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Abstract. We prove that the only nearest neighbor jump process with local dependence on the occupation times satisfying the
partially exchangeable property is the vertex reinforced jump process, under some technical conditions (Theorem 4). This result
gives a counterpart to the characterization of edge reinforced random walk given by Rolles (Probab. Theory Related Fields 126
(2003) 243–260).

Résumé. Nous montrons que le seul processus de saut sur les plus proches voisins avec une dépendance locale par rapport aux
temps d’occupation et satisfaisant la propriété d’échangeabilité partielle est, sous quelques conditions techniques, le processus de
saut avec renforcement par sommet (Théorème 4). Ce résultat donne une contrepartie à la caractérisation de la marche aléatoire
avec renforcement par arête obtenue par Rolles (Probab. Theory Related Fields 126 (2003) 243–260).
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1. Introduction

One of the most remarkable results in probabilistic symmetries is the de Finetti’s theorem [3], which states that the
law of any exchangeable sequence valued in a finite state space is in fact a mixture of i.i.d. sequences. This theorem
has a geometrical interpretation via Choquet’s theorem. More precisely, the subspace of exchangeable probabilities
forms a convex, and those probabilities given by i.i.d. sequences are exactly the extreme points of the convex [1], also
see [5,6].

In the 1920s, W. E. Johnson [14] conjectured that, under some technical conditions, if a process Xn is exchangeable
and P(Xn+1 = i|X0, . . . ,Xn) depends only on the number of times i occurs and the total steps n, then Xn is nothing
but the famous Polya urn: drawing balls uniformly from an urn and put back one additional ball with same color as the
drawn one. This is a process with linear reinforcement. In term of random walk, the natural counterpart of Polya urn
is the edge reinforced random walk (ERRW). Diaconis conjectured that this process have the same characterization as
Polya urn. In [9] S. W. W. Rolles have shown that both conjectures are true under technical conditions. For a recent
survey on reinforced processes, see [8].

The vertex reinforced jump process (VRJP) is a linearly reinforced process in continuous time. In a recent paper,
Sabot and Tarres [10] have shown that ERRW is a mixture of VRJP, which indicates that the VRJP are building
blocks of ERRW, thus should share a similar characterization. This paper gives this characterization (Theorem 4),
as a counterpart of Rolles’ result; namely, the only continuous time process which is partially exchangeable and the
transition probability depends only on neighbor local times is VRJP, under technical conditions.

Let us first recall the definition of ERRW, let G = (V ,E) be a locally finite undirected graph without direct loops
(edges with one endpoint). Let Zn denote the location of the random process at time n. Let ae > 0, e ∈ E. For n ∈ N,
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define wn(e), the weight of edge e at time n, by

w0(e) = ae for all e ∈ E,

wn+1(e) =
{

wn(e) + 1 for e = {Zn,Zn+1} ∈ E,
wn(e) for e ∈ E \ {{Zn,Zn+1}}.

Let P(a)
v0 denote the probability of the ERRW on G starting at v0 with initial weights a = (ae)e∈E . Then P

(a)
v0 is defined

by

Z0 = v0, P
(a)
v0

-a.s.,

P
(a)
v0

(Zn+1 = v|Z0, . . . ,Zn) =
{

wn({Zn,v})∑
e,Zn∈e wn(e)

if {Zn,v} ∈ E,

0 otherwise.

Now let us introduce some definitions before stating Rolles’ result. Again G = (V ,E) is a locally finite undirected
graph without direct loops, with its vertex set V and edge set E. Denote i ∼ j if {i, j} ∈ E. Following Rolles, we call
(Zn)n≥0 a nearest neighbor random walk on G, if it is a discrete time random process (not necessarily Markov) such
that successive positions are neighbors.

