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Abstract. We study the scaling limit of the volume and perimeter of the discovered regions in the Markovian explorations known
as peeling processes for infinite random planar maps such as the uniform infinite planar triangulation (UIPT) or quadrangulation
(UIPQ). In particular, our results apply to the metric exploration or peeling by layers algorithm, where the discovered regions
are (almost) completed balls, or hulls, centered at the root vertex. The scaling limits of the perimeter and volume of hulls can be
expressed in terms of the hull process of the Brownian plane studied in our previous work. Other applications include the metric
exploration of the dual graph of our infinite random lattices, and first-passage percolation with exponential edge weights on the
dual graph, also known as the Eden model or uniform peeling.

Résumé. Nous étudions la limite d’échelle du processus des volumes et des périmètres des régions explorées par un algorithme
« d’épluchage » sur les cartes infinies aléatoires telles que l’UIPT (la triangulation infinie uniforme du plan) ou son analogue
quadrangulaire l’UIPQ. Nos résultats s’appliquent en particulier à l’exploration des boules (pour la distance de graphe) complétées
et centrées à la racine de la carte. Dans ce cas, la limite d’échelle coïncide avec le processus du périmètre et du volume des boules
complétées dans le plan brownien. Parmi les autres applications, mentionnons l’exploration des boules complétées sur la carte
duale et la percolation de premier passage avec poids exponentiels sur la carte duale. Ce dernier modèle, équivalent au modèle
d’Eden sur la carte initiale, correspond à l’algorithme d’épluchage uniforme.
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1. Introduction

The spatial Markov property of random planar maps is one of the most important properties of these random lattices.
Roughly speaking, this property says that, after a region of the map has been explored, the law of the remaining part
only depends on the perimeter of the discovered region. The spatial Markov property was first used in the physics
literature, without a precise justification: Watabiki [31] introduced the so-called “peeling process,” which is a growth
process discovering the random lattice step by step. A rigorous version of the peeling process and its Markovian
properties was given by Angel [3] in the case of the Uniform Infinite Planar Triangulation (UIPT), which had been
defined by Angel and Schramm [6] as the local limit of uniformly distributed plane triangulations with a fixed size.
The peeling process has been used since to derive information about the metric properties of the UIPT [3], about
percolation [3,4,26] and simple random walk [7] on the UIPT and its generalizations, and more recently about the
conformal structure [15] of random planar maps. It also plays a crucial role in the construction of “hyperbolic”
random triangulations [5,14].

In the present paper, we derive scaling limits for the perimeter and the volume of the discovered region in a peeling
process of the UIPT. Our methods also apply to the Uniform Infinite Planar Quadrangulation (UIPQ), which was
constructed independently by Krikun [21] and by Chassaing and Durhuus [13] (the equivalence between these two
constructions was obtained by Ménard [25]). By considering the special case of the peeling by layers, we get scaling
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limits for the volume and the boundary length of the hull of radius r centered at the root of the UIPT, or of the UIPQ
(the hull of radius r is obtained by “filling in the finite holes” in the ball of radius r). The limiting processes that arise
in these scaling limits coincide with those that appeared in our previous work [17] dealing with the hull process of
the Brownian plane. This is not surprising since the Brownian plane is conjectured to be the universal scaling limit
of many infinite random lattices such as the UIPT, and it is known that this conjecture holds in the special case of
the UIPQ [18]. We also apply our results to both the dual graph distance and the first-passage percolation distance
corresponding to exponential edge weights on the dual graph of the UIPT (this first-passage percolation model is
also known as the Eden model). In particular, we show that the volume and perimeter of the hulls with respect to
each of these two metrics have the same scaling limits as those corresponding to the graph distance, up to explicit
deterministic multiplicative factors.

For the sake of clarity, the following results are stated and proved in the case of the UIPT corresponding to type II
triangulations in the terminology of Angel and Schramm [6]. In type II triangulations, loops are not allowed but there
may be multiple edges. Section 6 explains the changes that are needed for the extension of our results to other random
lattices such as the UIPT for type I triangulations or the UIPQ. In these extensions, scaling limits remain the same, but
different constants are involved. In the case of type II triangulations, the three basic constants that arise in our results
are

p�2 =
(

2

3

)2/3

, v�2 =
(

2

3

)7/3

and h�2 = 12−1/3.

Here the subscript �2 emphasizes the fact that these constants are relevant to the case of type II triangulations.
So, except in Section 6, all triangulations in this article are type II triangulations. The corresponding UIPT is

denoted by T∞. This is an infinite random triangulation of the plane given with a distinguished oriented edge whose
tail vertex is called the origin (or root vertex) of the map. If t is a rooted finite triangulation with a simple boundary
∂t, we denote the number of inner vertices of t by |t| and the boundary length of t by |∂t|. Furthermore, we say that
t is a subtriangulation of T∞ and write t ⊂ T∞, if T∞ is obtained from t by gluing an infinite triangulation with a
simple boundary along the boundary of t (of course we also require that the root of T∞ coincides with the root of
t after this gluing operation). If t ⊂ T∞ and e is an edge of ∂t, the triangulation obtained by the peeling of e is the
triangulation t to which we add the face incident to e that was not already in t, as well as the finite region that the
union of t and this added face may enclose (recall that the UIPT has only one end [6]). An exploration process (Ti )i≥0
is a sequence of subtriangulations of the UIPT with a simple boundary such that T0 consists only of the root edge
(viewed as a trivial triangulation) and for every i ≥ 0 the map Ti+1 is obtained from Ti by peeling one edge of its
boundary. If the choice of this edge is independent of T∞ \ Ti , the exploration is said to be Markovian and we call it
a peeling process. Different peeling processes correspond to different ways of choosing the edge to be peeled at every
step. See Section 3.1 for a more rigorous presentation.

Our first theorem complements results due to Angel [3] by describing the scaling limit of the perimeter and volume
of the discovered region in a peeling process. We let (St )t≥0 denote the stable Lévy process with index 3/2 and
only negative jumps, which starts from 0 and is normalized so that its Lévy measure is 3/(4

√
π)|x|−5/21x<0, or

equivalently E[exp(λSt )] = exp(tλ3/2) for any λ, t ≥ 0. The process (St )t≥0 conditioned to stay nonnegative is then
denoted by (S+

t )t≥0 (see [8, Chapter VII] for a rigorous definition of (S+
t )t≥0). We also let ξ1, ξ2, . . . be a sequence of

independent real random variables with density

1√
2πx5

e−1/(2x)1{x>0}.

We assume that this sequence is independent of the process (S+
t )t≥0 and, for every t ≥ 0, we set Zt = ∑

ti≤t ξi ·
(�S+

ti
)2 where t1, t2, . . . is a measurable enumeration of the jumps of S+.

Theorem 1 (Scaling limit for general peelings). For any peeling process (Tn)n≥0 of the UIPT, we have the following
convergence in distribution in the sense of Skorokhod( |∂T[nt]|

p�2 · n2/3
,

|T[nt]|
v�2 · n4/3

)
t≥0

(d)−→
n→∞

(
S+

t ,Zt

)
t≥0.
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The proof of Theorem 1 relies on the explicit expression of the transition probabilities of the peeling process.
It follows from this explicit expression that the process of perimeters (|∂Tn|)n≥0 is a h-transform of a random walk
with independent increments in the domain of attraction of a spectrally negative stable distribution with index 3/2
(Proposition 6). This h-transform is interpreted as conditioning the random walk to stay above level 2, and in the
scaling limit this leads to the process (S+

t )t≥0. The common distribution of the variables ξi is the scaling limit of the
volume of a Boltzmann triangulation (see Section 2.1) conditioned to have a large boundary size. The appearance
of this distribution is explained by the fact that the “holes” created by the peeling process are filled in by finite
triangulations distributed according to Boltzmann weights (this is called the free distribution in [6, Definition 2.3]).
As a corollary of Theorem 1, we prove that any peeling process of the UIPT will eventually discover the whole
triangulation, i.e.,

⋃
Tn = T∞, no matter what peeling algorithm is used (of course as long as the exploration is

Markovian), see Corollary 7. We note that Theorem 1 can be applied to various peeling processes that have been
considered in earlier works: peeling along percolation interfaces [3,4], peeling along simple random walk [7], peeling
along a Brownian or a SLE6 exploration of the Riemann surface associated with the UIPT [15], etc. In the present
work, we apply Theorem 1 to three specific peeling algorithms, each of which is related to a “metric” exploration of
the UIPT. The first one is the peeling by layers, which essentially grows balls for the graph distance on the UIPT,
the second one is the peeling by layers in the dual map of the UIPT and the last one is the uniform peeling, which is
related to first-passage percolation with exponential edge weights on the dual map of the UIPT.

Scaling limits for the hulls

For every integer r ≥ 1, the ball Br(T∞) is defined as the union of all faces of T∞ whose boundary contains at least
one vertex at graph distance smaller than or equal to r − 1 from the origin (when r = 0 we agree that B0(T∞) is the
trivial triangulation consisting only of the root edge). The hull B•

r (T∞) is then obtained by adding to the ball Br(T∞)

the bounded components of the complement of this ball (see Figure 1). Note that B•
r (T∞) is a finite triangulation

with a simple boundary. One can define a particular peeling process (Ti )i≥0 (called the peeling by layers) such that,
for every n ≥ 0, there exists a random integer Hn such that B•

Hn
(T∞) ⊂ Tn ⊂ B•

Hn+1(T∞). Scaling limits for the
volume and the boundary length of the hulls can then be derived by applying Theorem 1 to this particular peeling
algorithm. A crucial step in this derivation is to get information about the asymptotic behavior of Hn when n → ∞
(Proposition 10). Before stating our limit theorem for hulls, we need to introduce some notation.

For every real u ≥ 0, set ψ(u) = u3/2. The continuous-state branching process with branching mechanism ψ is the
Feller Markov process (Xt )t≥0 with values in R+, whose semigroup is characterized as follows: for every x, t ≥ 0
and every λ > 0,

E
[
e−λXt | X0 = x

] = exp
(−x

(
λ−1/2 + t/2

)−2)
.

Fig. 1. From left to right, the “cactus” representation of the UIPT, the ball Br(T∞), whose boundary may have several components, and the hull
B•

r (T∞), whose boundary is a simple cycle.
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Note that X gets absorbed at 0 in finite time. It is easy to construct a process (Lt )t≥0 with càdlàg paths such that the
time-reversed process (L(−t)−)t≤0 (indexed by negative times) is distributed as X “started from +∞ at time −∞”
and conditioned to hit zero at time 0 (see [17, Section 2.1] for a detailed presentation of the process L). We consider
the sequence (ξi)i≥1 introduced before Theorem 1, and we assume that this sequence is independent of L. We then
set, for every t ≥ 0

Mt =
∑
si≤t

ξi · (�Lsi )
2,

where s1, s2, . . . is a measurable enumeration of the jumps of L.

Theorem 2 (Scaling limit of the hull process). We have the following convergence in distribution in the sense of
Skorokhod,(

n−2
∣∣∂B•[nt](T∞)

∣∣, n−4
∣∣B•[nt](T∞)

∣∣)
t≥0

(d)−→
n→∞(p�2 ·Lt/h�2 , v�2 ·Mt/h�2 )t≥0.

A scaling argument shows that the limiting process has the same distribution as(
p�2

(h�2)2
Lt ,

v�2

(h�2)4
Mt

)
t≥0

but the form given in Theorem 2 helps to understand the connection with Theorem 1.
We note that the convergence in distribution of the variables r−2|∂B•

r (T∞)| as r → ∞ had already been obtained
by Krikun [22, Theorem 1.4] via a different approach. The limiting process in Theorem 2 appeared in the companion
paper [17] as the process describing the evolution of the boundary length and the volume of hulls in the Brownian
plane (in the setting of the Brownian plane, the length of the boundary has to be defined in a generalized sense). The
paper [17] contains detailed information about distributional properties of this limiting process (see Proposition 1.2
and Theorem 1.4 in [17]). In particular, for every fixed s > 0, the joint distribution of the pair (Ls ,Ms) is known
explicitly. Here we mention only the Laplace transform of the marginal laws:

E
[
e−λLs

] =
(

1 + λs2

4

)−3/2

,

E
[
e−λMs

] = 33/2 cosh

(
(2λ)1/4s√

8/3

)(
cosh2

(
(2λ)1/4s√

8/3

)
+ 2

)−3/2

.

Note in particular that Lr follows a Gamma distribution with parameter 3/2.

Metric exploration of the dual map

Consider now the dual map T ∗∞ of the UIPT, whose vertices are the faces of the UIPT, and where two vertices are
connected by an edge if the corresponding faces of the UIPT share a common edge. The origin of T ∗∞, or root face
of T∞, is the face incident to the right side of the root edge of T∞. We equip T ∗∞ with the dual graph distance, and
we let B

•,∗
r (T∞) denote the hull of the ball of radius r in T ∗∞, i.e. the map made of all the faces of T∞ which are at

dual graph distance less than or equal to r from the root face, together with the finite regions these faces may enclose.
Then the techniques developed for the proof of Theorem 2 also give the following result.

Theorem 3 (Scaling limit of the hull process on the dual map). We have the following convergence in distribution
in the sense of Skorokhod,(

n−2
∣∣∂B

•,∗
[nt](T∞)

∣∣, n−4
∣∣B•,∗

[nt](T∞)
∣∣)

t≥0
(d)−→

n→∞(p�2 ·Lt/h∗
�2

, v�2 ·Mt/h∗
�2

)t≥0,

where h∗
�2 = h�2 + (p�2)−1.
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Fig. 2. Illustration of the exploration along first-passage percolation on the dual of the UIPT. We represented F•
t for some value of t > 0. By

standard properties of exponential variables, the next dual edge to be explored is uniformly distributed on the boundary.

