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Abstract. We consider the model of i.i.d. first passage percolation on Zd : we associate with each edge e of the graph a passage time
t (e) taking values in [0,+∞], such that P[t (e) < +∞] > pc(d). Equivalently, we consider a standard (finite) i.i.d. first passage
percolation model on a super-critical Bernoulli percolation performed independently. We prove a weak shape theorem without any
moment assumption. We also prove that the corresponding time constant is positive if and only if P[t (e) = 0] < pc(d).

Résumé. Nous considérons le modèle standard de percolation de premier passage sur Zd : nous associons à chaque arête e du
graphe un temps de passage t (e) à valeurs dans [0,+∞], tel que P[t (e) < +∞] > pc(d). De façon équivalente, nous considérons
un modèle de percolation de premier passage standard (fini) sur le graphe obtenu par une percolation de Bernoulli sur-critique
réalisée indépendamment. Nous prouvons un théorème de forme faible sans aucune hypothèse de moment. Nous prouvons aussi
que la constante de temps correspondante est strictement positive si et seulement si P[t (e) = 0] < pc(d).

MSC: Primary 60K35; 60K35; secondary 82B20
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1. Introduction

1.1. First definitions and main results

We consider the standard model of first passage percolation on Zd for d ≥ 2. Let Ed be the set of the edges e = 〈x, y〉
of endpoints x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Zd such that ‖x − y‖1 :=∑d

i=1 |xi − yi | = 1. We consider a family
of i.i.d. random variables (t (e), e ∈ Ed ) associated to the edges of the graph, taking values in [0,+∞] (we emphasize
that +∞ is included here). We denote by F the common distribution of these variables. We interpret t (e) as the time
needed to cross the edge e. If x, y are vertices in Zd , a path r from x to y is a sequence r = (v0, e1, v1, . . . , en, vn)

of vertices (vi , i = 0, . . . , n) and edges (ei , i = 1, . . . , n) for some n ∈ N such that v0 = x, vn = y and for all i ∈
{1, . . . , n}, ei = 〈vi−1, vi〉. For any path r , we define T (r) =∑e∈r t (e). We obtain a random pseudo-metric T on Zd

in the following way:

∀x, y ∈ Zd , T (x, y) = inf
{
T (r) | r is a path from x to y

}
.

The variable T (x, y) is the minimum time needed to go from x to y. Because the passage time t (e) of an edge e can
be infinite, so does the time T (x, y) for x, y ∈ Zd . From now on, we suppose that F([0,+∞[) > pc(d), where pc(d)
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is the critical parameter for independent Bernoulli bound percolation on (Zd ,Ed), thus we suppose that the edges
with a finite passage time are supercritical. An equivalent way to define our model is to perform first an independent
Bernoulli percolation on the edges of Ed of parameter p > pc(d), then associate to each removed edge an infinite
passage time, and associate independently to each remaining edge e a finite passage time t (e) according to a fixed
law on [0,+∞[. A central object in our study is the set of points reached from the origin 0 of the graph within a time
t ∈ R+:

Bv
t = {z ∈ Zd | T (0, z) ≤ t

}
.

The exponent v indicates that Bv
t is a set of vertices. It may be useful to consider a fattened set Bt by adding a small

unit cube around each point of Bv
t , so we also define the following random set:

∀t ∈ R+, Bt = {z + u | z ∈ Zd s.t. T (0, z) ≤ t, u ∈ [−1/2,1/2]d}.
We now define a new variable T̃ (x, y) which is more regular than T (x, y). Since F([0,+∞[) > pc(d), there exists
M ∈ R such that F([0,M]) > pc(d). Fix such a M . Let CM be the infinite cluster for the Bernoulli percolation
(1{t (e)≤M}, e ∈ Ed ), which exists and is unique a.s. To any x ∈ Zd , we associate a random point x̃ ∈ Zd such that
x̃ ∈ CM and ‖x − x̃‖1 is minimal; if there are more than one point in CM at minimal distance to x we choose x̃ among
them according to a deterministic rule. We define the regularized times T̃ by

∀x, y ∈ Zd, T̃ (x, y) = T (̃x, ỹ). (1)

We emphasize the fact that x̃, ỹ and T̃ (x, y) depends on the real M chosen previously. As previously, we define the
set B̃t by

∀t ∈ R+, B̃t = {z + u | z ∈ Zd s.t. T̃ (0, z) ≤ t, u ∈ [−1/2,1/2]d}.
We can now state our main results. We start with the study of the times T̃ and the sets B̃t .

Theorem 1 (Definition of the time constant). Suppose that F([0,+∞[) > pc(d). Then there exists a deterministic
function μ̃ : Rd → [0,+∞[ such that

∀x ∈ Zd, lim
n→∞

T̃ (0, nx)

n
= μ̃(x) a.s. and in L1.

Moreover, μ̃ is homogeneous and subadditive, i.e.,

∀λ ∈ R+,∀x, y ∈ Rd, μ̃(λx) = λμ̃(x), μ̃(x + y) ≤ μ̃(x) + μ̃(y).

It follows that μ̃ is continuous, and either μ̃ is identically equal to 0 or μ̃(x) > 0 for all x �= 0.

Of course μ̃ depends on the dimension d and on the law F of the passage times associated to the edges. A priori μ̃

could also depend on the real M such that F([0,M]) > pc(d) chosen to define T̃ , but we will see in Theorem 4 that
it is not the case. If e1 denotes the vertex of coordinates (1,0, . . . ,0), the constant μ̃(e1) is called the time constant.

Remark 1. We also obtain in Proposition 8 the a.s. convergence of the so called “point-to-line” regularized passage
times (see Section 4).

The next result investigates when the time constant is positive.

Theorem 2 (Positivity of the time constant). Suppose that F([0,+∞[) > pc(d). Then

μ̃ = 0 ⇐⇒ F
({0})≥ pc(d).
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When F([0,+∞[) > pc(d) and F({0}) < pc(d), μ̃ is a norm on Rd , and we denote by Bμ̃ the unit ball for this
norm

Bμ̃ = {x ∈ Rd | μ̃(x) ≤ 1
}
.

We now state the so called shape theorem for B̃t .

Theorem 3 (Strong shape theorem for B̃t ). Suppose that F([0,+∞[) > pc(d).

(i) We have

lim
n→∞ sup

x∈Zd ,‖x‖1≥n

∣∣∣∣ T̃ (0, x) − μ̃(x)

‖x‖1

∣∣∣∣= 0 a.s.

(ii) If moreover F({0}) < pc(d), then

∀ε > 0, almost surely, ∃t0 ∈ R+,∀t ≥ t0, (1 − ε)Bμ̃ ⊂ B̃t

t
⊂ (1 + ε)Bμ̃.

Concerning the times T and the sets Bt , we obtain results that are analog to Theorems 1 and 3. However, since the
times T are less regular than the times T̃ , the convergences hold in a weaker form. Some times T ∗ will be natural
intermediates between T̃ and T . Let C∞ be the infinite cluster for the Bernoulli percolation (1{t (e)<∞}, e ∈ Ed ), which
exists and is unique a.s. For all x ∈ Zd , let x∗ ∈ Zd be the random point of C∞ such that ‖x − x∗‖1 is minimal, with a
deterministic rule to break ties. We define T ∗(x, y) = T (x∗, y∗) for all x, y ∈ Zd , and the corresponding set

B∗
t = {z + u | z ∈ Zd s.t. T ∗(0, z) ≤ t, u ∈ [−1/2,1/2]d}

for all t ∈ R+. The times T ∗ are less regular than T̃ but more regular than T , thus their study is a natural step in the
achievement of the study of the times T . Let θ be the density of C∞: θ = P[0 ∈ C∞].

Theorem 4 (Weak convergence to the time constant). Suppose that F([0,+∞[) > pc(d). Then

∀x ∈ Zd , lim
n→∞

T ∗(0, nx)

n
= μ̃(x) in probability,

and

∀x ∈ Zd , lim
n→∞

T (0, nx)

n
= θ2δμ̃(x) + (1 − θ2)δ+∞ in law.

As a consequence, the function μ̃ does not depend on the constant M satisfying F([0,M]) > pc(d) that was chosen
in the definition of T̃ .

Remark 2. We denote our limit by μ̃. The existence of a limit for the rescaled times T (0, nx)/n is already known in
many cases, see Section 1.2 for a presentation of those results. By Theorem 4 we know that the limit μ̃ we obtain is
the same as the limit obtained in other settings with more restrictive assumptions on F . This limit is usually denoted
by μ, but we decided to keep the notation μ̃ to emphasize the fact that μ̃ is obtained as the limit of the times T̃ .

We denote by A�B the symmetric difference between two sets A and B . We denote the Lebesgue measure on
Rd by Ld . We state the shape theorem in the framework of weak convergence of measures. We say that a sequence
(μn,n ∈ N) of measures on Rd converges weakly towards a measure μ if and only if for any continuous bounded
function f :Rd �→ R we have

lim
n→∞

∫
Rd

f dμn =
∫
Rd

f dμ.

We denote this convergence by μn ⇀
n→∞μ.
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Theorem 5 (Weak shape theorem for B∗
t and Bt ). Suppose that F([0,+∞[) > pc(d) and F({0}) < pc(d).

(i) We have

lim
t→∞Ld

(
B∗

t

t
�Bμ̃

)
= 0 a.s.

(ii) On the event {0 ∈ C∞} we have a.s. the following weak convergence:

1

td

∑
x∈Bv

t

δx/t ⇀
t→∞ θ1Bμ̃

Ld .

In fact, the proofs of Theorems 2 and 3 are intertwinned. Here is how the actual proofs are organized. We shall first
prove Theorem 1. Then we prove Theorem 3 part (i). Then we prove the following intermediate proposition.

Proposition 1. Suppose that F([0,+∞[) > pc(d) and that μ̃ is a norm. Then

∀ε > 0, almost surely, ∃t0 ∈ R+, ∀t ≥ t0 (1 − ε)Bμ̃ ⊂ B̃t

t
⊂ (1 + ε)Bμ̃.

This proposition gives the convergence of t−1B̃t towards Bμ̃ under the condition that μ̃ > 0. Once this proposition
is proved, we can prove Theorem 2 as follows. We prove that μ̃ > 0 when F({0}) < pc(d). We then prove that μ̃ > 0
implies that F({0}) < pc(d), with the help of the key large deviation estimate given in Proposition 7, which itself rests
on the shape theorem stated in Proposition 1. Theorem 2 and Proposition 1 together yield the statement of Theorem 3
part (ii). In fact, Theorem 3 alone could be proved directly: indeed, the statement of part (ii) in Theorem 3 follows
from Proposition 1 and Proposition 5. The delicate point is that we need a shape theorem result to handle the critical
case F(0) = pc(d) in Theorem 2; the relevant shape theorem is the one stated in Proposition 1, with the assumption
that μ̃ is a norm (and no direct assumption on F({0})). Theorem 4, which deals with the time constant, is proved
before Theorems 2 and 3, right after Theorem 1. Finally, Theorem 5, which is the weak shape theorem, is proved after
Theorems 2 and 3. This last theorem requires a compactness argument, which holds only when μ̃ is a norm. To sum
up, the logical structure of the proofs is:

Theorems 1, 4 → Theorem 3 part (i) → Proposition 1 → Theorem 2 → Theorem 3 part (ii) → Theorem 5.

We tried to present efficiently the results in the statements of the theorems, by gathering all the results on the time
constant and the shape theorems at the same place. The drawback is that the full proof of these results is not linear.

1.2. State of the art in first passage percolation

The model of first passage percolation has been studied a lot since Hammersley and Welsh [19] introduced it in 1965.
The results presented in this article are deeply linked to previous works that we try to describe briefly in this section.

First let us consider the case of a law F on [0,+∞[. Thanks to a subadditive argument, Hammersley and Welsh
proved in [19] that if d = 2 and F has finite mean, then limn→∞ T (0, ne1)/n exists a.s. and in L1, the limit is a
constant denoted by μ(e1) and called the time constant. The moment condition was improved some years later by
several people independently, and the study was extended to any dimension d ≥ 2 (see for example Kesten’s St Flour
notes [21]). The convergence to the time constant can be stated as follows: if E[min(t1, . . . , t2d)] < ∞ where (ti) are
i.i.d. of law F , there exists a constant μ(e1) ∈R such that

lim
n→∞

T (0, ne1)

n
= μ(e1) a.s. and in L1.

