . Since r �→ N�
r is weakly continuous, it is easy to check that r �→ Qr is

also weakly continuous. Then observe that Qr [ζ ] = 2N�
r/2[ζ ]. Therefore (110) can be rewritten as

N
[
f (D)F

(
H [τ∗])] =

∫ ∞

0
N(D ∈ dr)f (r)Qr

[
ζF (H)

]
/Qr [ζ ]. (111)

Next observe that for all t ∈ [0, ζ ], (H [τ∗])[t] = H [τ∗+t] and that D(H [t]) = D. Thus, (111) implies

∫ ∞

0
N(D ∈ dr)f (r)Qr

[
ζ

∫ ζ

0
dtF

(
H [t])]/

Qr [ζ ] = N
[
f (D)

∫ ζ

0
dtF

(
H [τ∗+t])]

= N
[∫ ζ

0
dtf

(
D

(
H [t]))F (

H [t])]

= N
[
ζf (D)F(H)

]
,

where we have used Lemma 2.7 in the last line. This proves (32) in Theorem 1.2(ii). �

Proof of Theorem 1.2(i) and (iv). The rest of the proof is now easy: we fix r ∈ (0,∞) and we denote by
�r(dH ′ dH ′′) the product law N�

r/2(dH ′)N�
r/2(dH ′′); we then set H = H ′ ⊕ H ′′. Thus, by definition, H under �r

has law Qr . Observe that if t �= τ(H ′) (resp. t �= τ(H ′′)) then H ′
t < r/2 (resp. H ′′

t < r/2). Note that if s ∈ [0, ζH ′ ] and
t ∈ [ζH ′ , ζH ′ + ζH ′′ ], then inf[s,t] H = 0 and dH (s, t) = H ′

s + H ′′
t−ζH ′ . This easily entails that �r -a.s. D(H) = r and

that τ(H ′) and ζH ′ + τ(H ′′) are the two only times s < t such that dH (s, t) = D(H), which completes the proof of
Theorem 1.2(i).
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The fact that Qr -a.s. D = r , combined with (32) and with the fact that r �→ Qr is weakly continuous, allows
to make sense of N(· | D = r) that is a regular version of the conditional distribution of N knowing that D = r .
Moreover, (32) entails (36) for all r ∈ (0,∞). Furthermore (107) entails (33) that was the last point to clear in the
Theorem 1.2(iii), as already mentioned.

It remains to prove Theorem 1.2(iv). We keep the previous notations and we introduce the following:

M0,τ (H ′)
(
H ′) =

∑
a∈J0,τ ′

δ
(a,

←−
H a,

−→
H a)

and M0,τ (H ′′)
(
H ′′) =

∑
a∈J0,τ ′′

δ
(a,

←−
H a,

−→
H a)

,

that are under �r independent Poisson point measures with the same intensity nr/2, by Lemma 2.4. We then set
τ0(H) := τ(H ′) and τ1(H) := ζH ′ + τ(H ′′), that are the only pair of times realizing the diameter D(H) under �r , as
already shown. Observe that under �r ,

Mτ0(H),τ1(H)(H) =
∑

a∈J0,τ ′
δ
(r−a,�(

−→
H a),�(

←−
H a))

+M0,τ (H ′′)
(
H ′′),

where we recall here that � reverses excursions at their lifetime and that � is invariant under Na and Px
a . Thus, basic

results on Poisson point measures and an easy calculation show that Mτ0(H),τ1(H)(H) is a Poisson point measure
whose intensity is given by (35) in Theorem 1.2(iv), which completes the proof of Theorem 1.2(iv) because H under
�r has law Qr and thus Mτ0(H),τ1(H)(H) under �r has the same law as Mτ0,τ1 under Qr . This completes the proof
of Theorem 1.2. �

3. Total height and diameter of normalized stable trees

3.1. Preliminary results

In this section, we gather general results that are used to prove Proposition 1.3. Unless the contrary is explicitly
mentioned, 
 is a general branching mechanism of the form (13) that satisfies (14). We first introduce the following
function

∀a,λ ∈ (0,∞), wλ(a) := N
[
1 − 1{�≤a}e−λζ

]
. (112)

For all fixed λ ∈ (0,∞), note that a �→ wλ(a) is non-increasing, that lima→0 wλ(a) = ∞ and by (21) lima→∞ wλ(a) =
N[1−e−λζ ] = 
−1(λ). As proved by Le Gall [27], Section II.3 (in the more general context of superprocesses) wλ(a)

is the only solution of the following integral equation,

∀a,λ ∈ (0,∞),

∫ ∞

wλ(a)

du


(u) − λ
= a, (113)

that makes sense thanks to (14).
Let us next consider H under P and recall from (16) that Px stands for the law of H·∧Tx where Tx = inf{t ∈ R+ :

Xt = −x}. Recall from (19) that
∑

i∈I δ(−Iai
,H i) stands for the decomposition of H into excursions above 0; thus, the

excursions of H·∧Tx above 0 are the Hi where i ∈ I is such that −Iai
∈ [0, x]. Elementary results on Poisson point

processes then imply the following:

Ex
a

[
e−λζ

] = Ex
[
e−λζ 1{�≤a}

] = E

[
exp

(
−

∑
i∈I

λζHi 1[0,x](−Iai
)

)
1{�(Hi)≤a,i∈I:−Iai

≤x}
]

= exp
(−xwλ(a)

)
. (114)

We first prove the following lemma.



Decomposition of Lévy trees along their diameter 565

Lemma 3.1. Let 
 be a branching mechanism of the form (13) that satisfies (14). Recall from (112) the definition of
wλ(a). First observe that for all a,λ ∈ (0,∞),

∂awλ(a) = λ − 

(
wλ(a)

)
and

∫ ∞

wλ(a)

du

(
(u) − λ)2
= ∂λwλ(a)


(wλ(a)) − λ
. (115)

Recall from (24) the definition of the function v. Then, for all a,λ ∈ (0,∞),

lim
λ→0+wλ(a) = v(a) and v(a) ≤ wλ(a) = v(a) + Na

[
1 − e−λζ

] ≤ v(a) + 
−1(λ), (116)

where we recall from (34) the notation Na . Then, for all r1 ≥ r0 > 0, we get∫ r1

r0

da
 ′(wλ(a)
) = log


(wλ(r0)) − λ


(wλ(r1)) − λ
and

∫ r1

r0

da
 ′(v(a)
) = log


(v(r0))


(v(r1))
. (117)

Proof. Note that (115) and (116) are easy consequences of resp. (113) and the definition (112). Let us first prove
the first equality of (117): to that end we use the change of variable u = wλ(a), λ being fixed. Then, by (115),
−du/(
(u) − λ) = da, and we get

∫ r1

r0

da
 ′(wλ(a)
) =

∫ wλ(r0)

wλ(r1)

du

 ′(u)


(u) − λ
= log


(wλ(r0)) − λ


(wλ(r1)) − λ
,

which implies the second equality in (117) as λ → 0 by (116). �

Proposition 3.2. Let 
 be a branching mechanism of the form (13) that satisfies (14). Let r ∈ (0,∞). Recall from
(30) the definition of N�

r and recall from (112) the definition of wλ(a). Then for all λ ∈ (0,∞), we first get

N�
r

[
e−λζ

] = exp

(
−

∫ r

0
da

(

 ′(wλ(a)

) − 
 ′(v(a)
))) = 
(wλ(r)) − λ


(v(r))
. (118)

We next set qλ(y, r) := N�
r [e−λζ 1{D>2y}]. Then for all y ∈ ( 1

2 r, r), we have

qλ(y, r) = 
(wλ(r)) − λ


(v(r))

(
1 − (
(wλ(y)) − λ)2

(
(wλ(2y − r)) − λ)(
(wλ(r)) − λ)

)
. (119)

If y ≤ 1
2 r , then qλ(y, r) = N�

r [e−λζ ] and if y > r , then qλ(y, r) = 0.

Proof. Recall from (89) the notation M0,τ and recall from (92) the notation �
b,

←−
H ,

−→
H

. Then, for all r, y,λ ∈ (0,∞),

we get N�
r -a.s.

e−λζ 1{D≤2y} = exp

(
−λ

∑
a∈J0,τ

(ζ←−
H a + ζ−→

H a )

)
1{∀a∈J0,τ :�a,

←−
H a,

−→
H a ≤2y}.

Lemma 2.4 asserts that under N�
r , M0,τ is a Poisson point measure with intensity nr given by (90). Thus, elementary

results on Poisson point measures imply that

N�
r

[
e−λζ 1{D≤2y}

] = exp

(
−

∫
nr (da d

←−
H d

−→
H )

(
1 − 1{�a,

←−
H ,

−→
H ≤2y}e−λζ←−

H −λζ−→
H

)
︸ ︷︷ ︸

K

)
.

Recall that the total mass of Px
a is e−xv(a) and recall (114). Thus,

K =
∫ r

0
da2βNa

[
1 − 1{�≤2y−a}e−λζ

] +
∫ r

0
da

∫
(0,∞)

π(dz)z
(
e−zv(a) − e−zwλ(a∧(2y−a))

)
.
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Now observe that

Na

[
1 − 1{�≤2y−a}e−λζ

] = N
[
1 − 1{�≤a∧(2y−a)}e−λζ

] − N[1{�>a}] = wλ

(
a ∧ (2y − a)

) − v(a).

Consequently,

N�
r

[
e−λζ 1{D≤2y}

] = exp

(
−

∫ r

0
da

(

 ′(wλ

(
a ∧ (2y − a)

)) − 
 ′(v(a)
)))

. (120)

Then observe that if y > r , the N�
r [e−λζ 1{D≤2y}] = N�

r [e−λζ ] because D ≤ 2�. This combined with (120) entails the
first equality of (118). Then, use (117) in Lemma 3.1 to get for any ε ∈ (0, r),∫ r

ε

da
(

 ′(wλ(a)

) − 
 ′(v(a)
)) = log


(v(r))


(wλ(r)) − λ
− log


(v(ε))


(wλ(ε)) − λ
.

This show that ε �→ 
(v(ε))/(
(wλ(ε)) − λ) is increasing and tends to a finite constant Cλ ∈ (0,∞) as ε → 0.
Then, C−1

λ 
(v(r))N�
r [e−λζ ] = 
(wλ(r)) − λ, which is equal to −∂rwλ(r) by (115) in Lemma 3.1. Then recall from

(24) that N(� ∈ dr) = 
(v(r)) dr ; thus by (26) and the fact that wλ(r) tends to 
−1(λ) as r → ∞, we get for all
b ∈ (0,∞),

wλ(b) − 
−1(λ) =
∫ ∞

b

drC−1
λ 


(
v(r)

)
N�

r

[
e−λζ

] = C−1
λ N

[
e−λζ 1{�>b}

]

= C−1
λ

(
N

[
1 − 1{�≤b}e−λζ

] − N
[
1 − e−λζ

]) = C−1
λ

(
wλ(b) − 
−1(λ)

)
.

This implies that Cλ = 1, which completes the proof of (118).
We next assume that y ∈ ( 1

2 r, r). Observe that a ∧ (2y − a) = a if a ∈ (0, y) and that a ∧ (2y − a) = 2y − a if
a ∈ (y, r). By (120) and (118), we then get

qλ(y, r) = N�
r

[
e−λζ

] − N�
r

[
e−λζ 1{D≤2y}

] = 
(wλ(r)) − λ


(v(r))

(
1 − e

− ∫ r
y da(
 ′(wλ(2y−a))−
 ′(wλ(a))))

,

which easily implies (119) by (117) in Lemma 3.1 since∫ r

y

da
 ′(wλ(2y − a)
) =

∫ y

2y−r

da
 ′(wλ(a)
) = log


(wλ(2y − r)) − λ


(wλ(y)) − λ
and

∫ r

y

da
 ′(wλ(a)
) = log


(wλ(y)) − λ


(wλ(r)) − λ
.

The other statements of the lemma follow immediately. �

Proposition 3.3. Let 
 be a branching mechanism of the form (13) that satisfies (14). For all y, z,λ ∈ (0,∞), we
have

Lλ(y, z) := N
[
e−λζ 1{D>2y;�>z}

]
= wλ(y ∨ z) − 
−1(λ) − 1{z≤2y}

(



(
wλ(y)

) − λ
)2

∫ ∞

wλ(y∧(2y−z))

du

(
(u) − λ)2

= wλ(y ∨ z) − 
−1(λ) − 1{z≤2y}
(



(
wλ(y)

) − λ
)2 ∂λwλ(y ∧ (2y − z))


(wλ(y ∧ (2y − z))) − λ
. (121)

Proof. Recall notation qλ(y, r) from Proposition 3.2, which asserts that qλ(y, r) = 0 if r < y and that 
(v(r)) ×
qλ(y, r) = −∂rwλ(r), if r ≥ 2y. Then, by (26), we get

Lλ(y, z) =
∫ ∞

z

dr

(
v(r)

)
qλ(y, r) = 1{z≤2y}

∫ 2y

z∨y

dr

(
v(r)

)
qλ(y, r) −

∫ ∞

z∨2y

dr∂rwλ(r). (122)
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Since limr→∞ wλ(r) = 
−1(λ), we get

−
∫ ∞

z∨2y

dr∂rwλ(r) = wλ(z ∨ 2y) − 
−1(λ). (123)

We next assume that z ∈ (y,2y). By (119) and since 
(wλ(r)) − λ = −∂rwλ(r), we get

∫ 2y

z

dr

(
v(r)

)
qλ(y, r) = −

∫ 2y

z

dr∂rwλ(r) − (



(
wλ(y)

) − λ
)2

∫ 2y

z

dr


(wλ(2y − r)) − λ

= wλ(z) − wλ(2y) − (



(
wλ(y)

) − λ
)2

∫ 2y−z

0

dr


(wλ(r)) − λ

= wλ(z) − wλ(2y) − (



(
wλ(y)

) − λ
)2

∫ ∞

wλ(2y−z)

du

(
(u) − λ)2
,

with the change of variable u = wλ(r) in the last line. This combined with (123) easily entails the first equality in
(121). The second one follows from (115) in Lemma 3.1. �

3.2. Proof of Proposition 1.3

In this section, we fix γ ∈ (1,2] and we take 
(λ) = λγ , λ ∈ R+. Recall from (112) the definition of wλ(a). We then
set

∀y ∈ (0,∞), w(y) := w1(y). (124)

Note that w satisfies (45) that is (113) with λ = 1. By an easy change of variable (113) implies that

∀a,λ ∈ (0,∞), wλ(a) = λ1/γ w
(
aλ(γ−1)/γ

)
. (125)

Recall from Proposition 3.3 the definition of Lλ(y, z). Then observe that the scaling property (44) entails (46). More-
over (47) follows from a simple change of variable. Next note from (125) that

∂λwλ(a) = 1

γ
λ1/γ−1w

(
aλ(γ−1)/γ

) + γ − 1

γ
aw′(aλ(γ−1)/γ

)
.

