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Abstract. We consider a two-parameter averaging-homogenization type elliptic problem together with the stochastic represen-
tation of the solution. A limit theorem is derived for the corresponding diffusion process and a precise description of the two-
parameter limit behavior for the solution of the PDE is obtained.

Résumé. Nous considérons un problème elliptique de type moyennisation / homogénisation à deux paramètres, en combinaison
avec la représentation stochastique de la solution. Nous obtenons un théorème limite pour le processus de diffusion correspondant
ainsi qu’une description précise du comportement limite de la solution de l’EDP.
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1. Introduction

Let DR ⊆ R
2 be obtained from a bounded smooth domain D by stretching it by a factor R. Consider the elliptic

Dirichlet problem

1

2
�uε,R + 1

ε
v∇uε,R = −f

(
x

R

)
in DR, uε,R|∂DR

= 0, (1.1)

where f is a bounded continuous function on D and v is a smooth incompressible periodic Hamiltonian vector field.
For simplicity, assume that D contains the origin. We further assume that the stream function H(x1, x2) such that

v = ∇⊥H = (−∂2H,∂1H),

is itself periodic in both variables, that is, the integral of v over the periodicity cell is zero. Let us assume for simplicity
that the period is one in both directions. We will denote the cell of periodicity by T , which can be viewed as a
unit square or, alternatively, as a torus. Our main additional structural assumption is that the critical points of H

are non degenerate and that there is a level set L of H (say L = {x ∈ R
2 : H(x) = 0} without loss of generality)

containing some of the saddle points and forming a lattice in R
2, thus dividing the plane into bounded sets that are

invariant under the flow (see Figure 1). A typical example to keep in mind is the canonical cellular flow given by
H(x1, x2) = sin(x1) sin(x2).
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Fig. 1. A period of the cellular flow.

There are two parameters in this problem: ε measures the inverse of the strength of the vector field, while R

measures the size of the domain. For fixed R (e.g. when DR coincides with exactly one cell) and ε ↓ 0, solution to
(1.1) becomes constant on stream lines. Indeed, multiplying by ε and letting ε ↓ 0 formally gives us v∇u = 0. The
precise values of the asymptotics of the solution on each streamline are determined by an ODE corresponding to the
structure of the level sets according to classical averaging results [8].

If on the other hand ε is fixed and R ↑ ∞, then the asymptotic behavior of u can be obtained by homogenization
(e.g. [4,13,15]), i.e., by solving an elliptic problem on D with appropriately chosen constant coefficients.

It was shown in [9] that averaging and homogenization can also be used to study the two-parameter asymptotics
in certain regimes. Namely, if R4 log2 R ≤ c/(ε log2 ε) for some constant c as 1/ε,R ↑ ∞, then averaging theory
applies. On the other hand, if R4−α ≥ 1/ε for some positive α, then homogenization type behavior is observed. The
methods in [9] are analytic, based on investigating the asymptotic behavior of the principal Dirichlet eigenvalue of the
elliptic operator, and it seems unlikely that they can be directly applied near the transition regime. To our knowledge,
only numerical results were available in the intermediate cases [10,14] up until now.

In this paper, we study the two-parameter asymptotics using a probabilistic approach and we prove that the
crossover from homogenization to averaging occurs when R is precisely of order ε−1/4. In order to achieve this,
we study the family of two dimensional diffusion processes associated to (1.1), namely

dX
x,ε
t = 1

ε
v
(
X

x,ε
t

)
dt + dWt, X

x,ε
0 = x,

on some probability space (Ω,F,P), where Wt is a two dimensional Brownian motion. Our goal is to obtain a limit
theorem as ε ↓ 0 provided that X

x,ε
t is considered on scales of order ε−1/4, and to identify the limiting process as a

time changed Brownian motion. The time change arising in the construction of the limiting process is non-trivial and
can be described as the local time of a diffusion process on a certain graph which we now explain.

It is well known that there is a graph G naturally associated to the structure of the level sets of H (see Figure 2),
by setting G = T / ∼ for the equivalence relation ∼ such that two points are equivalent if and only if they belong
to the same connected level set of H . With this definition, G is a “real graph” in the sense that it is homeomorphic
to finitely many copies of [0,1] glued together at their extremities. As above, let L = {x ∈ R

2 : H(x) = 0} be the
connected level set of H that contains a periodic array of saddle points, and denote the corresponding level set on the
torus by LT . Let Ai , i = 1, . . . , n, be the saddle points of H in LT . Then L (or LT ) is the union of heteroclinic orbits
connecting the Ai ’s and will be referred to as the separatrix. For notational simplicity, we assume that there are no
homoclinic orbits, i.e., ones that connect a saddle to itself. Also, let Ui , i = 1, . . . , n, be the connected components
of T \ LT . (There is no particular connection between the numbering of the Ui ’s and that of the Ai ’s, although by
Euler’s theorem there is actually the same number of them.) For convenience, we also assume that there are no saddle
points of H inside any Ui . The graph G then consists of an interior vertex O , which is the image of LT in G, and
of n edges connecting O to the exterior vertices corresponding to the extrema of H . Every other point on an edge
corresponds to the appropriate connected component of a level curve of |H |. Accordingly, |H | will serve as a local
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Fig. 2. The graph corresponding to the structure of the level sets of H on T .

coordinate on each edge Ii , which gives G a natural metric structure. This is also called the Reeb graph of H in the
topology literature.

From now on, we will therefore identify G with a subset of N×R+ by writing (i, z) for the connected component
of {x : |H(x)| = z} lying in Ui . We make the abuse of notation of identifying all the points (i,0) with each other, and
we write

Γ :T → G, Γ (x) = (
i,

∣∣H(x)
∣∣) if x ∈ Ui,

for the canonical map. (Although the sets Ui overlap, this is well defined since we have identified the points (i,0).)
Note that Γ takes each Ui into an edge Ii of the graph and the extrema inside each Ui are mapped to the corresponding
exterior vertices. Naturally, Γ can be extended periodically to the entire plane.

It was shown in [8, Chapter 8] that the non-Markovian processes Γ (X
x,ε
t ) converge in distribution, as ε ↓ 0, to a

diffusion on G. Let us describe this limiting process briefly. On the ith edge of the graph, the process is a diffusion
with generator

Ai = a(i, z)2

2

d2

dz2
+ b(i, z)

d

dz
,

where the coefficients a(i, z), b(i, z) can be computed explicitly from H . The behavior of the process at the interior
vertex O can also be described in terms of H . More precisely, for a set of constants αi > 0 with

∑n
i=1 αi = 1, we can

define an operator A on the domain D(A) that consists of the functions F that satisfy:

(a) F ∈ C(G) and furthermore F ∈ C2(Ii) for each edge i,
(b) AiF (z), z ∈ Ii , which is defined on the union of the interiors of all the edges, can be extended to a continuous

function on G,
(c)

∑n
i=1 αiDiF (O) = 0, where DiF(O) is the one-sided interior derivative of F along the edge Ii .

We then define the operator A by AF |Ii
=AiF |Ii

. Below, we are going to write y = (i, z) to refer to a point on G.
As shown in [7], A generates a Fellerian Markov family Y

y
t on G. With these notations at hand, the measures on

C([0,∞);G) induced by the processes Γ (X
x,ε
t ) converge weakly to the one induced by the process Y

Γ (x)
t , provided

that the constants {αi}ni=1 are suitably chosen.
Note that the classical Freidlin–Wentzell theory requires H(x) → ∞ as |x| → ∞. Nevertheless, adapting the

results for the compact setting on T is trivial.

Definition 1.1. The local time of Yy0 is the unique nonnegative random field

Ly0 = {
L

y0
t (y) : (t, y) ∈ [0,∞) × G

}
such that the following hold:
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1. The mapping (t, y) → L
y0
t (y) is measurable and L

y0
t (y) is adapted.

2. For each y ∈ G, the mapping t → L
y0
t (y) is non-decreasing and constant on each open interval where Y

y0
t = y.

3. For every Borel measurable f : G → [0,∞), we have∫ t

0
f

(
Y

y0
s

)
a2(Yy0

s

)
ds = 2

∫
G

f (y)L
y0
t (y) dy a.s.

4. L
y0
t (y) is a.s. jointly continuous in t and y for y = O , while

L
y0
t (O) =

n∑
i=1

lim
y→O,y∈Ii

L
y0
t (y).

The existence and uniqueness of local time for diffusions on the real line is relatively well studied. These standard
results, together with a straightforward modification of Lemma 2.2 of [6], give the existence and uniqueness for the
local time on the graph. Note (see e.g. [8]) that for processes on G arising from the averaging of a Hamiltonian system,
a−2(·) is locally integrable near the interior vertex, which is sufficient for the method of [6] to work.

The main result of this paper is the following. For a positive definite symmetric matrix Q, let W̃
Q
t be a two

dimensional Brownian motion with covariance matrix Q. Assume that the families of processes Y
y
t , and W̃

Q
t are

independent. Also consider the process W̃
Q

L
y
t

, where L
y
t = L

y
t (O) is the local time of Y

y
t at the interior vertex.

Theorem 1.2. There exists a strictly positive definite matrix Q such that the law of the process ε1/4X
x,ε
t converges,

as ε ↓ 0, to that of W̃
Q

L
Γ (x)
t

.