Moreover, the condition E[min(t1, . . . , t2d)] < ∞ is necessary for this convergence to hold a.s. or in L1. This conver-
gence can be generalized by the same arguments, and under the same hypothesis, to other directions: there exists an
homogeneous function μ : Zd →R such that for all x ∈ Zd , we have limn→∞ T (0, nx)/n = μ(x) a.s. and in L1. The
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function μ can be extended to Qd by homogeneity and to Rd by continuity (see [21]). A simple convexity argument
proves that either μ(x) = 0 for all x ∈Rd , or μ(x) > 0 for all x �= 0. Kesten proved in [21], Theorem 1.15, that μ > 0
if and only if F({0}) < pc(d), i.e., the percolation (1{t (e)=0}, e ∈ Ed ) is sub-critical. If F({0}) < pc(d), μ is a norm
on Rd , and the unit ball for this norm

Bμ = {x ∈ Rd | μ(x) ≤ 1
}

is compact. A natural question at this stage is whether the convergence limn→∞ T (0, nx)/n = μ(x) is uniform in all
directions. The shape theorem, inspired by Richardson’s work [25], answers positively this question under a stronger
moment condition. It can be stated as follows (see [21], Theorem 1.7): if E[min(td1 , . . . , td2d)] < ∞, and if F({0}) <

pc(d), then for all ε > 0, a.s., there exists t0 ∈R+ such that

∀t ≥ t0, (1 − ε)Bμ ⊂ Bt

t
⊂ (1 + ε)Bμ. (2)

Moreover, the condition E[min(td1 , . . . , td2d)] < ∞ is necessary for this convergence to hold a.s. An equivalent shape
theorem can be stated when F({0}) ≥ pc(d), but the “shape” appearing in this case is Bμ =Rd itself.

A first direction in which these results can be extended is by considering a law F on [0,+∞[ which does not satisfy
any moment condition, at the price of obtaining weaker convergences. Cox and Durrett in dimension d = 2, and then
Kesten in any dimension d ≥ 2 performed this work successfully in [11] and [21] respectively. More precisely, they
proved that there always exists a function μ̂ : Rd → R+ such that for all x ∈ Zd , we have limn→∞ T (0, nx)/n = μ̂(x)

in probability. If E[min(t1, . . . , t2d)] < ∞ then μ̂ = μ. The function μ̂ is built as the a.s. limit of a more regular
sequence of times T̂ (0, nx)/n that we now describe roughly. They consider a M ∈ R+ large enough so that F([0,M])
is very close to 1. Thus the percolation (1{t (e)≤M}, e ∈ Ed ) is highly super-critical, so if we denote by CM its infinite
cluster, each point x ∈ Zd is a.s. surrounded by a small contour S(x) ⊂ CM . They define T̂ (x, y) = T (S(x), S(y))

for x, y ∈ Zd . The times T̂ (0, x) have good moment properties, thus μ̂(x) can be defined as the a.s. and L1 limit of
T̂ (0, nx)/n for all x ∈ Zd by a classical subadditive argument; then μ̂ can be extended to Qd by homogeneity, and
finally to Rd by continuity. The convergence of T (0, nx)/n towards μ̂(x) in probability is a consequence of the fact
that T and T̂ are close enough. Kesten’s result on the positivity of the time constant remains valid for μ̂. Moreover,
Cox and Durrett [11] and Kesten [21] proved an a.s. shape theorem for

B̂t = {z + u | z ∈ Zd s.t. T̂ (0, z) ≤ t, u ∈ [−1/2,1/2]d}
with shape limit Bμ̂ = {x ∈ Rd | μ̂(x) ≤ 1} when μ̂ is a norm, i.e. F({0}) < pc(d) (and an equivalent shape result
with shape limit equal to Bμ̂ = Rd when F({0}) ≥ pc(d)). In dimension d = 2, Cox and Durrett also deduced a weak
shape theorem for Bt (see Theorem 4 in [11]):

∀K ∈ R+, lim
t→∞L2

((
Bt

t
�Bμ̂

)
∩ {x ∈Rd | ‖x‖1 ≤ K

})= 0 a.s., (3)

where � denotes the symmetric difference between two sets, and

∀ε > 0 a.s., ∃t0 ∈ R+ s.t. ∀t ≥ t0,
Bt

t
⊂ (1 + ε)Bμ. (4)

In fact, in the case F({0}) < pc(d), the intersection with {x ∈ Rd | ‖x‖1 ≤ K} is not needed in (3), since Bμ̂ is

compact. The inclusion in (4) follows directly from the a.s. shape theorem for B̂t since T̂ (0, x) ≤ T (0, x) for all
x ∈ Zd . Kesten did not write the generalization to any dimension d ≥ 2 of this weak shape theorem for Bt without
moment condition on F but all the required ingredients are present in [21].

A second direction in which these results can be extended is by considering random passage times (t (e), e ∈ Ed )
that are not i.i.d. but only stationary and ergodic. Boivin defined in [6] a time constant in this case and proved a
corresponding shape theorem under some moment assumptions on F . We do not present these results in details since
this generalization is not directly linked with the purpose of the present article. A further generalization of the shape
theorem to general semimetrics has been achieved by Björklund [5].



1356 R. Cerf and M. Théret

A third possible way to generalize these results is to consider infinite passage time. This case has been studied by
Garet and Marchand in [14]. They presented it as a model of first passage percolation in random environment: they
consider first a super-critical Bernoulli percolation on Ed , and then they associate to each remaining edge e a finite
passage time t (e) such that the family (t (e), e ∈ Ed ) is stationary and ergodic. If x and y are two vertices that do not
belong to the same cluster of the Bernoulli percolation, there is no path from x to y and T (x, y) = +∞. To define a
time constant μ′(x) in a rational direction x, they first consider the probability P conditioned by the event {0 ∈ C∞},
where C∞ is the infinite cluster of the super-critical percolation mentioned above. In the direction of x they only take
into account the points (xn, n ∈ N) that belong to C∞, with limn→∞ ‖xn‖1 = ∞. Then under a moment condition on
the law of the passage times, they prove that P-a.s., the times T (0, xn) properly rescaled converge to a constant μ′(x).
They also prove a shape theorem for Bt when μ′ is a norm (i.e. when μ′(e1) > 0):

lim
t→∞DH

(
Bt

t
,Bμ′

)
= 0 P-a.s.,

where DH denotes the Hausdorff distance between two sets, and Bμ′ = {x ∈ Rd | μ′(x) ≤ 1}. Let us remark that the
infinite cluster C∞ has holes, and so does the set Bt , thus a shape theorem as stated in (2) cannot hold. The use of
the Hausdorff distance allows to fill the small holes in Bt . Garet and Marchand’s results are all the more general
since they did not consider i.i.d. passage times but the ergodic stationary case as initiated by Boivin. However, their
moment condition on the finite passage times is quite restrictive (see hypothesis (Hα) on page 4 in [14]). As they
explained just after defining this hypothesis, in the i.i.d. case, (Hα) corresponds to the existence of a moment of order
2α. The existence of μ′ is proved if (Hα) holds for some α > 1, thus in the i.i.d. case with a moment of order 2 + ε.
The shape theorem is proved if (Hα) holds for some α > d2 + 2d − 1, thus in the i.i.d. case with a moment of order
2(d2 + 2d − 1)+ ε. We emphasize that these hypotheses are of course fulfilled if the finite passage times are bounded,
which is the case in particular if the finite passage times are equal to 1. In this case T (x, y), x, y ∈ Zd is equal to the
length of the shortest path that links x to y in the percolation model if x and y are connected, and it is equal to +∞ if x

and y are not connected. The variable T (x, y) is called the chemical distance between x and y and is usually denoted
by D(x,y). This chemical distance was previously studied, and we will present a powerful result of Antal and Pisztora
[3] in the next section (see Theorem 6). To finish with the presentation of Garet and Marchand’s works, we should
say that the generality of the stationary ergodic setting they chose makes it also difficult to give a characterization
of the positivity of the time constant in terms of the law of the passage times. Garet and Marchand give sufficient or
necessary conditions for the positivity of μ′ (see Section 4 in [14]), which in the i.i.d. case correspond to:[

F
({0})> pc(d) ⇒ μ′(e1) = 0

]
and

[
F
({0})< pc(d) ⇒ μ′(e1) > 0

]
,

but they do not study the critical case F({0}) = pc(d).
A lot more was proved concerning first passage percolation. Many people investigated large deviations, moderate

deviations and variance of the times T (0, x) (see for instance the works of Kesten [21], Benjamini, Kalai and Schramm
[4], Chatterjee and Dey [7], Garet and Marchand [15,16] and the recent paper of Ahlberg [1]). We do not go further
in this direction, even if in Section 4.3 we prove a large deviation estimate, since we see it as a tool rather than a goal.

The aim of the present paper is to fulfill the gap between the works of Cox, Durrett and Kesten on one hand, and
Garet and Marchand on the other hand. More precisely, we prove a weak convergence to a time constant (Theorem 4)
and a weak shape theorem (Theorem 5) when the passage times are i.i.d., maybe infinite, and without any moment
assumption on the finite passage times. We also obtain necessary and sufficient condition for the positivity of the time
constant in this setting (Theorem 2). Our strategy follows the approach of Cox and Durrett in [11], that was adapted by
Kesten [21] in dimension d ≥ 2: we define an auxiliary time T̃ (see equation (1)), we prove that it has good moment
properties, so we can prove the a.s. convergence of T̃ (0, nx)/n towards a time constant μ̃(x) in rational directions,
and a strong shape theorem for B̃t . Then we compare T to T̃ to deduce weak analogs for the times T . However,
we cannot use the same regularized times T̂ as Cox, Durrett and Kesten did. Indeed, they use the fact that for M

large enough, when the passage times are finite, F([0,M]) can be chosen arbitrarily close to 1, so the percolation
(1{t (e)≤M}, e ∈ Ed) can be chosen as super-critical as needed. What they need precisely is the existence of contours
included in CM (the infinite cluster of edges of passage time smaller than M) around each point. In dimension 2, it is
in fact enough to require that F([0,+∞[) > pc(2) = 1/2, thus F([0,M]) > 1/2 for M large enough. Indeed when
d = 2, because pc(2) = 1/2, if open edges are in a super-critical regime then closed edges are in a sub-critical regime
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and they do not percolate. However, for d ≥ 3, this is not true anymore: it may happen that open edges and closed
edges percolate at the same time (remember that pc(d) < 1/2 for d ≥ 3), and in this case we do not have the existence
of open contours around each point. In our setting, we have F([0,M]) ≤ F([0,+∞[), and F([0,+∞[) is fixed so
it cannot be pushed towards 1, we only know that it is strictly bigger than pc(d). This is not enough to ensure the
existence of contours included in CM or C∞ (the infinite cluster of edges of finite passage time) around each point for
d ≥ 3. In the case where F({+∞}) is very small, it is likely that the proofs of Cox, Durrett and Kesten could work
with minor adaptations. But with general laws such that F([0,+∞[) > pc(d), we need to define new regularized
times T̃ . Our definition of T̃ (x, y) as T (̃x, ỹ) where x̃ is the point of CM (the infinite cluster of edges of passage
time t (e) ≤ M) is inspired by Garet and Marchand [16] who associated to the chemical distance D(x,y) between
x, y ∈ Zd , that may be infinite, the finite distance D∗(x, y) = D(x∗, y∗), where x∗ is the point of the infinite cluster
of the underlying Bernoulli percolation which is the closest to x for the ‖ · ‖1 distance (with a deterministic rule to
break ties). The corresponding x∗ in our setting is the point of C∞ which is closest to x. This choice for x∗ seems
more natural than x̃, since the definition of x̃ depends on a real number M satisfying F([0,M]) > pc(d). However,
the times T ∗(0, x) = T (0∗, x∗) are not regular enough for our purpose. Thus we follow Cox, Durrett and Kesten by
introducing an arbitrary M and working with CM to define the times T̃ . Using the results obtained for T̃ , we can study
the times T ∗ and then T . Another originality of our work is the use of measures to state the weak shape theorem
(Theorem 5(ii)). With this formulation, both the limit shape Bμ̃ and the density θ of the infinite cluster C∞ appear
naturally, so we believe it is particularly well adapted to this question.