This, combined with the fact that −w′(y) = −∂yw1(y) = w(y)γ − 1, implies

∂λwλ(y)|λ=1

w(y)γ − 1
= 1

γ

w(y)

w(y)γ − 1
− γ − 1

γ
y,

which implies (48) thanks to the second equality in (121) in Proposition 3.3. This completes the proof of Proposi-
tion 1.3.

3.3. Explicit computation of Nnr[�] and Nnr[D]

We can deduce from Proposition 1.3 explicit expressions for the first moment of � and D under Nnr.

Proposition 3.4. We fix γ ∈ (1,2] and to simplify notation we set δ = 1 − 1
γ

. Then we get:

Nnr[�] = 2−1+2/γ
√

π

�e(3/2 − 1/γ )

∫ 1

0
dvv−1/γ (1 − v1/γ )(1 − v(γ−1)/γ )

(1 − v)2
(126)

=
√

π2−2δ

�e(1/2 + δ)

(
1

δ
− 2δ

1 + δ
+ 2δ(1 − δ)

∑
n≥1

2n + 1 + 2δ

(n + δ)(n + 1 + δ)(n + 2δ)

)
. (127)
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Proof. The scaling property (44) entails that for any λ ∈ (0,∞),

N
[
ζe−λζ �

] = cγ

∫ ∞

0
drr−1−1/γ re−λrr(γ−1)/γ Nnr[�] = λ−2+2/γ cγ �e

(
2 − 2

γ

)
Nnr[�]. (128)

Recall from Proposition 3.3 that Lλ(0, z) = N[e−λζ 1{�>z}]. Thus,

N
[
ζe−λζ �

] =
∫ ∞

0
dzN

[
ζe−λζ 1{�>z}

] =
∫ ∞

0
dz

(−∂λLλ(0, z)
)
. (129)

Recall from (45) the definition of the function w. By (47) and (49) in Proposition 1.3, we get

−∂λLλ(0, z) = 1

γ
λ1/γ−1(1 − w

(
zλ(γ−1)/γ

)) − γ − 1

γ
zw′(zλ(γ−1)/γ

)
.

Recall that 1/(γ cγ ) = �e(1 − 1/γ ). The previous equality, combined with (129) and (128) with λ = 1, implies

Nnr[�] = �e(1 − 1/γ )

�e(2 − 2/γ )

∫ ∞

0
dz

(
1 − w(z) − (γ − 1)zw′(z)

)

= 2−1+2/γ
√

π

�e(3/2 − 1/γ )

∫ ∞

0
dz

(
1 − w(z) − (γ − 1)zw′(z)

)
, (130)

by the duplication formula for the gamma function: �e(1 − 1
γ
)/�e(2 − 2

γ
) = 2−1+2/γ

√
π/�e(

3
2 − 1

γ
). Recall that w

satisfies the integral equation (45). By the change of variable y := w(z), we easily get∫ ∞

0
dz

(
1 − w(z) − (γ − 1)zw′(z)

) =
∫ ∞

1
dy

(
1 − y

yγ − 1
+ (γ − 1)

∫ ∞

y

du

uγ − 1

)
. (131)

Note that (1 − y)/(yγ − 1) = ∫ ∞
y

du((1 − γ )uγ − 1 + γ uγ−1)/(uγ − 1)2. Then, (131) equals

∫ ∞

1
dy

∫ ∞

y

du

(
(1 − γ )uγ − 1 + γ uγ−1

(uγ − 1)2
+ γ − 1

uγ − 1

)
= γ

∫ ∞

1
dy

∫ ∞

y

du
uγ−1 − 1

(uγ − 1)2

= γ

∫ ∞

1
du

(u − 1)(uγ−1 − 1)

(uγ − 1)2

=
∫ 1

0
dvv−1/γ (1 − v1/γ )(1 − v(γ−1)/γ )

(1 − v)2
,

where we have used Fubini in the second equality and the change of variable v = u−γ in the last one. By (131) and
(130), we get (126). We then use the expansion (1 − v)−2 = ∑

n≥0(n + 1)vn in (126) to get (127) by straightforward
computations. �

We also get an explicit formula for Nnr[D] in terms of δ := 1 − 1
γ

. The method is the same as in Proposition 3.4
but computations are much longer; we skip the proof and we just state the result.

Proposition 3.5. We fix γ ∈ (1,2] and to simplify notation we set δ = 1 − 1
γ

. Recall from (45) the definition of the
function w. Then,

Nnr[D] = 22/γ
√

π

�e(3/2 − 1/γ )

∫ ∞

1
dxW(x) =

√
π2−2δ

�e(1/2 + δ)

(
2

δ
− 3 + δ

(
A1(δ) + A2(δ) + A3(δ)

))
, (132)

where for all x ∈ (0,∞),

W(x) := 2(γ − 1)2xγ−1(xγ − 1
)(∫ ∞

x

du

uγ − 1

)2

− (γ − 1)(2γ + 1)

γ

(
xγ − 1

)∫ ∞

x

du

uγ − 1
− x − 1

xγ − 1
+ 1

γ
x,
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where

A1(δ) = 4(1 − δ)

(1 + δ)2
+ 3

2 + δ
,

A2(δ) =
∑

m,n≥0,

m+n≥3

8(1 − δ)δ

(m + n − 2 + 2δ)(m + δ)(n + δ)
−

∑
m,n≥0,

m+n≥2

8(1 − δ)δ

(m + n − 1 + 2δ)(m + δ)(n + δ)
and

A3(δ) =
∑
n≥2

4(1 − δ)

(n − 1 + 2δ)(n − 1 + δ)
−

∑
n≥3

4(1 − δ)(3 − δ)

(n + δ)(n − 1 + 2δ)(n − 2 + 2δ)
.

Note that A1(δ) + A2(δ) + A3(δ) =O(1) as δ → 0 (namely as γ → 1).

In the special case γ = 2, (126) implies Nnr[�] = √
π and (132) implies Nnr[D] = 4

3

√
π , that are known results

which can be found in Szekeres [34] or Aldous [6]. As γ → 1+ (namely as δ → 0+), we use (127), (132) and the
well-known Taylor expansion of the gamma function:

�e

(
1

2
+ δ

)
= √

π − δ
√

π(2 log 2 + γe) +O
(
δ2),

where γe stands for the Euler–Mascheroni constant, to get (50) in Remark 1.6.

4. Proofs of Theorems 1.5 and 1.7

4.1. Preliminary results

In this section we prove several estimates that are used in the proofs of Theorems 1.5 and 1.7. We fix γ ∈ (1,2] and
we take 
(λ) = λγ , λ ∈ R+.

Laplace transform
We next introduce the following notation for the Laplace transform of Lebesgue integrable functions: for all measur-
able functions f :R+ → R such that there exists λ0 ∈R+ satisfying

∫ ∞

0
dxe−λ0x

∣∣f (x)
∣∣ < ∞, we set Lλ(f ) :=

∫ ∞

0
dxe−λxf (x), λ ∈ [λ0,∞),

which is well defined. We shall need the following lemma.

Lemma 4.1. Let f,gn,hn : R+ → R+, n ∈ N, be continuous and nonnegative functions. We set fn := gn − hn. Let
(qn)n≥0 be a real valued sequence. We make the following assumptions.

∃λ0 ∈R+ :
∫ ∞

0
dxe−λ0xf (x) < ∞ and

∑
n≥0

|qn|
∫ ∞

0
dxe−λ0x

(
gn(x) + hn(x)

)
< ∞. (a)

This makes sense of the sum
∑

n≥0 qnLλ(fn) for all λ ∈ [λ0,∞) and we assume that

∀λ ∈ [λ0,∞), Lλ(f ) =
∑
n≥0

qnLλ(fn). (b)

We furthermore assume

∀x ∈R+,
∑
n≥0

|qn|
(

sup
y∈[0,x]

gn(y) + sup
y∈[0,x]

hn(y)
)

< ∞. (c)
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Then,

∀x ∈ R+, f (x) =
∑
n≥0

qnfn(x),

where the sum in the right member makes sense thanks to (c).

Proof. We denote by (·)+ and (·)− resp. the positive and negative part functions. Assumption (c) ensures that the
following functions are well defined for all x ∈ R+, continuous on R+ and nonnegative:

G := f +
∑
n≥0

(
(qn)

−gn + (qn)
+hn

)
and H :=

∑
n≥0

(
(qn)

+gn + (qn)
−hn

)
.

Since the functions are nonnegative, for all λ ∈ [λ0,∞), we get

Lλ(G) = Lλ(f ) +
∑
n≥0

(
(qn)

−Lλ(gn) + (qn)
+Lλ(hn)

)
and Lλ(H) =

∑
n≥0

(
(qn)

+Lλ(gn) + (qn)
−Lλ(hn)

)
.

By Assumption (a), Lλ(G) and Lλ(H) are finite quantities for all λ ≥ λ0. Assumption (b) then entails that Lλ(G) =
Lλ(H), for all for all λ ≥ λ0: this implies that the Laplace transform of the finite Borel measures e−λ0xG(x)dx and
e−λ0xH(x)dx are equal. Consequently, these measures are equal. Thus G = H Lebesgue-almost everywhere. Since
G and H are continuous, G = H everywhere, which implies the desired result. �

Estimates for stable distributions
Let (�,F,P) be an auxiliary space. Let S : � →R+ be a spectrally positive γ−1

γ
-stable random variable such that

∀λ ∈ R+, E
[
e−λS

] =
∫ ∞

0
dxsγ (x) exp(−λx) = exp

(−γ λ(γ−1)/γ
)
, (133)

where we recall from (53) that sγ : R+ → R+ is the continuous version of the density of the γ−1
γ

-stable distribution.
We recall here from Ibragimov & Chernin [25] (see also Chambers, Mallows & Stuck [9] formula (2.1), p. 341 or
Zolotarev [38]) the following representation of such a γ−1

γ
-stable law: to that end, we first set

∀v ∈ (−π,π), mγ (v) =
(

γ sin(((γ − 1)/γ )v)

sinv

)γ−1
γ sin((1/γ )v)

sinv
. (134)

Let V,W be two independent random variables defined on (�,F,P) such that V is uniformly distributed on [0,π]
and such that W is exponentially distributed with mean 1. Then,

S
(law)=

(
mγ (V )

W

)1/(γ−1)

,

which easily implies that

∀x ∈ (0,∞), sγ (x) = γ − 1

π
x−γ

∫ π

0
dvmγ (v) exp

(−x−(γ−1)mγ (v)
)
. (135)

Observe that mγ (−v) = mγ (v) and mγ (0) = (γ − 1)γ−1. Moreover, the function mγ is increasing on [0,π) and

mγ (v)/mγ (0) = 1 + γ−1
2γ

v2 +Oγ (v4).
As proved in Theorem 2.5.2 in Zolotarev [38], an extension of Laplace’s method (proved in Zolotarev [38],

Lemma 2.5.1, p. 95) yields the asymptotic expansion (54) that can be rewritten as follows: recall from (54) the



Decomposition of Lévy trees along their diameter 571

definition of the sequence (Sn)n≥1; then set

∀x ∈ (0,∞) b(x) =
(

γ − 1

x

)γ−1

and

(136)

S∗
n :=

(
2π

(
1 − 1

γ

))−1/2

(γ − 1)(γ+1)/2−n(γ−1)Sn, n ≥ 0,

where recall that S0 = 1. Then, for all positive integers N , as x → 0, we have

sγ (x) =
∑

0≤n<N

S∗
nxn(γ−1)−(γ+1)/2e−b(x) +ON,γ

(
xN(γ−1)−(γ+1)/2e−b(x)

)
. (137)

For all a ∈ R, we next set

∀x ∈R+ Ja(x) :=
∫ x

0
dyyae−b(y). (138)

An integration by parts entails

∀a ∈ R \ {−γ },∀x ∈R+, Ja(x) = (γ − 1)−γ xa+γ e−b(x) − (γ − 1)−γ (a + γ )Ja+γ−1(x), (139)

which proves that Ja(x) =Oγ (xa+γ e−b(x)) as x → 0. This also entails the following lemma.