Remark 1.3. One might also consider the process X
x,ε
t on slightly shorter timescales, i.e., t ∼ εα| log ε| with α ∈

(0,1) . At first glance, this may appear uninteresting since, for a generic starting point x, this would simply lead to a
fast rotation on the level set {y : H(y) = H(x)}. However, if we consider a starting point on (or sufficiently close to)
the separatrix, one expects to see a non-trivial limiting process also at these shorter scales. It is natural to conjecture

that this process, after spatial re-scaling by ε
1−α

4 , is given by W̃
Q
Lt

, where Lt is the local time of a Brownian motion
at the vertex of a star-shaped graph. A similar process, called FK(1/2), already arose as the scaling limit for heavy-
tailed trap models in [1]. The authors are planning to return to this question in a forthcoming publication. We also
mention that the α = 1 case has been considered in [2].

It is well known that the solution of (1.1) can be represented as

uε,R(x) = E
∫ τ∂DR

(Xx,ε
. )

0
f

(
Xx,ε

s /R
)
ds,

where τ∂DR
(ω) is the first hitting of the boundary of DR by the trajectory ω ∈ C([0, T ];R2). The essence of the

averaging and transition regimes can be captured by the mechanism of the exit of the process Xε
t from DR (see [9]).

In the averaging regime, the process X
x,ε
t revolves many times roughly along the flow lines within one cell, but

once the separatrix is reached, the process exits DR quickly (as intuitively follows from the typical fluctuation of
the limiting Brownian motion after one notices that the local time immediately becomes non-zero after the process
reaches the boundary).

On the other hand, in the homogenization regime, the interiors of many cells are visited before the process exits
DR , and there is enough time for the process L

Γ (x)
t to start growing nearly linearly in t , and therefore an overall

Brownian behavior to set in. The mean exit time becomes infinite in the limit.
In the intermediate transition regime, the time required to leave DR remains finite and is of the same order as the

local time, although L
Γ (x)
t is not directly proportional to t in this regime. We will apply Theorem 1.2 in order to obtain

the following asymptotic results for the solution of equation (1.1). The precise statement of our results from a PDE
perspective can be summarized by the following theorem.
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Theorem 1.4. Let ε ↓ 0 and R = R(ε) ↑ ∞ in (1.1).

1. (Averaging regime) If Rε1/4 ↓ 0, then

uε,R(x) → f (0) · Eτ 0
(
YΓ (x)·

)
,

where τ 0 is the first time when a process on G hits the interior vertex.
2. (Transition regime) If Rε1/4 → C ∈ (0,∞), then

uε,R(x) → E
∫ τ∂D

0
f

(
W̃

Q/C2

L
Γ (x)
t

)
dt,

with Q as in Theorem 1.2, where τ∂D is the first time the process W̃
Q/C2

L
Γ (x)
t

hits the boundary of D.

3. (Homogenization regime) There is a constant c > 0 such that if Rε1/4 ↑ ∞, then

ε−1/2R−2uε,R(x) → E
∫ τ∂D

0
f

(
W̃

cQ
t

)
dt, (1.2)

where W̃
cQ
t is a Brownian motion with covariance cQ and τ∂D is the first time the process W̃

cQ
t hits the boundary

of D.

Remark 1.5. Note that there is no x dependence on the right-hand side of (1.2). If we scale the problem back to
the original domain D and then normalize appropriately, the above result gives us that the limit is the solution of
a constant coefficient Dirichlet problem on D evaluated at the origin. To get the values of this solution at another
point x, we must apply the result to the shifted domain D − x. This way we can prove that

(
ε1/2R2)−1

uε,R(Rx) → E
∫ τ∂D

0
f

(
x + W̃

cQ
t

)
dt as ε ↓ 0,R ↑ ∞,

which contains the classical homogenization result. Here τ∂D is the first time when the process x + W̃
cQ
t hits the

boundary of D.

Remark 1.6. Although it is not an aim of the present paper, Theorem 1.2 can also be used to derive asymptotics for
PDEs with periodic right-hand side and for parabolic problems (using the well known probabilistic representations).
These techniques are suitable for investigating equations with non-zero boundary data as well.

This paper is organized as follows. In Section 2, we derive a limit theorem to describe the displacement that occurs
when the process leaves the interior of a cell and comes close to the separatrix. This, combined with a Lévy-type
downcrossing representation of the local time at the interior vertex, will help us prove Theorem 1.2 in Section 3.
Section 4 is dedicated to the proof of Theorem 1.4.

2. Displacement when the process is near the separatrix

In this section we study the behavior of the process when it is close to the separatrix. The process spends most of the
time in the interiors of the cells where no cell changes are possible. However, when the process leaves the cell interior,
rapid displacement occurs along the separatrix. We will show what happens during one excursion, i.e., between the
time when the process hits the separatrix and the time when it goes back to the interior of the domain (the exact
meaning of the latter will be explained below).

First, we need some notations. For any two saddle points, introduce γ (Ai,Aj ) as the set of points in LT that get
taken to Aj by the flow ẋ = v(x) and to Ai by the flow ẋ = −v(x). Since we assumed that the separatrices do not
form loops, we always have γ (Ai,Ai) =∅.

Let V δ = {x ∈ R
2 : |H(x)| ≤ δ}. For δ sufficiently small, we can make a continuous coordinate change (x1, x2) →

(H, θ) in V δ ∩ Uk . Here θ takes values in [0,
∫
∂Uk

|∇H |dl], with the endpoints of the interval identified, and satisfies
the conditions
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1. Its gradient satisfies |∇θ | = |∇H | on the curve γ (Ai,Aj ).
2. The function θ is constant on curves perpendicular to the level sets of H .

Note that this defines θ uniquely, up to the choice of origin θ = 0 and the direction in which θ increases. Note also
that, as a consequence of the smoothness of H , θ is smooth in a neighborhood of γ (Ai,Aj ) for each Ai,Aj such that
γ (Ai,Aj ) ⊂ Uk . Using these new coordinates, we can define what it means for the process to pass a saddle point.
Namely, let

B(Ai,Uk) = {
x ∈ V δ ∩ Uk : θ(x) = θ(Ai)

}
, B(Ai) =

⋃
k:Ai∈∂Uk

B(Ai,Uk).

Observe that B(Ai,Uk) is a curve in Uk transversal to the flow with an endpoint being the saddle point Ai . Let
π : R2 → T be the quotient map from the plane to the torus and, for simplicity, let us denote π(V δ) by V δ again.
Introduce the stopping times α

x,δ,ε
0 = 0, β

x,δ,ε
0 = inf{t ≥ 0 : X

x,ε
t ∈ L} and recursively define α

x,δ,ε
n and β

x,δ,ε
n as

follows. Given β
x,δ,ε
n−1 , find i and j such that π(X

x,ε

β
x,δ,ε
n−1

) ∈ γ (Ai,Aj ). Then we define

αx,δ,ε
n = inf

{
t ≥ β

x,δ,ε
n−1 : π(

X
x,ε
t

) ∈
⋃
k =i

B(Ak) ∪ ∂V δ

}
,

βx,δ,ε
n = inf

{
t ≥ αx,δ,ε

n : Xx,ε
t ∈ L

}
.

In other words, α
x,δ,ε
n is the first time after β

x,δ,ε
n−1 that the process either hits ∂V δ , or goes past a saddle point different

from the one behind X
x,ε

β
x,δ,ε
n−1

.

We introduce another pair of sequences of stopping times corresponding to successive visits to L and ∂V δ . Namely,
let μ

x,δ,ε
0 = 0, σ

x,δ,ε
0 = β

x,δ,ε
0 , and recursively define

μx,δ,ε
n = inf

{
t ≥ σ

x,δ,ε
n−1 : Xx,ε

t ∈ ∂V δ
}
, σ x,δ,ε

n = inf
{
t ≥ μx,δ,ε

n : Xx,ε
t ∈ L

}
.

Let

Sx,δ,ε
n = X

x,ε

σ
x,δ,ε
n

− X
x,ε

σ
x,δ,ε
n−1

, n ≥ 1, T x,δ,ε
n = σx,δ,ε

n − μx,δ,ε
n , n ≥ 0,

be the displacement between successive visits to L and the time spent on the nth downcrossing of V δ , respectively.
We will use the following notion of uniform weak convergence for probability measures in the sequel.

Definition 2.1. Given two families of random variables f x,ε and gx with values in a metric space M and indexed by
a parameter x, we will say that f x,ε converge to gx in distribution uniformly in x if

Eϕ
(
f x,ε

) → Eϕ
(
gx

)
,

as ε → 0, uniformly in x for each ϕ ∈ Cb(M).

Let ηx,δ,ε be the random vector with values in {1, . . . , n} defined by

ηx,δ,ε = i if X
x,ε

μ
x,δ,ε
1

∈ Ui, i = 1, . . . , n,

i.e., ηx,δ,ε = i if the process ends up in Ui after the first upcrossing of V δ . The main result of this section is

Theorem 2.2. There are a 2×2 non-degenerate matrix Q, a vector (p1, . . . , pn), and functions a(δ), b1(δ), . . . , bn(δ)

that go to zero as δ → 0, such that(
ε1/4S

x,δ,ε
1 , ηx,δ,ε

) → (√
δ
(
1 + a(δ)

)√
ξN(0,Q),ηδ

)
(2.1)
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in distribution as ε ↓ 0, uniformly in x ∈ L for all sufficiently small δ > 0, where ξ is an exponential random variable
with parameter one, N is a two dimensional normal with covariance matrix Q, independent of ξ , and ηδ is a random
vector with values in {1, . . . , n} independent of ξ and N such that P(ηδ = i) = pi + bi(δ).