First-passage percolation

Consider again the dual map T ∗∞ of the UIPT. We assign independently to each edge of the dual map an exponential
weight with parameter 1. For every t ≥ 0, we write Ft for the union of all faces that may be reached from the root
face by a (dual) path whose total weight is at most t . As usual, F•

t stands for the hull of Ft , which is obtained
by filling in the finite holes of Ft inside T∞, see Figure 2. Then F•

t is a triangulation with a simple boundary. If
0 = τ0 < τ1 < · · · < τn < · · · are the jump times of the process t 
→ F•

t , it is not hard to verify that the sequence
(F•

τn
)n≥0 is a uniform peeling process, meaning that at each step the edge to be peeled off is chosen uniformly at

random among all edges of the boundary. See Proposition 15 for a precise statement. Then Theorem 1 leads to the
following result:

Theorem 4 (Scaling limits for first passage percolation). We have the following convergence in distribution for the
Skorokhod topology(

n−2
∣∣∂F•[nt]

∣∣, n−4
∣∣F•[nt]

∣∣)
t≥0

(d)−→
n→∞(p�2 ·Lp�2 t , v�2 ·Mp�2 t )t≥0.

Set c1 = h∗
�2/h�2 = 4 and c2 = (p�2 h�2)−1 = 3. If we compare Theorem 2, Theorem 3 and Theorem 4, we

see that the scaling limits of the volume and the perimeter are the same for B•
r (T∞), for B

•,∗
c1·r (T∞) and for F•

c2·r .

This is consistent with the conjecture saying that balls for the dual graph distance or for first-passage percolation
distance grow like deterministic balls, up to a constant multiplicative factor (this property is not expected to hold for
deterministic lattices such as Z2, but in some sense the UIPT is more isotropic). Informally, writing dgr for the graph
distance (on the UIPT), d∗

gr for the dual graph distance and dfpp for the first-passage percolation distance, our results
suggest that in large scales,

d∗
gr(·, ·) ≈ c1 · dgr(·, ·), dfpp(·, ·) ≈ c2 · dgr(·, ·).

Note that dgr is a metric on the UIPT, whereas dfpp or d∗
gr are metrics on the dual graph. Still it is easy to restate

the previous display in the form of a precise conjecture (see Section 5.3). This conjecture is consistent with the
recent calculations of Ambjørn and Budd [1] for two and three-point functions in first-passage percolation on random
triangulations, and is the subject of the forthcoming work [16].

We finally note that our uniform peeling process can be viewed as a variant of the classical Eden model on the (dual
graph of the) UIPT. The same variant has been considered by Miller and Sheffield [27] and served as a motivation
for the construction of Quantum Loewner Evolutions. In fact the process QLE( 8

3 ,0) that is constructed in [27] is a
continuum analog of the Eden model on the UIPT. See Section 2.2 in [27] for more details.
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The organization of the paper follows the preceding presentation. In Section 2, we recall some enumeration results
for triangulations that play an important role in the paper, and we also give a result connecting the UIPT with Boltz-
mann triangulations, which is of independent interest (Theorem 5). This result shows that the distributions of the ball
of radius r in the UIPT and in a Boltzmann triangulation are linked by an absolute continuity relation involving a
martingale, which has an explicit expression in terms of the sizes of the cycles bounding the connected components
of the complement of the ball.

2. Preliminaries

Throughout this work, we consider only rooted planar maps, and we often omit the word rooted. We view planar maps
as graphs drawn on the sphere, with the usual identification modulo orientation-preserving homeomorphisms. Recall
that, except in Section 6 below, we restrict our attention to type II triangulations, meaning that there are no loops,
but multiple edges are allowed. We define a triangulation with a boundary as a rooted planar map without loops, with
a distinguished face (the external face) bounded by a simple cycle (called the boundary), such that all faces except
possibly the distinguished one are triangles. If τ is a triangulation with a boundary, we denote its boundary by ∂τ .
Vertices of τ not on the boundary are called inner vertices. The size |τ | of τ is defined as the number of inner vertices
of τ . The length |∂τ | of ∂τ (or perimeter of τ ) is the number of edges, or equivalently the number of vertices, in ∂τ .
Note that |∂τ | ≥ 2 since loops are not allowed.

2.1. Enumeration

We gather here several results about the asymptotic enumeration of planar triangulations, see [3,6] and the references
therein. For every n ≥ 0 and p ≥ 2, we let Tn,p denote the set of all (type II) triangulations of size n with a simple
boundary of length p, that are rooted at an edge of the boundary oriented so that the external face lies on the right of
the root edge. We have

#Tn,p = 2n+1(2p − 3)!(2p + 3n − 4)!
(p − 2)!2n!(2p + 2n − 2)! ∼

n→∞C(p)

(
27

2

)n

n−5/2, (1)

where

C(p) = 4

37/2
√

π

(2p − 3)!
(p − 2)!2

(
9

4

)p

∼
p→∞

1

54π
√

3
9p√

p. (2)

The exact formula for #Tn,p in (1) gives #Tn,p = 1 for n = 0 and p = 2. This formula is valid provided we make the
special convention that the rooted planar map consisting of a single (oriented) edge between two vertices is viewed
as a triangulation with a simple boundary of length 2: This will be called the trivial triangulation. It will be used in
the sequel as the starting point of the peeling process, and also sometimes to “fill in” holes of size two arising in this
process.

The exponent 5/2 in (1) is typical of the enumeration of planar maps and shows that

Z(p) :=
∞∑

n=0

(
2

27

)n

#Tn,p < ∞.

The numbers Z(p) can be computed exactly (see [3, Proposition 1.7]): for every p ≥ 2,

Z(p) = (2p − 4)!
(p − 2)!p!

(
9

4

)p−1

. (3)

Triangulations in Tn,p , for some n ≥ 0, are also called triangulations of the p-gon. By definition, the (critical)
Boltzmann distribution on triangulations of the p-gon is the probability measure on

⋃
n≥0 Tn,p that assigns mass
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(2/27)nZ(p)−1 to each triangulation of Tn,p . This is also called the free distribution in [6]. It follows from (3) that
for every x ∈ [0,1/9],

∞∑
p=1

Z(p + 1)xp = 1

2
+ (1 − 9x)3/2 − 1

27x
.

From (3) and the last display, we get that

Z(p + 1) ∼
p→∞ t�2 · 9pp−5/2, where t�2 = 1

4
√

π
, (4)

∞∑
p=1

Z(p + 1)9−p = 1

6
, (5)

∞∑
p=1

pZ(p + 1)9−p = 1

3
. (6)

Finally, we note that there is a bijection between rooted triangulations of the 2-gon having n inner vertices and
rooted plane triangulations having n+2 vertices: Just glue together the two boundary edges of a triangulation of the 2-
gon to get a triangulation of the sphere. The Boltzmann distribution on rooted triangulations of the 2-gon thus induces
a probability measure on the space of all triangulations of the sphere (including the trivial one). A random triangulation
distributed according to this probability measure is called a Boltzmann triangulation of the sphere. Equivalently, the
law of a Boltzmann triangulation of the sphere assigns a mass (2/27)n−2Z(2)−1 to every triangulation of the sphere
with n vertices (including the trivial triangulation for which n = 2).

2.2. Boltzmann triangulations and the UIPT

In this section, we describe a relation between Boltzmann triangulations of the sphere and the UIPT. This relation
is not really needed in what follows but it helps to understand the importance of Boltzmann triangulations in the
subsequent developments.

Let TBol be a Boltzmann triangulation of the sphere. As in the introduction above, for every integer r ≥ 1, let
Br(TBol) denotes the ball of radius r in TBol. So Br(TBol) is the rooted planar map obtained by keeping only those
faces of TBol that are incident to at least one vertex at distance at most r − 1 from the root vertex. We view Br(TBol)

as a random variable with values in the space of all (type II) triangulations with holes. Here, a triangulation with
holes is a planar map without loops, with a finite number of distinguished faces called the holes, such that all faces
except possibly the holes are triangles, the boundary of every hole is a simple cycle, whose length is called the size
of the hole, and two distinct holes cannot share a common edge (the triangulations with a simple boundary that we
considered above are just triangulations with a single hole). In the case of Br(TBol), holes obviously correspond to
the connected components of the complement of the ball, in a way analogous to the middle part of Figure 1. We write
	1(r), 	2(r), . . . , 	nr (r) for the sizes of the holes of Br(TBol) enumerated in nonincreasing order. We also write Fr

for the σ -field generated by Br(TBol) and we let F0 be the trivial σ -field. Recall our notation Br(T∞) for the ball of
radius r in the UIPT, which is also viewed as a random triangulation with holes.

Theorem 5. Let f (n) = n
2 · (n − 1) · (2n − 3) for every integer n ≥ 3 and f (2) = 9. The random process (Mr )r≥0

defined by

Mr :=
nr∑

i=1

f
(
	i(r)

)
, for r ≥ 1,

and M0 = 1, is a martingale with respect to the filtration (Fr )r≥0. Moreover, if F is any nonnegative measurable
function on the space of triangulations with holes, we have, for every r ≥ 1,

E
[
F

(
Br(T∞)

)] = E
[
MrF

(
Br(TBol)

)]
. (7)
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The second part of the theorem shows that the law of a ball in the UIPT can be obtained by biasing the law of the
corresponding ball in a Boltzmann triangulation using the martingale Mr . This is an analog of a classical result for
Galton–Watson trees: In order to get the first k generations of a Galton–Watson tree conditioned on non-extinction, one
biases the law of the first k generations of an unconditioned Galton–Watson tree using a martingale which is simply
the size of generation k of the tree (see e.g. [24, Chapter 12]). In a sense, the UIPT can thus be viewed as a Boltzmann
triangulation conditioned to be infinite. This is related to the discussion in Section 6 of [6], which associates with a
Boltzmann triangulation a multitype Galton–Watson tree describing the structure of balls, in such a way that the tree
associated with the UIPT is just the same Galton–Watson tree conditioned on non-extinction.

Proof. It suffices to prove the second part of the theorem. Indeed, if (7) holds, we immediately get, for every 1 ≤ k ≤ 	,
and every function F ,

E
[
M	F

(
Bk(TBol)

)] = E
[
MkF

(
Bk(TBol)

)]
,

and it follows that E[M	 |Fk] = Mk .
In order to verify the second assertion of the theorem, we will provide explicit formulas for the probability that the

ball of radius r in TBol, resp. in T∞, is equal to a given triangulation with holes. Let t be a fixed triangulation with
holes. Note that P(Br(TBol) = t) > 0 if and only if all vertices belonging to the boundaries of the holes of t are at
distance r from the root vertex, and all faces of t other than the holes are incident to (at least) one vertex at distance
at most r − 1 from the root vertex. Furthermore, the preceding conditions are also necessary for P(Br(T∞) = t) to be
positive.

Write n for the total number of vertices of t, m ≥ 0 for the number of holes of t and p1, . . . , pm for the respective
sizes of the holes of t – the holes are enumerated in some deterministic manner given t. Then, for every integer q ≥ n,
the number of triangulations with q vertices whose ball of radius r coincides with t is equal to

∑
n1+···+nm=q−n

(
m∏

j=1

#Tnj ,pj

)
,

where the sum is over all choices of the nonnegative integers n1, . . . , nm such that n1 + · · · + nm = q − n, with the
additional constraint that ni > 0 if pi = 2. The reason for this last constraint if the fact that a hole of size 2 cannot be
filled by the trivial triangulation, because this would mean that we glue the two edges of the boundary. Note that when
there is no hole (m = 0) the quantity in the last display should be interpreted as equal to 1 if q = n and to 0 otherwise.
The total Boltzmann weight of those triangulations whose ball of radius r coincides with t is then

∞∑
q=n

(
2

27

)q−2

Z(2)−1
∑

n1+···+nm=q−n

(
m∏

j=1

#Tnj ,pj

)
,

where we impose the same constraint as before on the integers n1, . . . , nm in the sum. We set Z′(p) = Z(p) if p > 2
and Z′(2) = Z(2) − 1. The quantity in the last display equals(

2

27

)n−2

Z(2)−1
∞∑

n1=1{p1=2}
· · ·

∞∑
nm=1{pm=2}

m∏
j=1

((
2

27

)nj

#Tnj ,pj

)
=

(
2

27

)n−2

Z(2)−1
m∏

j=1

Z′(pj ),

and so we have proved that

P
(
Br(TBol) = t

) =
(

2

27

)n−2

Z(2)−1
m∏

j=1

Z′(pj ). (8)

Next consider the UIPT T∞. We can similarly compute P(Br(T∞) = t), using the fact that T∞ is the local limit
of triangulations with a large size. If, for every integer q ≥ 3, T(q) denotes a uniformly distributed plane triangulation
with q vertices, we have

P
(
Br(T∞) = t

) = lim
q→∞P

(
Br(T(q)) = t

)
.
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Recalling that the number of rooted plane triangulations (of type II) with q vertices is #Tq−2,2 the same counting
argument as above gives for q ≥ n,

P
(
Br(T(q)) = t

) = (#Tq−2,2)
−1

∑
n1+···+nm=q−n

(
m∏

j=1

#Tnj ,pj

)
,

where the sum is again over nonnegative integers n1, . . . , nm such that n1 + · · · + nm = q − n, with the same addi-
tional constraint that ni > 0 if pi = 2. From the asymptotics in (1), it is an easy matter to verify that, for any ε > 0, we
can choose K sufficiently large so that the asymptotic contribution of terms corresponding to choices of n1, . . . , nm

where ni ≥ K for two distinct values of i ∈ {1, . . . ,m} is bounded above by ε (compare with [6, Lemma 2.5]). Thanks
to this observation, we get from the asymptotics (1) that

P
(
Br(T∞) = t

) =
(

2

27

)n−2

C(2)−1
m∑

j=1

C(pj )
∑

n1,...,nj−1,nj+1,...,nm

(
m∏

i=1
i �=j

(
2

27

)ni

#Tni ,pi

)
,

where the second sum is over all choices of n1, . . . , nj−1, nj+1, . . . , nm ≥ 0 such that ni > 0 if pi = 2. It follows that

P
(
Br(T∞) = t

) =
(

2

27

)n−2

C(2)−1
m∑

j=1

C(pj )

(
m∏

i=1
i �=j

Z′(pi)

)
. (9)

Comparing (9) with (8), we get

P
(
Br(T∞) = t

) =
(

Z(2)

C(2)

m∑
j=1

C(pj )

Z′(pj )

)
P
(
Br(TBol) = t

)
.