We also have to mention the work of Mourrat [24] in our state of the art. Mourrat deals with random walk in
random potential. Consider a family of i.i.d. variables (V (x), x ∈ Zd ) associated to the vertices of Zd , such that V (x)

takes values in [0,+∞]. Let S = (Sn,n ∈ N) be a simple random walk on Zd , starting at x ∈ Zd under the probability
Px (of expectation Ex ). Given y ∈ Zd , let Hy = inf{n ≥ 0 | Sn = y}. Then define

∀x, y ∈ Zd , a(x, y) = − log Ex

[
exp

(
−

Hy−1∑
n=0

V (Sn)

)
1{Hy<∞}

]
,

with a(x, x) = 0. Mourrat proves for all x ∈ Zd the convergence of a(0, nx)/n towards a deterministic constant α(x)

called the Lyapunov exponent (see Theorem 1.1 in [24]). Here α(e1) > 0 whatever the law of the potentials V , thus α

defines a norm on Rd . If

At = {x + u | x ∈ Zd , a(0, x) ≤ t, u ∈ [−1/2,1/2]d}
and Bα = {x ∈ Rd | α(x) ≤ 1}, then Mourrat proves a shape theorem: At/t converges towards Bα (see Theorem 1.2
in [24]). The sense in which these convergences happen in both results depend on the moments of V (x). Mourrat
obtains necessary and sufficient conditions on the law of V to obtain strong convergences which are similar to the
one obtained in classical first passage percolation: E[min(V1, . . . , V2d)] < ∞ for the a.s. convergence towards α, and
E[min(V1, . . . , V2d)d ] < ∞ for the strong shape theorem, where the Vi are i.i.d. with the same law as the V (x). He
also obtains a weak shape theorem for At without any moment assumption, including infinite potentials as soon as
P[V (x) < ∞] > p′

c(d) (here p′
c(d) is the critical parameter for Bernoulli percolation on the vertices of Zd ): on the

event {0 ∈ C∞}, where C∞ is the infinite cluster of the percolation of vertices of finite potential, and for any sequence
εt such that limt→∞ εt = +∞ and limt→∞ εt/t = 0, he proves that

lim
t→∞Ld

(
A

εt
t

t
�Bα

)
= 0 a.s., (5)

where Aε = {y ∈Rd | ∃x ∈ A s.t. ‖x −y‖2 ≤ ε} is the ε-neighborhood of A of size ε for the euclidean distance. Notice
that taking these neighborhoods allows Mourrat to take care of the holes in the infinite cluster C∞ as Garet and Marc-
hand did by considering the Hausdorff distance. The work of Mourrat is deeply linked with our setting: consider this
model for potentials (βV (x), x ∈ Zd ) and let β > 0 go to ∞, the measure on the paths (Sn, n ∈ {0, . . . ,Hy}) between

x and y charges only paths of minimal weights
∑Hy−1

n=0 V (Sn), i.e., the geodesics for the first passage percolation of
passage times (V (x), x ∈ Zd ) on the vertices of Zd . This limit can be seen as the limit at null temperature, since β
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usually represents the inverse of the temperature in this kind of model. The first difference between Mourrat’s setting
and our setting is that he considers random potential on the vertices of Zd whereas we consider random passage times
on the edges of Zd . We believe that this difference in the model should not change the validity of either arguments.
The second difference is that Mourrat considers the model of random walk in random potential at positive tempera-
ture, whereas we consider its limit at null temperature, i.e. the first passage percolation model. Notice that even if the
model of random walk in random potentials is more general than the first passage percolation model, it is not straight-
forward to obtain the shape theorem for first passage percolation as a corollary of Mourrat’s shape theorem. But it is
likely that Mourrat’s arguments could work similarly in the case of null temperature. However, Mourrat’s approach is
somehow more intricate than ours, so we believe that our method is interesting in itself. Indeed, Mourrat met the same
problem as we did in the use of Cox and Durrett’s argument: in his setting, the percolation (1{V (x)≤M}, x ∈ Zd ) cannot
be chosen as super-critical as he wants, so he cannot define shells in the infinite cluster CM of this percolation that
surround points. To circumvent this difficulty, he uses a renormalization scheme: he defines blocks at a mesoscopic
scale, and declares a block to be “good” if M behaves “well” inside this block (see Section 5 of [24]). He chooses
the size of the blocks such that the percolation of good blocks is highly super-critical. Then he considers around each
point of Zd a shape of good blocks that surrounds this point, and that belongs to the infinite cluster of good blocks. He
finally defines his regularized times â(x, y) as (what would be in our setting) the minimal time needed to go from the
part of CM which belongs to the shell of good blocks around x, to the part of CM which belongs to the shell of good
blocks around y. Notice that this renormalization construction does not avoid the use of existing results, the same as
the one we will use and that we present in the next section, some of them being themselves proved by a renormal-
ization scheme (see Theorem 6 for instance). Thus our approach, with a simpler definition of the regularized times
T̃ and thus of the time constant, seems more natural. Moreover, we improve our comprehension of the model by the
study of the times T ∗ and the sets B∗

t , that do not appear in Mourrat’s work. We think that our statement of the weak
shape theorem for Bt in terms of measures is also somehow more descriptive than Mourrat’s weak shape theorem,
since he considers a fattened version A

εt
t of At to fill the holes in the infinite cluster C∞, whereas we choose to make

them appear in our limit through their density. Finally, Mourrat does not investigate the positivity of the constant
in first-passage percolation, since in his model at positive temperature the constants α(x) are always positive – this
property can be lost when taking the limit at null temperature, and it is indeed the case if F({0}) ≥ pc(d) as proved in
Theorem 2.

Other related works are those of Cox and Durrett [9], Zhang [27] and Andjel, Chabot and Saada [2] about the
spread of forest fires and epidemics. We do not present these models in details but, roughly speaking, they correspond
to the study of first passage percolation with the following properties:

(i) the percolation is oriented, i.e., the passage time from a vertex x to a vertex y is not equal to the passage time
from y to x;

(ii) the percolation is locally dependent;
(iii) the passage time of an edge is either infinite either equal to 1 in the spread of forest fires, or smaller than an

exponential variable in the spread of epidemics.

The models with properties (i) and (ii) are more difficult to study than the case of i.i.d. first passage percolation we
consider here, indeed it is necessary to develop adequate percolation estimates in this setting. Property (iii) makes the
study easier, since finite edges have good moment properties. In [9], Cox and Durrett study these models in dimension
2, and they prove the corresponding shape theorems. Since they work in dimension 2, they can use the methods
they developed in [11] with the definition of contours around points. Zhang studies also the two-dimensional case in
[27] but he adds some finite range interactions, i.e., he adds edges in the graph between vertices that are not nearest
neighbors. Andjel, Chabot and Saada study in [2] the epidemic model in dimension d ≥ 3. They face the same problem
as we and Mourrat do: the definition of contours is not adapted anymore. To circumvent this problem, they replace the
contours by more complicated random neighborhoods around each vertex. The definition we propose in our setting is
a lot more straightforward.

A natural question raised by this work is the study of the continuity of the time constant. Cox [10] and Cox and
Kesten [12] proved the continuity of the time constant with regard to a variation of the law F of the passage time on
[0,+∞[ in dimension 2, and this result was extended to any dimension d ≥ 2 by Kesten [21]. It may be possible to
combine their techniques with the definition of the time constant for possibly infinite passage times we propose in this
article. We emphasize the fact that the existence of the time constant without any moment condition and the study of
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the positivity of the time constant are two of the key arguments used by Cox and Kesten in [12] to improve the work
of Cox [10].

1.3. Useful results

In the previous section, we presented several papers whose results and techniques influenced our work. In this section,
we present a few results concerning percolation and chemical distance that we will use. In what follows, we consider
an i.i.d. Bernoulli percolation on the edges of Zd of parameter p > pc(d).

First we present the result of Antal and Pisztora [3]. Denote by D(x,y) the chemical distance between x and
y ∈ Zd . We recall that if |γ | denotes the length of a path γ (i.e. the number of edges in γ ), then

∀x, y ∈ Zd , D(x, y) = inf
{|γ | : γ is a path from x to y

}
.

If x and y are not connected, there exists no such path and by definition D(x,y) = +∞. The event that x and y are
connected will be denoted by {x ↔ y}. We write Antal and Pisztora’s result in an appropriate form for our use.

Theorem 6 (Chemical distance). Suppose that p > pc(d). There exist positive constants A1, A2 and A3 such that

∀y ∈ Zd ,∀l ≥ A3‖y‖1, P
[
0 ↔ y,D(0, y) ≥ l

]≤ A1e
−A2l .

In fact Antal and Pisztora did not write their result exactly this way: their Theorem 1.1 is uniform in all directions,
but in their Theorem 1.2, on which we rely, they do not state explicitly that the result is uniform with regard to the
directions. However a close inspection of their arguments shows that it is indeed the case.

Let us denote by C the (a.s. unique) infinite cluster of the percolation we consider. Let

B1(x, r) = {y ∈Rd | ‖x − y‖1 ≤ r
}

be the ball of center x and radius r > 0 for the norm ‖ · ‖1, and ∂B1(x, r) be its boundary. We say that a vertex x is
connected to a subset A of Rd if there exists y ∈ A ∩ Zd such that x is connected to y, and we denote this event by
{x ↔ A}. The following results control the size of the finite clusters and of the holes in the infinite cluster, respectively.

Theorem 7 (Finite clusters). Suppose that p > pc(d). There exist positive constants A4, A5 such that

∀r > 0, P
[
0 /∈ C,0 ↔ ∂B1(0, r)

]≤ A4e
−A5r .

For a reference for Theorem 7, see for instance Grimmett [18], Theorems 8.18 and 8.19, or Chayes, Chayes,
Grimmett, Kesten and Schonmann [8].

Theorem 8 (Holes). Suppose that p > pc(d). There exist positive constants A6, A7 such that

∀r > 0, P
[
C ∩B1(0, r) =∅

]≤ A6e
−A7r .

Theorem 8 was proved in dimension 2 by Durrett and Schonmann [13], and their proof can be extended to di-
mension d ≥ 2. For d ≥ 3, Theorem 8 can also be deduced from Grimmett and Marstrand’s slab’s result proved in
[17].

1.4. Organization of the proofs

The paper is organized as follows. In Section 2 we investigate the convergence of the rescaled times towards a time
constant. In Section 2.1, we prove that the times T̃ have good moment properties, then by a classical subadditive
argument we prove Theorem 1. In Section 2.2, we compare the times T , T ∗ and T̃ , and we deduce Theorem 4 from
Theorem 1. In Section 3.1, by classical methods, we prove that the convergence of the rescaled times T̃ towards μ̃ is
uniform in all directions (Theorem 3 part (i)). Under the assumption that the time constant μ̃(e1) is strictly positive,
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we prove that this uniform convergence is equivalent to the strong shape theorem for B̃t . This proves Proposition 1.
Then we compare again T , T ∗ and T̃ in Section 3.2 to obtain the weak shape theorems for B∗

t and Bt (Theorem 5).
Finally in Section 4 we study the positivity of the time constant. First we study in Section 4.1 the positivity of μ̃(e1)

when F({0}) �= pc(d). Then we study in Section 4.2 the lower large deviations of some passage time below the time
constant when the time constant is positive. Finally this result is used in Section 4.3 to prove Theorem 2.

2. Time constant

2.1. Definition of the time constant and first properties

We recall that (t (e), e ∈ Ed ) is an i.i.d. family of random passage times of law F on [0,+∞]. We assume that
F([0,+∞[) > pc(d). We select a real number M , depending on F , such that F([0,M]) > pc(d). We denote by |A|
the cardinality of a set A. For x ∈Rd , x = (x1, . . . , xd), we define

‖x‖1 =
d∑

i=1

|xi |, ‖x‖2 =
√√√√ d∑

i=1

x2
i , ‖x‖∞ = max

i∈{1,...,d}
|xi |.

We denote by Bi (x, r) the ball of center x ∈ Rd and radius r > 0 for the norm ‖ · ‖i :

Bi (x, r) = {y ∈Rd | ‖x − y‖i ≤ r
}
.

Let CM (resp. C∞) the (a.s. unique) infinite cluster of the Bernoulli percolation (1{t (e)≤M}, e ∈ Ed ) (resp. (1{t (e)<∞},
e ∈ Ed )). Notice that CM ⊂ C∞. We denote by DM(x,y) (resp. D∞(x, y)) the chemical distance between two ver-

tices x and y in the percolation (1{t (e)≤M}, e ∈ Ed ) (resp. (1{t (e)<∞}, e ∈ Ed )), and we denote by {x M←→ y} (resp.

{x ∞←→ y}) the event that x is connected to y in this percolation. We recall that for all x, y ∈ Zd , T̃ (x, y) = T (̃x, ỹ)

where x̃ is the random point of CM that is the closest to x for the norm ‖ · ‖1, with a deterministic rule to break ties.
To ensure that T̃ is translation invariant, we use the same tie-breaking rule at each vertex.

Before proving Theorem 1 we need a control on the tail of the distribution of T̃ (0, x).