Before proving Theorem 2.2, let us briefly discuss one implication. Let T̄ y be the time it takes the limiting process
Y

y
t on the graph to reach the vertex O .

Lemma 2.3. For fixed m and δ, the random vectors(
T

x,δ,ε
0 , ε1/4S

x,δ,ε
1 , T

x,δ,ε
1 , . . . , T

x,δ,ε
m−1 , ε1/4Sx,δ,ε

m

)
converge, as ε ↓ 0, to a random vector with independent components. The limiting distribution for each of the compo-
nents ε1/4S

x,δ,ε
1 , . . . , ε1/4S

x,δ,ε
m is given by Theorem 2.2, i.e., it is equal to the distribution of

√
δ(1+a(δ))

√
ξN(0,Q).

The limiting distribution of T
x,δ,ε
0 is the distribution of T̄ Γ (x). The limiting distribution for each of the components

T
x,δ,ε
1 , . . . , T

x,δ,ε
m−1 is equal to the distribution of T̄ ζ , where ζ is a random initial point for the process on the graph,

chosen to be at distance δ from the vertex O , in such a way that ζ belongs to the ith edge with probability pi + bi(δ).

Proof. By the averaging principle [7], T
x,δ,ε
0 → T̄ Γ (x) in distribution uniformly in x ∈ T . The convergence of other

components of the random vector to their respective limits follows from Theorem 2.2. The independence of the
components of the limiting vector immediately follows from the strong Markov property of the process X

x,ε
t and the

fact that the convergence in Theorem 2.2 is uniform with respect to x. �

We will prove Theorem 2.2 by proving a more abstract lemma on Markov chains with a small probability of termi-
nation at each step, and demonstrating that the conditions of the lemma are satisfied in the situation of Theorem 2.2.

Let M be a metric space that can be written as a disjoint union

M = X � C1 � · · · � Cn,

where the sets Ci are closed. Assume also that X is a σ -locally compact separable subspace, i.e., locally compact that
is the union of countably many compact subspaces. Let pε(x, dy), 0 ≤ ε ≤ ε0, be a family of transition probabilities
on M and let g ∈ Cb(M,R2). Later, pε(x, dy) will come up as transition probabilities of a certain discrete time process
associated to X

x,ε
t . We assume that the following properties hold:

(1) p0(x,X) = 1 for all x ∈ M and pε(x,X) = 1 for all x ∈ M \ X.
(2) p0(x, dy) is weakly Feller, that is the map x �→ ∫

M
f (y)p0(x, dy) belongs to Cb(M) if f ∈ Cb(M).

(3) There exist bounded continuous functions h1, . . . , hn : X → [0,∞) such that

ε− 1
2 pε(x,Ci) → hi(x) uniformly in x ∈ K if K ⊆ X is compact,

while supx∈X |ε− 1
2 pε(x,Ci)| ≤ c for some positive constant c. We also have

J (x) := h1(x) + · · · + hn(x) > 0 for x ∈ X.

(4) pε(x, dy) converges weakly to p0(x, dy) as ε → 0, uniformly in x ∈ K if K ⊆ X is compact.
(5) The transition functions satisfy a strong Doeblin condition uniformly in ε. Namely, there exist a probability

measure η on X, a constant a > 0, and an integer m > 0 such that

pm
ε (x,A) ≥ aη(A) for x ∈ M,A ∈ B(X), ε ∈ [0, ε0].

It then follows that for every ε, there is a unique invariant measure λε(dy) on M for pε(x, dy), and the associated
Markov chain is uniformly exponentially mixing, i.e., there are Λ > 0, c > 0, such that∣∣pk

ε (x,A) − λε(A)
∣∣ ≤ ce−Λk for all x ∈ M,A ∈ B(M), ε ∈ [0, ε0].

(6) The function g is such that
∫
M

g dλε = 0 for each ε ∈ [0, ε0].
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Lemma 2.4. Suppose that assumptions (1)–(6) above are satisfied and let Z
x,ε
k be the Markov chain on M starting at

x, with transition function pε . Let τ = τ(x, ε) be the first time when the chain reaches the set C = C1 � · · · � Cn. Let
e(Z

x,ε
k ) = i if Z

x,ε
k ∈ Ci . Then

(
ε

1
4
(
g
(
Z

x,ε
1

) + · · · + g
(
Zx,ε

τ

))
, e

(
Zx,ε

τ

)) → (F1,F2) (2.2)

in distribution, uniformly in x ∈ X, where F1 takes values in R
2, F2 takes values in {1, . . . , n}, and F1 and F2 are

independent. The random variable F1 is distributed as (ξ/
∫
X

J dλ0)
1
2 N(0, Q̄), where ξ is exponential with parameter

one independent of N(0, Q̄) and Q̄ is the matrix such that(
g
(
Z

x,0
1

) + · · · + g
(
Z

x,0
k

))
/
√

k → N(0, Q̄) in distribution as k → ∞.

The random variable F2 satisfies P(F2 = i) = ∫
X

hi dλ0/
∫
X

J dλ0, i = 1, . . . , n.

Before we proceed with the proof of Lemma 2.4, let us show that it does indeed imply Theorem 2.2.

Proof of Theorem 2.2. Let L0 = L \ {A ∈ R
2 : π(A) ∈ {Ai, i = 1, . . . , n}}. Define M̄ = L0 � ∂V δ . Let us define

a family of transition functions p̄ε(x, dy) on M̄ . For x ∈ L0, we define p̄ε(x, dy) as the distribution of X
x,ε
τx with

τx = μ
x,δ,ε
1 ∧ β

x,δ,ε
1 . In other words, it is the measure induced by the process stopped when it either reaches the

boundary of V δ or reaches the separatrix after passing by a saddle point different from the one behind x. For x ∈ ∂V δ ,
let p̄ε(x, dy) coincide with the distribution of X

x,ε
τx with τx = β

x,δ,ε
0 , i.e., the measure induced by the process stopped

when it reaches the separatrix. Since almost every trajectory of X
x,ε
t that starts outside of the set of saddle points does

not contain saddle points, p̄ε is indeed a stochastic transition function. Let Z̄
x,ε
k be the corresponding Markov chain

starting at x ∈ M̄ .
While we introduced M̄ as a subset of R2, it is going to be more convenient to keep track of π(Z̄

x,ε
k ) and the latest

displacement separately. Let ϕ : M̄ → M := π(M̄) × Z
2 map x ∈ M̄ into (π(x), ([x1], [x2])) ([x1] and [x2] are the

integer parts of the first and second coordinates of x). Define the Markov chains Z
x,ε
k , Z

π(x),ε
k on M via

Z
x,ε
0 = x, Z

π(x),ε
0 = (

π(x),0
)
, Z

x,ε
k = Z

π(x),ε
k = (

ϕ1
(
Z̄

x,ε
k

)
, ϕ2

(
Z̄

x,ε
k

) − ϕ2
(
Z̄

x,ε
k−1

))
, k ≥ 1.

With a slight abuse of notation, we treat x both as an element of M̄ and an element of M . Let X = π(L0) × Z
2 =

(LT \ {A1, . . . ,An}) × Z
2 and Ci = (π(∂V δ) ∩ Ui) × Z

2. Thus M = X � C1 � · · · � Cn as required. The transition
functions pε(x, dy) are defined as the transition functions for the Markov chain Z

x,ε
k .

For x = (q, ξ) ∈ M , define g((q, ξ)) = ξ ∈ Z
2, which corresponds to the displacement during the last step if the

chain is viewed as a process on R
2, where only the integer parts of the initial and end points are counted. From the

definition of the stopping times β
x,δ,ε
k , it follows that ϕ2(Z̄

x,ε
k ) − ϕ2(Z̄

x,ε
k−1) can only take a finite number of values

(roughly speaking, the process X
x,ε
t makes transitions from one periodicity cell to a neighboring one or to itself

between the times β
x,δ,ε
k and β

x,δ,ε
k+1 ). Therefore, g(Z

π(x),ε
k ) is bounded almost surely, uniformly in x and k. Also, the

function g is continuous in the product topology of π(M̄) ×Z
2.

The paper [11] contains some detailed results on the behavior of the process X
x,ε
t near the separatrix. The main

idea behind those results is that the process can be considered in (H, θ) coordinates in the vicinity of L. In those
coordinates, after an appropriate re-scaling, the limiting process (as ε → 0) is easily identified. Note that in [11], the
width of the separatrix region is of order εα1 with some α1 ∈ (1/4,1/2), while here it is of width δ. The results we are
about to refer to can all be easily seen to hold with εα1 replaced by δ, our current case being simpler.

The existence of the limit of the transition functions pε in the sense of assumption (4) was justified in [11,
Lemma 3.1]. This limit is denoted by p0. An explicit formula for the density of p0 was also provided ([11, for-
mula (9)]), which implies that assumption (2) is satisfied. Observe that the probability of β

x,δ,ε
1 being less than μ

x,δ,ε
1

tends to one as ε ↓ 0 uniformly in x ∈ L by [11, formula (26)]. This implies property (1).
Let us sketch the proof of the Doeblin condition (5). Fix a1, a2, a3 ∈ γ (Ai,Aj ) ⊂ Uk with some Ai,Aj , and Uk .