Note that, for every integer p ≥ 2,

Z(2)

C(2)

C(p)

Z′(p)
= f (p),

and so we have obtained P(Br(T∞) = t) = g(t)P(Br(TBol) = t), where g(t) := ∑m
j=1 f (pj ). Formula (7) now follows

since Mr = g(Br(TBol)) by definition. �

Remark. Formula (9) is obviously related to Proposition 4.10 in [6]. We did not use directly that result because it
is apparently restricted to type III triangulations (the formula of Proposition 4.10 in [6] does not seem to take into
account the possibility of holes of size 2).

3. Asymptotics for a general peeling process

3.1. Peeling

The peeling process is an algorithmic procedure that “discovers” the UIPT step by step. We give a brief presentation
of this algorithm and refer to [2–4,7] for details.

Formally, the algorithm produces a nested sequence of rooted triangulations with a simple boundary T0 ⊂ T1 ⊂
· · · ⊂ Tn ⊂ · · · ⊂ T∞, such that, for every i ≥ 0, conditionally on Ti , the remaining part T∞ \ Ti has the same distribu-
tion as a UIPT of the |∂Ti |-gon (see [3, Section 1.2.2] for the definition of the UIPT of the p-gon).

Assuming that we are given the UIPT T∞, the sequence T0,T1, . . . is constructed inductively as follows. First T0
is the trivial triangulation. Then, for every n ≥ 0, conditionally on Tn we pick an edge en on ∂Tn, either deterministi-
cally (i.e. as a deterministic function of Tn) or via a randomized algorithm that may involve only random quantities



Scaling limits for the peeling process on random maps 331

Fig. 3. Illustration of cases C, Lk , and Rk .

independent of T∞. The triangulation Tn+1 is then obtained by adding to Tn the triangle incident to en which was not
contained in Tn (this is called the revealed triangle) and the bounded region that may be enclosed in the union of Tn

and the revealed triangle. We sometimes say that Tn+1 is obtained from Tn by peeling the edge en. Notice that, at the
first step, there is only one (oriented) edge in the boundary of T0, but we can choose to reveal the triangle on the right
or on the left of this oriented edge.

The point is the fact that the distribution of the whole sequence T0,T1, . . . can be described in a simple way
and provides a construction of T∞ (although this is not obvious, we shall see later that T∞ is the limit of the finite
triangulations Tn). Remarkably, the description of the law of T0,T1, . . . is essentially the same independently of the
(deterministic or randomized) algorithm that we use to choose the peeled edge at step n.

In order to describe the conditional law of Tn+1 given Tn and the peeled edge en, we need to distinguish several
cases. Suppose that at step n ≥ 0 the triangulation Tn has a boundary of length p. The revealed triangle at time n may
be of several different types (see Figure 3):

1. Type C: The revealed triangle has a vertex in the “unknown region.” This occurs with probability

P
(
C | |∂Tn| = p

) = q
(p)

−1 = 2

27

C(p + 1)

C(p)
. (10)

2. Types Lk and Rk : The three vertices of the revealed triangle lie on the boundary of Tn. This triangle thus “swallows”
a piece of the boundary of ∂Tn of length k ∈ {1, . . . , p − 2}. These events are denoted by Rk or Lk , depending on
whether the edge of the revealed triangle that comes after the peeled edge in clockwise order is incident or not to
the infinite part of the triangulation (see Figure 3). These events have a probability equal to

P
(
Lk | |∂Tn| = p

) = P
(
Rk | |∂Tn| = p

) := q
(p)
k = Z(k + 1)

C(p − k)

C(p)
. (11)

In cases Rk and Lk , we also need to specify the distribution of the triangulation with a boundary of length k + 1
that is enclosed in the union of Tk and the revealed triangle. If by convention we root this triangulation at the unique
edge of its boundary incident to the revealed triangle, we specify its distribution by saying that it is a Boltzmann
triangulation of the (k +1)-gon. Note that when k = 1, there is a positive probability that this Boltzmann triangulation
is the trivial one, and this simply means that the enclosed region is empty, or equivalently that the revealed triangle
has two edges on the boundary of Tn.

The preceding considerations completely describe the distribution of the sequence T0,T1, . . . – modulo of course
the deterministic or randomized algorithm that is used at every step to select the peeled edge. The choices of types
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C, Lk , and Rk , and of the Boltzmann triangulations that are used (whenever needed) to “fill in the holes” are made
independently at every step with the probabilities given above.

At this point, we note that the geometry of the random triangulations Tn depends on the peeling algorithm used to
choose the peeled edge at every step. On the other hand, it should be clear from the previous description that the law
of the process (|Tn|, |∂Tn|)n≥0 does not depend on this algorithm. In the present section, we will be interested only in
this process, and for this reason we do not need to specify the peeling algorithm. Later, in Sections 3 and 4, we will
consider particular choices of the peeling algorithm, which are useful to investigate various properties of the UIPT.

To simplify notation, we set, for every n ≥ 0,

Pn = |∂Tn| and Vn = |Tn|.
In the remaining part of this section, we will prove Theorem 1 describing the scaling limit of the process

(Pn,Vn)n≥0 (see [3] and [7, Theorem 5] in the quadrangular case for related statements). We will also establish a
few consequences of Theorem 1, which are of independent interest.

3.2. The scaling limit of perimeters

The description of the previous section shows that both processes (Pn)n≥0 and (Pn,Vn)n≥0 are Markov chains. The
Markov chain (Pn)n≥0 starts from P0 = 2 and takes values in {2,3, . . .}. Its transition probabilities are given by

E
[
f (Pn+1) | Pn

] = f (Pn + 1) · q(Pn)
−1 + 2

p−2∑
k=1

f (Pn − k) · q(Pn)
k . (12)

Using (2), we may set q−1 = limp→∞ q
(p)

−1 = 2
3 and similarly qk = limp→∞ q

(p)
k = Z(k + 1)9−k for every k ≥ 1.

From (5) and (6), it is an easy matter to verify that

q−1 + 2
∑
k≥1

qk = 1 and q−1 − 2
∑
k≥1

kqk = 0,

so that the probability measure ν on Z given by ν(1) = q−1 and ν(−k) = 2qk for every k ≥ 1 is centered (note that ν

is supported on {. . . ,−3,−2,−1,1}). In fact, the weights qi describe the law of the one-step peeling in the half-plane
version of the UIPT, see [2,4].

We write (Wn)n≥0 for a random walk with values in Z, started from W0 = 2 and with jump distribution ν. Notice
that the jumps of W are bounded above by 1. Furthermore, using (4) we have for every n ≥ 0,

ν(−k) = 2qk ∼
k→∞ 2t�2k

−5/2. (13)

It follows that ν is in the domain of attraction of a spectrally negative stable law of index 3/2. This implies the
convergence in distribution in the Skorokhod sense,(

W[nt]
p�2 · n2/3

)
t≥0

(d)−→
n→∞(St )t≥0, (14)

where

p�2 =
(

8t�2
√

π

3

)2/3

= (2/3)2/3, (15)

and S is the stable Lévy process with index 3/2 and no positive jumps, whose distribution is determined by the Laplace
transform E[exp(λSt )] = exp(tλ3/2) for every t, λ ≥ 0. Note that the Lévy measure of S is 3

4
√

π
|x|−5/21{x<0}dx.

Our first objective is to get a scaling limit analogous to (14) for (Pn)n≥0. To this end, recall from [8, Section VII.3]
that one can define a process (S+

t )t≥0 with càdlàg sample paths, which is distributed as (St )t≥0 “conditioned to stay
positive forever.” The scaling limit in the following result was suggested in [3] before Lemma 3.1. To simplify notation
we write [[k,∞[[={k, k + 1, k + 2, . . .} and ]]−∞, k]] = {. . . , k − 2, k − 1, k} for every integer k ∈ Z.



Scaling limits for the peeling process on random maps 333

Proposition 6.

(i) The Markov chain (Pn)n≥0 is distributed as the random walk (Wn)n≥0 conditioned not to hit ]]−∞,1]]. Equiva-
lently, (Pn)n≥0 is distributed as the h-transform of the random walk (Wn)n≥0 killed upon hitting ]]−∞,1]], where
the function h defined on Z by

h(p) :=
{

9−pC(p) if p ≥ 2,
0 if p ≤ 1,

(16)

is, up to multiplication by a positive constant, the unique nontrivial nonnegative function that is ν-harmonic on
[[2,∞[[ and vanishes on ]]−∞,1]].

(ii) The following convergence in distribution holds in the Skorokhod sense,(
P[nt]

p�2 · n2/3

)
t≥0

(d)−→
n→∞

(
S+

t

)
t≥0, (17)

where we recall that p�2 = (2/3)2/3.

Proof. (i) Let h be defined by (16). From the explicit formulas (10) and (11), one immediately gets that, for every
p ≥ 2 and every k ∈ {−1,1,2, . . . , p − 2},

q
(p)
k = h(p − k)

h(p)
qk. (18)

It then follows from (12) and the definition of ν that, for every p ≥ 2 and k ∈ {−p + 2,−p + 3, . . . ,−1,1},

P(Pn+1 = p + k | Pn = p) = h(p + k)

h(p)
ν(k) = h(p + k)

h(p)
P(Wn+1 = p + k | Wn = p). (19)

By summing over k, we get, for every p ≥ 2,∑
k∈Z

h(p + k)

h(p)
ν(k) = 1

so that h is ν-harmonic on [[2,∞[[. Note that the uniqueness (up to a multiplicative constant) of a positive function
that is ν-harmonic on [[2,∞[[ and vanishes on ]]−∞,1]] is easy, since, for every p ≥ 2, the value of this function at
p + 1 is determined from its values for 2 ≤ i ≤ p. Furthermore, formula (19) precisely says that (Pn)n≥0 is distributed
as the h-transform of the random walk (Wn)n≥0 killed upon hitting ]]−∞,1]]. The fact that this h-transform can be
interpreted as the random walk W conditioned to stay in [[2,∞[[ is classical, see e.g. [9].

(ii) This follows from the invariance principle proved in [12]. �

From (2), we have

h(p) ∼
p→∞

1

54π
√

3

√
p. (20)

Still from (2), we can write, for p ≥ 2,

h(p) = 1

37/24
√

π

(2p − 3) × (2p − 5) × · · · × 3 × 1

(2p − 4) × (2p − 6) × · · · × 4 × 2
,

so that h(p +1)/h(p) = (2p −1)/(2p −2), proving that h is monotone increasing on [[2,∞[[. Then, for every j ≥ 1,
and every p with p ≥ j + 2,

q
(p)
j = h(p − j)

h(p)
qj ≤ qj (21)
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and similarly, for every p ≥ 2,

q
(p)

−1 = h(p + 1)

h(p)
q−1 ≥ q−1. (22)

These bounds will be useful later.

3.3. A few applications

Let us give a few applications of Proposition 6. First, it is easy to recover from this proposition the known fact (see
[3, Claim 3.3]) that the Markov chain (Pn)n≥0 is transient,

Pn
a.s.−→

n→∞+∞. (23)

To see this, let p ≥ 2 and write Pp for a probability measure under which the random walk W with jump distribution
ν starts from p. For every y ∈ Z, set Ty = min{n ≥ 0 : Wn = y}. Note that Ty < ∞ a.s. because the random walk
W is recurrent. Similarly, suppose that T̃y is distributed under Pp as the hitting time of y for a Markov chain with
the same transition kernel as (Pn)n≥0 but started from p. Then, standard properties of h-transforms give for every
p,y ∈ [[2,∞[[,

Pp(T̃y < ∞) = h(y)

h(p)
Pp(Wk ≥ 2,∀k ≤ Ty).

Since h is monotone increasing on [[2,∞[[, the right-hand side is smaller than 1 when p > y, giving the desired
transience.

The following corollary was conjectured in [7, Section 5.1].

Corollary 7. Any peeling (Tn)n≥0 of the UIPT will eventually discover T∞ entirely, that is⋃
n≥0

Tn = T∞, a.s.

Proof. It is enough to prove that, if n0 ≥ 1 is fixed, then a.s. every vertex of ∂Tn0 belongs to the interior of Tn1 for
some n1 > n0 sufficiently large. Indeed, if this property holds, an inductive argument shows that the minimal distance
between a vertex outside Tn and the root tends to infinity as n → ∞, which gives the desired result.