Proposition 2. There exist positive constants C1, C2 and C3 such that

∀x ∈ Zd,∀l ≥ C3‖x‖1, P
[
T̃ (0, x) > l

]≤ C1e
−C2l .

Proof. For a, b ∈ Zd , we always have

T (a, b) ≤ MDM(a,b).

Indeed if DM(a,b) = +∞ there is nothing to prove. Suppose that DM(a,b) < ∞, thus there exist paths from a to
b that are open for the percolation (1{t (e)≤M}, e ∈ Ed ). Let γ be such a path, then T (a, b) ≤ T (γ ) ≤ M|γ |. Taking
the infimum of the length of such paths γ , we obtain the desired inequality. Consider x ∈ Zd and l ≥ C‖x‖1, for a
constant C to be fixed. We have for all ε > 0

P
[
T̃ (0, x) > l

] ≤ P
[̃
0 /∈ B1(0, εl/2)

]+ P
[̃
x /∈ B1(x, εl/2)

]
+

∑
a∈B1(0,εl/2)∩Zd

b∈B1(x,εl/2)∩Zd

P
[̃
0 = a, x̃ = b,DM(a, b) ≥ l/M

]

≤ P
[
CM ∩B1(0, εl/2) =∅

]+ P
[
CM ∩B1(x, εl/2) =∅

]
+

∑
a∈B1(0,εl/2)∩Zd

b∈B1(x,εl/2)∩Zd

P
[
a

M←→ b,DM(a, b) ≥ l/M
]
.
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By Theorem 8 applied to the percolation (1{t (e)≤M}, e ∈ Ed ) we get that

P
[
CM ∩B1(0, εl/2) =∅

]= P
[
CM ∩B1(x, εl/2) =∅

]≤ A6e
−A7εl/2.

For all a ∈ B1(0, εl/2) ∩Zd and b ∈ B1(x, εl/2) ∩Zd , we have

‖a − b‖1 ≤ ‖x‖1 + εl ≤ l

(
1

C
+ ε

)
,

thus

l ≥ 1

C−1 + ε
‖a − b‖1.

Let A3 the constant defined in Theorem 6 applied to the percolation (1{t (e)≤M}, e ∈ Ed ). Choose ε = C−1, and
C = 2MA3. Then l/M ≥ A3‖a − b‖1, and applying Theorem 6 we get

P
[
a

M←→ b,DM(a, b) ≥ l/M
]≤ A1e

−A2l/M

uniformly in a ∈ B1(0, εl/2) ∩Zd and b ∈ B1(x, εl/2) ∩Zd . Since |B1(0, εl/2) ∩Zd | = |B1(x, εl/2) ∩Zd | ≤ C′εd ld

for some constant C′, Proposition 2 is proved. �

Proof of Theorem 1. The structure of this proof is very classical (see for instance [21], Theorem 1.7), so we try to
give all the arguments briefly. Similarly to T , T̃ satisfies the triangle inequality:

∀x, y, z ∈ Zd, T̃ (x, y) ≤ T̃ (x, z) + T̃ (z, y). (6)

Let x ∈ Zd . The family (T̃ (mx,nm), 0 ≤ m < n) indexed by m,n ∈ N is a stationary process which is subbadditive
by inequality (6). By Proposition 2 we know that this process is integrable. Following Kingman’s subadditive ergodic
theorem (see [22] or Section 2 in [21]) we deduce that

lim
n→∞

T̃ (0, nx)

n
exists a.s. and in L1.

Moreover by ergodicity this limit, that we denote by μ̃(x), is constant a.s. and we know that

μ(x) = lim
n→∞

E[T̃ (0, nx)]
n

= inf
n>0

E[T̃ (0, nx)]
n

.

If x ∈Qd , let N ∈ N∗ be such that Nx ∈ Zd , and define similarly

μ̃(x) = lim
n→∞

T̃ (0, nNx)

nN
a.s. and in L1.

The function μ̃ is well defined on Qd (μ̃(x) does not depend of the choice of N ) and is homogeneous in the sense
that for all x ∈ Qd , for all r ∈Q+,

μ̃(rx) = rμ̃(x). (7)

The function μ̃ is invariant under any permutation or reflection of the coordinate axis since the model is. By (6) we
deduce that for all x, y ∈Qd

μ̃(y) ≤ μ̃(x) + μ̃(y − x), (8)

and

μ̃(x) ≤ μ̃(e1)‖x‖1, (9)
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thus ∣∣μ̃(x) − μ̃(y)
∣∣≤ μ̃(y − x) ≤ μ̃(e1)‖y − x‖1. (10)

We can therefore extend μ̃ by continuity to Rd , and (7), (8), (9) and (10) remain valid for all x, y ∈ Rd and r ∈ R+.
By (9) if μ̃(e1) = 0 then μ̃(x) = 0 for all x ∈ Rd . Conversely, if there exists x = (x1, . . . , xd) ∈ Rd \ {0} such that
μ̃(x) = 0, then by symmetry we can suppose for instance that x1 �= 0. By (8) we obtain

2|x1|μ̃(e1) = μ̃(2x1,0, . . . ,0) ≤ μ̃(x1, x2, . . . , xd) + μ̃(x1,−x2, . . . ,−xd) = 0,

thus μ̃(e1) = 0. �

2.2. From T̃ to T

We now compare T ∗ with T̃ :

Proposition 3. For all x ∈ Zd , for all ε > 0, we have

lim
n→∞P

[∣∣T ∗(0, nx) − T̃ (0, nx)
∣∣≥ εn

]= 0.

Proof. From the definitions of T and T̃ , we get

P
[∣∣T ∗(0, nx) − T̃ (0, nx)

∣∣≥ εn
] ≤ P

[
T
(
0∗, 0̃

)+ T
(
nx∗, ñx

)≥ εn
]

≤ 2P
[
T
(
0∗, 0̃

)≥ εn/2
]
,

and the last term goes to 0 as n goes to infinity since T (0∗, 0̃) < ∞ because both 0∗ and 0̃ belong to C∞. �

Proof of Theorem 4. The fact that limn→∞ T ∗(0, nx)/n = μ̃(x) in probability is a simple consequence of Theorem 1
and Proposition 3. Since T ∗(0, nx) does not depend on the M chosen to define T̃ , μ̃(x) does not depend on M , for all
x ∈ Zd , and thus for all x ∈ Rd by construction. Let f be a continuous bounded real function defined on R ∪ {+∞},
and let us denote by ‖f ‖∞ the supremum of |f |. Let x ∈ Zd . It remains to prove that

lim
n→∞E

[
f

(
T (0, nx)

n

)]
= θ2f

(
μ̃(x)

)+ (1 − θ2)f (+∞),

where θ = P[0 ∈ C∞]. On one hand, we have∣∣∣∣E[f(T (0, nx)

n

)
1{0∈C∞,nx∈C∞}

]
− θ2f

(
μ̃(x)

)∣∣∣∣
≤ E

[∣∣∣∣f(T (0, nx)

n

)
− f
(
μ̃(x)

)∣∣∣∣1{0∈C∞,nx∈C∞}
]

+ ∣∣f (μ̃(x)
)∣∣× ∣∣θ2 − P[0 ∈ C∞, nx ∈ C∞]∣∣. (11)

Since f is continuous in μ̃(x), for all ε > 0, there exists η > 0 such that

E

[∣∣∣∣f(T (0, nx)

n

)
− f
(
μ̃(x)

)∣∣∣∣1{0∈C∞,nx∈C∞}
]

≤ εP

[∣∣∣∣T (0, nx)

n
− μ̃(x)

∣∣∣∣≤ η,0 ∈ C∞, nx ∈ C∞
]

+ ‖f ‖∞P

[∣∣∣∣T (0, nx)

n
− μ̃(x)

∣∣∣∣> η,0 ∈ C∞, nx ∈ C∞
]

≤ ε + ‖f ‖∞P

[∣∣∣∣T ∗(0, nx)

n
− μ̃(x)

∣∣∣∣> η

]
. (12)
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The convergence of T ∗(0, nx)/n towards μ̃(x) in probability implies that the second term of the right-hand side of
(12) goes to 0 when n goes to infinity. Moreover, by the FKG inequality, we have

P[0 ∈ C∞, nx ∈ C∞] ≥ P[0 ∈ C∞] × P[nx ∈ C∞] = θ2.

Conversely for all fixed p ∈ N, for all n large enough, B1(0,p) ∩B1(nx,p) =∅ thus

P[0 ∈ C∞, nx ∈ C∞] ≤ P
[
0

∞←→ ∂B1(0,p)
]
P
[
nx

∞←→ ∂B1(nx,p)
]= P

[
0

∞←→ ∂B1(0,p)
]2

.

This implies that θ2 ≤ lim supn→∞ P[0 ∈ C∞, nx ∈ C∞] ≤ P[0 ∞←→ ∂B1(0,p)]2, for all p, and sending p to infinity
we obtain

lim
n→∞P[0 ∈ C∞, nx ∈ C∞] = θ2. (13)

Combining (12) and (13), we get that the right-hand side of (11) goes to 0 as n goes to infinity. On the other hand, we
have ∣∣∣∣E[f(T (0, nx)

n

)
1{0/∈C∞}∪{nx /∈C∞}

]
− (1 − θ2)f (+∞)

∣∣∣∣
≤ E

[∣∣∣∣f(T (0, nx)

n

)
− f (+∞)

∣∣∣∣1{0/∈C∞}∪{nx /∈C∞}
]

+ ∣∣f (+∞)
∣∣× ∣∣P[{0 /∈ C∞} ∪ {nx /∈ C∞}]− (1 − θ2)∣∣

≤ 2‖f ‖∞P
[{

T (0, nx) �= +∞}∩ ({0 /∈ C∞} ∪ {nx /∈ C∞})]
+ ‖f ‖∞ × ∣∣θ2 − P[0 ∈ C∞, nx ∈ C∞]∣∣

≤ 2‖f ‖∞P
[
0 /∈ C∞,0

∞←→ ∂B1
(
0, n‖x‖1

)]
+ ‖f ‖∞ × ∣∣θ2 − P[0 ∈ C∞, nx ∈ C∞]∣∣. (14)

By Theorem 7, the first term of the right-hand side of (14) vanishes at the limit n → ∞, and so does the second term
by (13). We conclude by combining (11) and (14). �

Remark 3. Cox, Durrett [11] and Kesten [21] obtain a stronger convergence for T (0, nx)/n even without moment
condition, since (for finite passage times) they prove

lim
n→∞

T (0, nx)

n
= μ̂(x) in probability.

We cannot hope to obtain such a convergence. The infinite cluster C∞ of finite passage times has holes. Even on the
event {0 ∈ C∞}, the times T (0, nx) are infinite for all n such that nx /∈ C∞, thus a.s. for an infinite sequence of n. They
also prove that

lim inf
n→∞

T (0, nx)

n
≥ μ̂(x) a.s.

It comes from the fact that in their setting T (0, nx) ≤ T̂ (0, nx) = T (S(0), S(nx)) for n not too small, since S(0) and
S(nx) are shells that surround 0 and nx respectively. We do not have such a comparison between T and T̃ . However,
we can compare T with T ∗. Indeed, we have

P
[
T (0, nx) < T ∗(0, nx)

] ≤ P
[{

T (0, nx) < ∞}∩ ({0 /∈ C∞} ∪ {nx /∈ C∞})]
≤ P[0 /∈ C∞,0

∞←→ nx]
≤ A4e

−A5n‖x‖1
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by Theorem 7. By an application of Borel–Cantelli’s lemma, we obtain that

a.s., for all n large enough, T (0, nx) ≥ T ∗(0, nx).

Nevertheless, since we do not have an a.s. convergence for T ∗(0, nx)/n, we do not get an a.s. lower bound for
lim infn→∞ T (0, nx)/n.

3. Shape theorem

3.1. Strong shape theorem for B̃t

In this section we suppose that F([0,+∞[) > pc(d). We will prove Theorem 3 part (i) and Proposition 1. The
argument is classic since the times T̃ have good moment properties. Our presentation is inspired from the proof of
Theorem 3.1 in [21] and the works [14] and [26] of Garet and Marchand. We need some preliminary lemmas.

Lemma 1. There exists a constant C4 such that for any ε > 0, a.s., there exists R > 0 such that for all x, y ∈ Zd we
have

‖x‖1 ≥ R

‖x − y‖1 ≤ ε‖x‖1

}
�⇒ T̃ (x, y) ≤ C4ε‖x‖1.

Remark 4. The statement is uniform with respect to the direction, however the number R is random. This is also the
case for Lemma 2 below.