The points are ordered in the direction of the flow v. Let γ ′ be the part of γ (Ai,Aj ) that lies between a2 and a3. Let
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J = {(H, θ) ∈ V δ ∩ Uk : √
ε ≤ H ≤ 2

√
ε, θ = θ(a1)}. We can assume that a1, a2, and a3 are chosen in such a way

that ϕ2 is constant on J ∪ γ ′. It is not difficult to show that there is m > 0 such that

P
(
ϕ2

(
X

x,ε
t

) = ϕ2(x),X
x,ε
t ∈ J for some αx,δ,ε

m < t < βx,δ,ε
m

)
> c > 0

for all x ∈ L. Roughly speaking, this statement means that the process has a positive chance of going to a particular
curve at a distance

√
ε from the separatrix, transversal to the flow lines, prior to passing by m saddle points. This is

not surprising since the motion consists of advection with speed of order 1/ε and diffusion of order one. The proof
follows along the same lines as the proof of Lemma 3.1. in [11]. Now the distribution of X

x,ε

β
x,δ,ε
0

has a component with

density strictly bounded from below on γ ′, uniformly in x ∈ J , as follows from (63) in [5]. This implies the Doeblin
condition for Z

x,ε
k .

With our definition of g,

∫
M

g(x)dλε(x)

(∫
M

Eτx dλε(x)

)−1

= lim
t→∞

(
EX

x,ε
t /t

)
,

where τx is the random transition time for our Markov chain, and the right-hand side is the effective drift for the
original process starting from an arbitrary point x. Note that limt→∞(EX

x,ε
t /t) = ε−1

∫
T v(x) dx = 0, which implies

property (6).
Property (3) follows from [11, Lemmas 4.1 and 4.3]. Indeed, the former lemma describes the asymptotics of the

distribution of H(X
x,ε

α
x,δ,ε
1

), while the latter describes the probability of the process starting at x to exit the boundary

layer before reaching the separatrix, assuming that H(x) is fixed. The two lemmas, combined with the strong Markov
property of the process, imply Property (3). The functions hi(x) = hδ

i (x) depend on δ and can be identified as

hδ
i (x) = lim

ε→0
ε−1/2P

(
the process starting at X

x,ε

α
x,δ,ε
1

reaches ∂V δ ∩ Ui before reaching L
)
.

From [11, Lemmas 4.1 and 4.3] (with δ now playing the role of εα1 ) it follows that∫
X

hδ
i (x) dλ0(x) = δ−1(p̄i + b̄i (δ)

)
, i = 1, . . . , n,

where p̄i > 0 and b̄i (δ) → 0 as δ → 0. Now Lemma 2.4 implies that Theorem 2.2 holds with

Q = Q̄/(p̄1 + · · · + p̄n), pi = p̄i/(p̄1 + · · · + p̄n).

Finally, let us show that Q̄ is non-degenerate. Assuming by contradiction that this is not the case, there is a unit
vector e ∈R

2 such that the function ḡ = 〈e, g〉 : X →R has the property that(
ḡ
(
Z

x,0
1

) + · · · + ḡ
(
Z

x,0
k

))
/
√

k → 0, (2.3)

in distribution as k → ∞. It follows from
∫
X

ḡ dλ0 = 0 and from exponential mixing that the sum

G(x) =
∞∑

k=0

Eḡ
(
Z

x,0
k

)

converges in L2(X,λ0).
Let zk denote the process which is Z

x,0
k started from the invariant distribution λ0. It follows from [3, Theorem 11],

that under our assumption (2.3),

0 = EG2(zk) − E
([

EG
(
Z

x,ε
1

)]|x=zk

)2
. (2.4)

By the definition of G, we have the identity

ḡ(zk) = Uk+1 + G(zk) − G(zk+1), (2.5)
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where Uk+1 = U(zk, zk+1) = G(zk+1) − [EG(Z
x,ε
1 )]|x=zk

. It is straightforward to see that

EU2
k+1 = EG2(zk+1) − E

([
EG

(
Z

x,ε
1

)]|x=zk

)2 = 0

by (2.4). This implies that Uk+1 = 0 almost everywhere with respect to λ0. Combining this fact with k = 0 and (2.5),
we get that

ḡ(x) = G(x) − G
(
Z

x,0
1

)
,

almost surely for λ0-almost all x. Recall that x ∈ X can be written as x = (q, ξ), where q ∈ π(L0) and ξ ∈ Z
2. Since

Z
x,0
1 does not depend on ξ , while ḡ(x) = 〈e, ξ 〉, we can write G(x) = G̃(q) + 〈e, ξ 〉 for some function G̃. Thus

G̃(q) = G̃
((

Z
x,0
1

)1) + 〈
e,

(
Z

x,0
1

)2〉
, (2.6)

where (Z
x,0
1 )1 ∈ π(L0) and (Z

x,0
1 )2 ∈ Z

2. Thus for λ0-almost all x, we have G̃(q) = G̃((Z
x,0
1 )1) almost surely on the

event 〈e, (Zx,0
1 )2〉 = 0. Let λ0 denote the projection of λ0 onto π(L0). An explicit expression for the density of p0

(found in formula (9) of [11]) implies that (Z
x,0
k )1, k ≥ 1, has density with respect to the Lebesgue measure on π(L0),

and the density is bounded from below for sufficiently large k. Therefore λ̄0 is equivalent with the Lebesgue measure

and the distribution of (Z
x,0
1 )1 is absolutely continuous with respect to λ

0
for each x. Therefore, by the strong Markov

property, G̃(q) = G̃((Z
x,0
k )1) almost surely on the event 〈e, (Zx,0

1 )2〉 = · · · = 〈e, (Zx,0
k )2〉 = 0, for λ0-almost all x.

For sufficiently large k, the (sub-probability) distribution of (Z
x,0
k )1 restricted to this event has a positive density with

respect to λ
0
. (The latter statement is a consequence of the geometry of the flow. Roughly speaking, given two points

on the separatrix that belong to the same cell of periodicity, the process Z̄
x,0
k can go with positive probability from

the first point to an arbitrary neighborhood of the second point without leaving the cell of periodicity.) Therefore, G̃

is λ0-almost everywhere constant. By (2.6), this implies that 〈e, (Zx,0
1 )2〉 = 0 for λ0-almost all x. Again by the strong

Markov property, 〈e, (Zx,0
k )2〉 = 0 for λ0-almost all x for each k. Observe, however, that the process Z̄

x,0
k starting

at an arbitrary point x on the separatrix, has a positive probability of going to any other cell of periodicity if k is
sufficiently large. This yields a contradiction, and thus Q̄ is non-degenerate. �

Now let us turn to the proof of Lemma 2.4. Let

Ω = {
ω = (x, x1, . . . , xk; i) : k ≥ 0, x, x1, . . . , xk ∈ X, i ∈ {1, . . . , n}}

be the space of sequences that start at x ∈ X and end when the sequence enters C = C1 � · · · �Cn, at which point only
the index of the set that the sequence enters is taken into account. The Markov chain Z

x,ε
k together with the stopping

time τ determine a probability measure με on Ω , namely,

με(x,A1, . . . ,Ak; i) =
∫

A1

· · ·
∫

Ak

pε(x, dx1)pε(x1, dx2) · · ·pε(xk−1, dxk)pε(xk,Ci),

where A1, . . . ,Ak ∈ B(X). We introduce another probability measure on Ω via

νε(x,A1, . . . ,Ak, i)

=
∫

A1

· · ·
∫

Ak

e−√
ε(J (x)+···+J (xk−1))

pε(x, dx1)

pε(x,X)
· · · pε(xk−1, dxk)

pε(xk−1,X)

(1 − e−√
εJ (xk))hi(xk)

J (xk)
.

In other words, we consider a Markov chain Z̃
x,ε
k on some probability space (Ω̃, F̃, P̃ ) with state space X and with

transition function p̃ε(x, dy) = pε(x, dy)/pε(x,X) . We can adjoin the states {1, . . . , n} to the space X and assume
that at each step, conditioned on Z̃

x,ε
k , the process may get killed by entering a terminal state i with probability

(1 − e−√
εJ (Z̃

x,ε
k ))

hi (Z̃
x,ε
k )

J (Z̃
x,ε
k )

, i = 1, . . . , n. Let σ be the number of steps after which the process is killed. To clarify our



1602 M. Hairer, L. Koralov and Z. Pajor-Gyulai

notations, let us stress that Z̃
x,ε
k is a conservative Markov chain, and the killing is expressed through the presence

of the random variable σ defined on the same probability space. Then νε(x,A1, . . . ,Ak, i) is the probability that the
chain starting at x visits the sets A1, . . . ,Ak and then enters the terminal state i. With a slight abuse of notation we
can view σ as a random variable on Ω as well.

We will prove in Lemma 2.6, that we can replace the measure με with νε in a certain sense. First, however, we
need to derive a few properties of Z̃x,ε . Note that it inherits the strong Doeblin property, which holds uniformly in ε,
i.e.,

p̃m
ε (x,A) ≥ aη(A) for x ∈ X,A ∈ B(X), ε ∈ [0, ε0].

This implies the uniform exponential mixing, i.e., there are Λ > 0, c > 0, such that

∣∣p̃k
ε (x,A) − λ̃ε(A)

∣∣ ≤ ce−Λk for all x ∈ X,A ∈ B(X), ε ∈ [0, ε0],

where p̃ε is the transition function for the chain and λ̃ε is the invariant measure associated with the transition function
p̃ε(x,A).