Lemma 4.2. Let γ ∈ (1,2]. Let a ∈ R. We assume that −(a + 1)/(γ − 1) is not a positive integer. Recall from (136)
the definition of the function b and from (138) the definition of the function Ja . Then, we set

∀q ∈ N \ {0}, cq(a, γ ) := (−1)q(γ − 1)−(q+1)γ
∏

1≤k≤q

(
a + 1 + k(γ − 1)

)
, (140)

with the convention that c0(a, γ ) = (γ − 1)−γ . Then, for all positive integers p,

Ja(x) =
∑

0≤q<p

cq(a, γ )xa+γ+q(γ−1)e−b(x) + (γ − 1)γ cp(a, γ )Ja+p(γ−1)(x). (141)

This implies that for all positive integers p, as x → 0,

x−a−γ eb(x)Ja(x) =
∑

0≤q<p

cq(a, γ )xq(γ−1) +Op,a,γ

(
xp(γ−1)

)
, (142)

where Op,a,γ depends on p,a and γ .

Proof. Equation (141) follows from (139), by induction. Since Ja+p(γ−1)(x) = Oγ (xa+p(γ−1)+γ e−b(x)), (142) is an
immediate consequence of (141). �

We next prove the following lemma.

Lemma 4.3. Let γ ∈ (1,2]. Recall from (53) (or from (133)) the definition of the density sγ . Recall from (134) the
definition of mγ . We set for all x ∈ R+,

σ+(x) := (γ − 1)2

π
x−2γ

∫ π

0
dvmγ (v)2e−x−(γ−1)mγ (v) and

(143)

σ−(x) := γ x−1sγ (x) = γ (γ − 1)

π
x−γ−1

∫ π

0
dvmγ (v)e−x−(γ−1)mγ (v).

Then, the following holds true.
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(i) σ+ and σ− are well defined on R+, the function sγ is differentiable on R+ and s′
γ = σ+ − σ−. Moreover, σ+

and σ− are continuous, nonnegative, Lebesgue integrable and for all λ ∈ R+,

Lλ

(
σ+) = λe−γ λ(γ−1)/γ + γ

∫ ∞

λ

dμe−γμ(γ−1)/γ

and Lλ

(
σ−) = γ

∫ ∞

λ

dμe−γμ(γ−1)/γ

, (144)

which implies

∫ ∞

0
dx

∣∣s′
γ (x)

∣∣ < ∞ and Lλ

(
s′
γ

) = λe−γ λ(γ−1)/γ

, λ ∈ R+. (145)

(ii) There exist A,x0 ∈ (0,∞) such that

∀x ∈ [0, x0], σ+(x) and σ−(x) ≤ Ax−(3γ+1)/2e−b(x), (146)

where we recall from (136) that b(x) = ((γ − 1)/x)γ−1.
(iii) We define the real valued sequence (T ∗

n )n≥0 by

T ∗
0 := (γ − 1)γ S∗

0 and ∀n ≥ 1, T ∗
n := (γ − 1)γ S∗

n +
(

n(γ − 1) − 3γ − 1

2

)
S∗

n−1. (147)

Then, for all positive integer N , as x → 0, we have

s′
γ (x) =

∑
0≤n<N

T ∗
n xn(γ−1)−(3γ+1)/2e−b(x) +ON,γ

(
xN(γ−1)−(3γ+1)/2e−b(x)

)
. (148)

Proof. We easily deduce from (135), that sγ is differentiable on R+ and that s′
γ = σ+ − σ−. Using Fubini–Tonelli

and the change of variable y = x−(γ−1)mγ (v), for fixed v, we get

∫ ∞

0
dxσ+(x) =

∫ ∞

0
dxσ−(x) = γ

π
�e

(
γ

γ − 1

)∫ π

0
dvmγ (v)−1/(γ−1) < ∞,

since mγ (v) ≥ mγ (0) > 0 on [0,π) and limv→π mγ (v) = ∞; here, �e stands for Euler’s gamma function. Thus,∫ ∞
0 dx|s′

γ (x)| < ∞ and λ ∈R+ �→ Lλ(s
′
γ ) is well defined. Moreover, by Fubini,

Lλ

(
s′
γ

) =
∫ ∞

0
dxs′

γ (x)

∫ ∞

x

dyλe−λy = λ

∫ ∞

0
dye−λy

∫ y

0
dxs′

γ (x) = λLλ(sγ ),

which completes the proof of (145). Next, by Fubini–Tonelli, we get

∫ ∞

0
dxe−λxx−1sγ (x) =

∫ ∞

0
dxsγ (x)

∫ ∞

λ

dμe−μx =
∫ ∞

λ

dμe−γμ(γ−1)/γ

, (149)

which implies that Lλ(σ
−) = γ

∫ ∞
λ

dμe−γμ(γ−1)/γ
, since σ−(x) = γ x−1sγ (x). This, combined with (145) entails

(144), which completes the proof of (i).
Laplace’s method easily implies that there exists c+, c− ∈ (0,∞) such that

σ+(x) ∼
x→0

c+x−(3γ+1)/2e−b(x) and σ−(x) ∼
x→0

c−x−(γ+3)/2e−b(x),

which easily entails (146) and which completes the proof of (ii).
More generally, the asymptotic expansion (54) of sγ is derived from (135) by an extension of Laplace’s method

proved in Zolotarev [38], Lemma 2.5.1, p. 97. When this method is applied to σ+ and σ−, one shows that σ+ and σ−
have an asymptotic expansion whose general term is xn(γ−1)−(3γ+1)/2e−b(x). Thus, there exists a sequence (T ∗

n )n≥0
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such that (148) holds true. It remains to prove (147). To that end, for any n ∈ N, we set an := n(γ − 1) − 3γ+1
2 . By

Lemma 4.2 we then get

sγ (x) =
∑

0≤n<N

T ∗
n Jan(x) +ON,γ

(
JaN

(x)
)

=
∑

0≤n<N

∑
0≤q<N−n

T ∗
n cq(an, γ )xan+γ+q(γ−1)e−b(x) +ON,γ

(
xaN+γ e−b(x)

)

=
∑

0≤n≤p<N

T ∗
n cp−n(an, γ )xp(γ−1)−(γ+1)/2e−b(x) +ON,γ

(
xN(γ−1)−(γ+1)/2e−b(x)

)
,

which implies that S∗
p = ∑

0≤n≤p T ∗
n cp−n(an, γ ), for all p ∈ N. Then by (140), observe that

S∗
p = c0(ap, γ )T ∗

p +
∑

0≤n≤p−1

T ∗
n cp−n(an, γ )

= (γ − 1)−γ T ∗
p − (γ − 1)−γ

(
p(γ − 1) − 3γ − 1

2

) ∑
0≤n≤p−1

T ∗
n cp−1−n(an, γ ),

which implies (147). This completes the proof of the lemma. �

Proof of Proposition 1.6. Lemma 4.3 easily entails Proposition 1.6: indeed (145) entails (64). We then set

∀n ∈ N, Tn := (γ − 1)n(γ−1)T ∗
n /T ∗

0 ,

and we easily check that (147) entails (65) and that (148) implies (66). �

We next introduce another function used in the asymptotic expansion of the height and the diameter of normalized
stable tree.

Lemma 4.4. Let γ ∈ (1,2]. Recall from (53) (or from (133)) the definition of sγ . We then introduce the following
functions: for all x ∈R+,

h+(x) = (γ − 1)x−1sγ (x), h−(x) = γ − 1

γ
x−1−1/γ

∫ x

0
dyy1/γ−1sγ (y) and

(150)
θ(x) = h+(x) − h−(x).

Then, the following holds true.

(i) h+, h− and θ are well defined and continuous, h+ and h− are nonnegative and Lebesgue integrable, and for all
λ ∈ R+, we have

Lλ

(
h+) = (γ − 1)

∫ ∞

λ

dμe−γμ(γ−1)/γ

and Lλ

(
h−) = Lλ

(
h+) − λ1/γ e−γ λ(γ−1)/γ

, (151)

which implies∫ ∞

0
dx

∣∣θ(x)
∣∣ < ∞ and Lλ(θ) = λ1/γ e−γ λ(γ−1)/γ

, λ ∈ R+. (152)

(ii) There exist A,x0 ∈ (0,∞) such that

∀x ∈ [0, x0], h+(x) and h−(x) ≤ Ax−(γ+3)/2e−b(x), (153)

where we recall from (136) that b(x) = ((γ − 1)/x)γ−1.
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(iii) Let (V ∗
n )n≥0 be a sequence of real numbers recursively defined by V ∗

0 = (γ − 1)S∗
0 and for all n ∈N,

(γ − 1)γ−1V ∗
n+1 = (γ − 1)γ S∗

n+1 + (γ − 1)

(
n − 1

2
− 1

γ − 1

)
S∗

n −
(

n − 1

2
− 1

γ

)
V ∗

n . (154)

Then for all positive integers N , as x → 0, we get

θ(x) =
∑

0≤n<N

V ∗
n xn(γ−1)−(γ+3)/2e−b(x) +ON,γ

(
xN(γ−1)−(γ+3)/2e−b(x)

)
. (155)

Proof. The fact that h+ and h− are well defined is an easy consequence of the asymptotic expansion (137) of sγ and
observe that h+, h− can be continuously extended by the value 0 at x = 0. Let λ ∈ R+; by (149) we get Lλ(h

+) =
(γ − 1)

∫ ∞
λ

dμ exp(−γμ(γ−1)/γ ). Thus when λ = 0, we get
∫ ∞

0
dxh+(x) = L0

(
h+) = (γ − 1)

∫ ∞

0
dμe−γμ(γ−1)/γ = γ −1/(γ−1)�e

(
γ

γ − 1

)
,

by an easy change of variable; here �e stands for Euler’s Gamma function. By Fubini–Tonelli and several linear
changes of variable, we get

Lλ

(
h−) = γ − 1

γ

∫ ∞

0
dyy1/γ−1sγ (y)

∫ ∞

y

dxx−1−1/γ e−λx

= γ − 1

γ
λ1/γ

∫ ∞

0
dyy1/γ−1sγ (y)

∫ ∞

λy

dμμ−1−1/γ e−μ

= γ − 1

γ
λ1/γ

∫ ∞

0
dyy−1sγ (y)

∫ ∞

λ

dνν−1−1/γ e−νy

= γ − 1

γ
λ1/γ

∫ ∞

λ

dνν−1−1/γ

∫ ∞

0
dyy−1sγ (y)e−νy

= γ − 1

γ
λ1/γ

∫ ∞

λ

dνν−1−1/γ

∫ ∞

ν

dμe−γμ(γ−1)/γ = (γ − 1)λ1/γ

∫ ∞

λ

dμe−γμ(γ−1)/γ (
λ−1/γ − μ−1/γ

)

= (γ − 1)

∫ ∞

λ

dμe−γμ(γ−1)/γ − (γ − 1)λ1/γ

∫ ∞

λ

dμμ−1/γ e−γμ(γ−1)/γ

= (γ − 1)

∫ ∞

λ

dμe−γμ(γ−1)/γ − λ1/γ e−γ λ(γ−1)/γ

.

Here we use (149) in the fifth line. When λ = 0, this proves that∫ ∞

0
dxh−(x) = γ −1/(γ−1)�e

(
γ

γ − 1

)
.

Thus,
∫ ∞

0 dx|θ(x)| < ∞. It also implies (152) thanks to (149), which completes the proof of (i).
We then prove (ii) and (iii). To that end, we first observe that (137) implies that x−1sγ (x) ∼ S∗

0x−(γ+3)/2e−b(x) as
x → 0, which immediately entails (153) for h+.

We next find the asymptotic expansion of h− thanks to that of sγ and thanks to Lemma 4.2. We first set αn =
1
γ

− γ+3
2 + n(γ − 1). From (137) and Lemma 4.2, for all positive integer N , as x → 0, we get

h−(x) =
∑

0≤n<N

γ − 1

γ
S∗

nx−1−1/γ Jαn(x) +ON,γ

(
x−1−1/γ JαN

(x)
)

=
∑

0≤n<N

∑
0≤q<N−n

γ − 1

γ
S∗

ncq(αn, γ )xαn+γ−1−1/γ+q(γ−1)e−b(x) +ON,γ

(
xαN+γ−1−1/γ e−b(x)

)
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=
∑

0≤n<N

∑
0≤q<N−n

γ − 1

γ
S∗

ncq(αn, γ )x(n+q+1)(γ−1)−(γ+3)/2e−b(x)

+ON,γ

(
x(N+1)(γ−1)−(γ+3)/2e−b(x)

)
=

∑
0≤p≤N

Upxp(γ−1)−(γ+3)/2e−b(x) +ON,γ

(
x(N+1)(γ−1)−(γ+3)/2e−b(x)

)
,

where the sequence (Up)p≥0 is given by

U0 = 0, and Up =
∑

0≤n≤p−1

γ − 1

γ
S∗

ncp−1−n(αn, γ ), p ≥ 1.