So let us fix n0 and a vertex v of ∂Tn0 , and argue conditionally on Tn0 and v. We note that, for every n ≥ n0,
conditionally on the event that v is still on the boundary of Tn, the probability that v will be “surrounded” by the
revealed triangle at step n + 1, and therefore will belong to the interior of Tn+1, is at least

Pn−2∑
k=[Pn/2]+1

q
(Pn)
k

with the convention that the sum is 0 if [Pn/2] + 1 > Pn − 2. If Pn is large enough, the latter quantity is bounded
below by

[3Pn/4]∑
k=[Pn/2]+1

q
(Pn)
k =

[3Pn/4]∑
k=[Pn/2]+1

h(Pn − k)

h(Pn)
qk ≥ cP

−3/2
n ,

where c is a positive constant and we used (4) and (20) in the last inequality. Recalling that Pn → ∞ a.s., we see that
the proof will be complete if we can verify that the series

∞∑
n=1

P
−3/2
n

diverges a.s.
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To this end, we argue by contradiction and assume that we can find two constants M < ∞ and ε > 0 such that the
probability of the event{ ∞∑

n=1

P
−3/2
n ≤ M

}

is greater than ε. On this event, for any t > 1 and any n ≥ 1, we have∫ t

1
du

(
P[nu]
n2/3

)−3/2

≤ 1

n

[nt]∑
i=n

(
Pi

n2/3

)−3/2

=
[nt]∑
i=n

P
−3/2
i ≤ M.

Using the convergence of Proposition 6(ii), we obtain that, for every t > 1, the probability of the event
{∫ t

1 du(S+
u )−3/2 ≤ (p�2)−3/2M} is greater than ε. Letting t → ∞ we get that

P

(∫ ∞

1

du

(S+
u )3/2

≤ (p�2)
−3/2M

)
≥ ε.

This is a contradiction because∫ ∞

1

du

(S+
u )3/2

= ∞ a.s.

as can be seen by an application of Jeulin’s lemma [20, Proposition 4 c)], noting that we have (S+
u )−3/2 (d)=

u−1(S+
1 )−3/2 by scaling and that the law of S+

1 is diffuse, for instance by [8, Corollary VII.16]. �

The next lemma will be an important tool in the proof of Theorems 2 and 4.

Lemma 8. There exist two constants 0 < c1 < c2 < ∞ such that, for all n ≥ 1, we have

c1n
−2/3 ≤ E

[
1

Pn

]
≤ c2n

−2/3.

Proof. The lower bound is easy since Proposition 6(ii) gives

E

[
n2/3

Pn

]
≥ E

[
n2/3

Pn

∧ 1

]
−→
n→∞E

[
1

p�2S
+
1

∧ 1

]
> 0.

To prove the upper bound, we first fix k ≥ 2 and n ≥ 1, and we evaluate P(Pn = k). By Proposition 6(i) and properties
of h-transforms, we have

P(Pn = k) = h(k)

h(2)
· P({Wi ≥ 2,∀i ≤ n} ∩ {Wn = k}).

We set W̃i = Wn − Wn−i for 0 ≤ i ≤ n and note that we can also define W̃i for i > n in such a way that (W̃i)i≥0 is a
random walk with the same jump distribution as W and W̃0 = 0. We have then

P
({Wi ≥ 2,∀0 ≤ i ≤ n} ∩ {Wn = k}) = P

({W̃n = k − 2} ∩ {W̃i ≤ k − 2,∀i ≤ n}) = P(T̃k−1 = n + 1)

q−1
,

where we have set T̃k−1 = min{i ≥ 0 : W̃i = k − 1}. Note that W̃ has positive jumps only of size 1. We can thus use
Kemperman’s formula (see e.g. [28, p. 122]) to get

P(T̃k−1 = n + 1) = k − 1

n + 1
P(W̃n+1 = k − 1).
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From the last three displays, we have

P(Pn = k) = 3

2

h(k)

h(2)

k − 1

n + 1
P(W̃n+1 = k − 1).

Using the local limit theorem for random walk in the domain of attraction of a stable distribution (see e.g. [19,
Theorem 4.2.1]), we can find a constant c′′ such that

P(W̃n = k) ≤ c′′n−2/3, (24)

for every n ≥ 1 and k ∈ Z. Then, for every n ≥ 1,

E

[
1

Pn

]
= E

[
1

Pn

1{Pn>n2/3}
]

+E

[
1

Pn

1{Pn≤n2/3}
]

≤ n−2/3 +
[n2/3]∑
k=1

3

2

h(k)

h(2)

k − 1

n + 1

1

k
P(W̃n+1 = k − 1)

≤ n−2/3 + 3c′′

2h(2)
n−5/3

[n2/3]∑
k=1

h(k).

The upper bound of the lemma follows using (20). �

3.4. The scaling limit of volumes

Our goal is now to study the scaling limit of the process (Vn)n≥0. We start with a result similar to [3, Proposition 6.4]
about the distribution of the size of a Boltzmann triangulation with a large perimeter. For every p ≥ 2, we let T (p)

denote a random triangulation of the p-gon with Boltzmann distribution.

Proposition 9. Set b�2 = 2
3 .

1. We have E[|T (p)|] ∼ b�2 · p2 as p → ∞.
2. The following convergence in distribution holds:

p−2
∣∣T (p)

∣∣ (d)−→
p→∞ b�2 · ξ,

where ξ is a random variable with density e−1/2x

x5/2
√

2π
on R+.

Remark. We have E[ξ ] = 1 and the size-biased version of the distribution of ξ (with density e−1/2x

x3/2
√

2π
on R+) is the

1/2-stable distribution with Laplace transform e−√
2λ. Consequently, for λ > 0, we have

E
[
e−λξ

] = (1 + √
2λ)e−√

2λ.

Proof of Proposition 9. The first assertion follows from the formula E[|T (p)|] = 1
3 (p − 1)(2p − 3) for p ≥ 2 which

is easily derived from the exact formula for the generating function of the sequence (#Tn,p)n≥0 found in [6, Proposi-
tion 2.4]. See also [29, Proposition 3.4].

For the second assertion, we proceed as in [3, Proposition 6.4]. From the explicit expressions (1) and (3), an
asymptotic expansion using Stirling’s formula shows that, for every fixed x > 0, we have

p2
P
(∣∣T (p)

∣∣ = [
p2x

]) = p2 (2/27)[p2x]#T[p2x],p
Z(p)

−→
p→∞

2e−1/(3x)

3x5/2
√

3π
,
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and the convergence holds uniformly when x varies over a compact subset of R+. Since the right-hand side of the last
display is the density of the variable 2ξ/3, the desired result follows. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. We will verify that(
P[nt]

p�2 · n2/3
,

V[nt]
v�2 · n4/3

)
0≤t≤1

(d)−→
n→∞

(
S+

t ,Zt

)
0≤t≤1. (25)

The statement of Theorem 1 follows, noting that there is no loss of generality in restricting the time interval to [0,1].
The constant v�2 will appear below as

v�2 = (p�2)
2b�2 . (26)

The convergence of the first component in (25) is given by Proposition 6. We will thus study the conditional distribu-
tion of the second component given the first one, and Proposition 9 will be our main tool. We first note that, for every
n ≥ 1, we can write

Vn = |Tn| = V ∗
n + Ṽn,

where V ∗
n denotes the number of inner vertices of Tn that belong to ∂Ti for some i ≤ n − 1, and Ṽn is thus the total

number of inner vertices in the Boltzmann triangulations that were used to fill in the holes in the case of occurrence
of events Lk or Rk at some step i ≤ n of the peeling process. Since #(∂Ti \ ∂Ti−1) ≤ 1 for 1 ≤ i ≤ n, it is clear that
V ∗

n ≤ n + 2 for every n ≥ 0. It follows that (25) is equivalent to the same statement where V[nt] is replaced by Ṽ[nt].
Next we can write, for every k ∈ {1, . . . , n},

Ṽk =
k∑

i=1

1{Pi<Pi−1}Ui, (27)

where, conditionally on (P0,P1, . . . ,Pn), the random variables Ui (for i such that Pi < Pi−1) are independent, and
Ui is distributed as |T (Pi−1−Pi+1)|, with the notation of Proposition 9.

Fix ε > 0 and set, for every k ∈ {1, . . . , n},

Ṽ
≤ε
k =

k∑
i=1

1{0<Pi−1−Pi≤εn2/3}Ui, Ṽ >ε
k =

k∑
i=1

1{Pi−1−Pi>εn2/3}Ui. (28)

We first observe that n−4/3
E[Ṽ ≤ε

n ] is small uniformly in n when ε is small. Indeed, it follows from Proposition 9 that
there is a constant C such that E[|T (p)|] ≤ Cp2 for every p ≥ 2, which gives

E
[
Ṽ ≤ε

n

] ≤ C

n∑
i=1

E
[
(Pi−1 − Pi + 1)21{0<Pi−1−Pi≤εn2/3}

]
.

On the other hand, from the bound (21) and (4), it is straightforward to verify that, for every i ≥ 1 and every p ≥ 2,

E
[
(Pi−1 − Pi + 1)21{0<Pi−1−Pi≤εn2/3} | Pi−1 = p

] ≤ C′
[εn2/3]∑
j=1

(j + 1)2j−5/2 ≤ C′′√εn1/3,

with some constants C′ and C′′ independent of n and ε. By combining the last two displays, we obtain, for every
n ≥ 1,

n−4/3
E

[
Ṽ ≤ε

n

] ≤ CC′′√ε. (29)



338 N. Curien and J.-F. Le Gall

Let us turn to Ṽ >ε
n . We write s1, s2, . . . for the jump times of S+ before time 1 listed in decreasing order of their

absolute values. For every n ≥ 1, let 	
(n)
1 , . . . , 	

(n)
kn

be all integers i ∈ {1, . . . , n} such that Pi−1 − Pi > 0, listed in
decreasing order of the quantities Pi−1 − Pi (and in the usual order of N for indices such that Pi−1 − Pi is equal to a
given value). For definiteness, we also set 	

(n)
i = 1 if i > kn. It follows from (17) that, for every integer K ≥ 1,(

n−1	
(n)
1 , . . . , n−1	

(n)
K ,n−2/3(P (n)

	
(n)
1

− P
(n)

	
(n)
1 −1

)
, . . . , n−2/3(P

	
(n)
K

− P
	
(n)
K −1

)
)

(d)−→
n→∞

(
s1, . . . , sK,p�2�S+

s1
, . . . ,p�2�S+

sK

)
, (30)

and this convergence in distribution holds jointly with (17). Furthermore, using the conditional distribution of the
variables Ui given (P0, . . . ,Pn) and Proposition 9, we also get, for every integer K ≥ 1,

( U
(n)

	
(n)
1

(P
	
(n)
1

− P
	
(n)
1 −1

)2
, . . . ,

U
(n)

	
(n)
K

(P
	
(n)
K

− P
	
(n)
K −1

)2

)
(d)−→

n→∞(b�2ξ1, . . . ,b�2ξK), (31)

where ξ1, ξ2, . . . are independent copies of the variable ξ of Proposition 9. This convergence holds jointly with (17)
and (30), provided that we assume that the sequence ξ1, ξ2, . . . is independent of S+. Now note that we can choose
K sufficiently large so that the probability that |�S+

sK
| < ε/(2p�2) is arbitrarily close to 1. Recalling the definition of

Ṽ >ε
n , we can combine (30) and (31) in order to get the convergence(

n−2/3P[nt], n−4/3Ṽ >ε[nt]
)

0≤t≤1
(d)−→

n→∞
(
p�2S

+
t , (p�2)

2b�2Z
ε
t

)
0≤t≤1, (32)

where the process (Zε
t )0≤t≤1 is defined by

Zε
t =

∞∑
i=1

1{si≤t,|�S+
si

|>ε/p�2 }
(
�S+

si

)2
ξi .

In agreement with the notation of the introduction, set, for every 0 ≤ t ≤ 1,

Zt =
∞∑
i=1

1{si≤t}
(
�S+

si

)2
ξi .

Then, it is easy to verify that, for every δ > 0,

P

(
sup

0≤t≤1

∣∣Zt − Zε
t

∣∣ > δ
)

−→
ε→0

0.

Furthermore, (29) also gives

sup
n≥1

P

(
sup

0≤t≤1

∣∣n−4/3Ṽ[nt] − n−4/3Ṽ
≥ε
[nt]

∣∣ > δ
)

−→
ε→0

0.

The convergence (25), with V replaced by Ṽ , follows from (32) and the preceding considerations. This completes the
proof. �

4. Distances in the peeling process

4.1. Peeling by layers

In this section, we focus on a particular peeling algorithm, which we call the peeling by layers. As previously, we start
from the trivial triangulation that consists only of the root edge. At the first step, we discover the triangle on the left
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Fig. 4. The peeling by layers algorithm in a random triangulation drawn in the plane via Tutte’s barycentric embedding. The successive layers are
represented with different colors. Courtesy of Timothy Budd. See https://www.youtube.com/watch?v=afR9yo1P9vE for the associated movie.

Fig. 5. Illustration of the peeling by layers. When B•
r (T∞) has been discovered, we turn around the boundary ∂B•

r (T∞) from left to right in order
to reveal the next layer and obtain B•

r+1(T∞).

side of the root edge to get T1. To get T2, we then discover the triangle on the right side of the root edge. Then we
continue by induction in the following way. We note that the triangle revealed at step n has either one or two edges
in the boundary of Tn. If it has one edge in the boundary, we discover at step n + 1 the triangle incident to this edge
which is not already in Tn. If it has two edges in the boundary, we do the same for the right-most among these two
edges (this makes sense because in that case the boundary of Tn must contain at least 3 edges). See Figures 4 and 5
for an example.

This algorithm is particularly well suited to the study of distances from the root vertex, for the following reason.
One easily proves by induction that, for every n ≥ 1, one and only one of the two following possibilities occurs. Either
all vertices of ∂Tn are at the same distance h from the root vertex. Or there is an integer h ≥ 0 such that ∂Tn contains
both vertices at distance h and at distance h + 1 from the root vertex. In the latter case, vertices at distance h form a
connected subset of ∂Tn, and the edge that will be “peeled off” at step n + 1 is the only edge of the boundary whose
left end is at distance h + 1 and whose right end is at distance h. In both cases we write Hn = h, so that the boundary

https://www.youtube.com/watch?v=afR9yo1P9vE
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∂Tn does contain vertices at distance Hn and may also contain vertices at distance Hn + 1. We also set H0 = 0 by
convention.