Lemma 2.5. Let g ∈ Cb(M,R) satisfy assumption (6). For each α > 0, we have∣∣∣∣
∫

X

g dλ̃ε

∣∣∣∣ ≤ Cε1/2−α (2.7)

for some constant C and each ε ∈ [0, ε0].

Proof. By the exponential mixing,∣∣∣∣
∫

X

g(y)p̃k
ε (x, dy) −

∫
X

g(y)λ̃ε(dy)

∣∣∣∣ +
∣∣∣∣
∫

M

g(y)pk
ε (x, dy) −

∫
M

g(y)λε(dy)

∣∣∣∣ ≤ c1e
−Λk

for x ∈ X, ε ∈ (0, ε0]. It is also easy to see by induction that∣∣∣∣
∫

X

g(y)p̃k
ε (x, dy) −

∫
M

g(y)pk
ε (x, dy)

∣∣∣∣ ≤ c2
√

εk. (2.8)

Now we can take k = [ε−α] in these two inequalities, proving (2.7) since
∫
M

g(y)λε(dy) = 0. �

The last two inequalities of the above proof with g replaced by an arbitrary bounded continuous function f imply
that ∫

X

f (y)λ̃ε(dy) −
∫

M

f (y)λε(dy) → 0 as ε ↓ 0.

We also know that λε(M \ X) → 0 and λε ⇒ λ0 as ε ↓ 0, as immediately follows from the properties of pε (the latter
statement can be also found in Lemma 2.1 in [11]). Therefore,∫

X

f (y)λ̃ε(dy) −
∫

X

f (y)λ0(dy) → 0 as ε ↓ 0,

that is λ̃ε ⇒ λ0 as ε ↓ 0.

Lemma 2.6. For every δ > 0 there is ε′ > 0 such that for ε ≤ ε′ there is a set Ωε with νε(Ωε) ≥ 1 − δ such that
dμε/dνε ∈ (1 − δ,1 + δ) on Ωε .
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Proof. To choose the set Ωε , note that

νε(σ = k) = Ẽ
[
e−√

ε(J (Z̃
x,ε
1 )+···+J (Z̃

x,ε
k−1))

(
1 − e−√

εJ (Z̃
x,ε
k )

)]
.

Using the law of large numbers for the Markov chain Z̃x,ε , which can be applied uniformly in ε due to the uniform
mixing (a consequence of assumption (5)), and the boundedness of J (a consequence of assumption (3)), we conclude
that for every η > 0 there is a k0 independent of ε such that

P̃

(∣∣∣∣∣1

k

k−1∑
j=0

J
(
Z̃

x,ε
j

) − Jε

∣∣∣∣∣ ≥ η

)
≤ η

for k ≥ k0, where Jε = ∫
X

J (u)dλε(u). Therefore

νε(σ < a/
√

ε) ≤ νε(σ < k0) + η + (
1 − e−√

ε supu∈X J (u)
) [a/

√
ε]∑

k=k0

e−√
ε(kJε−kη).

Since Jε → J0 > 0 and since η was arbitrary, we have νε(σ < a/
√

ε) < δ/8 (for all sufficiently small ε) if a is
small enough. Similarly one can show that νε(σ > b/

√
ε) < δ/8 if we choose b to be sufficiently large. We set

Ω1
ε = {√εσ ∈ [a, b]}. Note that νε(Ω

1
ε ) ≥ 1 − δ/4. Also note that

νε
(
σ = k,hi(xk) < η; i) = Ẽ

[
e
−√

ε
∑k−1

j=0 J (Z̃
x,ε
j )(1 − e−√

εJ (Z̃
x,ε
k )

)
χ{hi(Z̃

x,ε
k )<η}

hi(Z̃
x,ε
k )

J (Z̃
x,ε
k )

]
.

Using the inequality x−1(1 − e−cx) < c for x, c > 0, this is less than or equal to η
√

ε. This means that if η > 0 is
choosen small enough, then

νε
(√

εσ ∈ [a, b], hi(xσ ) < η; i) < δ/4n for each i = 1, . . . , n.

We set Ω2
ε = ⋃n

i=1{
√

εσ ∈ [a, b], hi(xσ ) < η; i}.
Fix γ > 0 to be specified later. Let K0 ⊂ X be a compact set such that λ0(X \ K0) < γ/3. This is possible by the

σ -compactness of X. Take an open set U ⊆ X such that K0 ⊆ U and K = Ū is compact, which is possible by local
compactness of X. Note that λ0(X \ U) < γ/3. By the weak law of large numbers (which holds uniformly in ε due to
the uniform mixing),

sup
ε∈(0,ε0]

P̃

(∣∣∣∣∣ 1

N

N−1∑
j=0

χ{Z̃x,ε
j /∈K} − λ̃ε(X \ K)

∣∣∣∣∣ > γ/3

)
< δ/4

for large enough N . Elementary properties of weak convergence imply

λ̃ε(X \ K) ≤ λ̃ε(X \ U) ≤ λ0(X \ U) + γ /3 < 2γ /3

for small enough ε. This means that the set

Ω3
ε =

{
√

εσ ∈ [a, b],
σ−1∑
j=0

χ{xj /∈K} ≥ γ
2b

a
σ

}
⊆

{
√

εσ ∈ [a, b],
[b/

√
ε]∑

j=0

χ{xj /∈K} ≥ γ
([b/

√
ε] + 1

)}

has νε(Ω3
ε ) < δ/4 if ε is sufficiently small.

Similarly, by the ergodic theorem, one can show, by possibly making K larger, that Ω4
ε = {√εσ ∈ [a, b], xσ /∈ K}

has νε(Ω4
ε ) < δ/4 for sufficiently small ε. Therefore Ωε = Ω1

ε \ (Ω2
ε ∪ Ω3

ε ∪ Ω4
ε ) has νε(Ωε) > 1 − δ.
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Observe that

dμε

dνε

(x, x1, . . . , xk, i) = pε(x,X) · · ·pε(xk−1,X)

e−√
ε(J (x)+···+J (xk−1))

pε(xk,Ci)

1 − e−√
εJ (xk)

J (xk)

hi(xk)
on Ωε.

By the definition of Ω1
ε , it suffices to consider k(ε) ∈ [a/

√
ε, b/

√
ε]. By the definition of hi and J , the product of the

last two fractions converges to 1 uniformly as ε ↓ 0 (here we use the definition of Ω2
ε , Ω4

ε , and assumption (3)). Also
note that∣∣∣∣∣

k(ε)−1∏
j=0

pε(xj ,X) − e
−√

ε
∑k(ε)−1

j=0 J (xj )

∣∣∣∣∣ =
∣∣∣∣∣
k(ε)−1∏
j=0

(
1 − √

ε

n∑
i=1

ε−1/2pε(xj ,Ci)

)
−

k(ε)−1∏
j=0

e−√
εJ (xj )

∣∣∣∣∣.
Using the fact that |∏ai − ∏

bi | ≤ ∑ |ai − bi | when |ai |, |bi | ≤ 1 and the boundedness part of assumption (3), this
is less than or equal to

k(ε)−1∑
j=0

∣∣∣∣∣1 − √
ε

n∑
i=1

ε−1/2pε(xj ,Ci) − e−√
εJ (xj )

∣∣∣∣∣ ≤ √
ε

k(ε)−1∑
j=0

n∑
i=1

∣∣hi(xj ) − ε−1/2pε(xj ,Ci)
∣∣ + o(1),

where we used the Taylor expansion of the exponential. Note that by assumption (3), we have for small enough ε that

√
ε

k(ε)−1∑
j=0

∣∣hi(xj ) − ε−1/2pε(xj ,Ci)
∣∣ ≤ 2bc

k(ε)

k(ε)−1∑
j=0

χ{xj /∈K} + bγ < γ b(4bc/a + 1),

where the definition of Ω3
ε was used in the last inequality. Since γ was arbitrary and

√
ε

k(ε)−1∑
j=0

J (xj ) ≤ nc
√

εk(ε) ≤ ncb,

we have shown that∣∣∣∣∣
k(ε)−1∏
j=0

pε(xj ,X)/e
−√

ε
∑k(ε)−1

j=0 J (xj ) − 1

∣∣∣∣∣ < δ

for small enough ε provided that k(ε) ∈ [a/
√

ε, b/
√

ε], which implies the desired result. �

Proof of Lemma 2.4. Using Lemma 2.6, we restate Lemma 2.4 in terms of the Markov chain Z̃
x,ε
k . Note first that we

can restrict the function g (originally defined on M) to the space X at the expense that the average of g is not zero
anymore, but satisfies (2.7) instead. Recall that Q̄ is the matrix such that(

g
(
Z

x,0
1

) + · · · + g
(
Z

x,0
k

))
/
√

k → N(0, Q̄)

in distribution as k → ∞. Let Q̄(ε) be such that(
g
(
Z̃

x,ε
1

) + · · · + g
(
Z̃

x,ε
k

) − k

∫
X

g dλ̃ε

)
/
√

k → N
(
0, Q̄(ε)

)
in distribution as k → ∞. From (2.8) with k = 1 and g replaced by an arbitrary bounded continuous function f on

X it follows that p̃ε(x, dy)
ε→0⇒ p0(x, dy) uniformly in x ∈ K for K ⊆ X compact, since we assumed that the same

convergence holds for pε(x, dy). This and the strong Doeblin property for p̃ε(x, dy) easily imply that Q̄(ε) → Q̄

as ε ↓ 0 (this was proved in Lemma 2.1(c) of [11] under an additional assumption that
∫
X

g dλ̃ε = 0, which is now
replaced by (2.7)).
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We still have the functions hi defined on X, and we assume that the chain gets killed by entering the state i ∈
{1, . . . , n} with probability (1 − e−√