Observe that it implies (153) for h−, which completes the proof of (ii). We next prove (iii): to that end observe that by
(140), cp−n(αn, γ ) = −(γ − 1)−γ ( 1

γ
− γ+1

2 + p(γ − 1))cp−1−n(αn, γ ). Thus we get

Up+1 =
∑

0≤n≤p

γ − 1

γ
S∗

ncp−n(αn, γ ) = γ − 1

γ
S∗

pc0(αp, γ ) +
∑

0≤n≤p−1

γ − 1

γ
S∗

ncp−n(αn, γ )

= 1

γ
(γ − 1)−(γ−1)S∗

p − (γ − 1)−γ

(
1

γ
− γ + 1

2
+ p(γ − 1)

) ∑
0≤n≤p−1

γ − 1

γ
S∗

ncp−1−n(αn, γ )

= 1

γ
(γ − 1)−(γ−1)S∗

p − (γ − 1)−γ

(
1

γ
− γ + 1

2
+ p(γ − 1)

)
Up

= (γ − 1)−(γ−1)

(
1

γ
S∗

p −
(

p − 1

2
− 1

γ

)
Up

)
. (156)

We then set V ∗
p = (γ − 1)S∗

p − Up for all p ∈ N, so that for all positive integer N , as x → 0, (155) holds true.
Moreover, (156) easily entails that (V ∗

p )p≥0 satisfies (154), which completes the proof of the lemma. �

Proof of Proposition 1.4. Lemma 4.4 easily entails Proposition 1.4. Indeed, (152) implies (56). We set

∀n ∈ N, Vn = (γ − 1)n(γ−1)V ∗
n /V ∗

0 .

Then, (154) entails (57) and (155) implies (58), which completes the proof of Proposition 1.4. �

Lemma 4.5. There exist λ0,A ∈ (0,∞) such that

∀λ ∈ [λ0,∞),

∫ ∞

λ

dμe−γμ(γ−1)/γ ≤ Aλ1/γ e−γ λ(γ−1)/γ

.

Proof. Integration by part implies

(γ − 1)

∫ ∞

λ

dμe−γμ(γ−1)/γ = λ1/γ e−γ λ(γ−1)/γ + 1

γ

∫ ∞

λ

dμμ−(γ−1)/γ e−γμ(γ−1)/γ

≤ λ1/γ e−γ λ(γ−1)/γ + 1

γ
λ−(γ−1)/γ

∫ ∞

λ

dμe−γμ(γ−1)/γ

,

which immediately entails the lemma. �
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Asymptotic expansion of w − 1
Recall from (45) the definition of w. We next introduce

∀y ∈ (0,∞), φ(y) := w(y) − 1, that satisfies
∫ ∞

φ(y)

du

(u + 1)γ − 1
= y, (157)

by (45). We easily see that limy→∞ φ(y) = 0 and limy→0 φ(y) = ∞ and that φ is a C∞ decreasing function. The
following lemma asserts that φ decreases exponentially fast as y → ∞.

Lemma 4.6. Let γ ∈ (1,2]. Let 
(λ) = λγ , λ ∈ R+. Recall from (157) the definition of φ. We set

y0 :=
∫ ∞

1

du

(u + 1)γ − 1
and ∀y ∈ [−1,∞), G(y) :=

∫ y

0

du

u

(u + 1)γ − 1 − γ u

(u + 1)γ − 1
. (158)

Then,

∀y ∈ [−1,1], exp
(
G(y)

) = 1 +
∑
n≥1

Any
n and 1 +

∑
n≥1

|An| < eγ−1. (159)

Moreover, for y ∈ [y0,∞),

eγy−C0φ(y) = exp
(
G

(
φ(y)

)) = 1 +
∑
n≥1

Anφ(y)n, (160)

where C0 is given by (63). Then, there exists a real valued sequence (βn)n≥1 and y1 ∈ [y0,∞) such that

∑
n≥1

|βn|e−γ ny1 < ∞ and ∀y ∈ [y1,∞), φ(y) =
∑
n≥1

βne
−γ ny. (161)

Here β1 = eC0 and β2 = γ−1
2 e2C0 .

Proof. For all y ∈ (0,∞), we first set F(y) := ∫ ∞
y

du
(u+1)γ −1 that is such that F(φ(y)) = y. Observe that

F(y) =
∫ ∞

1

du

(u + 1)γ − 1
+ 1

γ

∫ 1

y

du

u
− 1

γ

∫ 1

0

du

u

(u + 1)γ − 1 − γ u

(u + 1)γ − 1
+ 1

γ

∫ y

0

du

u

(u + 1)γ − 1 − γ u

(u + 1)γ − 1
,

which makes sense since 1
u

(u+1)γ −1−γ u
(u+1)γ −1 → γ−1

2 as u → 0+. We then set

C0 := γ

∫ ∞

1

du

(u + 1)γ − 1
−

∫ 1

0

du

u

(u + 1)γ − 1 − γ u

(u + 1)γ − 1

and we get

∀y ∈ (0,∞), γ F (y) = C0 − logy + G(y), where G(y) :=
∫ y

0

du

u

(u + 1)γ − 1 − γ u

(u + 1)γ − 1
.

Since F(φ(y)) = y, this implies

∀y ∈ (0,∞), logφ(y) = C0 − γy + G
(
φ(y)

)
. (162)

Let us show that G(y) (and therefore exp(G(y))) is analytic in a neighborhood of 0. We set

an = 1

γ

(
γ

n + 1

)
= (−1)n−1

(n + 1)!
n∏

k=1

|k − γ | = (γ − 1)(−1)n−1

n(n + 1)

n−1∏
k=1

(
1 − γ − 1

k

)
, n ≥ 1.
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We observe that |an| < γ−1
n(n+1)

. Then for all u ∈ [−1,1], we set

T (u) :=
∑
n≥1

|an|un and S(u) := (1 + u)γ − 1 − γ u

γ u
=

∑
n≥1

anu
n = −T (−u),

since (−1)n−1an = |an|. The power series T and S are absolutely convergent for |u| ≤ 1. Moreover, |S(u)| ≤ T (|u|) ≤
T (1) = −S(−1) = γ−1

γ
≤ 1. Thus, for all u ∈ [−1,1],

(1 + u)γ − 1 − γ u

(1 + u)γ − 1
= S(u)

1 + S(u)
=

∑
p≥1

(−1)p−1S(u)p =
∑
n≥1

(−1)n−1nBnu
n

is analytic for |u| ≤ 1, where nBn ≥ 0 and can be derived explicitly from the an. Note that
∑

n≥1 nBn = T (1)/(1 −
T (1)) = γ − 1 ≤ 1. Therefore, for all y ∈ [−1,1], G(y) = ∑

n≥1(−1)n−1Bny
n, which is absolutely convergent;

moreover |G(y)| ≤ −G(−1) <
∑

n≥1 nBn = γ − 1 < 1. Thus,

∀y ∈ [−1,1], exp
(
G(y)

) = 1 +
∑
n≥1

Any
n, where An = (−1)n

∑
p1,...,pn≥0

p1+2p2+···+npn=n

(−B1)
p1 · · · (−Bn)

pn

p1! · · ·pn! .

We easily see that 1 + ∑
n≥1 |An| ≤ exp(−G(−1)) < exp(γ − 1). Observe that φ(y0) = 1. Then (160) follows from

(162) for all y ∈ [y0,∞).
We next set H(y) := exp(C0 + G(y)). By (159), H has a power expansion whose radius of convergence is larger

that 1. By Lagrange inversion (recalled in Proposition B.1, in Appendix) there exists x0 ∈ (0,∞) such that for all
x ∈ [−x0, x0], the equation z = xH(z) has a unique solution z =: f (x) in [−1/2,1/2]; moreover, for all x ∈ [−x0, x0]

f (x) :=
∑
n≥1

βnx
n, where ∀n ≥ 1, βn := 1

n!
dn−1

dyn−1

(
Hn

)∣∣∣∣
y=0

and
∑
n≥1

|βn|xn
0 < ∞. (163)

Next observe that (160) implies that φ(y) = e−γyH(φ(y)), for all y ∈ [y0,∞). Since limy→∞ φ(y) = 0, there is
y1 ∈ [y0,∞) such that φ(y) ∈ [0,1/2] for all y ∈ [y1,∞) and we clearly get φ(y) = f (e−γy), which proves (161).
An easy computation entails β1 = eC0 and β2 = γ−1

2 e2C0 . �

We next derive from the previous lemma a similar asymptotic expansion for the function L1(y,0) that is connected
to the diameter of γ -stable normalized trees.

Lemma 4.7. Let γ ∈ (1,2]. Let 
(λ) = λγ , λ ∈ R+. Recall from (49) the definition of L1(y,0) and recall from (63)
the definition of C0. Then, there exist y2 ∈ (0,∞), and two real valued sequences (γn)n≥2, (δn)n≥2 such that

γ2 = 1

2
γ (γ − 1)e2C0 , δ2 = −1

2
(γ + 1)e2C0 and

∑
n≥2

(
n|γn| + |δn|

)
e−γ ny2 < ∞ (164)

and

∀y ∈ [y2,∞), L1(y,0) =
∑
n≥2

(nγny + δn)e
−γ ny. (165)

Proof. Recall that φ(y) = w(y) − 1. Then (49) and an elementary computation entails

L1(y,0) = φ(y) − 1

γ

[(
1 + φ(y)

)γ − 1
](

1 + φ(y)
) + γ − 1

γ
y
[(

1 + φ(y)
)γ − 1

]2

= γ (γ − 1)yφ(y)2K
(
φ(y)

) − 1

2
(γ + 1)φ(y)2M

(
φ(y)

)
, (166)

where for all u ∈ [−1,∞), K(u) = ((u + 1)γ − 1)2

(γ u)2
and M(u) = (u + 1)γ+1 − 1 − (γ + 1)u

(1/2)γ (γ + 1)u2
.
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Recall that H(y) = exp(C0 + G(y)) and recall from (160) that for all y ∈ [y0,∞), φ(y) = e−γyH(φ(y)). This,
combined with (166), entails that

L1(y,0) = γ (γ − 1)e−2γyyH
(
φ(y)

)2
K

(
φ(y)

) − 1

2
(γ + 1)e−2γyH

(
φ(y)

)2
M

(
φ(y)

)
. (167)

Recall from (163), the definition of f and that of (βn)n≥1. Note that there exists x1 ∈ (0, x0) such that for all x ∈
[0, x1],

γ (γ − 1)H
(
f (x)

)2
K

(
f (x)

) =
∑
n≥0

γ ′
nx

n and − 1

2
(γ + 1)H

(
f (x)

)2
M

(
f (x)

) =
∑
n≥0

δ′
nx

n, (168)

with γ ′
0 = γ (γ − 1)e2C0 , δ′

0 = −1

2
(γ + 1)e2C0 and

∑
n≥0

(∣∣γ ′
n

∣∣ + ∣∣δ′
n

∣∣)xn
2 < ∞, (169)

since K(0) = M(0) = 1 and since H(0)2 = e2C0 . Next by (161) in Lemma 4.6, we have φ(y) = f (e−γy), for all
y ∈ [y1,∞). Then, we set y2 := y1 ∨ (− 1

γ
logx1), and for all n ≥ 2, γn := n−1γ ′

n−2 and δn := δ′
n−2. We then see that

(169) implies (164) and that (168) and (167) imply (165), which completes the proof of the lemma. �

4.2. Proof of Theorem 1.5

We first set

∀x ∈ (0,∞), f�(x) := cγ x−1−1/γ Nnr
(
� > x−(γ−1)/γ

)
. (170)

Then, Proposition 1.3, (46), (47) and (49) imply for all λ ∈ (0,∞),

Lλ(f�) =
∫ ∞

0
dxe−λxf�(x) = Lλ(0,1) = λ1/γ L1

(
0, λ(γ−1)/γ

)

= λ1/γ
(
w

(
λ(γ−1)/γ

) − 1
) = λ1/γ φ

(
λ(γ−1)/γ

)
, (171)

where we recall from (157) that φ(y) = w(y) − 1. We next use Lemma 4.6: let λ1 be such that λ
(γ−1)/γ

1 = y1; then
the sequence (βn)n≥1 satisfies

∀λ ∈ [λ1,∞),
∑
n≥1

|βn|λ1/γ e−γ nλ(γ−1)/γ

< ∞ and Lλ(f�) =
∑
n≥1

βnλ
1/γ e−γ nλ(γ−1)/γ

. (172)

Recall from Lemma 4.4 the definition of the functions θ,h+ and h−. Then for all integer n ≥ 1, and all x ∈ R+, we
set

θn(x) = n−(γ+1)/(γ−1)θ
(
n−γ /(γ−1)x

)
, h+

n (x) = n−(γ+1)/(γ−1)h+(
n−γ /(γ−1)x

)
and

h−
n (x) = n−(γ+1)/(γ−1)h−(

n−γ /(γ−1)x
)
.

Lemma 4.4 implies that h+
n , h−

n are Lebesgue integrable, nonnegative and continuous. Moreover, θn = h+
n −h−

n . Con-

sequently, θn is also nonnegative continuous and Lebesgue integrable, and (56) entails that Lλ(θn) = λ1/γ e−γ nλ(γ−1)/γ
.

Thus, by (172)

∀λ ∈ [λ1,∞), Lλ(f�) =
∑
n≥1

βnLλ(θn). (173)

We next prove that Assumptions (a), (b), (c) of Lemma 4.1 hold true with

f := f�, gn := h+
n , hn := h−

n , and qn := βn.
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To that end, we first observe that by an easy change of variable and by (151) in Lemma 4.4, we get

∀λ ∈ (0,∞),∀n ≥ 1, Lλ

(
h+

n

)
and Lλ

(
h−

n

) ≤ (γ − 1)n−1/(γ−1)

∫ ∞

nγ/(γ−1)λ

dμe−γμ−(γ−1)/γ

.