Since the peeling algorithm discovers the whole triangulation T∞ (Corollary 7), it is clear that Hn tends to ∞ as
n → ∞. Also obviously 0 ≤ Hn+1 − Hn ≤ 1 for every n ≥ 1, hence we may set σr := min{n ≥ 0 : Hn = r} for every
integer r ≥ 1. A simple argument shows that for n = σr , all vertices of ∂Tn are at distance r from the root vertex
(this however does not characterize σr since there may exist other times n > σr with the same property). Furthermore,
any vertex lying outside Tσr must be at distance at least r + 1 from the root vertex, and any triangle of Tσr that is
incident to an edge of the boundary contains a vertex at distance r − 1 from the root vertex (indeed this triangle has
been discovered by the peeling algorithm at a time where the boundary still contained vertices at distance r − 1, and
the corresponding peeled edge had to connect a vertex at distance r to a vertex at distance r − 1). It follows from the
previous considerations that we have Tσr = B•

r (T∞) for every r ≥ 1. Furthermore, for every n ≥ 1 such that Hn > 0,
we have σHn ≤ n < σHn+1 and therefore

B•
Hn

(T∞) ⊂ Tn ⊂ B•
Hn+1(T∞). (33)

This also holds for n such that Hn = 0, provided we define B•
0 (T∞) as the trivial triangulation consisting only of the

root edge.
An important consequence is the following fact, which needs not be true for a general peeling algorithm. If Fn

stands for the σ -field generated by T0,T1, . . . ,Tn, then the graph distances of vertices of Tn from the root vertex are
measurable with respect to Fn. This is clear since (33) shows that a geodesic from any vertex of Tn to the root visits
only vertices of Tn.

At an intuitive level, the peeling algorithm “turns” around the boundary of the hull of balls of the UIPT in clockwise
order and discovers T∞ layer after layer. When turning around ∂B•

r (T∞), the peeling process creates new vertices at
distance r + 1 from the root vertex in a way similar to a front propagation. See Figure 5.

To simplify notation, we write B•
r and ∂B•

r instead of B•
r (T∞) and ∂B•

r (T∞) in this section. As (33) suggests,
the proof of Theorem 2 will rely on the convergence in distribution of a rescaled version of the process Hn. Let us
sketch some ideas of the proof of the latter convergence. Between times σr and σr+1, the peeling process needs to
turn around ∂B•

r , which roughly takes a time linear in |∂B•
r | (see Proposition 11 below for a precise statement). We

thus expect that, for some positive constant a,

σr+1 − σr ≈ 1

a

∣∣∂B•
r

∣∣ = 1

a
Pσr (34)

and therefore

σr ≈ 1

a

r−1∑
i=1

Pσi
.

A formal inversion now gives for k large,

Hk = sup{r ≥ 0 : σr ≤ k} ≈ a

k∑
i=1

1

Pi

,

and the limit behavior of the right-hand side can be derived from the fact that (n−2/3P[nt])t≥0 converges in distribution
to (p�2S

+
t )t≥0 (Proposition 6). The following proposition shows that the previous heuristic considerations are indeed

correct with the value of a given by a�2 = 1/3 (note that h�2 in Proposition 10 below is then equal to a�2/p�2 , and
see also Proposition 11).

Proposition 10 (Distances in the peeling by layers). We have the following convergence in distribution for the
Skorokhod topology(

P[nt]
p�2 · n2/3

,
V[nt]

v�2 · n4/3
,

H[nt]
h�2 · n1/3

)
t≥0

(d)−→
n→∞

(
S+

t ,Zt ,

∫ t

0

du

S+
u

)
t≥0

,

where h�2 = 12−1/3.
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Noting that |B•
r | = Vσr and |∂B•

r | = Pσr , we will derive Theorem 2 from the last proposition via a time change
argument in Section 4.4. This derivation involves time-changing the limiting processes S+

t and Zt by the inverse
of the increasing process

∫ t

0
du

S+
u

, which is clearly related to the Lamperti transformation connecting continuous-state

branching processes to spectrally positive Lévy processes. In the next section, we state and prove Proposition 11,
which is the key ingredient of the proof of Proposition 10. The latter proof will be given in Section 4.3.

4.2. Turning around layers

We write L for the set of all edges of T∞ that are part of ∂B•
r for some integer r ≥ 1. Note that all these edges belong

to ∂Tn for some n ≥ 1 (because we know that B•
r = Tσr for every r ≥ 1), but the converse is not true. For every n ≥ 0,

we write An for the number of edges of L belonging to Tn \ ∂Tn.
Clearly, (An)n≥0 is an increasing process. Also, recalling our notation Fn for the σ -field generated by

T0,T1, . . . ,Tn, the random variable An is measurable with respect to Fn. The point is that, on one hand, the hulls
B•

1 , . . . ,B•
Hn

are measurable functions of Tn, and, on the other hand, edges of Tn \ ∂Tn which may be in L (i.e. which
link two vertices at the same distance from the root) are at distance at most Hn from the root (here it is important that
we considered only edges of Tn \ ∂Tn in the definition of An, since the σ -field Fn does not give enough information
to decide whether an edge of ∂Tn linking two vertices at distance Hn + 1 from the root belongs to L or not).

Proposition 11. We have

An

n

(P )−→
n→∞

1

3
=: a�2 .

Proof. We use the notation �An = An+1 − An for every n ≥ 0. We note that the inner edges of the Boltzmann
triangulations that are used to fill in the holes created by the peeling algorithm cannot be in L, and it follows that we
have

0 ≤ �An ≤ (�Pn)− + 1 (35)

for every n ≥ 0, the additional term 1 coming from the fact that the edge that is peeled at time n could actually be in
L (this happens only at times of the form n = σr ). In particular E[�An] < ∞ and E[An] < ∞. We then set, for every
i ≥ 0,

ηi = E[�Ai | Fi],
so that Mn := An − ∑n−1

i=0 ηi is a martingale with respect to the filtration (Fn).
We first prove that Mn/n → 0 in probability. To this end, we use bounds on the second moment of �Mn. Recall

our bound �An ≤ (�Pn)− + 1, and note that, for every k ≥ 1 and every p ≥ 2, (13) and (21) give

P(�Pn = −k | Pn = p) = h(p − k)

h(p)
P(�Wn = −k) ≤ Ck−5/2,

for some constant C > 0 independent of p and k. It follows that

E
[
(�An)

2 | Pn = p
] ≤ 1 + C

p−2∑
k=1

(k + 1)2k−5/2 = O(
√

p).

Since Pn ≤ n + 2, we deduce from the last display that

E
[
(�Mn)

2] = E
[
(�An − ηn)

2] ≤ 2
(
E

[
(�An)

2] +E
[
E[�An |Fn]2])≤4E

[
(�An)

2] = O(
√

n).

Since the martingale M has orthogonal increments, we get E[M2
n] = O(n3/2) and it follows that Mn/n → 0 in L2.
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To complete the proof of Proposition 11, it is then enough to verify that

1

n

n−1∑
i=0

ηi
(P )−→

n→∞
1

3
. (36)

The idea of the proof is as follows. For most times n, the boundary ∂Tn has both a “large” number of vertices
at distance Hn and a “large” number of vertices at distance Hn + 1 from the root. Then, except on a set of small
probability, the only events leading to a nonzero value of �An are events of type Rk for which

�An = −�Pn = k. (37)

The conditional expectation of �An is thus computed using the probabilities of the events Rk .
To make the preceding argument rigorous, we introduce some notation. For every integer n ≥ 0, write Un for the

number of vertices in ∂Tn that are at distance Hn from the root vertex. Note that the function n 
→ Un is nonincreasing
on every interval [σr, σr+1[ where Hn is equal to r . We also set Gn = Pn − Un, which represents the number of
vertices in ∂Tn that are at distance Hn + 1 from the root vertex.

Lemma 12. For every integer L ≥ 1, we have

1

n

n∑
i=0

1{Ui≤L or Gi≤L}
(P )−→

n→∞ 0.

Let us postpone the proof of this lemma. To complete the proof of (36), we first use the bound (21) to deduce from
the inequality �An ≤ |�Pn| + 1 that, for every n ≥ 0,

ηn = E[�An | Fn] ≤ E[|�Pn| | Fn] + 1 ≤ C1, (38)

for some finite constant C1. Furthermore, using (21) again, we have also, for every integer L ≥ 1,

E[�An1{|�Pn|≥L} | Fn] ≤ E
[(|�Pn| + 1

)
1{|�Pn|≥L} |Fn

] ≤ c(L), (39)

where the constants c(L) are such that c(L) → 0 as L → ∞. Then, on the event {Un ≥ L,Gn ≥ L}, the condition
|�Pn| < L ensures that the only transitions of the peeling algorithm at step n + 1 leading to a positive value of �An

are of type Rk for some k, and in that case �An = −�Pn = k. It follows that, still on the event {Un ≥ L,Gn ≥ L},

E[�An1{|�Pn|<L} | Fn] =
L−1∑
k=1

kq
(Pn)
k ≤

∞∑
k=1

kqk = 1

3
. (40)

Note that we have Pn ≥ 2L on the event {Un ≥ L,Gn ≥ L}. Since q
(p)
k converges to qk as p → ∞, the preceding

considerations and (39) entail that, for every ε > 0, we can fix L0 > 0 so that, for every L ≥ L0 and every n, we have,
on the event {Un ≥ L,Gn ≥ L},

1

3
− ε ≤ E[�An | Fn] ≤ 1

3
+ ε. (41)

Finally, we have, using (38),∣∣∣∣∣1

n

n−1∑
i=0

ηi − 1

n

n−1∑
i=0

1{Ui≥L,Gi≥L}E[�Ai | Fi]
∣∣∣∣∣ ≤ C1

n

n−1∑
i=0

1{Ui≤L or Gi≤L},

and we can now combine (41) and Lemma 12 to get our claim (36). This completes the proof of Proposition 11, but
we still have to prove Lemma 12. �
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Proof of Lemma 12. We start with some preliminary observations. From the definition of the peeling by layers, one
easily checks that the triple (Pn,Gn,Hn)n≥0 is a Markov chain with respect to the filtration (Fn), taking values in
{(p, 	,h) ∈ Z

3 : p ≥ 2,0 ≤ 	 ≤ p − 1, h ≥ 0}, and whose transition kernel Q is specified as follows:

Q
(
(p, 	,h), (p + 1, 	 + 1, h)

) = q
(p)

−1 ,

Q
(
(p, 	,h), (p − k, 	 − k,h)

) = q
(p)
k for 1 ≤ k ≤ 	 − 1,

Q
(
(p, 	,h), (p − k, 	,h)

) = q
(p)
k for 1 ≤ k ≤ p − 	 − 1, (42)

Q
(
(p, 	,h), (p − k,0, h)

) = q
(p)
k for 	 ≤ k ≤ p − 2,

Q
(
(p, 	,h), (p − k,0, h + 1)

) = q
(p)
k for p − 	 ≤ k ≤ p − 2.

The Markov chain (Pn,Gn,Hn)n≥0 starts from the initial value (2,1,0).
Obviously, the triple (Pn,Un,Hn)n≥0 is also a Markov chain, now with values in {(p, 	,h) ∈ Z

3 : p ≥ 2,1 ≤ 	 ≤ p,

h ≥ 0}, and its transition kernel Q′ is expressed by the formula analogous to (42), where only the first and the last two
lines are different and replaced by

Q′((p, 	,h), (p + 1, 	, h)
) = q

(p)

−1 ,

Q′((p, 	,h), (p − k,p − k,h + 1)
) = q

(p)
k for 	 ≤ k ≤ p − 2, (43)

Q′((p, 	,h), (p − k,p − k,h)
) = q

(p)
k for p − 	 ≤ k ≤ p − 2.

We now fix k ∈ {0,1, . . . ,L}. We will prove that

1

n

n∑
i=0

P(Gi = k) −→
n→∞ 0. (44)

Let us explain why the lemma follows from (44). If k′ ∈ {1, . . . ,L}, a simple argument using the Markov chain
(Pn,Un,Hn) shows that, for every i ≥ 1,

P(Gi+1 = 0 |Fi ) ≥ q
(Pi)

k′ 1{Ui=k′}1{Pi≥k′+2}

and therefore

P(Gi+1 = 0) ≥ βP
(
Ui = k′,Pi ≥ k′ + 2

)
,

with a constant β > 0 depending on k′. If we assume that (44) holds for k = 0, the latter bound (together with the
transience of the Markov chain (Pn)) implies that

1

n

n∑
i=0

P
(
Ui = k′) −→

n→∞ 0. (45)

Clearly the lemma follows from (44) and (45).
Let us prove (44). Let N ≥ 1, and write T N

1 , T N
2 , . . . for the successive passage times of the Markov chain

(Pn,Gn,Hn) in the set {(p, 	,h) : p ≥ N,	 = k}. We claim that there exist two positive constants c and α (which
depend on k but not on N ) such that, for every sufficiently large N and for every integer i ≥ 1,

P
[
T N

i+1 − T N
i ≥ αN |FT N

i

] ≥ c. (46)

If the claim holds, simple arguments show that we have a.s.

lim inf
j→∞

T N
j

j
≥ αcN
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and it follows that, a.s.,

lim sup
n→∞

1

n

n∑
i=0

1{Pi≥N,Gi=k} ≤ 1

αcN
.