εJ (x))hi(x)/J (x). Let σ be the time when the chain gets killed. Let the random
variable ẽ be equal to i if the process gets killed by entering the state i. Since the function g is bounded, omitting one
last term in the sum on the left-hand side of (2.2) does not affect the limiting distribution. Now we can recast (2.2) as
follows:(

ε
1
4
(
g
(
Z̃

x,ε
1

) + · · · + g
(
Z̃x,ε

σ

))
, ẽ

) → (F1,F2)

in distribution. Fix t ∈R
2. For i ∈ {1, . . . , n}, we have that

Ẽ
(
e
i〈ε1/4 ∑σ

j=1 g(Z̃
x,ε
j ),t〉; ẽ = i

)
= Ẽ

(
e
i〈ε1/4 ∑σ

j=1 g(Z̃
x,ε
j ),t〉; ẽ = i; [a/

√
ε] ≤ σ ≤ [b/

√
ε]) + δ(a, b, ε),

where∣∣δ(a, b, ε)
∣∣ = ∣∣Ẽ(

e
i〈ε1/4 ∑σ

j=1 g(Z̃
x,ε
j ),t〉; ẽ = i;σ < [a/

√
ε] or σ > [b/

√
ε])∣∣ ≤ νε

(
σ < [a/

√
ε] or σ > [b/

√
ε]),

which was shown in the proof of Lemma 2.6 to converge to zero as a → 0, b → ∞ uniformly in ε. Let ξ be an
exponential random variable with parameter one on some probability space (Ω ′,F ′,P ′) independent of the process.
By summing over different possible values of σ ,

Ẽ
(
e
i〈ε1/4 ∑σ

j=1 g(Z̃
x,ε
j ),t〉; ẽ = i

)
= δ(a, b, ε)

+
[b/

√
ε]∑

k=[a/
√

ε]
Ẽ

(
hi(Z̃

x,ε
k )

J (Z̃
x,ε
k )

e
i〈ε1/4 ∑k

j=1 g(Z̃
x,ε
j ),t〉P′

(
√

ε

k−1∑
j=0

J
(
Z̃

x,ε
j

)
< ξ ≤ √

ε

k∑
j=0

J
(
Z̃

x,ε
j

)))
, (2.9)

where we used the definition of νε and the fact that

P′(c < ξ ≤ d) = e−c
(
1 − e−(d−c)

)
. (2.10)

Note that by the law of large numbers, (2.10), and the uniform exponential mixing property of Z̃x,ε ,

Ẽ
[b/

√
ε]∑

k=[a/
√

ε]

∣∣∣∣∣P′
(

k−1∑
j=0

J
(
Z̃

x,ε
j

)
<

ξ√
ε

<

k∑
j=0

J
(
Z̃

x,ε
j

)) − √
εe−kJ̃ε

√
εJ

(
Z̃

x,ε
k

)∣∣∣∣∣ → 0 (2.11)

as ε → 0 uniformly in 0 < a < b, where J̃ε = ∫
X

J (u)dλ̃ε(u) > 0. Note that the fact that there are O(1/
√

ε) terms in
the sum is not a problem since the contribution from each term is O(ε). Observe that hi(x)/J (x) ≤ 1 and therefore
the factor proceeding P ′ on the right-hand side of (2.9) is bounded. Therefore, due to (2.11), the main term in (2.9)
can be replaced by

√
ε

[b/
√

ε]∑
k=[a/

√
ε]

Ẽ
(
hi

(
Z̃

x,ε
k

)
e
i〈ε1/4 ∑k

j=1 g(Z̃
x,ε
j ),t〉)

e−kJ̃ε
√

ε. (2.12)

Uniform exponential mixing also tells us that there is a constant C such that for every 0 < k0 < k we have

∣∣Ẽ(
hi

(
Z̃

x,ε
k

)
e
i〈ε1/4 ∑k−k0

j=1 g(Z̃
x,ε
j ),t〉) − Ẽ

(
hi

(
Z̃

x,ε
k

))
Ẽ

(
e
i〈ε1/4 ∑k−k0

j=1 g(Z̃
x,ε
j ),t〉)∣∣ < Ce−Λk0 . (2.13)

It is easy to see that fixing k0 > 0, i.e., dropping finitely many terms from the sum in the exponent in (2.12) does not
change the limit (it only introduces an overall error term of order ε1/4).
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Since we have uniform exponential mixing in ε for the transition function p̃ε(x, dy) (i.e. for the process Z̃
x,ε
k ), and

from the fact that λ̃ε ⇒ λ0 , it follows that

sup
k∈[[a/

√
ε],[b/

√
ε]]

∣∣∣∣Ẽ(
hi

(
Z̃

x,ε
k

)) −
∫

X

hi(u) dλ0(u)

∣∣∣∣ → 0, (2.14)

as ε ↓ 0. Choosing α < 1/4, it follows from (2.7) that

sup
k∈[[a/

√
ε],[b/

√
ε]]

∣∣Ẽ(
e
i〈ε1/4 ∑k−k0

j=1 g(Z̃
x,ε
j ),t〉) − Ẽ

(
e
i〈ε1/4 ∑k−k0

j=1 (g(Z̃
x,ε
j )−∫

X g dλ̃ε),t〉)∣∣ → 0,

as ε ↓ 0. On the other hand, we have the following version of the central limit theorem:

sup
k∈[[a/

√
ε],[b/

√
ε]]

∣∣Ẽ(
e
i〈ε1/4 ∑k−k0

j=1 (g(Z̃
x,ε
j )−∫

X g dλ̃ε),t〉) − Ẽei〈√kε1/4·N(0,Q̄),t〉∣∣ → 0,

as ε ↓ 0, which holds thanks to the uniform strong Doeblin property and the fact that Q̄(ε) → Q̄ as ε ↓ 0.
Combining this with (2.9), (2.12), (2.13), and (2.14), and using the fact that J̃ε → J0, we obtain that

lim sup
ε↓0

∣∣∣∣Ẽ(
e
i〈ε1/4 ∑k

j=1 g(Z̃
x,ε
j ),t〉; ẽ = i

) −
∫
X

hi dλ0∫
X

J dλ0

∫ ∞

0
Ẽei

√
s〈N(0,Q̄),t〉J0e

−sJ0 ds

∣∣∣∣ ≤ ce−Λk0 .

Since t and k0 were arbitrary, this implies the desired result. �

We close this section by stating a technical lemma that gives us control over how far away the process wanders
during an upcrossing. Its proof relies on the same arguments as the proof of Lemma 2.4 considering the maximum of∑k

j=1 g(Z̃
x,ε
j ) until σ and using the invariance principle for Markov chains.

Lemma 2.7. For each η > 0 there is δ0 > 0 such that

lim
ε↓0

sup
x∈R2

P
(
ε1/4 sup

0≤t≤σ
x,δ,ε
1

∣∣Xx,ε
t − x

∣∣ > η
)

< η

whenever 0 < δ ≤ δ0.

3. Proof of Theorem 1.2

The first step in the proof of Theorem 1.2 is to show tightness of the family of measures induced by ε1/4(X
x,ε
t − x),

0 < ε ≤ 1, x ∈ R
2. We will then show the convergence of one-dimensional distributions. The convergence of finite-

dimensional distributions (and therefore the statement of the theorem) will then follow from the Markov property.
Define D

y,δ
t to be the number of downcrossings from level δ to O by the trajectory of the process Y

y
t up until

time t , where we start counting after the first visit to the vertex. Namely, set θδ
0 = 0, τ δ

0 = inf{t ≥ 0 : Y
y
t = O}, and

recursively define

θδ
n = inf

{
t ≥ τ δ

n−1 : ∣∣Yy
t

∣∣ = δ
}
, τ δ

n = inf
{
t ≥ θδ

n : Yy
t = O

}
, n ≥ 1,

where |Yy
t | is the Euclidean distance of Y t,y from the interior vertex O . Finally, let D

y,δ
t = sup{n ≥ 0 : τ δ

n ≤ t}.

Lemma 3.1. We have

lim
δ↓0

E
∣∣δDy,δ

t − L
y
t

∣∣ = 0

for each t > 0 and y ∈ G.
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The proof of this result is almost identical to [6, Lemma 2.2] , the only difference being the replacement of the
condition a(i, y) ≥ c > 0 by the local integrability of (a(i, y))−2 (and hence of (a(i, y))−1) at the interior vertex. As
already noted earlier, this is indeed the case here since our graph process arises from the averaging of a Hamiltonian,
see [8, Chapter 8], so that a−2(i, y) only diverges logarithmically as y → 0.

For the proof of tightness, we are going to need the following two simple results.

Lemma 3.2. Let Zi be a sequence of independent zero mean variables with a common distribution Z , such that all
the moments are finite. Then there exists a universal constant C such that

P
(
l−1/2 max

1≤m≤l
|Z1 + · · · + Zm| > K

)
≤ C

E|Z|10

K10
,

for all K > 0.