Thus, by Lemma 4.5, for all λ ∈ (0,∞) and for all sufficiently large n, Lλ(h
+
n ) and Lλ(h

−
n ) are bounded by

Aλ1/γ exp(−γ nλ(γ−1)/γ ), where A is a positive constant. Thus,

∀λ ∈ [λ1,∞),
∑
n≥1

|βn|
(
Lλ

(
h+

n

) +Lλ

(
h−

n

)) ≤ 2A
∑
n≥1

|βn|λ1/γ e−γ nλ(γ−1)/γ

< ∞, (174)

the last inequality being a consequence of (172).
Next, deduce from (153) in Lemma 4.4 that for all fixed x ∈ (0,∞) and for all sufficiently large n,

sup
y∈[0,x]

h+
n and sup

y∈[0,x]
h−

n ≤ Bnqx−(γ+3)/2 exp
(−(γ − 1)γ−1nγ x−(γ−1)

)
,

where q = γ (γ+3)
2(γ−1)

− γ+1
γ−1 and where B is a positive constant only depending on γ . Since γ > 1, nγ ≥ n; this combined

with (172) entails that for all x ∈ R+,

∑
n≥1

|βn|
(

sup
y∈[0,x]

h+
n + sup

y∈[0,x]
h−

n

)
< ∞. (175)

By (173), (174) and (175), Lemma 4.1 applies and we get

∀x ∈R+, f�(x) = cγ x−1−1/γ Nnr
(
� > x−(γ−1)/γ

) =
∑
n≥1

βnθn(x).

This proves

∀r ∈ (0,∞), cγ Nnr(� > r) =
∑
n≥1

βn(nr)−(γ+1)/(γ−1)θ
(
(nr)−γ /(γ−1)

)
, (176)

which implies (61). Note that (175) and (161) with x1 = e−γy1 in Lemma 4.6 imply (60) in Theorem 1.5.
It remains to prove the asymptotic expansion (62). To that end, recall that ξ(r) = r−(γ+1)/(γ−1)θ(r−γ /(γ−1)), for

all r ∈R+. Then (58) in Proposition 1.4 easily entails that for any integer N ≥ 1, as r → ∞,

1

C∗
1
r−1−γ /2erγ

ξ
(
r(γ − 1)−(γ−1)/γ

) = 1 +
∑

1≤n<N

Vnr
−nγ +ON,γ

(
r−Nγ

)
, (177)

where C∗
1 := (2π)−1/2(γ − 1)1/2+1/γ γ 1/2 and where the sequence (Vn)n≥1 is recursively defined by (57) in Proposi-

tion 1.4. This first implies that there exist A, r1 ∈ (0,∞) that only depend on γ such that

∀r ∈ (r1,∞),∀n ≥ 2,
∣∣ξ(

nr(γ − 1)−(γ−1)/γ
)∣∣ ≤ Ar1+γ /2e−n2γ−1rγ

. (178)

Recall from Proposition 1.4 that there exists x1 ∈ (0,∞) such that
∑

n≥1 |βn|xn
1 < ∞. Without loss of generality, we

can choose r1 such that exp(−2γ−1r
γ

1 ) ≤ x1. Then (176) and (178) imply that

Nnr
(
� > r(γ − 1)−(γ−1)/γ

) = c−1
γ β1ξ

(
r(γ − 1)−(γ−1)/γ

) +Oγ

(
r1+γ /2e−2γ rγ )

, as r → ∞,

and (177) implies (62) since C1 = c−1
γ β1C

∗
1 , where we recall from (41) that c−1

γ = γ�e(
γ−1
γ

) and where we recall
from Lemma 4.6 that β1 = exp(C0). This completes the proof of Theorem 1.5.
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4.3. Proof of Theorem 1.7

We first set

∀x ∈ (0,∞), fD(x) := cγ x−1−1/γ Nnr
(
D > 2x−(γ−1)/γ

)
. (179)

Then, Proposition 1.3, (46) and (47) imply for all λ ∈ (0,∞),

Lλ(fD) =
∫ ∞

0
dxe−λxfD(x) = Lλ(1,0) = λ1/γ L1

(
λ(γ−1)/γ ,0

)
. (180)

We next use Lemma 4.7: let λ2 be such that λ
(γ−1)/γ

2 = y2; then the sequences (γn)n≥2 and (δn)n≥2 satisfy

∀λ ∈ [λ2,∞),
∑
n≥2

(
n|γn|λ(γ−1)/γ + |δn|

)
λ1/γ e−γ nλ(γ−1)/γ

< ∞ and

(181)
Lλ(fD) =

∑
n≥2

nγnλe−γ nλ(γ−1)/γ +
∑
n≥2

δnλ
1/γ e−γ nλ(γ−1)/γ

.

Recall from (55) in Proposition 1.4 the definition of θ and recall Proposition 1.6 that provides properties of the
derivative s′

γ of the density sγ given by (53). For all n ≥ 2, and all x ∈ (0,∞), we set

θn(x) = n−2γ /(γ−1)s′
γ

(
n−γ /(γ−1)x

)
and θn(x) = n−(γ+1)/(γ−1)θ

(
n−γ /(γ−1)x

)
.

Then, Proposition 1.6 and Proposition 1.4 imply that θn and θn are continuous and Lebesgue integrable, and that

∀λ ∈ R+, Lλ(θn) = λe−γ nλ(γ−1)/γ

and Lλ(θn) = λ1/γ e−γ nλ(γ−1)/γ

.

Thus,

∀λ ∈ R+, Lλ(fD) =
∑
n≥2

Lλ(nγnθn + δnθn).

We argue as in the proof of Theorem 1.5 using Lemma 4.1 to deduce that

∀x ∈ R+, fD(x) = cγ x−1−1/γ Nnr
(
D > 2x−(γ−1)/γ

) =
∑
n≥2

(
nγnθn(x) + δnθn(x)

)
,

the sum of functions being normally convergent on every compact subset of R+. This easily entails that

∀r ∈ (0,∞), cγ Nnr(D > 2r) =
∑
n≥2

[
γn(nr)−(γ+1)/(γ−1)s′

γ

(
(nr)−γ /(γ−1)

)

+ δn(nr)−(γ+1)/(γ−1)θ
(
(nr)−γ /(γ−1)

)]
, (182)

which is (69). Note that (68) is an easy consequence of the estimate (66) in Proposition 1.6, of (58) in Proposition 1.4
and of Lemma 4.7 with x2 = e−γy2 . Recall from (67) and (59) the following notation,

∀r ∈ R+, ξ(r) = r−(γ+1)/(γ−1)s′
γ

(
r−γ /(γ−1)

)
and ξ(r) = r−(γ+1)/(γ−1)θ

(
r−γ /(γ−1)

)
.

Note that (69) implies

cγ Nnr(D > r) = γ2ξ(r) + δ2ξ(r) +
∑
n≥3

γnξ(nr/2) + δnξ(nr/2). (183)
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Then, recall from (177) the asymptotic expansion of ξ and deduce from (66) in Proposition 1.6 that

1

C∗
1
r−1−3γ /2erγ

ξ
(
r(γ − 1)−(γ−1)/γ

) = 1 +
∑

1≤n<N

Tnr
−nγ +ON,γ

(
r−Nγ

)
, (184)

where C∗
1 := (2π)−1/2(γ − 1)1/2+1/γ γ 1/2 and where the sequence (Tn)n≥1 is recursively defined by (65) in Proposi-

tion 1.6. We easily deduce from the asymptotic expansions (177) and (184) that there exists B, r2 ∈ (0,∞) such that
for all r ∈ (r2,∞) and for all n ≥ 3,∣∣∣∣ξ

(
1

2
nr(γ − 1)−(γ−1)/γ

)∣∣∣∣ and

∣∣∣∣ξ
(

1

2
nr(γ − 1)−(γ−1)/γ

)∣∣∣∣ ≤ Br1+3γ /2e−n3γ−12−γ rγ

. (185)

This combined with (183) implies that

Nnr
(
D > r(γ − 1)−(γ−1)/γ

) = c−1
γ γ2ξ

(
r(γ − 1)−(γ−1)/γ

) + c−1
γ δ2ξ

(
r(γ − 1)−(γ−1)/γ

)
+Oγ

(
r1+3γ /2e−n(3/2)γ rγ )

,

as r → ∞. Then (177) and (184) imply

Nnr
(
D > r(γ − 1)−(γ−1)/γ

) = c−1
γ γ2C

∗
1 r1+3γ /2e−rγ +

∑
1≤n<N

c−1
γ C∗

1 (γ2Tn + δ2Vn−1)r
−nγ+1+3γ /2e−rγ

+ON,γ

(
r−Nγ+1+3γ /2e−rγ )

. (186)

Recall from (164) in Lemma 4.7 that γ2 = 1
2γ (γ − 1)e2C0 and δ2 = − 1

2 (γ + 1)e2C0 . This implies (70) with

C2 = c−1
γ C∗

1γ2 and ∀n ≥ 1, Un = Tn + δ2

γ2
Vn−1 = Tn − γ + 1

γ (γ − 1)
Vn−1.

This completes the proof of Theorem 1.7.

5. Proof of Theorem 1.8

In this section, we fix γ ∈ (1,2). Recall that 1/cγ = γ�e(1 − 1
γ
). We set

∀r ∈ (0,∞), g�(r) := cγ r−1/γ Nnr
(
� ≤ r−(γ−1)/γ

)
and ∀λ ∈R, p(λ) :=

∫ ∞

0
e−λrg�(r) dr. (187)

Note that the Laplace transform p is decreasing and that p(λ) < ∞ for all λ ∈ (0,∞). We next set:

λcr := sup

{
λ ∈ R : p(−λ) =

∫ ∞

0
eλrg�(r) dr < ∞

}
and H := {

z ∈C : Re(z) > −λcr
}
. (188)

Clearly λcr ≥ 0. We shall actually prove that λcr ∈ (0,∞) and that
∫ ∞

0 e(λcr−λ)r r2g�(r) dr ∼ Aλγ−2, for a certain
A ∈ (0,∞), as λ → 0. However, Karamata’s theorem seems to be ineffective to derive asymptotics on eλcrr r2g�(r)

because this function has no clear monotony properties. Thus, we proceed more carefully and we shall use a variant of
Ikehara–Ingham Tauberian theorem to prove Theorem 1.8. This requires analytic continuation of p. More precisely,
standard results on Laplace transform (see for instance Widder [37], Chapter 1) imply that p can be analytically
extended to H by p(z) = ∫ ∞

0 e−zrg�(r) dr , for all z ∈ H. We first prove the following lemma.

Lemma 5.1. There exists a real number ε0 ∈ (0,∞) and a non-decreasing analytic function q : (−ε0,∞) → (0,∞)

such that

∀λ ∈ (−ε0,∞),

∫ ∞

q(λ)

du

uγ − λ
= 1 and q ′(λ) = p(λ) =

∫ ∞

0
e−λrg�(r) dr, (189)
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which implies that λcr ≥ ε0.

Proof. Recall from (112) the definition of wλ(y). For all λ ∈ [0,∞), we set q(λ) := wλ(1) = N[1 − e−λζ 1{�≤1}].
Then, q is clearly non-decreasing and C1 on [0,∞). By (113), q satisfies

∀λ ∈ [0,∞),

∫ ∞

q(λ)

du

uγ − λ
= 1. (190)

Recall that N(ζ ∈ dr) = cγ r−1−1/γ dr . Thus, by (42), we get

∫ ∞

0
e−λrg�(r) dr =

∫ ∞

0
N(ζ ∈ dr)re−λrNnr

(
r(γ−1)/γ � ≤ 1

) = N
[
ζe−λζ 1{�≤1}

] = q ′(λ).

By (190) we get (189) for all λ ∈ [0,∞) and it is also easy to see that q(0) = N(� > 1) = (γ − 1)−1/(γ−1).
Next observe that q(λ) > N[1 − e−λζ ] = λ1/γ , which implies λq(λ)−γ < 1, for all λ ∈ [0,∞). The change of

variable v := u−γ in (190) and the expansion (1 − λv)−1 = ∑
n≥0(λv)n imply the following.

1 = 1

γ

∫ q(λ)−γ

0

v−1/γ dv

1 − λv
= 1

γ

∑
n∈N

λn

∫ q(λ)−γ

0
vn−1/γ dv = 1

γ
q(λ)−(γ−1)

∑
n∈N

(λq(λ)−γ )n

n + 1 − 1/γ
. (191)

This easily implies that for all λ ∈ [0,∞),

λq(λ)−γ = λ(γ − 1)γ /(γ−1)

(
1 +

∑
n≥1

γ − 1

γ (n + 1) − 1

(
λq(λ)−γ

)n
)−γ /(γ−1)

. (192)

First note that there is ε1 ∈ (0,∞) such that the function H(x) := (γ −1)γ /(γ−1)(1+∑
n≥1

γ−1
γ (n+1)−1xn)−γ /(γ−1) has

an absolutely convergent power expansion for all x ∈ (−ε1, ε1) and next observe that (192) implies that λq(λ)−γ =
λH(λq(λ)−γ ) in a right neighbourhood of 0. Lagrange inversion (as recalled in Theorem B.1) implies that there is
ε2 ∈ (0,∞) such that B : λ �→ λq(λ)−γ extends analytically on (−ε2, ε2). Since q(0) > 0, we get B(0) = 0 and
B(λ)/λ is analytic on (−ε2, ε2) such that B ′(0) = q(0)−γ > 0. By composition of analytic functions, it implies that
λ �→ (B(λ)/λ)−1/γ = q(λ) is analytic in a neighbourhood of 0. Thus, there exists a sequence of real numbers (an)n∈N
and a real number ε0 ∈ (0,∞) such that the following power expansion

q(λ) =
∑
n∈N

anλ
n, λ ∈ (−ε0, ε0), (193)

is absolutely convergent; moreover, −λq(−λ)−γ = −λH(−λq(−λ)−γ ), for all λ ∈ [0, ε0). This equality easily im-
plies that (191) holds true with −λ instead of λ, namely:

∀λ ∈ [0, ε0),

∫ ∞

q(−λ)

du

uγ + λ
= 1. (194)

Since q ′(λ) = ∫ ∞
0 e−λrg�(r) dr , for all λ ∈ [0,∞), (193) and standard results on the Laplace transform (see for

instance Widder [37], Chapter 1) imply that

∀n ∈ N,
1

n!
∫ ∞

0
rng�(r) dr = (−1)n(n + 1)an+1.