Proof of Lemma 1. Fix ε > 0. Let C3 the constant given in Proposition 2. For all m ∈N∗, we define the event Em by

Em = {∃x, y ∈ Zd s.t. ‖x‖1 ≥ m,‖x − y‖1 ≤ ε‖x‖1, T̃ (x, y) > C3ε‖x‖1
}
.

Then we have

P[Em] ≤
∑

x∈Zd ,‖x‖1≥m

∑
y∈Zd∩B1(x,ε‖x‖1)

P
[
T̃ (x, y) > C3ε‖x‖1

]
≤

∑
x∈Zd ,‖x‖1≥m

∑
z∈Zd ,‖z‖1≤ε‖x‖1

P
[
T̃ (0, z) > C3ε‖x‖1

]
≤

∑
x∈Zd ,‖x‖1≥m

∑
z∈Zd ,‖z‖1≤ε‖x‖1

C1e
−C2C3ε‖x‖1

≤
∑

x∈Zd ,‖x‖1≥m

C′
1‖x‖d

1e−C2C3ε‖x‖1

≤
∑
k≥m

C′
1C

′
2k

2d−1e−C2C3εk, (15)

where C′
i are constants (depending on the dimension d , on ε and on F ), and Inequality (15) comes from Proposition 2.

Thus
∑

m P[Em] < ∞, and a simple application of Borel–Cantelli’s lemma concludes the proof. �

Lemma 2. For all ε > 0, a.s. there exists R > 0 such that for all y ∈ Zd

‖y‖1 ≥ R �⇒ |T̃ (0, y) − μ̃(y)|
‖y‖1

≤ ε.
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Fig. 1. The points y, zi , qzi and z′.

Proof. Let α > 0 be fixed. Let z1, . . . , zr be an α-covering of the unit sphere for the norm ‖ · ‖1, i.e.,

∀i ∈ {1, . . . , r}, ‖zi‖1 = 1,

∀z, ‖z‖1 = 1 �⇒ ∃i ∈ {1, . . . , r}, ‖z − zi‖1 < α.

We can in addition require that z1, . . . , zr have rational coordinates. In particular, there exists an integer q such that
the vectors qz1, . . . , qzr belong to Zd . By Theorem 1, a.s.,

∀i ∈ {1, . . . , r}, lim
p→∞

1

p
T̃ (0,pqzi) = μ̃(qzi).

Thus, a.s., there exists an integer p0 such that

∀i ∈ {1, . . . , r},∀p ≥ p0,

∣∣∣∣ 1p T̃ (0,pqzi) − μ̃(qzi)

∣∣∣∣< α. (16)

Let also R > 0 be associated to 2α as in Lemma 1. We suppose in addition that αR > q and R/q > p0. Let now
y ∈ Zd be such that ‖y‖1 ≥ R. There exists i ∈ {1, . . . , r} such that ‖y/‖y‖1 − zi‖1 < α. Let us set (see Fig-
ure 1)

z′ =
⌊‖y‖1

q

⌋
qzi .

We have∣∣T̃ (0, y) − μ̃(y)
∣∣ ≤ ∣∣T̃ (0, y) − T̃

(
0, z′)∣∣+ ∣∣T̃ (0, z′)− μ̃

(
z′)∣∣+ ∣∣μ̃(z′)− μ̃(y)

∣∣
≤ T̃
(
y, z′)+ ∣∣T̃ (0, z′)− μ̃

(
z′)∣∣+ μ̃(e1)

∥∥z′ − y
∥∥

1.

From inequality (16), we get

∣∣T̃ (0, z′)− μ̃
(
z′)∣∣≤ ⌊‖y‖1

q

⌋
α.

Moreoever∥∥z′ − y
∥∥

1 ≤
∥∥∥∥⌊‖y‖1

q

⌋
qzi − ‖y‖1zi

∥∥∥∥
1
+ ∥∥‖y‖1zi − y

∥∥
1 ≤ q + α‖y‖1 ≤ 2α‖y‖1.
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Using Lemma 1 and these inequalities, we get∣∣T̃ (0, y) − μ̃(y)
∣∣≤ C42α‖y‖1 +

⌊‖y‖1

q

⌋
α + 2αμ̃(e1)‖y‖1 ≤ α‖y‖1

(
2C4 + 1

q
+ 2μ̃(e1)

)
.

By taking α sufficiently small, we can ensure that this last quantity is smaller than ε‖y‖1. �

Part (i) of Theorem 3 is a straightforward consequence of Lemma 2. It remains to prove Proposition 1.

Proof of Proposition 1. Let us prove the second inclusion. Since μ̃ is a norm, and all the norms in Rd are equivalent,
there exist two positive constants c1, c2 such that

∀x ∈ Rd, c1‖x‖1 ≤ μ̃(x) ≤ c2‖x‖1.

Let ε > 0. By Lemma 2, almost surely, there exists R > 0 such that

∀x ∈ Zd, ‖x‖1 ≥ R �⇒ ∣∣T̃ (0, x) − μ̃(x)
∣∣≤ ε‖x‖1.

Let t be such that t > c2R and c2 < εt . Let z ∈ Zd be such that T̃ (0, z) ≤ t . If ‖z‖1 < R, then μ̃(z) ≤ c2R < t and z

belongs to tBμ̃. Otherwise, if ‖z‖1 ≥ R, then

t ≥ T̃ (0, z) ≥ μ̃(z) − ε‖z‖1 ≥ μ̃(z)(1 − ε/c1)

whence z belongs to (1 − ε/c1)
−1tBμ̃. We conclude that

B̃t ⊂ t

1 − ε/c1
Bμ̃ +

[
−1

2
,

1

2

]d
⊂
(

t

1 − ε/c1
+ c2

)
Bμ̃ ⊂

(
1

1 − ε/c1
+ ε

)
tBμ̃.

Let us prove the first inclusion. Let ε > 0. We notice that

(ε/c1 + 1)(1 − ε/c1) = 1 − ε2/c2
1 ≤ 1.

Let R be associated to ε as in Lemma 2. Let t > 0. We require that t is large, so that

t ≥ max
{
T̃ (0, z) : ‖z‖1 < R

}
, tε ≥ c1c2.

Notice that the condition on ε is deterministic, while the one on t is random. These two conditions imply that

(ε/c1 + 1)
(
c2 + t (1 − 2ε/c1)

)≤ t.

Let x ∈ Rd be such that μ̃(x) ≤ t (1 − 2ε/c1). There exists z ∈ Zd such that ‖z − x‖1 ≤ 1. We have then μ̃(z) ≤
c2 + t (1 − 2ε/c1). If ‖z‖1 ≥ R, then

T̃ (0, z) ≤ ε‖z‖1 + μ̃(z) ≤ (ε/c1 + 1)μ̃(z) ≤ (ε/c1 + 1)
(
c2 + t (1 − 2ε/c1)

)≤ t,

thus T̃ (0, z) ≤ t and it follows that x belongs to B̃t . Moreover, from the choice of t , this is also the case whenever
‖z‖1 < R. We conclude that t (1 − 2ε/c1)Bμ̃ ⊂ B̃t . This concludes the proof. �

3.2. Weak shape theorem for B∗
t and Bt

In this section, we admit Theorem 2. We suppose that F([0,+∞[) > pc(d) and F({0}) < pc(d). By Theorem 2, we
conclude that μ̃(e1) > 0, thus μ̃ is a norm, and by Proposition 1 the strong shape theorem holds for B̃t . We recall that
|A| denotes the cardinality of a set A, and A�B is the symmetric difference between two sets A and B . For all t ≥ 0,
we define the set of vertices B

∗,v
t in the same way as Bv

t :

B
∗,v
t = {z ∈ Zd | T ∗(0, z) ≤ t

}= B∗
t ∩Zd .
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Proposition 4. Suppose that F([0,+∞[) > pc(d) and F({0}) < pc(d). Then we have

lim
t→∞

1

td

∣∣B∗,v
t �(tBμ̃ ∩Zd

)∣∣= 0 a.s.

Proof. For this proof, we follow [11] and [21]. Let Ac =Rd \ A. Fix ε > 0. We have the following inclusion:

B
∗,v
t �(tBμ̃ ∩Zd

) ⊂ [(t (1 + ε)Bμ̃ \ t (1 − ε)Bμ̃

)∩Zd
]∪ [(t (1 − ε)Bμ̃ ∩Zd

)∩ (B∗,v
t

)c]
∪ [B∗,v

t ∩ (t (1 + ε)Bμ̃

)c]
. (17)

We study the three terms appearing in the right-hand side of (17) separately.
Notice that for any A ⊂Rd , we can bound the cardinality |A∩Zd | of A∩Zd by the volume Ld({a +u | a ∈ A,u ∈

[−1/2,1/2]d}). Thus for t large enough we have

1

td

∣∣(t (1 + ε)Bμ̃ \ t (1 − ε)Bμ̃

)∩Zd
∣∣

≤ 1

td
Ld
({

x + u | x ∈ (t (1 + ε)Bμ̃ \ t (1 − ε)Bμ̃

)
, u ∈ [−1/2,1/2]d})

≤ 1

td
Ld
(
t (1 + 2ε)Bμ̃ \ t (1 − 2ε)Bμ̃

)
≤ g(ε)Ld(Bμ̃), (18)

where g(ε) = (1 + 2ε)d − (1 − 2ε)d goes to 0 when ε goes to 0.
Looking at the second term in the right-hand side of (17), we notice that[(

t (1 − ε)Bμ̃ ∩Zd
)∩ (B∗,v

t

)c]= {x ∈ Zd | μ̃(x) ≤ t (1 − ε), T ∗(0, x) > t
}
.

Since μ̃ is a norm, the set Bμ̃ is compact, thus there exists a constant K such that Bμ̃ ⊂ [−K,K]d . By Theorem 3, we
know that a.s., for all t large enough, t (1 − ε)Bμ̃ ⊂ B̃t (1−ε/2), thus[(

t (1 − ε)Bμ̃ ∩Zd
)∩ (B∗,v

t

)c] ⊂ {x ∈ Zd ∩ [−Kt,Kt]d | T̃ (0, x) ≤ t (1 − ε/2), T ∗(0, x) > t
}

⊂ {x ∈ Zd ∩ [−Kt,Kt]d | T (0∗, 0̃
)+ T

(
x∗, x̃

)≥ tε/2
}
.

We have T (0∗, 0̃) < ∞ since 0∗ and 0̃ belong to C∞, thus T (0∗, 0̃) ≤ tε/4 for all large t . We obtain that a.s., for all
J > 0, for all t large enough,

1

td

∣∣(t (1 − ε)Bμ̃ ∩Zd
)∩ (B∗,v

t

)c∣∣ ≤ 1

td

∑
x∈[−Kt,Kt]d∩Zd

1{T (x∗ ,̃x)>tε/4}

≤ 1

td

∑
x∈[−Kt,Kt]d∩Zd

1{T (x∗ ,̃x)>J }.

Applying the ergodic theorem, we obtain that

lim
t→∞

1

|[−Kt,Kt]d ∩Zd |
∑

x∈[−Kt,Kt]d∩Zd

1{T (x∗ ,̃x)>J } = ψJ a.s. and in L1,

where ψJ is a random variable satisfying

E[ψJ ] = P
[
T
(
0∗, 0̃

)
> J
] −→

J→∞P
[
T
(
0∗, 0̃

)= +∞]= 0.
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We conclude that

ψ = lim sup
t→∞

1

td

∣∣(t (1 − ε)Bμ̃ ∩Zd
)∩ (B∗,v

t

)c∣∣ (19)

is a non-negative random variable satisfying E[ψ] ≤ E[ψJ ], for all J , thus ψ = 0 a.s.
To study the third term of the right-hand side of (17) in a similar way, we need an additional argument to prove that

B
∗,v
t /t is included in a compact set. Let k ∈]0,+∞[ be a positive and finite real number, and define the variables

t ′(e) =
{

t (e) if t (e) < k,
k if k ≤ t (e) < +∞,
+∞ if t (e) = +∞.

Then t ′(e) ≤ t (e) for all e ∈ Ed . Choose an M ≥ k in the definition of the regularized times T̃ ′ associated with the
variables (t ′(e)). Since C′∞, the infinite cluster of the percolation (1{t ′(e)<∞}, e ∈ Ed ), is equal both to C′

M – the infinite
cluster of the percolation (1{t ′(e)≤M}, e ∈ Ed ) – and to C∞, we have for all x ∈ Zd the equality x∗ = x∗′ = x̃′, where
x∗′

(resp. x̃′) denotes the point of C′∞ (resp. C′
M ) which is the closest to x for the norm ‖ · ‖1 (with a deterministic rule

to break ties). We obtain

T ∗(0, x) = T
(
0∗, x∗)≥ T ′(0∗, x∗)= T ′(̃0′, x̃′)= T̃ ′(0, x).