Proof. By taking the 10th power and using Chebyshev’s inequality,

P
(

max
1≤m≤l

|Z1 + · · · + Zm| ≥ K
√

l
)

≤ 1

K10l5
E max

1≤m≤l
|Z1 + · · · + Zm|10. (3.1)

Since the Zi are independent centered random variables,

E(Z1 + · · · + Zl)
10 =

l∑
i1,...,i10=1

EZi1 · · ·Zi10 =
∑

m1+···+m5=10,mi =1

C(l,m1, . . . ,m5)EZm1 · . . . · EZm5 ,

where |C(l,m1, . . . ,m5)| ≤ Cl5 for some constant C > 0. By Holder’s inequality, the sum is bounded by Cl5E|Z|10

with a possibly different constant C > 0. The partial sums of the Zi ’s form a martingale so that, by Doob’s maximal
inequality,

sup
l≥1

(
l−5E max

1≤m≤l
|Z1 + · · · + Zm|10

)
≤

(
10

9

)10

sup
l≥1

E

∣∣∣∣Z1 + · · · + Zl√
l

∣∣∣∣
10

≤ CE|Z|10.

The claim now follows at once. �

Lemma 3.3. We have lim supt→0 E(L0
t /t1/2)n < ∞ for every n ∈ N.

Proof. By Lemma 2.3 in [6] with F(y) = |y − O| being the distance of y ∈ G from the interior vertex, we get that

∣∣Y 0
t

∣∣ =
∫ t

0
a
(
i(s), Y 0

s

)
dWs +

∫ t

0
b
(
i(s), Y 0

s

)
ds + L0

t .

By the uniqueness of the Skorokhod-reflection, see e.g. [12, Section 3.6.C], we have the representation

L0
t = max

0≤s≤t

(
−

∫ s

0
a
(
i(s), Y 0

s

)
dWs −

∫ s

0
b
(
i(s), Y 0

s

)
ds

)
. (3.2)

This implies that there is a standard Brownian motion B such that

(
L0

t

t1/2

)n

≤ C

(
max

0≤s≤t
|B 1

t

∫ s
0 (a(i(s),Y 0

s ))2 ds
| + t−1/2

∫ t

0

∣∣b(
i(s), Y 0

s

)∣∣ds

)n

,

and thus the proof is finished by noting that a and b are bounded on the graph. �

Lemma 3.4. The family of measures induced by the processes {ε1/4(X
x,ε
t − x)}0<ε≤1,x∈R2 is tight.
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Proof. By the Markov property, it is sufficient to prove that for each η > 0 there are r ∈ (0,1) and ε0 > 0 such that

P
(

sup
0≤t≤r

∣∣ε1/4(Xx,ε
t − x

)∣∣ > η
)

≤ rη, (3.3)

for all ε ≤ ε0 and x ∈ R
2.

Take Z = √
ξN(0,Q) and let Zδ

1, Zδ
2, etc. be independent identically distributed. Assume that their distribution

coincides with the distribution of
√

δ(1 + a(δ))Z, where a(δ) is the same as in the right-hand side of (2.1).
Applying Lemma 3.2 with K = ηk−1/2/4, we see that for a given η > 0, there are k0 ∈ (0,1) and δ1 > 0 such that

P
(

max
1≤m≤k/δ

∣∣Zδ
1 + · · · + Zδ

m

∣∣ > η/4
)

≤ k4η/4, (3.4)

whenever k ∈ (0, k0) and δ ∈ (0, δ1). From (3.4) and Lemma 2.3, it follows that there is ε1(k, δ) > 0 such that

P
(

max
1≤m≤k/δ

ε1/4
∣∣Sx,δ,ε

1 + · · · + Sx,δ,ε
m

∣∣ > η/3
)

≤ k4η/3, (3.5)

provided that ε ≤ ε1(k, δ). It is not difficult to see that this estimate and those below are uniform in x. Combining
(3.5) and Lemma 2.7, it now follows that there is ε2(k, δ) > 0 such that

P
(

sup
0≤t≤σ

x,δ,ε
[k/δ]

ε1/4
∣∣Xx,ε

t − x
∣∣ > η/2

)
≤ k4η/2 (3.6)

provided that ε ≤ ε2(k, δ).
Note that by Lemma 3.1 for a given η > 0, we can find r > 0 and δ2 = δ2(r) > 0 such that

sup
y∈G

P
(
D

y,δ
r ≥ r1/4/δ

)
< sup

y∈G

P
(
L

y
r ≥ r1/4) + ηr/4 ≤ r2E

(
L0

r /r1/2)8 + ηr/4 ≤ ηr/3 (3.7)

if δ ≤ δ2, where the second inequality follows from the Chebyshev inequality and the strong Markov property, while
the last inequality follows from Lemma 3.3. As a consequence of the averaging principle, we see that there is ε3(r, δ)

such that

P
(
σ

x,δ,ε

[r1/4/δ] < r
) ≤ P

(
D�(x),δ

r ≥ r1/4/δ
) + ηr/6 (3.8)

if ε ≤ ε3(r, δ).
Clearly,

P
(

sup
0≤t≤r

∣∣ε1/4(Xx,ε
t − x

)∣∣ > η
)

≤ P
(
σ

x,δ,ε

[r1/4/δ] < r
) + P

(
sup

0≤t≤σ
x,δ,ε

[r1/4/δ]

ε1/4
∣∣Xx,ε

t − x
∣∣ > η

)

so that, choosing r > 0 sufficiently small, combining (3.6) with k = r1/4, (3.7), and (3.8) with δ < min(δ1, δ2) and
ε < min(ε1(k, δ), ε2(k, δ), ε3(r, δ)), we obtain (3.3), which implies tightness. �

For the proof of convergence of one-dimensional distributions, we are going to need a lemma that is a straightfor-
ward consequence of tightness.

Lemma 3.5. For η > 0 and f ∈ Cb(R
2) uniformly continuous, we can find an r > 0 such that

sup
ε∈(0,1]

∣∣Ef
(
ε1/4(Xx,ε

τ ′′ − x
)) − Ef

(
ε1/4(Xx,ε

τ ′ − x
))∣∣ < η, (3.9)

∣∣Ef
(
W̃

Q

τ ′′
) − Ef

(
W̃

Q

τ ′
)∣∣ < η (3.10)

for each pair of stopping times τ ′ ≤ τ ′′ that satisfy P(τ ′′ > τ ′ + r) ≤ r .
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Proof. By the tightness result above, for each α > 0 we can find r > 0 such that

sup
x∈R2

P
(
ε1/4 sup

0≤t≤r

∣∣Xx,ε
t − x

∣∣ > α
)

< α.

Using that f is uniformly continuous, we can choose α(η) small enough so that we can write

E
∣∣f (

ε1/4(Xx,ε
τ ′′ − x

)) − f
(
ε1/4(Xx,ε

τ ′ − x
))∣∣ <

η

3
+ P

(
ε1/4

∣∣Xx,ε
τ ′′ − X

x,ε
τ ′

∣∣ > α
)
.

After conditioning on X
x,ε
τ ′ and using the strong Markov property, the second term is seen to be bounded from above

by

sup
x∈R2

P
(
ε1/4 sup

0≤t≤r

∣∣Xx,ε
t − x

∣∣ > α
)

+ P
(
τ ′′ − τ ′ > r

) ≤ α + r,

which finishes the proof of (3.9) once α and r are chosen to be small enough. The proof of (3.10) is similar. �

Let us fix t > 0, f ∈ Cb(R
2) uniformly continuous, and η > 0. To show the convergence of one-dimensional

distributions, it suffices to prove that

∣∣Ef
(
ε1/4(Xx,ε

t − x
)) − Ef

(
W̃

Q

L
Γ (x)
t

)∣∣ < η (3.11)

for all sufficiently small ε. As we discussed in the introduction, the main contribution to X
x,ε
t (found in the first term

on the left-hand side of (3.11)) comes from the excursions between L and ∂V δ , i.e., the upcrossings of V δ . Also,
the local time in the second term on the left-hand side of (3.11) can be related to the number of excursions (i.e.,
upcrossings) between the interior vertex and the set Γ ({x : |H(x)| = δ}) on the graph G that happen before time t .
These two observations will lead us to the proof of (3.11).

In order to choose an appropriate value for δ, we need the following lemma (a simple generalization of the CLT).

Lemma 3.6. Suppose that Nδ are N-valued random variables independent of the family {Zδ
i } that satisfy ENδ ≤ C/δ

for some C > 0. Let f ∈ Cb(R
2) and let W̃

Q
t be a Brownian motion with covariance Q, independent of {Nδ}. Then

Ef
(
Zδ

1 + · · · + Zδ
Nδ

) − Ef
(
W̃

Q
δNδ

) → 0 as δ ↓ 0.

Let eδ(t) be the (random) time that elapses before the time spent by the process Y
y· , aside from the upcrossings,

equals t , i.e.,

eδ(t) = t +
∞∑

n=1

(
θδ
n ∧ eδ(t) − τ δ

n−1 ∧ eδ(t)
)
.

In other words, we stop a ‘special’ clock every time the process hits the vertex O , and re-start it once the process
reaches the level set {|y| = δ}. Then eδ(t) is the actual time that elapses when the special clock reaches time t . Let
Nδ = N

y,δ
t be the number of upcrossings of the interval [0, δ] by the process Y

y· prior to time eδ(t).
Similarly, let eδ,ε(t) be the time that elapses before the time spent by the process X

x,ε
t , aside from the upcrossings,

equals t . Let N
x,δ,ε
t be the number of upcrossings by the process X

x,ε
t prior to time eδ,ε(t).