Since
∑

n∈N |(n + 1)an+1λ
n| < ∞, for all λ ∈ (−ε0, ε0), this implies that

∀λ ∈ [0, ε0), q ′(−λ) =
∑
n∈N

(−1)n(n + 1)an+1λ
n =

∑
n∈N

λn

n!
∫ ∞

0
rng�(r) dr =

∫ ∞

0
eλrg�(r) dr.
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This, combined with (194), completes the proof of (189). �

We next set D− := {z ∈ C : Re(z) ≤ 0 and Im(z) = 0}, the negative axis of the complex plane. For any b ∈ C, we
use the following notation

∀z ∈ C \ D−, zb := exp(b log z), (195)

where log is the usual determination of the logarithm in C \ D−. Standard results in complex analysis assert that
z �→ zb is analytic in the domain C \ D−. The following lemma concerns the analytic continuation of q introduced in
Lemma 5.1. Recall from (188) the definition of λcr and that of the right half-plane H.

Lemma 5.2. There exists a connected open subset U containing H \ {−λcr} such that the function q (introduced in
Lemma 5.1) has an analytic continuation to U that is C2 on H and such that q ′(z) = ∫ ∞

0 e−zrg�(r) dr , for all z ∈ H.
Moreover, q satisfies the following properties.

(i) Let U0 denote the open strip {−λcr < Re(z) < 0}. Then q satisfies

∀z ∈ U0, q(z) ∈C \ D− and zq ′(z) = −γ − 1

γ
q(z)γ + 1

γ
q(z) + γ − 1

γ
z. (196)

(ii) q(−λcr) = 0 and as z → 0 with Re(z) > 0,

q(3)(−λcr + z) = (γ − 1)γ+2

γ γ λcr
zγ−2 − (2γ − 1)(γ − 1)

γ 3λ2
cr

+ o(1), (197)

q(4)(−λcr + z) = (γ − 1)γ+2(γ − 2)

γ γ λcr
zγ−3 + (γ − 1)γ+3(γ + 2)

2γ γ+1λ2
cr

zγ−2 + o
(
zγ−2). (198)

(iii) −λcr is the only singular point of q in U and λcr = (
π/γ

sin(π/γ )
)γ /(γ−1).

Remark 5.1. The statement in Lemma 5.2 is not valid for γ = 2. Indeed, if γ = 2, for all λ ∈ (0,∞), q(λ) =√
λ coth

√
λ and q(−λ) = √

λ cot
√

λ. Therefore, q is analytic on (−π2,∞). But note that (
π/γ

sin(π/γ )
)γ /(γ−1) = π2/4

when γ = 2. The reason for the distinct behaviour of q when γ = 2 boils down to the elementary fact that 0 is a
singular point for z �→ zγ when γ ∈ (1,2). It is not the case when γ = 2.

Proof of Lemma 5.2. Let λ ∈ (0,∞). By the change of variable v := λu−γ , we get
∫ ∞

0

du

uγ + λ
= 1

γ
λ−(γ−1)/γ

∫ ∞

0

v−1/γ dv

1 + v
= π/γ

sin(π/γ )
λ−(γ−1)/γ .

Here, we use E. Schläfli’s identity
∫ ∞

0 v−s/(1 + v)dv = π/ sin(πs), that is valid for all s ∈C such that 0 < Re(s) < 1
(see for instance I. Gradshteyn & I. Ryzhik [21], Chapter 17, Section 43, p. 1131, Table of Mellin transform, for-
mula 6). We then set

λ1 :=
(

π/γ

sin(π/γ )

)γ /(γ−1)

that satisfies
∫ ∞

0

du

uγ + λ1
= 1.

Therefore, there exists a strictly decreasing continuous function r : [0, λ1] �→ [0, q(0)] that satisfies

∀λ ∈ [0, λ1],
∫ ∞

r(λ)

du

uγ + λ
= 1. (199)

Note that r(0) = q(0) = (γ −1)−1/(γ−1), that r(λ1) = 0. By Lemma 5.1, ε0 ≤ λ1 and r(λ) = q(−λ), for all λ ∈ [0, ε0).
An easy linear change of variable in (199) entails

λ(γ−1)/γ =
∫ ∞

λ−1/γ r(λ)

dv

vγ + 1
and thus −r ′(λ) = γ − 1

γ
λ−1r(λ)γ − 1

γ
λ−1r(λ) + γ − 1

γ
, λ ∈ (0, λ1).
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Thus, we have proved that q can be extended uniquely on [−λ1,∞) in such a way that
∫ ∞
q(λ)

du/(uγ − λ) = 1 for all
λ ∈ [−λ1,∞) and we have

∀λ ∈ (−λ1,0), q ′(λ) = F
(
λ,q(λ)

)
,

where we have set

∀(z, v) ∈ V, F (z, v) := −γ − 1

γ
z−1vγ + 1

γ
z−1v + γ − 1

γ
, where V := (

C \ {0}) × (C \ D−). (200)

Note that V is an open subset of C2 and we recall the convention specified by (195) for the power of complex
numbers. Recall that D(z0, r) stands for the open disk in C with centre z0 ∈ C and radius r ∈ (0,∞); to simplify
notation we identify R with the set of complex numbers whose imaginary part is null. We next use Proposition B.2
(see Appendix B). First, we easily check that F is analytic in the two variables z and v on V . Then, for all λ ∈ (−λ1,0),
since (λ, q(λ)) ∈ V , Proposition B.2 implies that there exists rλ ∈ (0,∞) and an analytic function fλ : D(λ, rλ) →
C \ D− such that fλ is the unique solution of

∀z ∈ D(λ, rλ), fλ(z) ∈ V, f ′
λ(z) = F

(
z,fλ(z)

)
and fλ(λ) = q(λ).

The restriction of fλ on the real interval (λ − rλ, λ + rλ) clearly satisfies the same (real time parameter) ordinary
differential equation as q; since this ODE is locally Lipschitz, uniqueness in the Picard–Lindelöf theorem (also known
as Cauchy–Lipschitz theorem) implies that fλ and q coincide on the real interval (λ− rλ, λ+ rλ). Let λ,λ′ ∈ (−λ1,0)

be such that W := D(λ, rλ) ∩ D(λ′, rλ′) �= ∅; since W is connected and since fλ and fλ′ are equal to q on the real
interval W ∩ R, the principle of isolated zeroes for analytic functions implies that fλ and fλ′ coincide on W . This
implies that q can be extended uniquely on the open subset U1 := ⋃

λ∈(−λ1,0) D(λ, rλ), that q : U1 → C \ D− is
analytic and that q satisfies the complex differential equation:

∀z ∈ U1, q(z) ∈ V, q ′(z) = F
(
z, q(z)

)
. (201)

Since (−λ1,0) ⊂ U1, this implies that the restriction of q on (−λ1,∞) is analytic. We next prove that it entails that

λcr ≥ λ1 and ∀λ ∈ [−λ1,∞), q ′(λ) =
∫ ∞

0
e−λrg�(r) dr. (202)

Indeed, suppose that λcr < λ1. By standard results on Laplace transform λ �→ ∫ ∞
0 e−λrg�(r) dr is analytic on

(−λcr,∞). Lemma 5.1 implies that it coincides with q ′ on (−ε0,∞). Since q ′ is also analytic on the interval
(−λcr,∞) (supposedly included in (−λ1,∞)), the principle of isolated zeroes for analytic functions entails that
q ′(λ) = ∫ ∞

0 e−λrg�(r) dr , for all λ ∈ (−λcr,∞). Standard results on Laplace transform also imply that for all n ∈ N,∫ ∞
0 e−λrrng�(r) dr = (−1)nq(n+1)(λ), for all λ ∈ (−λcr,0). By continuity of q(n+1) and the monotone convergence

theorem, we get
∫ ∞

0 eλcrr rng�(r) dr = (−1)nq(n+1)(−λcr). Since λ1 > λcr, q ′ is analytic at λcr and there exists
ε ∈ (0, λ1 − λcr) such that∫ ∞

0
e(λcr+ε)rg�(r) dr =

∑
n∈N

εn

n!
∫ ∞

0
eλcrr rng�(r) dr =

∑
n∈N

(−ε)n

n! q(n+1)(−λcr) = q ′(−λcr − ε) < ∞,

which contradicts the definition (188) of λcr. Thus λ1 ≤ λcr and (202) holds true.
We set H1 := {z ∈ C : Re(z) > −λ1} and we next prove that q can be extended analytically on H1, that q is

continuous on H1 and that Re(q(z)) > 0, for all z ∈ H1 \ {−λ1}. Indeed, (202) implies that q ′ can be extended
analytically on H1 and that q ′(z) = ∫ ∞

0 e−zrg�(r) dr , for all z ∈ H1. Thus, q can be extended analytically on H1 and
we easily get q(z) = q(0) − ∫ ∞

0 g�(r)r−1(e−zr − 1) dr , for all z ∈ H1. Since λ �→ q(λ) decreases to q(−λ1) = 0 as
λ ↓ −λ1, monotone convergence theorem implies that

∫ ∞
0 g�(r)r−1(eλ1r − 1) dr = q(0) < ∞. It thus implies that

∀z ∈ H1, q(z) =
∫ ∞

0
drg�(r)r−1(eλ1r − e−zr

)
, (203)
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and q is continuous on H1. For all λ ∈ [−λ1,∞) and all t ∈ R, we also get

Re
(
q(λ + it)

) =
∫ ∞

0
drg�(r)r−1e−λr

(
e(λ1+λ)r − cos(tr)

)
.

If t �= 0 or λ �= −λ1, then r �→ g�(r)r−1e−λr (e(λ1+λ)r − cos(tr)) is nonnegative and strictly positive on a non-empty
interval. Thus, Re(q(z)) > 0, for all z ∈ H1 \ {−λ1}.

We denote by U2 denote the open strip {−λ1 < Re(z) < 0}. We next prove that

∀z ∈ U2, q ′(z) = F
(
z, q(z)

)
, (204)

where we recall from (200) the definition of the open set V and the function F : V → C\D−. We then fix λ ∈ (−λ1,0)

and we consider y : I →C \ D−, the maximal solution of the (real time parameter) ordinary differential equation

∀t ∈ I, y′(t) = iF
(
λ + it, y(t)

)
and y(0) = q(λ). (205)

Here, I is the maximal (open) interval of definition for (205). Existence and uniqueness of such a maximal solution
is a consequence of Picard–Lindelöf theorem. Recall (201) and recall that by definition (−λ1,0) ⊂ U1. Thus, there
exists ε > 0 such that (−ε, ε) ⊂ I and y(t) = q(λ + it), for all t ∈ (−ε, ε). Next, observe that (λ + is, y(s)) ∈ V for
all s ∈ I ; then by Proposition B.2, there exist ηs ∈ (0,∞) and an analytic function hs : D(λ + is, ηs) →C \ D− such
that h′

s(z) = F(z,hs(z)), for all z ∈ D(λ + is, ηs) and hs(λ + is) = y(s). Thus t ∈ (s − ηs, s + ηs) �→ hs(λ + it)

satisfies the same (real time parameter) ODE as y and thus hs(λ + it) = y(t), for all t ∈ (s − ηs, s + ηs). Let s, s′ ∈ I

be such that W := D(λ + is, ηs) ∩ D(λ + is′, ηs′) �= ∅; since W is connected and since hs and hs′ are equal to y on
W ∩ (λ+ iR) (with an obvious notation), the principle of isolated zeroes for analytic functions implies that hs and hs′
coincide on W . Thus, there is an analytic function w from the open set O := ⋃

s∈I D(λ + is, ηs) to C \ D− such that
w′(z) = F(z,w(z)) and such that w(λ + it) = y(t), for all t ∈ I . Note that O is connected and that O ⊂ H1; since
w(λ + it) = y(t) = q(λ + it), for all t ∈ (−ε, ε), the principle of isolated zeroes for analytic functions implies that q

and w coincide on O . This proves that q ′(z) = F(z, q(z)) for all z ∈ O and that q(λ + it) = y(t), for all t ∈ I . If we
prove that I =R, then the previous arguments entail q(λ+ it) = y(t) for t ∈R, and q ′(λ+ it) = F(λ+ it, q(λ+ it)),
t ∈ R, which implies (204) since λ is arbitrarily chosen in (−λ1,0).