We can remove Pi ≥ N in the indicator function since the Markov chain (Pn)n≥0 is transient. This gives (44) since N

can be taken arbitrarily large.
Let us verify the claim. Applying the strong Markov property at time T N

i leads to a Markov chain (P̃n, G̃n, H̃n)

with transition kernel Q but now started from some triple (p0, 	0, h0) such that p0 ≥ N and 	0 = k. We also set
Ũn = P̃n − G̃n. The bound (46) reduces to finding two positive constants α and c such that, for every sufficiently
large N ,

P(τk ≥ αN) ≥ c, (47)

where τk = min{j ≥ 1 : G̃j = k}. We set T̃ := inf{n ≥ 0 : P̃n = Ũn}, and observe that we have either H̃T̃ = h0 + 1 or
H̃T̃ = h0.

By looking at the transition kernel Q and using the bounds (21) and (22), we see that we can couple the Markov
chain (P̃n, G̃n, H̃n) with a random walk (Yn) started from 	0 = k, whose jump distribution μ is given by μ(1) = q−1,
μ(−j) = qj for every j ≥ 1, and μ(0) = 1 − μ(1) − ∑

j≥1 μ(−j), in such a way that

G̃n ≥ Yn, for every 0 ≤ n < T̃ ,

and on the event where Y1 = k + 1 and minj≥1 Yj = k + 1 we have H̃T̃ = h0 + 1 (the point is that on the latter event,
the transition corresponding to the last line of (43) will not occur, at any time n such that 0 ≤ n < T̃ ). Since the random
walk Y has a positive drift to ∞, the latter event occurs with probability c0 > 0. We have thus obtained that

P
({G̃n ≥ k + 1, for every 1 ≤ n < T̃ } ∩ {H̃T̃ = h0 + 1}) ≥ c0. (48)

Next we observe that there is a positive constant c1 such that, for every ε > 0, we have, for all sufficiently large N ,

P
({

T̃ ≤ c1(N − k)
} ∩ {HT̃ = h0 + 1}) < ε. (49)

To get this bound, we now consider the transition kernel Q′: We use (21) to observe that we can couple (P̃n, Ũn, H̃n)

with a random walk Y ′ started from N − k, with only nonpositive jumps distributed according to μ′(−k) = qk for
every k ≥ 1 (and of course μ′(0) = 1 − ∑

k≥1 μ′(−k)), in such a way that

Ũn ≥ Y ′
n, for every 0 ≤ n < T̃ ,

and Y ′̃
T

≤ 0 on the event {H̃T̃ = h0 + 1}. In particular on the event {H̃T̃ = h0 + 1} the hitting time of the negative

half-line by Y ′ must be smaller than or equal to T̃ . Since μ′ has a finite first moment, the law of large numbers gives
a constant c1 such that (49) holds.

By combining (48) and (49), and recalling the definition of τk , we get

P
(
τk ≥ c1(N − k)

)
≥ P

({G̃n ≥ k + 1, for every 1 ≤ n < T̃ } ∩ {HT̃ = h0 + 1}) − P
({

T̃ ≤ c1(N − k)
} ∩ {HT̃ = h0 + 1})

≥ c0 − ε.

Our claim (47) now follows since we can choose ε < c0. �

4.3. Distances in the peeling by layers

We need another lemma before we proceed to the proof of Proposition 10.

Lemma 13. There exists a constant C such that E[Hn] ≤ Cn1/3, for every n ≥ 1.
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Proof. It will be convenient to introduce a process H ′
n which coincides with Hn at times of the form σr , r ≥ 1, but

which “interpolates” Hn on every interval [σr, σr+1]. To be specific, we recall the notation introduced in the proof of
Lemma 12, and we set for every n ≥ 0,

H ′
n = Hn + Gn

Pn

.

From the form of the transition kernel of the Markov chain (Pn,Gn,Hn) (see the proof of Lemma 12), we get, for
every triple (p, 	,h) such that P(Pn = p,Gn = 	,Hn = h) > 0,

E
[∣∣�H ′

n

∣∣|Pn = p,Gn = 	,Hn = h
] = q

(p)

−1

∣∣∣∣ 	 + 1

p + 1
− 	

p

∣∣∣∣ +
p−2∑
k=1

q
(p)
k

∣∣∣∣ (	 − k) ∨ 0

p − k
− 	

p

∣∣∣∣
+

p−	−1∑
k=1

q
(p)
k

∣∣∣∣ 	

p − k
− 	

p

∣∣∣∣ +
p−2∑

k=p−	

q
(p)
k

(
1 − 	

p

)
.

Then it is not hard to verify that each term in the right-hand side is bounded above by c/p, with some constant c

independent of (p, 	,h). Indeed, writing c for a constant that may vary from line to line, and using (21), we have

q
(p)

−1

∣∣∣∣ 	 + 1

p + 1
− 	

p

∣∣∣∣ ≤ 1

p + 1
,

and similarly,

	∑
k=1

q
(p)
k

∣∣∣∣ 	 − k

p − k
− 	

p

∣∣∣∣ =
	∑

k=1

q
(p)
k

k(p − 	)

p(p − k)
≤ 1

p

∞∑
k=1

kqk = c

p
,

p−2∑
k=	+1

q
(p)
k

	

p
≤ 1

p

∞∑
k=	+1

kqk ≤ c

p
,

p−	−1∑
k=1

q
(p)
k

∣∣∣∣ 	

p − k
− 	

p

∣∣∣∣ =
p−	−1∑

k=1

q
(p)
k

	k

p(p − k)
≤

p−	−1∑
k=1

q
(p)
k

k

p
≤ c

p
,

p−2∑
k=p−	

q
(p)
k

(
1 − 	

p

)
≤

(
1 − 	

p

) ∞∑
k=p−	

qk ≤
(

1 − 	

p

)
× c(p − 	)−3/2 = c

p
(p − 	)−1/2.

We conclude that there exists a constant C′ such that E[�H ′
n | Fn] ≤ C′/Pn. By Lemma 8, we have then E[�H ′

n] ≤
C′′n−2/3 with some other constant C′′. It follows that E[H ′

n] ≤ C′′′n1/3, giving the bound of the lemma since
Hn ≤ H ′

n. �

Proof of Proposition 10. It follows from Theorem 1 and Proposition 11, together with monotonicity arguments for
the last component, that we have the joint convergence in distribution(

n−2/3P[nt], n−4/3V[nt], n−1A[nt]
)
t≥0

(d)−→
n→∞

(
p�2S

+
t , v�2Zt ,a�2 t

)
t≥0 (50)

in the Skorokhod sense. We now need to deal with the convergence of the (rescaled) process H . We first note that
by construction we have Aσr+1 − Aσr = Pσr for every r ≥ 1. More precisely, for every r ≥ 1 and every n with
σr ≤ n < σr+1, we have

Aσr+1 − An = Un ≤ Pn,

An − Aσr = Pσr − Un ≤ Pσr .
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It easily follows that, for every 0 ≤ n1 ≤ n2, we have

An2 − An1

maxn1≤i≤n2 Pi

≤ Hn2 − Hn1 + 1, (51)

and

Hn2 − Hn1 ≤ An2 − An1

minn1≤i≤n2 Pi

+ 1. (52)

Fix 0 < s < t . By (50),

n−2/3 min[ns]≤k≤[nt]Pk
(d)−→

n→∞ p�2 inf
s≤u≤t

S+
u ,

and the limit is a (strictly) positive random variable. Using also Proposition 11, we then deduce from the bound (52)
that the sequence n−1/3(H[nt] − H[ns]) is tight. Hence we can assume that along a suitable subsequence, for every
integer k ≥ 0, for every 1 ≤ i ≤ 2k , we have the convergence in distribution

n−1/3(H[n(s+i2−k(t−s))] − H[n(s+(i−1)2−k(t−s))])
(d)−→

n→∞�
(s,t)
k,i , (53)

where �
(s,t)
k,i is a nonnegative random variable. Moreover, we can assume that the convergences (53) hold jointly, and

jointly with (50). It then follows from the bounds (51) and (52) that, for every k and i,

a�2

p�2

2−k(t − s)

sups+(i−1)2−k(t−s)≤u≤s+i2−k(t−s) S
+
u

≤ �
(s,t)
k,i ≤ a�2

p�2

2−k(t − s)

infs+(i−1)2−k(t−s)≤u≤s+i2−k(t−s) S
+
u

.

Note that a�2/p�2 = 12−1/3 =: h�2 . By summing over i, we get

h�2

2k∑
i=1

2−k(t − s)

sups+(i−1)2−k(t−s)≤u≤s+i2−k(t−s) S
+
u

≤ �
(s,t)
0,1 ≤ h�2

2k∑
i=1

2−k(t − s)

infs+(i−1)2−k(t−s)≤u≤s+i2−k(t−s) S
+
u

.

When k → ∞, both the right-hand side and the left-hand-side of the previous display converge a.s. to

h�2

∫ t

s

du

S+
u

.

This argument (and the fact that the limit does not depend on the chosen subsequence) thus gives

n−1/3(H[nt] − H[ns])
(d)−→

n→∞ h�2

∫ t

s

du

S+
u

, (54)

and this convergence holds jointly with (50).
At this point, we use Lemma 13, which tells us that E[n−1/3H[ns]] can be made arbitrarily small, uniformly in n,

by choosing s small. Also Lemma 13, (54) and Fatou’s lemma imply that

E

[∫ t

s

du

S+
u

]
is bounded above independently of s ∈ (0, t], and therefore

∫ t

0
du

S+
u

< ∞ a.s. (we could have obtained this more di-

rectly). Letting s → 0, we deduce from the previous considerations that

n−1/3H[nt]
(d)−→

n→∞ h�2

∫ t

0

du

S+
u

, (55)
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jointly with (50). The statement of Proposition 10 now follows from monotonicity arguments using the fact that the
limit in (55) is continuous in t . �

4.4. From Proposition 10 to Theorem 2

In this section, we deduce Theorem 2 from Proposition 10 via a time change argument. We start with some preliminary
observations.

We fix x > 0 and write (�x
t )t≥0 for the stable Lévy process with index 3/2 and no negative jumps started from x,

whose distribution is characterized by the formula

E
[
exp

(−λ
(
�x

t − x
))] = exp

(
λt3/2), λ, t ≥ 0.

Equivalently, �x
t = x − St where St is as in the introduction. Set γx := inf{t ≥ 0 : �x

t = 0}. Then γx < ∞ a.s., and a
classical time-reversal theorem (see e.g. [8, Theorem VII.18]) states that the law of (�x

(γx−t)−)0≤t≤γx (with �x
0− = x)

coincides with the law of (S+
t )0≤t≤ρx , where ρx := sup{t ≥ 0 : S+

t = x}.
On the other hand, consider the process L of Section 1. If λx := sup{t ≥ 0 : Lt ≤ x}, then λx < ∞ a.s. and setting

Xx
t = L(λx−t)− for 0 ≤ t ≤ λx (with L0− = 0), the process (Xx

t )0≤t≤λx is distributed as the continuous-state branching
process with branching mechanism ψ(u) = u3/2 started from x and stopped when it hits 0. See [17, Section 2.1] for
more details.

The classical Lamperti transformation asserts that, if we set

τx
t := inf

{
s ≥ 0 :

∫ s

0

du

�x
u

≥ t

}
for 0 ≤ t ≤ Rx := ∫ γx

0
du
�x

u
, the time-changed process (�x

τx
t
)0≤t≤Rx has the same distribution as (Xx

t )0≤t≤λx . We can
then combine the Lamperti transformation with the preceding observations to obtain that, if

ηt := inf

{
s ≥ 0 :

∫ s

0

du

S+
u

≥ t

}
,

for every t ≥ 0, the process(
S+

ηt
,0 ≤ t ≤

∫ ρx

0

du

S+
u

)
has the same distribution as (Lt )0≤t≤λx . Since this holds for every x > 0, we conclude that the processes (S+

ηt
)t≥0 and

(Lt )t≥0 have the same distribution. It easily follows that we have also(
S+

ηt
,Zηt

)
t≥0

(d)= (Lt ,Mt )t≥0, (56)

with the notation of Section 1.
Let us turn to the proof of Theorem 2. We recall that, for every integer r ≥ 1, we have |∂B•

r | = Pσr and |B•
r | = Vσr ,

with σr = min{n : Hn ≥ r}. We use the convergence in distribution of Proposition 10 and the Skorokhod representation
theorem to find, for every n ≥ 1, a triple (P (n),V (n),H (n)) having the same distribution as (P,V,H), in such a way
that we now have the almost sure convergence(

P
(n)
[nt]

p�2 · n2/3
,

V
(n)
[nt]

v�2 · n4/3
,

H
(n)
[nt]

h�2 · n1/3

)
t≥0

a.s.−→
n→∞

(
S+

t ,Zt ,

∫ t

0

du

S+
u

)
t≥0

, (57)

for the Skorokhod topology. For every n ≥ 1, and every r ≥ 1, set

σ (n)
r = min

{
k : H(n)

k ≥ r
}
.
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Then it easily follows from (57) that(
1

n
σ

(n)

[n1/3t]

)
t≥0

a.s.−→
n→∞(ηt/h�2 )t≥0,

uniformly on every compact time set. By combining the latter convergence with (57) we arrive at the a.s. convergence
in the Skorokhod sense,(

n−2/3P
(n)

σ
(n)

[n1/3 t]
, n−4/3V

(n)

σ
(n)

[n1/3t]

)
t≥0

a.s.−→
n→∞

(
p�2S

+
ηt/h�2

, v�2Zηt/h�2

)
t≥0.

Recalling the identity in distribution (56), we get the convergence in distribution of Theorem 2 since

(
P

(n)

σ
(n)
r

, V
(n)

σ
(n)
r

)
r≥0

(d)= (Pσr ,Vσr )r≥0 = (∣∣∂B•
r

∣∣, ∣∣B•
r

∣∣)
r≥0.