Let μ̃′(x) = limn→∞ T̃ ′(0, nx)/n, and extend μ̃′ to Rd . Since the passage times t ′(e) satisfy P[t ′(e) < ∞] =
F([0,+∞[) > pc(d) and P[t ′(e) = 0] = F({0}) < pc(d), then μ̃′ is a norm by Theorem 2, thus by Theorem 3 a
strong shape theorem holds for

B̃ ′
t = {x + u | x ∈ Zd, T̃ ′(0, x) ≤ t, u ∈ [−1/2,1/2]d}.

The limit shape Bμ̃′ is compact, thus there exists K ′ ∈R+ such that Bμ̃′ ⊂ [−K ′,K ′]d . In particular,

a.s., for all t large enough, B∗
t ⊂ B̃ ′

t ⊂ 2tBμ̃′ ⊂ [−2K ′t,2K ′t
]d

.

We now proceed as in the study of the second term of (17). A.s., for all t large enough, we have[
B

∗,v
t ∩ (t (1 + ε)Bμ̃

)c] ⊂ {x ∈ Zd ∩ [−2K ′t,2K ′t
]d | T ∗(0, x) ≤ t, μ̃(x) > t(1 + ε)

}
⊂ {x ∈ Zd ∩ [−2K ′t,2K ′t

]d | T ∗(0, x) ≤ t, T̃ (0, x) > t(1 + ε/2)
}

⊂ {x ∈ Zd ∩ [−2K ′t,2K ′t
]d | T (x∗, x̃

)
> tε/4

}
.

A.s., for all t large enough, we obtain

1

td

∣∣B∗,v
t ∩ (t (1 + ε)Bμ̃

)c∣∣≤ 1

td

∑
x∈[−2K ′t,2K ′t]d∩Zd

1{T (x∗ ,̃x)>tε/4}, (20)

that goes a.s. to 0 as t goes to infinity as proved in (19). Proposition 4 is proved by combining (17), (18), (19) and
(20). �

Proof of Theorem 5(i). We define a discrete approximation of Bμ̃ with cubes of side length 1/t :

Bμ̃,t = {y + u | y ∈ Bμ̃ ∩Zd/t, u ∈ [−(2t)−1, (2t)−1[}. (21)

All the norms are equivalent in Rd , thus for any fixed ε > 0, for all t large enough we have

Ld(Bμ̃�Bμ̃,t ) ≤ Ld
(
(1 + ε)Bμ̃ \ (1 − ε)Bμ̃

)≤ ĝ(ε)Ld(Bμ̃),
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Fig. 2. The set Bμ̃ and its discrete approximation by cubes of the form D(y, t0) for y ∈ Bμ̃ ∩ Zd

t0
.

where ĝ(ε) = (1 + ε)d − (1 − ε)d goes to 0 when ε goes to 0. Moreover we have

Ld

(
B∗

t

t
�Bμ̃,t

)
= 1

td

∣∣B∗,v
t �(tBμ̃ ∩Zd

)∣∣
that goes to 0 a.s. by Proposition 4. This concludes the proof of Theorem 5(i). �

Proof of Theorem 5(ii). Let

mt = 1

td

∑
x∈Bv

t

δx/t .

We want to prove that on {0 ∈ C∞}, a.s., for every continuous bounded real function f defined on Rd , we have

lim
t→∞

∫
Rd

f dmt = lim
t→∞

1

td

∑
x∈Bv

t

f

(
x

t

)
= θ

∫
Bμ̃

f dLd .

Let us give a short sketch of the proof. In a first step, we use Proposition 4 to transform the sum of f (x/t) over
x ∈ Bv

t in
∫
Rd f dmt into a sum over x ∈ Bμ̃ ∩ C∞. We divide Bμ̃ into small cubes D(y, t0) of center y ∈ Bμ̃ ∩Zd/t0

and side length 1/t0 (see Figure 2). Since f is continuous, thus uniformly continuous on compact sets, for t0 large
enough f is almost constant on each such cube. Thus considering a t ≥ t0, up to a small error, we can replace every
f (x/t) for x/t ∈ D(y, t0) by the same constant f (y). This term f (y) is multiplied in

∫
Rd f dmt by the proportion of

x ∈ tD(y, t0) that belong to C∞. By an application of the ergodic theorem, this proportion goes to θ when t goes to
infinity for a fixed cube D(y, t0).

We now start the proof. Let f be a continuous bounded real function defined on Rd , and let us denote by ‖f ‖∞
the supremum of f . We have∣∣∣∣∫

Rd

f dmt − θ

∫
Bμ̃

f dLd

∣∣∣∣ ≤ ∣∣∣∣∫
Rd

f dmt − 1

td

∑
x∈tBμ̃∩C∞

f

(
x

t

)∣∣∣∣
+
∣∣∣∣ 1

td

∑
x∈tBμ̃∩C∞

f

(
x

t

)
− 1

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y)

[
td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞}
]∣∣∣∣
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+
∣∣∣∣ 1

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y)

[
td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞}
]

− θ

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y)

∣∣∣∣
+ θ

∣∣∣∣ 1

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y) −
∫
Bμ̃

f dLd

∣∣∣∣. (22)

We study these four terms separately. We have∣∣∣∣∫
Rd

f dmt − 1

td

∑
x∈tBμ̃∩C∞

f

(
x

t

)∣∣∣∣≤ ‖f ‖∞
|Bv

t �(tBμ̃ ∩ C∞)|
td

. (23)

By Proposition 4, we know that a.s., limt→∞ |B∗,v
t �(tBμ̃ ∩ Zd)|/td = 0. On {0 ∈ C∞} we have 0 = 0∗, and for any

x ∈ Zd either x ∈ C∞, and in this case T (0, x) = T ∗(0, x), or x /∈ C∞, and then T (0, x) = +∞. Thus on {0 ∈ C∞} we
have Bv

t = B
∗,v
t ∩ C∞. We deduce from Proposition 4 that on {0 ∈ C∞}, a.s., the right-hand side of (23) goes to 0 as t

goes to infinity. Fix ε > 0. Since f is continuous and 2Bμ̃ is compact, there exists t1 > 0 such that for all x, y ∈ 2Bμ̃,
‖x −y‖∞ ≤ 1/t1 implies |f (x)−f (y)| ≤ ε. We now approximate Bμ̃ by a union of cubes (see Figure 2). For y ∈ Rd ,
we define

D(y, t) = {y + u | u ∈ [−(2t)−1, (2t)−1[d}
the cube of center y and side length 1/t . We notice that⋃

y∈Bμ̃∩(Zd/t)

D(y, t) = Bμ̃,t

as defined in (21), thus for all t ≥ t2 large enough we have

Ld

(
Bμ̃�

[ ⋃
y∈Bμ̃∩(Zd/t)

D(y, t)

])
= Ld(Bμ̃�Bμ̃,t ) ≤ ĝ(ε)Ld(Bμ̃),

where ĝ(ε) = (1 + ε)d − (1 − ε)d goes to 0 when ε goes to 0. Let t0 = max(t1, t2), then we have∣∣∣∣∫Bμ̃

f dLd − 1

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y)

∣∣∣∣ ≤ ‖f ‖∞Ld

(
Bμ̃�

[ ⋃
y∈Bμ̃∩(Zd/t0)

D(y, t0)

])

+ εLd

( ⋃
y∈Bμ̃∩(Zd/t0)

D(y, t0)

)

≤ ‖f ‖∞ĝ(ε)Ld(Bμ̃) + ε(1 + ε)dLd(Bμ̃). (24)

Similarly, for all t ≥ t0,∣∣∣∣ 1

td

∑
x∈tBμ̃∩C∞

f

(
x

t

)
− 1

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y)

[
td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞}
]∣∣∣∣

≤ ‖f ‖∞
td

∣∣∣∣(tBμ̃ ∩Zd
)�( ⋃

y∈Bμ̃∩(Zd/t0)

tD(y, t0) ∩Zd

)∣∣∣∣
+ ε

td

∣∣∣∣ ⋃
y∈Bμ̃∩(Zd/t0)

tD(y, t0) ∩Zd

∣∣∣∣
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≤ ‖f ‖∞Ld
(
(1 + ε)Bμ̃ \ (1 − ε)Bμ̃

)+ εLd
(
(1 + ε)Bμ̃

)
≤ ‖f ‖∞ĝ(ε)Ld(Bμ̃) + ε(1 + ε)dLd(Bμ̃). (25)

We also have∣∣∣∣ θ
td0

∑
y∈Bμ̃∩(Zd/t0)

f (y) − 1

td0

∑
y∈Bμ̃∩(Zd/t0)

f (y)

[
td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞}
]∣∣∣∣

≤ ‖f ‖∞
|Bμ̃ ∩ (Zd/t0)|

td0

max
y∈Bμ̃∩(Zd/t0)

∣∣∣∣[ td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞}
]

− θ

∣∣∣∣
≤ ‖f ‖∞Ld

(
(1 + ε)Bμ̃

)
max

y∈Bμ̃∩(Zd/t0)

∣∣∣∣[ td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞}
]

− θ

∣∣∣∣. (26)

Since Bμ̃ ∩ (Zd/t0) is finite, it only remains to prove that for all y ∈ Bμ̃ ∩ (Zd/t0), a.s., we have

lim
t→∞

td0

td

∑
x∈tD(y,t0)∩Zd

1{x∈C∞} = θ. (27)

Indeed, Theorem 5 is a consequence of (22), (23), (24), (25), (26) and (27). For all D of the form D =∏d
i=1[ai, bi[

with 0 ≤ ai ≤ bi , we define

XD =
∑

x∈D∩Zd

1{x∈C∞}.

The process X is a discrete additive process. As such, it is also a subadditive process and we could use a multi-
dimensional version of the subadditive ergodic theorem. Yet the most natural result to apply in our situation is the
multiparameter ergodic theorem of Tempel’man (Theorem 2.8, Chapter 6 in [23]). Fix y ∈ Bμ̃ ∩ (Zd/t0) such that
D(y, t0) ⊂ (R+)d . For t ∈Q+, there exist two integers a(t), b(t) such that

tD(y, t0) ∩Zd =
[
ty − t

2t0
, ty + t

2t0

[d
∩Zd = {a(t), . . . , b(t)

}d
.

There is a countable number of such sets, we reorder this family into a sequence (Ir = {ar, . . . , br}d, r ∈ N) in such
a way that the sequence (br )r∈N is non-decreasing. The family (Ir , r ∈ N) is regular (see Definition 2.4, Chapter 6 in
[23]). In order to check this, we use the family of sets (I ′

r = {0, . . . , br}d , r ∈N). We can thus apply the multiparameter
ergodic theorem of Tempel’man and we get

lim
t→∞,t∈Q+

XtD(y,t0)

Ld(tD(y, t0))
= lim

r→∞
XIr

(br − ar)d
= X∞ almost surely. (28)

By ergodicity, X∞ is constant almost surely, and by the dominated convergence theorem, we obtain that X∞ =
E[X∞] = P[0 ∈ C∞] = θ a.s. Notice that for t /∈ Q+, we have ∂(tD(y, t0)) ∩ Zd = ∅, thus there exist t1, t2 ∈ Q+
such that t − 1 < t1 < t < t2 < t + 1 and Xt1D(y,t0) = XtD(y,t0) = Xt2D(y,t0). This implies that the limit in (28) holds
along any sequence of t that goes to infinity (not necessarily rational). To prove (27), it is now enough to notice
that by symmetry, (28) also holds if D(y, t0) is included in any other quadrant of Rd . If D(y, t0) intersects different
quadrants, we can divide it into a finite number of pieces, each one of them intersecting only one quadrant, and treat
these different pieces separately. �
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4. Positivity of the time constant

In this section, we shall prove Theorem 2, which deals with the positivity of the time constant. The proof of Theorem 2
rests on Proposition 1. Notice that the hypothesis in Proposition 1 is that μ̃ is a norm, and there was no assumption on
F({0}). Once Theorem 2 is proved, the statement of Theorem 3 part (ii) follows from Proposition 1.

4.1. Non-critical case

We start the study of the positivity of the time constant with two properties, the first dealing with the case F({0}) <

pc(d), the second with the case F({0}) > pc(d). The critical case F({0}) = pc(d) is much more delicate to handle.

Proposition 5. Suppose that F([0,+∞[) > pc(d). We have

F
({0})< pc(d) �⇒ μ̃(e1) > 0.