Let us prove that I = R. We argue by contradiction: assume first that I has a bounded right end denoted by a,
namely I ∩[0,∞) = [0, a). By continuity of q , limt→a− y(t) = q(λ+ ia); since Re(q(z)) > 0, for all z ∈ H1 \ {−λ1},
we get (λ + ia, q(λ + ia)) ∈ V and by Proposition B.2, there exist η ∈ (0,∞) and an analytic function h : D(λ +
ia, η) → C \ D− such that h′(z) = F(z,h(z)), for all z ∈ D(λ + ia, η) and h(λ + ia) = q(λ + ia) = y(a−). Then set
x(t) = y(t), t ∈ I and x(t) = h(λ+ it) for all t ∈ [a, a +η); we observe that x satisfies the same (real time parameter)
ODE as y and that it strictly extends y, which contradicts the definition of I . Thus I is unbounded from the right.
We argue in the same way to prove that I is unbounded from the left, which proves that I = R and (204) as already
mentioned.

We thus have proved that q can be extended analytically on H1, that q is continuous on H1 and that q satisfies
(204). Recall that q(−λ1) = 0, which implies by (204) that q ′(−λ1 + z) tends to F(−λ1,0) = (γ − 1)/γ as z → 0
with Re(z) > 0. We then set q ′(−λ1) := (γ − 1)/γ ; (203) and monotone convergence entail

∫ ∞
0 eλ1rg�(r) dr =

limλ↓−λ1 q ′(λ) = (γ − 1)/γ . This also proves that q ′ is continuous on H1. Therefore q is C1 on H1. We also derive
from (204) that

∀z ∈ U2, −zq ′′(z) =
(

1 − 1

γ
+ (γ − 1)q(z)γ−1

)
q ′(z) + 1

γ
− 1. (206)

Thus, q ′′(−λ1 +z) tends to q ′′(−λ1) := −(γ −1)/(λ1γ
2) as z → 0 with Re(z) > 0 and monotone convergence entails

that
∫ ∞

0 reλ1rg�(r) dr = −q ′′(−λ1), which implies that q ′ is C1, and therefore that q is C2 on H1. We next observe
that for all z ∈C such that Re(z) > 0, we get

q(−λ1 + z) = zq ′(−λ1) + 1

2
z2q ′′(−λ1) + z2

∫ 1

0
dt

∫ t

0
ds

(
q ′′(−λ1 + sz) − q ′′(−λ1)

)

= γ − 1

γ
z − γ − 1

2λ1γ 2
z2 + o

(
z2), (207)
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as z → 0. A similar argument entails that

q ′(−λ1 + z) = γ − 1

γ
− γ − 1

γ 2λ1
z + o(z), and q ′′(−λ1 + z) = −γ − 1

γ 2λ1
+ o(1), (208)

as z → 0 with Re(z) > 0. We next derive from (206) that for all z ∈ U2,

−zq(3)(z) =
(

(γ − 1)q(z)γ−1 + 2 − 1

γ

)
q ′′(z) + (γ − 1)2q ′(z)2q(z)γ−2 and

−zq(4)(z) =
(

(γ − 1)q(z)γ−1 + 3 − 1

γ

)
q(3)(z) + 3(γ − 1)2q ′′(z)q ′(z)q(z)γ−2 (209)

+ (γ − 2)(γ − 1)2q ′(z)3q(z)γ−3.

This entails that limλ↓−λ1 q(3)(λ) = ∞ and thus −λ1 is a singular point of q . Consequently λ1 = λcr. Moreover, (209)
combined with (207) and (208) entails (197) and (198).

It remains to prove that q can be extended on an open subset containing H \ {−λcr}. To that end, we recall that
for any t ∈ R \ {0}, Re(q(−λcr + it)) > 0. Thus, (−λcr + it, q(−λcr + it)) ∈ V and Proposition B.2 implies that
there exists ρt ∈ (0,∞) and a unique analytic function kt : D(−λcr + it, ρt ) → C \ D− such that kt (−λcr + it) =
q(−λcr + it) and k′

t (z) = F(z, kt (z)), for all z ∈ D(−λcr + it, ρt ). Since q satisfies the same differential equation on
H ∩D(−λcr + it, ρt ), we see that the function x ∈ [−λcr,−λcr +ρt ) �→ q(x + it) and the function x ∈ [−λcr,−λcr +
ρt ) �→ kt (x + it) satisfy the same (real time parameter) ODE, with the same initial condition. Since this ODE is
locally Lipschitz in space, uniqueness of the solution in Picard–Lindelöf theorem entails that kt (x + it) = q(x +
it), for all x ∈ [−λcr,−λcr + ρt ). Since kt and q are analytic on the connected open set H ∩ D(−λcr + it, ρt ), the
principle of isolated zeroes for analytic functions entails that kt and q coincide on H ∩ D(−λcr + it, ρt ) and thus
on H ∩ D(−λcr + it, ρt ). Let t, t ′ ∈ R \ {0} be such that W := D(−λcr + it, ρt ) ∩ D(−λcr + it ′, ρt ′) is non-empty.
Since kt and kt ′ are analytic on the connected open set W and since they coincide with q on the non-empty connected
set W ∩ H, the principle of isolated zeroes for analytic functions entails that kt and kt ′ coincide on W . We now set
U := H ∪ ⋃

t∈R\{0} D(−λcr + it, ρt ). The previous arguments show that q can be extended analytically on U and
obviously U contains H \ {−λcr}, which completes the proof of Lemma 5.2. �

Proof of (74) in Theorem 1.8. Next we want to apply Ikehara–Ingham theorem that is recalled in Theorem B.3 in
Appendix. To that end, we next prove the following lemma.

Lemma 5.3. For all z ∈ C such that 0 < Re(z) < λcr, we set

G(z) := q(3)(−λcr + z)

λcr − z
− (γ − 1)γ+2

λ2
crγ

γ
zγ−2. (210)

Then, for all θ ∈ (0,∞),

λ1−γ

∫ θ

−θ

∣∣G(2λ + it) − G(λ + it)
∣∣dt −→

λ↓0+ 0. (211)

Proof. We fix λ ∈ (0, λcr/2), θ ∈ (0,∞) and t ∈ (−θ, θ). Observe that

G(2λ + it) − G(λ + it)

=
∫ 2λ

λ

duG′(u + it)

=
∫ 2λ

λ

du

(
q(4)(−λcr + u + it)

λcr − u − it
+ q(3)(−λcr + u + it)

(λcr − u − it)2
− (γ − 1)γ+2(γ − 2)

γ γ λ2
cr

(u + it)γ−3
)

.
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By (197) and (198) there are C1,C2, δ ∈ (0,∞) such that for all u ∈ (0,2δ) and all t ∈ (−δ, δ)

∣∣∣∣q
(4)(−λcr + u + it)

λcr − u − it
− (γ − 1)γ+2(γ − 2)

γ γ λ2
cr

(u + it)γ−3
∣∣∣∣ ≤ C1|u + it |γ−2, and (212)

∣∣∣∣q
(3)(−λcr + u + it)

(λcr − u − it)2

∣∣∣∣ ≤ C2|u + it |γ−2. (213)

Next observe that∫ δ

−δ

dt

∫ 2λ

λ

du

|u + it |2−γ
= λγ

∫ δ/λ

−δ/λ

ds

∫ 2

1

dv

|v + is|2−γ
≤ 2λγ

∫ δ/λ

0

ds

(1 + s2)(2−γ )/2
≤ 2λγ

∫ δ/λ

0
sγ−2 = C3λ,

where C3 = 2δγ−1/(γ − 1). This implies

∀λ ∈ (0, δ), λ1−γ

∫ δ

−δ

∣∣G(2λ + it) − G(λ + it)
∣∣dt ≤ C3(C1 + C2)λ

2−γ . (214)

If θ ∈ (0, δ), then it implies (211). Suppose that θ ≥ δ. By Lemma 5.2, q is analytic on an open subset U that contains
H \ {−λcr}. Thus, G as defined in (210) is analytic on {z ∈C : Re(z) ∈ [0, δ); δ ≤ |Im(z)| ≤ θ} and so is G′. Then, we
can set C4 := max{|G′(u + it)|;u ∈ [0, δ), δ ≤ |t | ≤ θ} and by (214), we get

λ1−γ

∫ θ

−θ

∣∣G(2λ + it) − G(λ + it)
∣∣dt ≤ λ1−γ

∫ δ

−δ

∣∣G(2λ + it) − G(λ + it)
∣∣dt + 2(θ − δ)C4λ

2−γ

≤ (
C3(C1 + C2) + 2(θ − δ)C4

)
λ2−γ ,

which implies (211). �

We apply the variant of Ikehara–Ingham theorem as recalled from Hu & Shi [24] in Theorem B.3 (see Appendix).
Here we take μ(dr) := 1(0,∞)(r)r

2g�(r) dr , which is a finite measure since
∫ ∞

0 r2g�(r) dr = q(3)(0). More generally
observe that for all λ ∈ (0, λcr),

∫ ∞
0 eλrr2g�(r) dr = q(3)(−λ) < ∞. With the notation of Theorem B.3, a := λcr and

F(z) = q(3)(−z) for all z ∈ C such that 0 < Re(z) < λcr and G is as in (210) in Lemma 5.3, with b := 2 − γ and
c := (γ − 1)γ+2/(λ2

crγ
γ ). Thus Theorem B.3 implies that

A(r) :=
∫ ∞

r

u2g�(u)du ∼
r→∞K1r

1−γ e−λcrr , where K1 := (γ − 1)γ+2

�e(2 − γ )λ2
crγ

γ
. (215)

We next set φ(u) := cγ Nnr(� ≤ u−(γ−1)/γ ), for all u ∈ (0,∞) so that A(r) := ∫ ∞
r

u2−1/γ φ(u)du by the definition
(187) of g� . Note that φ is decreasing, thus, for all r, s ∈ (0,∞), we get

φ(r + s)

∫ r+s

r

duu2−1/γ ≤ A(r) − A(r + s) ≤ φ(r)

∫ r+s

r

duu2−1/γ .

To simplify notation we set α := γ − 1 and the previous inequalities implies that

(r + s)αeλcr(r+s)φ(r + s)

∫ r+s

r

duu2−1/γ ≤ (1 + s/r)αeλcrsrαeλcrrA(r) − (r + s)αeλcr(r+s)A(r + s) and

rαeλcrrφ(r)

∫ r+s

r

duu2−1/γ ≥ rαeλcrrA(r) − (1 + s/r)−αe−λcrs(r + s)αeλcr(r+s)A(r + s).

As s is fixed and r → ∞,
∫ r+s

r
duu2−1/γ ∼ sr2−1/γ and the right members of the previous inequalities respectively

tend to K1(e
λcrs − 1) and K1(1 − e−λcrs) by (215). This implies that for all s ∈ (0,∞),

K1s
−1(1 − e−λcrs

) ≤ lim inf
r→∞ rγ+1−1/γ eλcrrφ(r) ≤ lim sup

r→∞
rγ+1−1/γ eλcrrφ(r) ≤ K1s

−1(eλcrs − 1
)
.
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This proves limr→∞ rγ+1−1/γ eλcrrφ(r) = K1λcr by letting s go to 0+. Namely,

cγ Nnr
(
� ≤ r−(γ−1)/γ

) ∼
r→∞K1λcrr

1/γ−1−γ e−λcrr ,

which immediately implies (74) in Theorem 1.8. �

Proof of (75) in Theorem 1.8. The proof of (75) is quite similar to that of (74). We set

∀r ∈ (0,∞), gD(r) := cγ r−1/γ Nnr
(
D ≤ 2r−(γ−1)/γ

)
.

Next, we deduce from (44) that

∀λ ∈ (0,∞),

∫ ∞

0
e−λrgD(r) dr =

∫ ∞

0
cγ r−1−1/γ re−λrNnr

(
r(γ−1)/γ D ≤ 2

) = N
[
ζe−λζ 1{D≤2}

]
. (216)

Recall that q(λ) = wλ(1). Thus, (121) asserts that for all λ ∈ (0,∞),

N
[
e−λζ 1{D>2}

] = Lλ(1,0) = q(λ) − λ1/γ − (
q(λ)γ − λ

)
q ′(λ).

Combining this with the fact that N[1 − e−λζ ] = λ1/γ , we get for all λ ∈ (0,∞),

N
[
1 − e−λζ 1{D≤2}

] = q(λ) − (
q(λ)γ − λ

)
q ′(λ).

By differentiating this equality, we deduce from (216) that

∀λ ∈ (0,∞),

∫ ∞

0
e−λrgD(r) dr = Q(λ), where Q(λ) := 2q ′(λ) − γ q(λ)γ−1q ′(λ)2 − (

q(λ)γ − λ
)
q ′′(λ).