This completes the proof.

5. Application to other distances

In this section, we apply our techniques to study other distances on the UIPT (in fact on the dual graph of the UIPT)
in order to get similar results for the scaling limits of the associated hull processes. Specifically, we will consider the
dual graph distance and the first-passage percolation distance with exponential edge weights on the dual graph.

5.1. The dual graph distance

We consider the dual map of the UIPT, whose vertices are in one-to-one correspondence with the faces of the UIPT,
and each edge e of the UIPT corresponds to an edge of the dual map between the two faces incident to e. This dual
map is denoted by T ∗∞. By convention, the root vertex of T ∗∞ or root face is the face incident to the right-hand side of
the root edge of the UIPT. We denote the graph distance on T ∗∞ or dual graph distance by d∗

gr. For every integer r ≥ 0,
we let B

•,∗
r (T∞) denote the hull of the ball of radius r for d∗

gr. This is the union of all faces of T∞ that are at dual
graph distance smaller than or equal to r from the root face, together with the finite regions these faces may enclose.

Similarly as in the previous section we now design a peeling algorithm which discovers these dual hulls step by
step. In the first step (n = 0) we reveal the root face. In the second step (n = 1), we peel any edge incident to the root
face. Then inductively at step n + 1 we peel the edge of the boundary of Tn which lies immediately on the right of the
last revealed triangle (but not incident to that triangle). See Figure 6 for an illustration.

As in the case of the peeling by layers for the graph distance on the primal lattice, one can prove by induction that,
for every n ≥ 0, there is an integer h ≥ 0 such that one and only one of the following two possibilities occurs. Either
all faces incident to ∂Tn are at the same dual graph distance h from the root face of the UIPT. Or ∂Tn contains both
edges incident to faces at dual distance h and edges incident to faces at dual distance h + 1 from the root face. In the
last case, these edges form two connected subsets of the boundary and the edge that will be “peeled off” at step n + 1
is the only edge incident to a face in Tn at dual distance h such that the edge immediately on its left is incident to a
face of Tn at dual distance h + 1. In both cases we write H ∗

n = h. As in the previous sections, we let Pn and Vn stand
respectively for the perimeter and for the volume of the triangulation discovered after n peeling steps.

Fig. 6. Illustration of the peeling by layers on the dual map. When B
•,∗
r (T∞) has been discovered, we turn around the boundary ∂B

•,∗
r (T∞) from

left to right in order to reveal the next layer and obtain B
•,∗
r+1(T∞).
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Proposition 14 (Distances in the peeling by layers on the dual map). We have the following convergence in distri-
bution for the Skorokhod topology(

P[nt]
p�2 · n2/3

,
V[nt]

v�2 · n4/3
,

H ∗[nt]
h∗
�2 · n1/3

)
t≥0

(d)−→
n→∞

(
S+

t ,Zt ,

∫ t

0

du

S+
u

)
t≥0

,

where h∗
�2 = (1 + a�2)/p�2 = (16/3)1/3.

Theorem 3 is derived from Proposition 14 in exactly the same way as Theorem 2 is derived from Proposition 10 in
Section 4.4. Let us briefly discuss the proof of Proposition 14, which follows the same lines as that of Proposition 10.
The convergence of the first two components is again a consequence of Theorem 1, and we focus on the convergence
of the third component. As for the peeling by layers on the primal lattice, the key idea is to consider the speed at which
the peeling by layers (on the dual map) “turns” around the boundary. More precisely we denote the set of all edges
of T∞ that are part of B

•,∗
r (T∞) for some r ≥ 0 by L∗, and we let A∗

n stand for the number of edges of Tn \ ∂Tn that
belong to L∗. We aim at the following analog of Proposition 11:

A∗
n

n

(P )−→
n→∞ a�2 + 1 = 4/3. (58)

The idea to prove this convergence is the same as before: For most times n, the boundary ∂Tn has both a large number
of edges incident to a face of Tn at dual distance H ∗

n + 1 from the root face, and a large number of edges incident to a
face of Tn at dual distance H ∗

n . Then, except on a set of small probability, the only events leading to a nonzero value
of �A∗

n are events of type Rk , for which

�An = −�Pn + 1 = k + 1.

Note the additional term +1 in the last display (compare with (37)) coming from the fact that we peel an edge
belonging to L∗ at every step. This additional term explains why we get the limit a�2 + 1 in (58), instead of a�2

in Proposition 11. Apart from this difference, the technical details of the proof of (58) are very similar to those of
Proposition 11. For the analog of Lemma 12, we introduce the number U∗

n of edges of ∂Tn that are incident to a face
of Tn at dual distance H ∗

n from the root face, and G∗
n = Pn − U∗

n . Then (Pn,G
∗
n,H

∗
n )n≥0 is a Markov chain taking

values in {(p, 	,h) ∈ Z
3 : p ≥ 2,0 ≤ 	 ≤ p − 1, h ≥ 0}, whose transition kernel Q∗ is specified as follows:

Q∗((p, 	,h), (p + 1, 	 + 2, h)
) = q

(p)

−1 if 	 ≤ p − 2,

Q∗((p,p − 1, h), (p + 1,0, h + 1)
) = q

(p)

−1 ,

Q∗((p, 	,h), (p − k, 	 − k + 1, h)
) = q

(p)
k for 1 ≤ k ≤ 	,

(59)
Q∗((p, 	,h), (p − k, 	 + 1, h)

) = q
(p)
k for 1 ≤ k ≤ p − 	 − 2,

Q∗((p, 	,h), (p − k,1, h)
) = q

(p)
k for 	 + 1 ≤ k ≤ p − 2,

Q∗((p, 	,h), (p − k,0, h + 1)
) = q

(p)
k for p − 	 − 1 ≤ k ≤ p − 2.

The analog of Lemma 12 then holds with Gi and Ui replaced respectively by G∗
i and P ∗

i , with a very similar proof.
This provides the key technical ingredient needed to adapt the proof of Proposition 11 in order to get the convergence
(58). Finally, an analog of Lemma 13 also holds with E[Hn] replaced by E[H ∗

n ], and Proposition 14 can then be
derived from (58) in the same way as Proposition 10 was derived from Proposition 11 in Section 4.3. We leave the
details to the reader.

5.2. First-passage percolation

We now assign independent weights exponentially distributed with parameter 1 to the edges of T ∗∞. The weight of a
path in T ∗∞ is just the sum of the weights of its edges. We let F0 consist only of the root face and, for every t > 0,
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we let Ft be the union of all faces of the UIPT which are connected to the root face by a dual path whose weight is
less than or equal to t . We then let F•

t be the hull of Ft . We set τ0 = 0 and we let 0 < τ1 < τ2 < · · · < τn < · · · be the
successive jump times of the process F•

t (a simple argument shows that τn → ∞ as n → ∞, which will also follow
from the next proposition). Note that, at each time τn with n ≥ 1, a new triangle incident to the boundary of F•

τn−1
is

added to F•
τn−1

, together with the triangles in the “hole” that this addition may create.

By convention we let F̃0 be the trivial triangulation, and we set, for every n ≥ 1

F̃n = F•
τn−1

.

The following proposition shows that the process (F̃n)n≥0 is a particular instance of a peeling process, which is called
the uniform peeling process or Eden model on the UIPT. See also [1, Section 6].

Proposition 15. The sequence (F̃n)n≥0 has the same law as the sequence (Tn)n≥0 corresponding to a peeling process
where at step 1 we reveal the triangle incident to the right-hand side of the root edge, and for every n ≥ 2, conditionally
on T0, . . . ,Tn−1, the peeled edge at step n is chosen uniformly at random among the edges of ∂Tn−1. Furthermore,
conditionally on the sequence (F̃n)n≥1, the increments τ1 − τ0, τ2 − τ1, τ3 − τ2, . . . are independent, and, for every
k ≥ 1, τk − τk−1 is exponentially distributed with parameter |∂F̃k|.

Remark. Since |∂F̃k| ≤ k + 2, the last assertion shows that τk ↑ ∞ a.s. as k → ∞.

Proof of Proposition 15. Let n ≥ 1. Consider an edge e of ∂F̃n. Then, e is incident to a unique face fe of Fτn−1 , and
we write dfpp(fe) for the first-passage percolation distance between fe and the root face (in other words, this is the
minimal weight of a dual path connecting the root face and fe). We also write we for the weight of e, or rather of its
dual edge. Since fe is contained in Fτn−1 , we have dfpp(fe) ≤ τn−1, with equality only if fe is the triangle that was
added at time τn−1. Also it is clear that

we > τn−1 − dfpp(fe)

because otherwise this would contradict the fact that the other face incident to e is not in Fτn−1 .
Next the lack of memory of the exponential distribution ensures that, conditionally on the variables (F̃0, F̃1, . . . , F̃n,

τ1, . . . , τn−1), the random variables

we − (
τn−1 − dfpp(fe)

)
,

where e varies over the edges of ∂F̃n, are independent and exponentially distributed with parameter 1. Now observe
that the next jump will occur at time

τn = τn−1 + min
{
we − (

τn−1 − dfpp(fe)
) : e edge of ∂F̃n

}
.

It follows that, conditionally on (F̃0, F̃1, . . . , F̃n, τ1, . . . , τn−1), the variable τn − τn−1 is exponential with parameter
|∂F̃n|, and furthermore, the new triangle added to F̃n corresponds to the edge attaining the preceding minimum, which
is therefore uniformly distributed over edges of ∂F̃n. This completes the proof. �

Proof of Theorem 4. As in the previous sections, we use the notation Vn and Pn for the volume and the perimeter
of F̃n. We will establish the following convergence in distribution for the Skorokhod topology(

P[nt]
p�2 · n2/3

,
V[nt]

v�2 · n4/3
,

τ[nt]
(1/p�2) · n1/3

)
t≥0

(d)−→
n→∞

(
S+

t ,Zt ,

∫ t

0

du

S+
u

)
t≥0

. (60)

Theorem 4 then follows from (60) by the very same arguments we used to deduce Theorem 2 from Proposition 10 in
Section 4.4.
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The joint convergence of the first two components in (60) is given by Theorem 1. So we need to prove the conver-
gence of the third component and to check that it holds jointly with the first two. As in the proof of Proposition 10,
we fix 0 < s < t and we first consider τ[nt] − τ[ns]. Writing

τ[nt] − τ[ns] =
[nt]∑

i=[ns]+1

(τi − τi−1)

and, using Proposition 15, we see that, conditionally on (Pk)k≥0, the variable τ[nt] − τ[ns] is distributed as

[nt]∑
i=[ns]+1

ei

Pi

,

where the random variables e1, e2, . . . are independent and exponentially distributed with parameter 1, and are also
independent of (Pk)k≥0. By the convergence of the first component in (60), we have

n−1/3
[nt]∑

i=[ns]+1

1

Pi

=
∫ n−1([nt]+1)

n−1([ns]+1)

du

n−2/3P[nu]
(d)−→

n→∞
1

p�2

∫ t

s

du

S+
u

,

and, on the other hand,

E

[(
n−1/3

[nt]∑
i=[ns]+1

ei

Pi

− n−1/3
[nt]∑

i=[ns]+1

1

Pi

)2 ∣∣∣∣ (Pk)k≥0

]

= n−2/3
[nt]∑

i=[ns]+1

1

(Pi)2
= 1

n

∫ n−1([nt]+1)

n−1([ns]+1)

du

(n−2/3P[nu])2

converges to 0 in probability as n → ∞. It easily follows that

n−1/3(τ[nt] − τ[ns])
(d)−→

n→∞
1

p�2

∫ t

s

du

S+
u

, (61)

and the previous argument also shows that this convergence holds jointly with that of the first two components in (60).
We can complete the proof by arguing in a way similar to the end of the proof of Proposition 10. It suffices to verify
that

sup
n≥1

E
[
n−1/3τ[ns]

]−→
s→0

0.

This is however very easy, since

E[τ[ns]] = E

[ [ns]∑
i=1

1

Pi

]

and we can use Lemma 8 to obtain that E[τ[ns]] ≤ C(ns)1/3, for some constant C. �

5.3. Comparing distances

One conjectures that balls for the dual graph distance or the first-passage percolation distance grow asymptotically
like “deterministic” balls for the graph distance. More precisely, one expects that there exist two constants c1, c2 > 0
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such that, for every ε > 0, one has

B
(c−1

1 −ε)r
⊂ B∗

r ⊂ B
(c−1

1 +ε)r
,

B
(c−1

2 −ε)r
⊂ Fr ⊂ B

(c−1
2 +ε)r

.

with high probability when r is large (here B∗
r is the ball for the dual graph distance, that is the union of all faces that

are at dual graph distance less than or equal to r from the root face). The reason for this belief is the fact that the UIPT
is “isotropic,” in contrast with deterministic lattices such as Zd . Our results support the previous conjecture since the
scaling limits for the perimeter and volume of hulls are the same for any the balls Br , Fr and B∗

r , up to multiplicative
constants. Note that, if the last display holds, we must have also

B
•,∗
(c1−ε)r

⊂ B•
r ⊂ B

•,∗
(c1+ε)r

,

F•
(c2−ε)r ⊂ B•

r ⊂ F•
(c2+ε)r ,

with high probability when r is large. By comparing the limits in distribution of |B•
r | (Theorem 2), of |B•,∗

r | (Theo-
rem 3) and of |F•

r | (Theorem 4), we see that if the previous conjecture holds, the constants c1 and c2 must be equal
to

c1 =
h∗
�2

h�2
= 1 + a�2

a�2
= 4 and c2 = 1

p�2h�2
= 1

a�2
= 3.