Proof. For this proof we can rely on known results concerning finite passage times. Intuitively it is all the more easier
to prove that μ̃(e1) > 0 when we authorize infinite passage times. For k ∈ R+∗, we define tk(e) = min(t (e), k) and
T k(x, y) (resp. μ̃k(e1)) is the corresponding minimal passage time (resp. the time constant). Then for all n ∈ N∗, we
have T (0, ne1) ≥ T k(0, ne1). Moreover, choosing an M ≥ k in the definition of the regularized times T̃ k , we see by
Theorem 1 that

lim
n→∞

T k(0, ne1)

n
= lim

n→∞
T̃ k(0, ne1)

n
= μ̃k(e1). (29)

By Theorem 4, we know that

lim
n→∞

T (0, ne1)

n
= θ2δμ̃(e1) + (1 − θ2)δ+∞ in law. (30)

Suppose that μ̃k(e1) > 0. Let f be a continuous real bounded function defined on R ∪ {+∞}, such that f ≥ 0,
f (0) = 0 and f = 1 on [μ̃k(e1)/2,+∞]. Then we have

E

[
f

(
T (0, ne1)

n

)]
≥ P

[
T (0, ne1)

n
≥ μ̃k(e1)

2

]
≥ P

[
T k(0, ne1)

n
≥ μ̃k(e1)

2

]
. (31)

By (29), the right-hand side of (31) goes to 1 as n goes to infinity. If μ̃(e1) = 0, by (30) we would have
limn→∞ E[f (T (0, ne1)/n)] = 1 − θ2 < 1, thus (31) implies that μ̃(e1) > 0. It remains to prove that μ̃k(e1) > 0. No-
tice that the times (tk(e), e ∈ Ed ) are finite, and if we denote by Fk their common law, we have Fk({0}) = F({0}) <

pc(d). Proposition 5.8 in [21] states that there exist constants 0 < C,D,E < ∞, depending on d and Fk , such that

P
[
there exists a self avoiding path γ starting at 0 s.t. |γ | ≥ n and T k(γ ) < Cn

]≤ De−En. (32)

Equation (32) implies that P[T k(0, ne1) < Cn] ≤ De−En, thus μ̃(e1) ≥ C > 0. �

Proposition 6. Suppose that F([0,+∞[) > pc(d). We have

F
({0})> pc(d) �⇒ μ̃(e1) = 0.

Proof. Suppose that F({0}) > pc(d). We denote by C0 the a.s. unique infinite cluster of the percolation (1{t (e)=0},
e ∈ Ed ), that is super-critical. By Theorem 4, we know that

lim
n→∞

T (0, ne1)

n
= θ2δμ̃(e1) + (1 − θ2)δ+∞ in law. (33)
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Suppose that μ̃(e1) > 0. Then there exists a continuous real bounded function f defined on R ∪ {+∞} such that
f ≥ 0, f (μ̃(e1)) = f (+∞) = 0 and f (0) > 0. Applying the FKG inequality we have

E

[
f

(
T (0, ne1)

n

)]
≥ f (0)P

[
T (0, ne1) = 0

]≥ f (0)P[0 ∈ C0, ne1 ∈ C0] ≥ f (0)P[0 ∈ C0]2 > 0.

By (33), we also know that limn→∞ E[f (T (0, ne1)/n)] = 0, which is a contradiction, thus μ̃(e1) = 0. �

4.2. Lower large deviations

Our goal is now to handle the critical case. We define the hyperplane Hn = {z ∈Rd | z1 = n}, and the time

T (0,Hn) = inf
{
T (0, x) | x ∈ Zd ∩ Hn

}
.

This is the so called point-to-line passage time (we should say point-to-hyperplane, but the term point-to-line has been
kept from dimension 2). The proof of Theorem 2 relies on the following property.

Proposition 7. Suppose that there exists M ∈]0,+∞[ such that F([0,+∞[) = F([0,M]) > pc(d). If μ̃(e1) > 0,
then for all ε > 0, there exist positive constants C5,C6 such that

P
[
0 ∈ CM,T (0,Hn) <

(
μ̃(e1) − ε

)
n
]≤ C5e

−C6n.

Remark 5. In Proposition 7, we restrict our study to laws F such that F(]M,+∞[) = 0. In this case, the percolations
(1{t (e)≤M}, e ∈ Ed ) and (1{t (e)<∞}, e ∈ Ed ) are the same, and CM = C∞. This property makes our study more tractable.
More precisely, the paths having a finite passage time stay inside the cluster CM and we don’t need to glue together
paths inside CM with paths travelling through C∞ \ CM .

Before proving Proposition 7, we need two preliminary results. We define the regularized point-to-line passage
time

T̃ (0,Hn) = inf
{
T (̃0, x̃) | x ∈ Hn

}
.

Proposition 8. Suppose that F([0,+∞[) > pc(d). Then

lim
n→∞

T̃ (0,Hn)

n
= μ̃(e1) a.s.

Proof. We have T̃ (0,Hn) ≤ T̃ (0, ne1) thus

lim sup
n→∞

T̃ (0,Hn)

n
≤ lim

n→∞
T̃ (0, ne1)

n
= μ̃(e1) a.s.

If μ̃(e1) = 0, Proposition 8 is proved. Suppose that μ̃(e1) > 0. We can apply Proposition 1. Let ε > 0. Almost surely,
there exists t0 > 0 such that

∀t > t0, B̃t ⊂ t (1 + ε)Bμ̃.

The map μ̃ being convex, we have

Bμ̃ ⊂
{
x ∈Rd : x1 ≤ 1

μ̃(e1)

}
.

Let us define

n(t) =
⌊

t (1 + ε)

μ̃(e1)

⌋
+ 1.
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The ball t (1 + ε)Bμ̃ does not intersect the hyperplane Hn(t), therefore T̃ (0,Hn(t)) > t for t > t0. Since t ≥ (n(t) −
1)μ̃(e1)/(1 + ε), then we obtain

∀n > n(t0), T̃ (0,Hn) > (n − 1)
μ̃(e1)

1 + ε
.

It follows that, almost surely,

lim inf
n→∞

T̃ (0,Hn)

n
≥ μ̃(e1)

1 + ε
.

We conclude by letting ε go to 0. �

In the proof of Proposition 7, we would like to make appear of sequence of independent point-to-line passage
times. However, there would be too many possible starting points for these point-to-line passage times. To control the
combinatorial factor that will appear, we use instead some “plaquette-to-line” passage times. The following lemma
helps us to control the difference between a path starting at a point and a path starting somewhere in a small plaquette
near this point.

Lemma 3. Suppose that F([0,+∞[) > pc(d). For any α > 0, there exists δ0 > 0 such that for all δ ≤ δ0, we have

lim
K→∞P

[
max
{
D∞(̃0, ỹ) | y ∈ Zd ∩ ({0} × [0, δK[d−1)}> αK

]= 0.

Proof. For every edge e ∈ Ed , we define the time t ′(e) by

t ′(e) =
{

1 if t (e) < ∞,
+∞ if t (e) = +∞.

The law of t ′(e) is F ′ = F([0,∞[)δ1 +F({+∞})δ+∞. In the sequel of the proof, we work with M = 1 and we denote
by T ′, T̃ ′, μ̃′, B̃ ′

t , Bμ̃′ the objects associated with these new times (t ′(e), e ∈ Ed ). Since F ′(]1,+∞[) = 0, then we
have D∞(̃0, ỹ) = T̃ ′(0, y) and{

max
{
D∞(̃0, ỹ) | y ∈ Zd ∩ ({0} × [0, δK[d−1)}> αK

}
= {max

{
T̃ ′(0, y) | y ∈ Zd ∩ ({0} × [0, δK[d−1)}> αK

}
= {{0} × [0, δK[d−1 �⊂ B̃ ′

αK

}
=
{
{0} × [0, δ/α[d−1 �⊂ 1

αK
B̃ ′

αK

}
. (34)

Since F ′([0,+∞[) = F([0,+∞[) > pc(d) and F ′({0}) = 0 < pc(d), we know by Proposition 5 that μ̃′(e1) > 0, thus
there exists δ0 > 0 such that for all δ ≤ δ0,

{0} × [0, δ/α[d−1⊂ 1

2
Bμ̃′ . (35)

Combining (34) and (35), we obtain for all δ ≤ δ0

P
[
max
{
D∞(̃0, ỹ) | y ∈ Zd ∩ ({0} × [0, δK[d−1)}> αK

]≤ P

[
1

2
Bμ̃′ �⊂ B̃ ′

αK

αK

]
.

Moreover, since μ̃′(e1) > 0, the strong shape theorem applies to the sets B ′
t , thus

lim
K→∞P

[
1

2
Bμ̃′ �⊂ B̃ ′

αK

αK

]
= 0. �
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Fig. 3. Construction of the points ai .

Proof of Proposition 7. We follow Kesten’s proof of inequality (5.3) of Theorem 5.2 in [21], which relies on the
proof of Proposition 5.23. We do minor adaptations, but for the sake of completeness, we present the entire proof.
In what follows, the M we choose to define the regularized times T̃ satisfies F(]M,+∞[) = 0, thus C∞ = CM . Fix
n ∈ N∗. On the event {0 ∈ CM,T (0,Hn) < x}, there exists a self avoiding path γ = (v0 = 0, e1, v1, . . . , ep, vp) from
0 to a point vp ∈ Hn such that T (γ ) < x. We have necessarily p = |γ | ≥ n and γ ⊂ C∞. We want to cut this path γ

into several pieces. Fix N,K ∈N∗ to be chosen later, with N ≤ K . Let τ(0) = 0 and a0 = vτ(0) = 0. For all i ≥ 0, let

τ(i + 1) = min
{
k > τ(i) | ‖ai − vk‖∞ = K + N

}
and ai+1 = vτ(i+1) as long as the set {k > τ(i) | ‖ai − vk‖∞ = K + N} is non-empty (see Figure 3). When this set
becomes empty, we define Q = i and we stop the process. For z ∈ Zd , we denote by z(i) the ith coordinate of z. By
definition, we know that ai(1) ≤ ai−1(1) + K + N , for all i ≤ Q. Since vp ∈ Hn, we know that

n = vp(1) < aQ(1) + K + N ≤ (Q + 1)(K + N). (36)

By definition of the points ai , for all i ∈ {0, . . . ,Q − 1}, there exists ν(i) ∈ {1, . . . , d} and η(i) ∈ {−1,+1} such that

ai+1
(
ν(i)
)= ai

(
ν(i)
)+ η(i)(K + N).

We want to compare the part of γ between ai and ai+1 with a point-to-line passage time. The variables ν(i) and
η(i) tell us the direction and the sense in which this point-to-line displacement happens. However, the starting point
ai is random, and may be located at too many different positions. Thus we define a shorter piece of γ that we can
describe with less parameters. We follow the notations of Kesten’s proof of Proposition 5.23 in [21] (see Figure 4).
For i ∈ {0, . . . ,Q − 1}, we define

ρ(i) = max

{
k ∈ {τ(i), . . . , τ (i + 1)

} ∣∣∣ vk

(
ν(i)
)= (⌊ai(ν(i))

N

⌋
+ 1 + η(i)

2

)
N

}
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Fig. 4. Construction of the path γ (i).

and

σ(i) = min

{
k ∈ {ρ(i), . . . , τ (i + 1)

} ∣∣∣ vk

(
ν(i)
)= (⌊ai(ν(i))

N

⌋
+ 1 + η(i)

2

)
N + η(i)K

}
.

We have

τ(i) ≤ ρ(i) < σ(i) ≤ τ(i + 1)

and we denote by γ (i) the piece of γ between vρ(i) and vσ(i). By construction, γ (i) lies strictly between the hyper-
planes

H ′
i =
{
x ∈ Rd

∣∣∣ x(ν(i)
)= (⌊ai(ν(i))

N

⌋
+ 1 + η(i)

2

)
N

}
and

H ′′
i =
{
x ∈Rd

∣∣∣ x(ν(i)
)= (⌊ai(ν(i))

N

⌋
+ 1 + η(i)

2

)
N + η(i)K

}
,

except for its first and last points which belong to these hyperplanes. The plaquettes of the form

V (i, λ) = {x ∈ H ′(i) | ∀j �= ν(i), x(j) ∈ [λ(j)N,
(
λ(j) + 1

)
N
[}

, λ(j) ∈ Z,1 ≤ j ≤ d, j �= ν(i)

form a tiling of H ′(i). We denote by λi = (λi(j), j �= ν(i)) the unique choice of λ such that V (i, λ) contains vρ(i), and
we define V (i) = V (i, λi). Remember that for all k ∈ {τ(i), . . . , τ (i +1)}, ‖ai −vk‖∞ ≤ K +N . Thus by construction
the pieces γ (i), i ∈ {0, . . . ,Q − 1}, have the following properties:
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• for i �= j , the paths γ (i) and γ (j) are edge disjoint;
• γ (i) ⊂ C∞;
• γ (i) connects V (i) to H ′′(i);
• γ (i) is included in the box G(i) defined by

G(i) =
{
x ∈ Rd

∣∣∣ ∀j �= ν(i), x(j) ∈ [λi(j) − 2(K + N),λi(j) + 2(K + N)
]

and x
(
ν(i)
) ∈ [(⌊ai(ν(i))

N

⌋
+ 1 + η(i)

2

)
N,

(⌊
ai(ν(i))

N

⌋
+ 1 + η(i)

2

)
N + η(i)K

]}
.