Let us set λD := sup{λ ∈ R : ∫ ∞
0 eλrgD(r) dr < ∞} and HD := {z ∈ C : Re(z) > −λD}. Standard results on Laplace

transform (see for instance Widder [37], Chapter 1) imply that the Laplace transform of gD , denoted by L·(gD), can
be analytically extended to HD by Lz(gD) = ∫ ∞

0 e−zrgD(r) dr , for all z ∈ HD .
Then, Lemma 5.2 implies that Q can be extended analytically on H and that it is continuous on H. We next argue

by contradiction by supposing that λD < λcr: thus HD ⊂ H. By reasoning as in the proof of Lemma 5.2, we get∫ ∞
0 rneλDrgD(r) dr = (−1)nQ(n)(−λD), n ∈ N, and since we assume λD < λcr, Q is analytic in a neighbourhood of

λD , and there exists ε > 0 such that∫ ∞

0
e(λD+ε)rgD(r) dr =

∑
n∈N

εn

n!
∫ ∞

0
eλDrrngD(r) dr =

∑
n∈N

(−ε)n

n! Q(n)(−λD) = Q(−λD − ε) < ∞,

which contradicts the definition of λD . Thus, we have proved that λcr ≤ λD and thus H ⊂ HD .
The principle of isolated zeroes for analytic functions then implies that Q(z) = ∫ ∞

0 e−zrgD(r) dr for all z ∈ H.
Moreover, by Lemma 5.2, Q can be extended analytically on U and −λcr is the only singular point of Q in U . Thus,
it implies that λD = λcr. Moreover, for all z ∈ H we get∫ ∞

0
e−zr rgD(r) dr = −Q′(z) = γ (γ − 1)q(z)γ−2q ′(z)3 + 3

(
γ q(z)γ−1q ′(z) − 1

)
q ′′(z) + (

q(z)γ − z
)
q(3)(z).

For all z ∈ C such that 0 < Re(z) < λcr, we set

F(z) = −Q′(−z) =
∫ ∞

0
ezr rgD(r) dr and G(z) = −Q′(−λcr + z)

λcr − z
− 2(γ − 1)γ+2

γ γ λcr
zγ−2.

Thanks to (197) and (198) in Lemma 5.2, the same arguments as in Lemma 5.3 imply that

λ1−γ

∫ θ

−θ

∣∣G(2λ + it) − G(λ + it)
∣∣dt −→

λ↓0+ 0.
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We leave the details to the reader (the computations are long but straightforward). Then, the variant of Ikehara–Ingham
theorem recalled in Theorem B.3 implies that

∫ ∞

r

ugD(u)du ∼
r→∞K2r

1−γ e−λcrr , where K2 := 2(γ − 1)γ+2

�e(2 − γ )λcrγ γ
. (217)

We next argue as in the proof of (74) to derive (75) from (217). �

Appendix A: Proof of Lemma 2.2

We first recall the following notation from Introduction: let h ∈ C(R+,R+). For any a ∈ [0, h(0)], set

�a(h) = inf
{
t ∈ R+ : h(t) = h(0) − a

}
and ra(h) = inf

{
t ∈ (0,∞) : h(0) − a > h(t)

} ∧ ζh, (218)

with the convention that inf∅ = ∞. Standard results on stopping times assert that �a(h) and ra(h) are [0,∞]-valued
Borel measurable functions of h: see for instance Revuz & Yor [33], Chapter I, Proposition 4.5 and Proposition 4.6,
p. 43. Moreover, it is easy to check that for a fixed h, a �→ �a(h) is left continuous and that a �→ ra(h) is right
continuous. By standard arguments, (a,h) �→ (�a(h), ra(h)) is Borel measurable on the set A := {(a,h) ∈ R+ ×
C(R+,R+) : a ≤ h(0)}. We next recall the following notation: for all (a,h) ∈ A, we set

∀s ∈ R+, Es(h, a) := h
((

�a(h) + s
) ∧ ra(h)

) − h(0) + a,

with the convention that E(h, a) is the null function 0 if �a(h) = ∞. The previous arguments entail that

(a,h) ∈ A �→ E(h, a) ∈ C(R+,R+) is Borel measurable. (219)

Recall from (78) the definition of Exc. We assume that

H ∈ Exc.

Recall that pH : [0, ζH ] → TH stands for the canonical projection and recall from (6) that the mass measure mH is
the pushforward measure of the Lebesgue measure on [0, ζH ] by pH . Suppose that there exist r, s ∈ (0, ζH ) such
that r < s and such that H is constant on (r, s). Thus pH ((r, s)) = {pH (r)} and mH ({pH (r)}) ≥ s − r > 0, which
contradicts the fact that mH is diffuse. Recall from (5) the definition of the set of leaves Lf(TH ) of TH . Suppose there
exist r, s ∈ (0, ζH ) such that r < s and such that H is strictly monotone on (r, s). It easily implies that pH ((r, s)) ⊂
TH \Lf(TH ), but mH (pH ((r, s))) ≥ s − r > 0, which contradicts the fact that mH (TH \Lf(TH )) = 0. Thus, we have
proved the following.

(∗) Let H ∈ Exc. Let r, s ∈ (0, ζH ) be such that r < s. Then on (r, s), H is not monotone.

Let t ∈ (0,∞) and H ∈ Exc be such that ζH > t . Recall the following notation

∀s ∈ R+, H−
s = H(t−s)+ , H+

s = Ht+s ,
←−
H a := E

(
H−, a

)
and

−→
H a := E

(
H+, a

)
,

for all a ∈ [0,Ht ]. Note that H−
0 = H+

0 = Ht . We also recall the following notation

M0,t (H) =
∑

a∈J0,t

δ
(a,

←−
H a,

−→
H a)

, (220)

where J0,t := {a ∈ [0,Ht ] : either �a(H
−) < ra(H

−) or �a(H
+) < ra(H

+)}, which is countable. Then, the defini-
tions (218) and (∗) entail that

∀t ∈ (0,∞),∀H ∈ Exc such that ζH > t , the closure of J0,t is [0,Ht ]. (221)
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We next introduce the compact set Ct := {s ∈ [0, ζH − t] : Ht+s = infr∈[t,t+s] Hr}, whose Lebesgue measure is denoted
by |Ct |. We easily check that pH (Ct ) ⊂ {ρ,pH (t)} ∪ (TH \ Lf(TH )). Since mH is diffuse and supported by the set
of leaves of TH , we get 0 = mH (pH (Ct )) ≥ |Ct |, which implies that |Ct | = 0. Then note that for all a ∈ [0,Ht ],

[
0, �a

(
H+)] \ Ct ⊂

{
s ∈ [

0, �a

(
H+)] : Ht+s > inf

r∈[t,t+s]Hr

}

⊂
⋃

b∈J0,t∩[0,a)

(
�b

(
H+)

, rb
(
H+)) ⊂ [

0, �a

(
H+)]

.

Since |Ct | = 0, this entails,

∀a ∈ [0,Ht ], �a

(
H+) =

∑
b∈J0,t

1[0,a)(b)
(
rb

(
H+) − �b

(
H+)) =

∑
b∈J0,t

1[0,a)(b)ζ−→
H b .

Similar arguments imply that

∀a ∈ [0,Ht ], �a

(
H+) =

∑
b∈J0,t

1[0,a)(b)ζ−→
H b, �a

(
H−) =

∑
b∈J0,t

1[0,a)(b)ζ←−
H b,

(222)
ra

(
H+) =

∑
b∈J0,t

1[0,a](b)ζ−→
H b, ra

(
H−) =

∑
b∈J0,t

1[0,a](b)ζ←−
H b .

Moreover, since H is continuous with compact support, we immediately get

∀ε, η ∈ (0,∞), #
{
a ∈ J : �(←−

H a
) ∨ �

(−→
H a

)
> η or ζ←−

H a ∨ ζ−→
H a > ε

}
< ∞. (223)

Recall from Remark 1.1 that T−→
H a can be identified with a subtree of TH ; therefore, up to this identification, the set of

leaves of T−→
H a distinct from the root is contained in the set of leaves of TH and m−→

H a is the restriction of mH to T−→
H a .

This implies that m−→
H a is diffuse and supported by the set of leaves of T−→

H a . Namely,
−→
H a ∈ Exc. A similar argument

show that
←−
H a ∈ Exc. This fact combined with (221) and (223) implies the following:

∀t ∈ (0,∞),∀H ∈ Exc such that ζH > t,M0,t (H) ∈ Mpt(E), (224)

where Mpt(E) is as in Definition 2.2. Moreover (219) easily implies that (a, t,H) �→ (
←−
H a,

−→
H a) is Borel-measurable,

which immediately implies Lemma 2.2(i).
Let us prove Lemma 2.2(ii). Recall from Definition 2.2 the definition of the sigma field G on Mpt(E). We next fix

t ∈ (0,∞) and H ∈ Exc such that ζH > t . First note that (222) implies that �a(H
+) and ra(H

+) are B(R+) ⊗ G-
measurable functions of (a,M0,t (H)), where B(R+) stands for the Borel sigma field on R+. We then fix s ∈ R+ and
we set a(s) = inf{a ∈ R+ : ra(H+) > s}, with the convention that inf∅= ∞. The previous argument and the fact that
a �→ ra(H

+) is right continuous entail that a(s) can be viewed as a G-measurable function of M0,t (H). Note that if
a(s) < ∞, then

Ht+s = H+
s = Ht − a(s) + −→

H a(s)
(
s − �a(s)

(
H+))

. (225)

Next, for all a ∈R+, set Na = ∑
b∈J0,t

1(a,∞)(b)1{ζ−→
H b>0}. Recall that we previously proved that the closure of the set

{b ∈ J0,t : �b(H
+) < rb(H

+)} is [0,Ht ]. Thus Ht = sup{a ∈ R+ : Na > 0}, which proves that Ht is a G-measurable
function of M0,t (H). Moreover (a,M0,t (H)) �→ −→

H a is B(R+) ⊗ G-measurable. Consequently, (225) implies that
H+

s is a G-measurable function of M0,t (H). Since the Borel sigma field on C(R+,R+) is generated by coordinate
applications, this implies that H+ is a G-measurable function of M0,t (H). A similar argument shows that H− is also
a G-measurable function of M0,t (H), which easily completes the proof of Lemma 2.2(ii).



Decomposition of Lévy trees along their diameter 591

Appendix B: Various results in complex analysis used in the proofs

In this section we briefly recall several results of complex analysis, without proof. Let U be a non-empty open subset
of C (or of R); a function f : U → C is called analytic if it is locally given by a power series expansion. We refer to
the following result as to the principle of isolated zeroes.

Let U be a non-empty connected open subset of C (or of R) and let f : U → C be analytic; if f is not identically
null, then {z ∈ U : f (z) = 0} is discrete (namely it has no limit points).

We use several times the following statement known as the Lagrange inversion formula and whose proof can be
found for instance in Dieudonné [10], Chapter VIII, (7.3). Let z0 ∈ C and r ∈ [0,∞). We denote by D(z0, r) = {z ∈
C : |z− z0| < r} and by D(z0, r) = {z ∈C : |z− z0| ≤ r} respectively the open and the closed disks with centre z0 and
radius r .

Proposition B.1. Let r ∈ (0,∞). Let U be a non-empty open subset of C that contains a closed disk D(0, r). Let
H : U → C be analytic. We set m := maxx∈D(0,r) |H(x)|. Then, for all z ∈ D(0, r/m), the equation x = zH(x) has
a unique solution x =: f (z) in D(0, r). Moreover f : D(0, r/m) → C is analytic and in a neighbourhood of 0 the
following power expansion holds true:

f (z) =
∑
n≥1

zn

n!
(

dn−1

dxn−1

(
H(x)

)n
)∣∣∣∣

x=0
.

Let V be a non-empty open subset of C2. A function F : V → C is called analytic in two variables if for any
(z0, v0) ∈ V there exists ε ∈ (0,∞) and an array of complex numbers (am,n)m,n∈N such that for all z, v ∈ D(0, ε),
(z0 + z, v0 + v) ∈ V and F(z0 + z, v0 + v) = ∑

m,n∈N am,nz
mvn, the sum being absolutely convergent. We shall also

use a standard result for existence and uniqueness of solution to ordinary differential equation in a complex domain
that is recalled as follows (for a proof, see for instance in Hille [23], Theorem 2.2.1).

Proposition B.2. Let V be a non-empty open subset of C2 and let F : V → C be analytic in its two variables. Let
(z0, v0) ∈ V . Then, there exist r ∈ (0,∞) and a unique analytic function q : D(z0, r) → C such that

∀z ∈ D(z0, r),
(
z, q(z)

) ∈ V, q ′(z) = F
(
z, q(z)

)
and q(z0) = v0.

In the proof of Theorem 1.8, we shall use a variant of Ikehara–Ingham theorem as stated in Hu & Shi [24] and
whose proof closely follows the main steps of that of Theorem 11, p. 234, in Tenenbaum [35]. We recall this result
here. To that end, we use the following notations: we set D− := {z ∈ C : Re(z) ≤ 0 and Im(z) = 0}, the negative axis
of the complex plane. For any b ∈ C, we use the following notation zb := exp(b log z), for all z ∈C \D−, where log is
the usual determination of the logarithm in C \D−. Standard results in complex analysis assert that z �→ zb is analytic
in the domain C \ D−.

Theorem B.3. Let a, b, c ∈ (0,∞). Let μ be a finite measure on R+. Assume that
∫
R+ eλrμ(dr) < ∞ for all λ < a.

For all z ∈ C such that 0 < Re(z) < a, we set

F(z) :=
∫
R+

ezrμ(dr) and G(z) := F(a − z)

a − z
− cz−b.

We next assume that

∀θ ∈ (0,∞), η(λ, θ) := λb−1
∫ θ

−θ

∣∣G(2λ + it) − G(λ + it)
∣∣dt −→

λ↓0+ 0. (226)

Then, there exist two constants K1,K2 ∈ (0,∞) such that K1 only depends on a, K2 only depends on a, b, c and such
that for all sufficiently large r ∈ (0,∞)∣∣∣∣earr1−bμ

(
(r,∞)

) − c

�e(b)

∣∣∣∣ ≤ K2 inf
θ≥K1

(
1

θ
+ η

(
1

r
, θ

)
+ (rθ)−b

)
−→
r→∞ 0. (227)
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