See [1, Remark 5] for related calculations about two-point and three-point functions for first-passage percolation
on type I triangulations (in that case, the analog of the constant a�2 is a�1 = 1/(2

√
3), as we shall see below). The

proof of the above conjecture is discussed, in the slightly different setting of type I triangulations, in the forthcoming
work [16].

6. Other models

Although we chose to focus on type II triangulations, our results can be extended to other classes of infinite random
planar maps. Roughly speaking, one only needs to replace the constants a�2 , t�2 , b�2 defined in (13), in Proposition 9
and in Proposition 11 by their appropriate values in the model in consideration. All our results should then go through
with the constants v·, p·, h·, h∗· evaluated via the same “universal” relations from the constants a·, t·, b·. In this section
we carefully explain how to do this in two particular cases, namely type I triangulations and quadrangulations. It may
well be the case that our techniques can be extended to even more general classes of random planar maps such as the
(regular critical) Boltzmann triangulations considered in [11].

6.1. Type I triangulations

Let us consider the case of type I triangulations, where both loops and multiple edges are allowed. The construction
of the UIPT in this case is not treated by Angel and Schramm [6], but the techniques of [6] can easily be extended
using the corresponding enumeration results (see below). Alternatively, the construction of the type I UIPT follows as
a special case of the recent results of Stephenson [30]. We denote the UIPT for type I triangulations by T

(1)∞ . Let us
list the enumeration results corresponding to those of Section 2.1. These results may be found in Krikun [23] (Krikun
uses the number of edges as the size parameter and in order to apply his formulas we note that a triangulation of the
p-gon with n inner vertices has 3n + 2p − 3 edges).

For every p ≥ 1 and n ≥ 0, let T (1)
n,p stand for the set of all type I triangulations with n inner vertices and a simple

boundary of length p, which are rooted on an edge of the boundary in the way explained in Section 2.1. We have for
(n,p) �= (0,1)

#T (1)
n,p = 4n−1 p(2p)!(2p + 3n − 5)!!

(p!)2n!(2p + n − 1)!! ∼
n→∞C(1)(p)(12

√
3)nn−5/2,
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where

C(1)(p) = 3p−2p(2p)!
4
√

2π(p!)2
∼

p→∞
1

36π
√

2

√
p12p.

We then set Z(1)(p) = ∑
n≥0 #T (1)

n,p (12
√

3)−n and we have the formula (see [4, Section 2.2])

Z(1)(p) = 6p(2p − 5)!!
8
√

3p! if p ≥ 2, Z(1)(1) = 2 − √
3

4
.

The generating series of Z1(p) can also be computed explicitly from [23, formula (4)] and an appropriate change of
variables (we omit the details):

∑
p≥0

Z(1)(p + 1)zp = 1

2
+ (1 − 12z)3/2 − 1

24
√

3z
.

In particular, the analog of (4) is

Z(1)(p + 1) ∼
p→∞

√
3

8
√

π
12pp−5/2,

and similarly as in (4), we set

t�1 =
√

3

8
√

π
.

The peeling algorithm discovering T
(1)∞ is then described in a very similar way as in Section 3.1. The only difference

is that we now need to consider the possibility of loops. With the notation of Section 3.1, and supposing that the
revealed region has a boundary of size p ≥ 1, events of type L0 or R0, or of type Lp−1 or Rp−1, may occur (the
definition of these events should be obvious from Figure 3). The respective probabilities of events C, Lk or Rk are
given by formulas analogous to (10) and (11), where 2/27 is replaced by 1/(12

√
3), the functions C and Z are

replaced respectively by C(1) and Z(1), and finally k is allowed to vary in {0, . . . , p − 1}.
An analog of Proposition 6 holds, and the constant p�2 has to be replaced by

p�1 =
(

8t�1
√

π

3

)2/3

= 3−1/3.

Similarly, there is a version of Proposition 9 in the type I case, and the constant b�2 is replaced by

b�1 = 4

3

whereas the limiting distribution remains the same. Finally, the analog of Proposition 11 involves the new constant

a�1 = 1

2
√

3
.

The proofs of Theorems 1, 2, 3 and 4 can then be adapted easily to the UIPT T
(1)∞ . In these statements, p�2 is

replaced by p�1 and the other constants v�2 , h�2 and h∗
�2 are replaced respectively by

v�1 = (p�1)
2b�1 = 4 · 3−5/3, h�1 = a�1

p�1
= 1

2
3−1/6 and h∗

�1 = 1 + a�1

p�1
.
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We note that p�1/(h�1)2 = p�2/(h�2)2, which, by Theorem 2 and its type I analog, means that the scaling limit of the
perimeter of hulls is exactly the same for type I and for type II triangulations. This fact can be explained by a direct
relation between the UIPTs of type I and of type II, but we omit the details.

6.2. Quadrangulations

Let us now consider the Uniform Infinite Planar Quadrangulation (UIPQ), which is denoted here by Q∞. This case
requires more changes in the arguments. We first note that a quadrangulation with a simple boundary necessarily has
an even perimeter. For every p ≥ 1, let Qn,p stand for the set of all quadrangulations with a simple boundary of
perimeter 2p and n inner vertices, which are rooted at an oriented edge of the boundary in such a way that the external
face lies on the right of the root edge. For n ≥ 0 and p ≥ 1, we read from [10, Eq. (2.11)] that

#Qn,p = 3n−1 (3p)!(3p − 3 + 2n)!
n!p!(2p − 1)!(n + 3p − 1)! ∼

n→∞C�(p)12nn−5/2,

where

C�(p) = 8p−1(3p)!
3
√

πp!(2p − 1)! ∼
p→∞

1

8
√

3π
54p√

p.

We have also, for every p ≥ 2,

Z�(p) =
∑
n≥0

#Qn,p12−n = 8p(3p − 4)!
(p − 2)!(2p)! ,

and Z�(1) = 4/3. Furthermore,

Z�(p + 1) ∼
p→∞

1√
3π

54pp−5/2,
∑
k≥0

Z�(k + 1)54−k = 3/2,
∑
k≥0

kZ�(k + 1)54−k = 1/2. (62)

The transitions in the peeling process of the UIPQ are more complicated than previously because of additional
cases. If at step n ≥ 0 the perimeter of the discovered quadrangulation Qn is equal to 2m, then the revealed quadrangle
at the next step may have three different shapes (see Figure 7):

1. Shape C: The revealed quadrangle has two vertices in the unknown region, an event of probability

P
(
C | |∂Qn| = 2m

) = q(m)
−2 = 12−2 C�(m + 1)

C�(m)
.

2. Shapes Lk and Rk , for k ∈ {0,1, . . . ,2m − 1}: The revealed quadrangle has three vertices on the boundary of Qn.
This quadrangle then “swallows” a part of the boundary of ∂Qn of length k. This event is denoted by Lk or Rk

according to whether the part of the boundary that is swallowed is on the right or on the left of the peeled edge.
Note that the revealed face encloses a finite quadrangulation of perimeter k + 1 if k is odd and k + 2 if k is even.
These events have probability

P
(
L2k | |∂Qn| = 2m

) = P
(
L2k+1 | |∂Qn| = 2m

) = P
(
R2k | |∂Qn| = 2m

) = P
(
R2k+1 | |∂Qn| = 2m

)
= q(m)

2k+1 = q(m)
2k = Z�(k + 1)

12

C�(m − k)

C�(m)
.

3. Shapes Lk1,k2 , Rk1,k2 and Ck1,k2 for k1, k2 ≥ 1 odd and such that k1 + k2 < 2m: This last case occurs when the
revealed quadrangle has its four vertices on ∂Qn. It then encloses two finite quadrangulations of respective perime-
ters k1 + 1 and k2 + 1 either both on the left side of the peeled edge in case Lk1,k2 , or one on each side of the peeled
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Fig. 7. A few peeling transitions in the quadrangular case.

edge in case Ck1,k2 , or both on the right side of the peeled edge in case Rk1,k2 . These three events have the same
probability: writing k1 = 2j1 + 1 and k2 = 2j2 + 1, with j1 + j2 < m − 1,

P
(
Lk1,k2 | |∂Qn| = 2m

) = P
(
Rk1,k2 | |∂Qn| = 2m

) = P
(
Ck1,k2 | |∂Qn| = 2m

)
= q(m)

k1,k2
= Z�(j1 + 1)Z�(j2 + 1)

C�(m − j1 − j2 − 1)

C�(m)
.

Furthermore, conditionally on each of the above cases, the finite quadrangulations enclosed by the revealed face are
independent Boltzmann quadrangulations with the prescribed perimeters. Let P�

n stand for the half-perimeter at step
n in the peeling process. Then, similarly as in the triangular case, the Markov chain (P�

n ) is obtained by conditioning
a random walk X on Z to stay (strictly) positive, and the increments of X are now distributed as follows:

E
[
f (Xn+1) | Xn

] = f (Xn + 1) · q−2 +
∞∑

k=0

f (Xn − k) ·
(

2(q2k + q2k+1) + 3
∑

k1+k2=2k

k1,k2≥1 odd

qk1,k2

)
,

where qj = limm→∞ q(m)
j and qk1,k2 = limm→∞ q(m)

k1,k2
as in the triangular case. From the enumeration results, we get,

for every k ≥ 0,

P(�X = −k) = 2(q2k + q2k+1) + 3
∑

k1+k2=2k

k1,k2≥1 odd

qk1,k2 ∼
k→∞

1

2
√

3π
k−5/2. (63)

The results of Sections 3.2 and 3.4 can then be extended to the UIPQ Q∞. Comparing (63) with (13), we see that
the role of the constant t�2 is now played by t� = 1/(4

√
3π). Then the convergence in distribution of Proposition 6

holds for P�
n , with the constant p�2 replaced by

p� =
(

8t�
√

π

3

)2/3

= 22/3

3
.

An analog of Proposition 9, where we now consider a Boltzmann quadrangulation Q(p) of the 2p-gon, also holds in
the form

p−2
E

[∣∣Q(p)
∣∣] −→

p→∞
9

2
=: b�.

The peeling by layers requires certain modifications in the case of quadrangulations. As previously, the ball
Br(Q∞) is the planar map obtained by keeping only those faces of Q∞ that are incident to at least one vertex whose
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Fig. 8. Illustration of the peeling by layers in the quadrangular case: we choose an edge to start discovering the new layer and then peel from left
to right all the edges that contain a vertex at distance r from the root vertex.

graph distance from the root vertex is smaller than or equal to r − 1, and the hull B•
r (Q∞) is obtained by filling in the

finite holes of Br(Q∞). The boundary ∂B•
r (Q∞) is now a simple cycle that visits alternatively vertices at distance r

and r + 1 from the root vertex. If we move around the boundary of this cycle in clockwise order, we encounter two
types of (oriented) edges, edges r + 1 → r connecting a vertex at distance r + 1 to a vertex at distance r , and edges
r → r + 1 connecting a vertex at distance r to a vertex at distance r + 1.

To describe the peeling by layers algorithm, suppose that, at a certain step of the peeling process, the revealed
region is the hull B•

r (Q∞). Then we choose (deterministically or using some independent randomization) an edge
of the boundary of type r + 1 → r . We reveal the face incident to this edge that is not already in B•

r (Q∞) and as
usual we fill in the holes that may have been created. At the next step, either the (new) boundary has an edge of type
r + 1 → r that is incident to the quadrangle revealed in the previous step, and we peel this edge, or we peel the first
edge of type r + 1 → r coming after the revealed quadrangle in clockwise order. We continue inductively, “moving
around the boundary in clockwise order.” See Figure 8 for an example. After a finite number of steps, the boundary
does not contain any vertex at distance r , and it is easy to verify that the revealed region is then the hull B•

r+1(Q∞),
so that we can continue the construction by induction.

Proposition 11 is adapted as follows. For every r ≥ 1, let L�
r be the set of all vertices of ∂B•

r (Q∞) that are at
distance exactly r from the root vertex. Clearly the perimeter |∂B•

r (Q∞)| is equal to 2#L�
r . We also denote the union

of all L�
r for r ≥ 1 by L�. Finally, for n ≥ 1, we let A�

n be the number of vertices of L� that are in the interior of
the discovered region at step n. Then the analog of Proposition 11 reads

An

n

(P )−→
n→∞

1

3
=: a�.

The idea of the proof is the same but technicalities become somewhat more complicated (we omit the details).
Versions of Theorems 1, 2 then hold for the UIPQ Q∞. In these statements we now interpret the size of the

boundary as half its perimeter, the constant p�2 is replaced by p� and the other constants v�2 and h�2 are replaced
respectively by

v� = (p�)2b� = 21/3 and h� = a�
p�

= 2−2/3.

We observe that the convergence of volumes in the analog of Theorem 2 for the UIPQ was already obtained in [17] as a
consequence of the invariance principles relating the UIPQ and the Brownian plane (see Theorems 5.1 and 1.3 in [17]).
It would be significantly harder to derive the convergence of boundary lengths from the same invariance principles.
On the other hand, Krikun [21] has a version of the scaling limit for boundary lengths in the case of quadrangulations,
but with a different definition of hull boundaries leading to different constants.

It is also possible to adapt Theorems 3 and 4 to the setting of quadrangulations: the limiting process in the analog
of Theorem 3 (where we again consider the half-perimeter rather than the perimeter) is (p� ·Lt/h∗

�
, v� ·Mt/h∗

�
)t≥0,

with

h∗
� = 1 + a∗

�
2p�

,

where a∗
� = 1

2 is the mean number of edges “swallowed” on the right of the peeled edge in a peeling step for the

half-plane UIPQ (see [4, Eq. (8)] where this quantity is denoted by δ�/2). The extra multiplicative factor 2 in the time
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parameter comes from the fact that we are dealing with half-perimeters. Similarly, the limiting process in the analog
of Theorem 4 is (p� ·L2p�t , v� ·M2p�t )t≥0.
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