The condition stated in the first bullet holds because the path γ was assumed to be self-avoiding. The path γ (i)

is a “plaquette-to-face” path in the box G(i). Notice that G(i) is completely determined by the triplet Λ(i) :=
(ν(i), η(i),V (i)). We obtain that

P
[
0 ∈ CM,T (0,Hn) < x

]
≤

∑
Q≥n/(K+N)−1

∑
Λ(i),

i=0,...,Q−1

P

[
∃γ self avoiding path s.t.

Q−1⋃
i=0

γ (i) ⊂ γ ⊂ C∞,

Q−1∑
i=0

T
(
γ (i)
)
< x

and ∀i, γ (i) crosses G(i) from V (i) to H ′′
i

]
. (37)

Let us define the event

A
(
Λ(i), xi

) = {∃γ (i) self avoiding path s.t. γ (i) ⊂ C∞, T
(
γ (i)
)
< xi

and γ (i) crosses G(i) from V (i) to H ′′
i

}
.

If A and B are two events, we denote by A ◦B the event that A and B occur disjointly (see (4.17) in [21] for a precise
definition). Inequality (37) can be reformulated as

P
[
0 ∈ CM,T (0,Hn) < x

]
≤

∑
Q≥n/(K+N)−1

∑
Λ(i),

i=0,...,Q−1

P

[ ⋃
xi∈Q+,i=0,...,Q−1

s.t.
∑Q−1

i=0 xi<x

A
(
Λ(0), x0

) ◦ · · · ◦ A
(
Λ(Q − 1), xQ−1

)]
. (38)

The events A(Λ(i), xi), i ∈ {0, . . . ,Q − 1} are decreasing (notice that since t ′(e) ≤ t (e) for all e, then the infi-
nite cluster of edges of finite time t (e) is included in the infinite cluster of edges of finite time t ′(e)). Thus we
can apply Theorem 4.8 in [21]. Let (A′(Λ(i), xi)) be events defined on a new probability space (Ω ′,P′) such that
the families (A′(Λ(i), xi), xi ∈ Q+) for i ∈ {0, . . . ,Q − 1} are independent, and for each i the joint distribution of
(A′(Λ(i), xi), xi ∈Q+) under P′ is the same as the joint distribution of (A(Λ(i), xi), xi ∈ Q+) under P. Then

P

[ ⋃
xi∈Q+,i=0,...,Q−1

s.t.
∑Q−1

i=0 xi<x

A
(
Λ(0), x0

) ◦ · · · ◦ A
(
Λ(Q − 1), xQ−1

)]

≤ P′
[ ⋃

xi∈Q+,i=0,...,Q−1

s.t.
∑Q−1

i=0 xi<x

Q−1⋂
i=0

A′(Λ(i), xi

)]
. (39)
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Let (Yi(K,N), i ∈ {0, . . . ,Q − 1}) be i.i.d. random variables with the same law as Y(K,N) defined by

Y(K,N) = inf
{
T (γ ) | γ is a path from {0} × [0,N [d−1 to HK and γ ⊂ C∞

}
,

with Y(M,N) = +∞ if such a path does not exists. Then combining (38) and (39), and relaxing the constraints
required on the paths γ (i), we obtain

P
[
0 ∈ CM,T (0,Hn) < x

] ≤ ∑
Q≥n/(K+N)−1

∑
Λ(i),

i=0,...,Q−1

P

[
Q−1∑
i=0

Yi(K,N) < x

]

≤
∑

Q≥n/(K+N)−1

[
2d(15K/N)d

]Q
P

[
Q−1∑
i=0

Yi(K,N) < x

]
. (40)

In (40), the combinatorial estimate used to bound the summation over the possible choices of the triplets Λ(i) is
derived in Kesten’s proof of Proposition 5.23 in [21]. Inequality (40) is a complete analog of Kesten’s Proposition 5.23,
except that we require in the definition of Y(K,N) that the path γ lies in C∞. This allows us to compare Y(K,N)

with the time T̃ (0,HK) = inf{T (̃0, x̃) | x ∈ HK }. We make a crucial use of the fact that CM = C∞ to obtain that if γ

is a path as in the definition of Y(K,N), and if we denote by y its starting point in {0} × [0,N [d−1 ∩C∞, then

T̃ (0,HK) ≤ T (γ ) + T (̃0, y) ≤ T (γ ) + MDM(̃0, y).

Taking the infimum over such paths γ , we obtain that

T̃ (0,HK) ≤ Y(K,N) + M max
{
DM(̃0, y) | y ∈ ({0} × [0,N [d−1)∩ C∞

}
. (41)

This will help us to control the right-hand side of (40). Take x = n(μ̃(e1) − ε) in (40). Following Kesten’s proof of
Proposition 5.29 in [21], and using inequality (36), we have for all λ > 0 the following upper bounds:

P

[
Q−1∑
i=0

Yi(K,N) < n
(
μ̃(e1) − ε

)]

≤ eλn(μ̃(e1)−ε)E
[
e−λY (K,N)

]Q
≤ eλ(K+N)μ̃(e1)

[
E
[
e−λY (K,N)

]
eλ(K+N)(μ̃(e1)−ε)

]Q
≤ eλ(K+N)μ̃(e1)

[(
e−λK(μ̃(e1)−ε/2) + P

[
Y(K,N) < K

(
μ̃(e1) − ε/2

)])
eλ(K+N)(μ̃(e1)−ε)

]Q
≤ eλ(K+N)μ̃(e1)

× [eλ[−K(μ̃(e1)−ε/2)+(K+N)(μ̃(e1)−ε)] + eλ(K+N)(μ̃(e1)−ε)P
[
Y(K,N) < K

(
μ̃(e1) − ε/2

)]]Q
. (42)

Take N = δK , with δ ≤ 1. There exists δ1(μ̃(e1), ε) > 0 such that for all δ ≤ δ1, and for λ = R/K , we obtain

eλ[−K(μ̃(e1)−ε/2)+(K+N)(μ̃(e1)−ε)] ≤ e−R[μ̃(e1)−ε/2−(1+δ)(μ̃(e1)−ε)]

≤ e−R(ε/2−δ(μ̃(e1)−ε)) ≤ e−Rε/4, (43)

and we can choose R large enough (how large depending only on ε) so that the right-hand side of (43) is as small as
we want. Moreover, using (41) we have

eλ(K+N)(μ̃(e1)−ε)P
[
Y(K,N) < K

(
μ̃(e1) − ε/2

)]
≤ e2Rμ̃(e1) max

N≤δK
P
[
Y(K,N) < K

(
μ̃(e1) − ε/2

)]
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≤ e2Rμ̃(e1)

(
P
[
T̃ (0,HK) < K

(
μ̃(e1) − ε/4

)]
+ P

[
max
{
DM(̃0, ỹ) | y ∈ Zd ∩ ({0} × [0, δK[d−1)}≥ εK

4M

])
. (44)

According to Proposition 8 and Lemma 3, there exists δ0(M,ε) such that for all δ ≤ δ0, for any fixed R, we can choose
K large enough so that the right-hand side of (44) is as small as we want. Combining (42), (43) and (44), we see that
we can choose our parameters δ ≤ min(δ0, δ1) and R such that for K large enough, the probability appearing in the
right-hand side of (40) compensates the combinatorial term, and Proposition 7 is proved. �

4.3. Critical case

We can now study the case F({0}) = pc(d). We start with specific laws F .

Proposition 9. Let K ∈]0,+∞[ and η > 0. Let F = pc(d)δ0 + ηδK + (1 − pc(d) − η)δ∞. Then the corresponding
time constant is null: μ̃(e1) = 0.

Proof. We follow Kesten’s proof of the nullity of the time constant in the case of finite passage times (see Theorem 6.1
in [21]). Let C0(0) (resp. CM(0)) be the open cluster of 0 in the percolation (1{t (e)=0}, e ∈ Ed ) (resp. (1{t (e)≤M},
e ∈ Ed )). Notice that, since F([0,K]) = pc(d) + η > pc(d), we can choose M = K in the definition of the times T̃ .
We recall that |A| denotes the cardinality of a discrete set A. We have

E
[∣∣C0(0)

∣∣] = E
[∣∣C0(0)

∣∣1{0∈CM }
]+E

[∣∣C0(0)
∣∣1{0/∈CM }

]
≤ E
[∣∣C0(0)

∣∣1{0∈CM }
]+E

[∣∣CM(0)
∣∣1{0/∈CM }

]
. (45)

To control the last term in (45), we can use Theorem 7 since the percolation (1{t (e)≤M}, e ∈ Ed ) is supercritical. There
exist positive constants A4,A5,A6 such that

E
[∣∣CM(0)

∣∣1{0/∈CM }
] ≤∑

k∈N
(k + 1)P

[
k ≤ ∣∣CM(0)

∣∣< k + 1,0 /∈ CM

]
≤
∑
k∈N

P
[∣∣CM(0)

∣∣≥ k,0 /∈ CM

]
≤
∑
k∈N

P
[
0 /∈ CM,0

M←→ ∂B1
(
0,A4k

1/d
)]

≤
∑
k∈N

A5e
−A6k

1/d

< +∞. (46)

We recall that Hn = {z ∈ Rd | z1 = n}, and T (0,Hn) = inf{T (0, x) | x ∈ Hn ∩ Zd}. Concerning the first term in (45),
we have similarly

E
[∣∣C0(0)

∣∣1{0∈CM }
]≤∑

k∈N
P
[∣∣C0(0)

∣∣≥ k,0 ∈ CM

]
.

Notice that if C0(0) ⊂ [−n,n]d for n ∈ N, then |C0(0)| ≤ (2n + 1)d . This means that if |C0(0)| ≥ k, then C0(0) �⊂
[−(k1/d − 1)/2, (k1/d − 1)/2]d . Using the symmetry of the model we obtain

E
[∣∣C0(0)

∣∣1{0∈CM }
] ≤∑

k∈N
P
[{0 ∈ CM} ∩ {∃i ∈ {1, . . . , d},∃x ∈ Zd s.t. T (0, x) = 0 and |xi | ≥

(
k1/d − 1

)
/2
}]

≤
∑
k∈N

2dP
[
0 ∈ CM,T (0,H(k1/d−1)/2) = 0

]
.
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Suppose that μ̃(e1) > 0. Then by Proposition 7 we conclude that

E
[∣∣C0(0)

∣∣1{0∈CM }
]≤ 2d

∑
k∈N

C5 exp

[
−C6

2

(
k1/d − 1

)]
< +∞. (47)

Thus, if μ̃(e1) is positive, we obtain by (45), (46) and (47) that E[|C0(0)|] < ∞. But this implies that F({0}) < pc(d)

(see for instance Corollary 5.1 in [20]), which is a contradiction. Thus μ̃(e1) = 0. �

Proof of Theorem 2. Let F satisfying F([0,+∞[) > pc(d). If F({0}) < pc(d), we conclude by Proposition 5. If
F({0}) > pc(d), we conclude by Proposition 6. Suppose that F({0}) = pc(d). Since F([0,+∞[) > pc(d), there exists
K ∈]0,+∞[ such that F([0,K]) > pc(d). We define

t ′(e) =
{0 if t (e) = 0,

K if t (e) ∈]0,K],
+∞ if t (e) > K .

By construction t ′(e) ≥ t (e) for all e ∈ Ed . Choosing M = K in the definition of the regularized times T̃ and T̃ ′
(corresponding to the times t ′(e)), we see that the infinite cluster CM of edges of passage time smaller than M = K is
exactly the same according to the times t and t ′, thus the points x̃ are the same, and we obtain that T̃ (x, y) ≤ T̃ ′(x, y),
for all x, y ∈ Zd . If μ̃′(e1) denotes the time constant for the passage times t ′(e), we conclude that μ̃(e1) ≤ μ̃′(e1).
Applying Proposition 9, we obtain that μ̃′(e1) = 0, thus μ̃(e1) = 0. �
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