Lemma 3.7. We have eδ(t) → t and δ(N
y,δ
t − D

y,δ
t ) → 0 in L1 as δ ↓ 0 for each y ∈ G.

Proof. The first statement basically means that most of the time is spent on downcrossings rather than upcrossings.
Its proof is contained in the proof of Lemma 2.2 in [6]. The second statement follows from the first one together with
the strong Markov property of the process and Lemmas 3.1 and 3.3. �
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From Lemmas 3.7 and 3.1 it follows that the conditions of Lemma 3.6 are satisfied with our choice of Nδ . We can
therefore choose δ0 > 0 such that

sup
x∈G

∣∣Ef
(
Zδ

1 + · · · + Zδ

N
Γ (x),δ
t

) − Ef
(
W̃

Q

δN
Γ (x),δ
t

)∣∣ ≤ η/10 (3.12)

whenever δ ≤ δ0.
Choose r such that (3.9) and (3.10) in Lemma 3.5 hold with η/10 instead of η. Also, use Lemma 3.1 and Lemma 3.7

to choose δ < δ0 sufficiently small so that∣∣Ef
(
W̃

Q

δD
Γ (x),δ
t

) − Ef
(
W̃

Q

L
Γ (x)
t

)∣∣ < η/10 (3.13)

and

P
(
δN

Γ (x),δ
t > δD

Γ (x),δ
t + r

) ≤ r, P
(
eδ(t) > t + r

) ≤ r/2.

From the weak convergence of the processes, the latter implies that there is ε0 > 0 such that

P
(
eδ,ε(t) > t + r

) ≤ r

for ε < ε0. By Lemma 3.5, these inequalities imply that∣∣Ef
(
ε1/4(Xx,ε

eδ,ε(t)
− x

)) − Ef
(
ε1/4(Xx,ε

t − x
))∣∣ < η/10, (3.14)

and ∣∣Ef
(
W̃

Q

δN
Γ (x),δ
t

) − Ef
(
W̃

Q

δD
Γ (x),δ
t

)∣∣ < η/10. (3.15)

In what follows δ is fixed at this value.
Choose N large enough so that∣∣Ef

(
Zδ

1 + · · · + Zδ

N
Γ (x),δ
t

) − Ef
(
Zδ

1 + · · · + Zδ

N
Γ (x),δ
t ∧N

)∣∣ < η/10 (3.16)

and by possibly increasing N , let ε1 > 0 be such that∣∣Ef
(
ε1/4(Xx,ε

eδ,ε(t)
− x

)) − Ef
(
ε1/4(Xx,ε

eδ,ε(t)∧σ
x,δ,ε
N

− x
))∣∣ < η/10 (3.17)

for all ε ≤ ε1. This latter can be done by noting that by Lemma 2.3, for every α one can select an N such that

P
(
σ

x,δ,ε
N ≤ eδ,ε(t)

)
< α (3.18)

for every small enough ε. Indeed,

P
(
σ

x,δ,ε
N ≤ eδ,ε(t)

) = P
(
T

x,δ,ε
0 + · · · + T

x,δ,ε
N ≤ t

)
.

For fixed N and δ, the random variable T
x,δ,ε
0 + · · · + T

x,δ,ε
N converges in distribution to some random variable τ̃ δ

N as
ε ↓ 0. Choose N large enough so that

P
(
τ̃ δ
N ≤ t

)
< α/2,

which implies (3.18). Now we have both N and δ fixed.
By Lemma 2.3, there is ε2(δ) > 0 such that∣∣Ef

(
ε1/4(Sx,δ,ε

1 + · · · + S
x,δ,ε

N
Γ (x),δ,ε
t ∧N

)) − Ef
(
Zδ

1 + · · · + Zδ

N
Γ (x),δ
t ∧N

)∣∣ < η/10 (3.19)
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if ε ≤ ε2. It is here where we used the fact that the displacements during upcrossings become independent, in the limit
of ε ↓ 0, from the times spent on downcrossings. We also have that there is an ε3 > 0 such that∣∣Ef

(
ε1/4(Sx,δ,ε

1 + · · · + S
x,δ,ε

N
Γ (x),δ,ε
t ∧N

)) − Ef
(
ε1/4(Xx,ε

eδ,ε(t)∧σ
x,δ,ε
N

− x
))∣∣ < η/10 (3.20)

for all ε < ε3.
Collecting (3.14), (3.17), (3.20), (3.19), (3.16), (3.12), (3.15) and (3.13), we obtain (3.11) for ε ≤ min{ε0, ε1,

ε2, ε3}, which completes the proof of Theorem 1.2.

Remark 3.8. It is not difficult to show (and it indeed follows from the proof) that convergence in Theorem 1.2 is
uniform in x ∈ K for every compact K .

4. Proofs of the PDE results

Proof of Theorem 1.4. Part 1. By the representation formula,

uε,R(x) = E
∫ τ∂DR

(X
x,ε· )

0
f

(
Xx,ε

s /R
)
ds,

which can be decomposed as

E
∫ τL(X

x,ε· )

0
f

(
Xx,ε

s /R
)
ds + E

∫ τ∂DR

τL(X
x,ε· )

f
(
Xx,ε

s /R
)
ds,

where τL is the first time the process hits the separatrix. The first term can easily be seen to converge by the averaging
theorem to f (0)Eτ̄0(Y

Γ (x)· ), and thus it remains to show that the second term converges to zero. It suffices to show
that E(τ∂DR

(Xx,ε
. ) − τL(Xx,ε

. )) → 0 as ε → 0.
Let T be the periodicity cell that contains the origin. Recall that LT is the projection of L on the torus. Equivalently,

we can view it as a set on the plane that is the intersection of L and T . Thus it is sufficient to show that

sup
x∈LT

Eτ∂DR

(
Xx,ε

.

) → 0 as ε ↓ 0,R = R(ε). (4.1)

We claim that

sup
x∈LT

P
(
τ∂DR

(
Xx,ε·

)
> K

) → 0 as ε ↓ 0,R = R(ε) (4.2)

for each K > 0, and that there is ε0 > 0 such that

sup
ε∈(0,ε0]

sup
x∈R2

P
(
τL

(
Xx,ε·

)
> 1

)
< 1. (4.3)

The latter easily follows from the averaging principle (see [8], Chapter 8), while the former will be justified below.
Note that

sup
x∈LT

Eτ∂DR

(
Xx,ε·

) ≤
∫ ∞

0
sup

x∈LT
P
(
τ∂DR

(
Xx,ε·

)
> K

)
dK.

By (4.2), the integrand tends to zero for each K . Also note that the integrand decays exponentially in K uniformly
in ε, as follows from (4.2), (4.3), and the strong Markov property of the process. This justifies (4.1).

We still need to prove (4.2). For a given value of δ > 0 and all sufficiently small ε, we have

τ∂DR

(
Xx,ε·

) ≤ τB(0,δ)

(
ε1/4Xx,ε·

)
,
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where τB(0,δ) is the time to reach the boundary of the ball of radius δ centered at the origin. By Theorem 1.2,

P
(
τB(0,δ)

(
ε1/4Xx,ε·

)
> K

) → P
(
τB(0,δ)

(
W̃

Q

L0
.

)
> K

)
as ε ↓ 0,

since the boundary of the event on the right-hand side has probability zero. It remains to note that we can make the
right-hand side arbitrarily small by choosing a sufficiently small δ. This is possible since P(L0

t > 0) = 1 for each t > 0
(as follows from (3.2) and the elementary properties of the Brownian motion).

Part 2. Let’s first assume that f ≥ 0. Observe that for each t > 0 we have

E
∫ τ∂DR

(Xx,ε
. )∧t

0
f

(
Xx,ε

s /R
)
ds = E

∫ τ∂D(R−1Xx,ε
. )∧t

0
f

(
R−1Xx,ε

s

)
ds =: EI t

f

(
R−1Xx,ε·

)
.

By Theorem 1.2, the processes R−1Xx,ε
. converge weakly to C−1W

Q

L
Γ (x)·

. Since I t
f is bounded and is continuous

almost surely with respect to the measure induced by C−1W
Q

L
Γ (x)·

, we have

E
∫ τ∂DR

(Xx,ε
. )∧t

0
f

(
Xx,ε

s /R
)
ds → E

∫ τ∂D(C−1W
Q

L
Γ (x)·

)∧t

0
f

(
C−1W

Q

L
Γ (x)
s

)
ds as ε ↓ 0. (4.4)

As in the proof of Part 1, we have that P(τ∂DR
(Xx,ε

. ) > K) decays exponentially in K uniformly in ε, which justifies
the fact that we can take t = ∞ in (4.4). The general case follows by taking f = f+ − f−.

Part 3. The PDE result easily follows from the weak convergence of the corresponding processes. More precisely,
let X̄

x,ε
t = R−1(ε)X

x,ε

ε1/2R(ε)2t
. We need to show that

X̄x,ε· ⇒ W̃ cQ
. as ε ↓ 0. (4.5)

It follows from [11] that

ε1/4X
x,ε
k·√

k
⇒ W̃D(ε)· as k → ∞, (4.6)

where D(ε) = D0 + o(1) and D0 is a constant multiple of Q. (Strictly speaking, the result in [11] concerns the finite
dimensional distributions, but the generalization to the functional CLT is standard in this situation.) Moreover, it is
not difficult to show (by following the proof in [11] and using arguments similar to those in the proof of Lemma 2.4)
that the convergence is uniform in ε. Therefore, (4.6) implies (4.5) with cQ = D0. �
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