An admissible path of the random walk is a sequence of vertices of G, denoted π = (v0, v1, . . . , vn) such that
consecutive vertices are neighbors. The number of visits to vertex i of path π is denoted

Ni(π) := #{k: vk = i, k = 0, . . . , n}.
Similarly, the number of transition counts in the path π of an oriented edge e = (i, j) is denoted

Ne(π) = Ni,j (π) := #{k: vk = i, vk+1 = j, k = 0, . . . , n − 1}.
Two paths ξ, η are said to be equivalent and denoted ξ ∼ η, if ξ and η start at the same state and the transition counts
from i to j of any pair (i, j) are equal for ξ and η, i.e. Ni,j (ξ) = Ni,j (η) for all (i, j).

Remark 1. Two equivalent paths necessarily end at the same vertex.

Definition 1. A nearest neighbor random walk is partially exchangeable if any two equivalent paths have the same
probability.

Theorem 1 (Diaconis and Freedman [4]). Let Zn be a recurrent random walk (i.e. with probability one it returns
to Z0 infinitely often), then Z is a mixture of Markov chains if and only if it is partially exchangeable. Moreover, the
mixing measure is uniquely determined.

As it turns out that edge reinforced random walk is a mixture of reversible Markov chains, Rolles introduced the
following more restrictive notion of partial exchangeability: for π = (v0, . . . , vn) and e = (i, j) let

Ñe(π) := #{k: vk = i, vk+1 = j or vk = j, vk+1 = i, k = 0, . . . , n − 1}.

Definition 2. A nearest neighbor random walk is partially exchangeable in a reversible sense if it satisfies the follow-
ing: for any two paths ξ, η, if Ñe(ξ) = Ñe(η) for all e ∈ E, then ξ and η have the same probability.

In [9], Theorem 1.1, Rolles proved that if a nearest neighbor random walk is recurrent and partially exchangeable
in a reversible sense, then it is a mixture of reversible Markov chain.

Rolles’ main result in [9] states that, if G = (V ,E) is a strongly connected graph and Zn is a nearest neighbor
random walk on G such that the following assumptions are satisfied:

(1) Z is partially exchangeable in a reversible sense (Definition 2).
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(2) For all v ∈ V and e ∈ E there exists a function fv,e taking values in [0,1] such that for all n ≥ 0

P(Zn+1 = v|Fn) = fZn,e

(
NZn(Z0, . . . ,Zn), ÑZn,v(Z0, . . . ,Zn)

)
.

Then Z is an edge reinforced random walk or a Markov chain under some technical conditions (cf. [9] for precision).
Next we define the vertex reinforced jump process Xt . Assign positive weights (We)e∈E to the edges, the process

Xt starts at time 0 at some vertex i0, if X is at vertex i ∈ V at time t , then, conditioned on the past, the process jumps
to a neighbor j of i with rate Wi,j (1 + lj (t)), where for e = {i, j}, Wi,j = We and lj (t) is the local time of vertex j at
time t :

lj (t) :=
∫ t

0
1Xs=j ds.

Theorem 2 (Sabot and Tarres [10]). The ERRW Zn with weights (ae) is equal in law to the discrete time process
associated with a VRJP Xt in random independent weights We ∼ Gamma(ae,1).

And finally, the VRJP Xt turns out to be partially exchangeable within a time scale (cf. next section for the definition
of partial exchangeability in continuous times). Let

D(s) =
∑
i∈V

(
li (s)

2 + 2li (s)
)
,

then the process Yt = XD−1(t) is a mixture of Markov processes with an explicit mixing measure, in addition, the
mixing measure turns out to be related to a σ -model introduced by Zirnbauer, cf. [10], Theorem 2.

In this paper we give a counterpart of Rolles’ result for VRJP, namely we characterize exchangeable jump processes
with local rate functions.

2. Definitions and results

Definition 3. We call (Xt )t≥0 a nearest neighbor jump process on G, if it is a random process which is right contin-
uous without explosion, and each jump is from some vertex i to one of its neighbors j (i.e. i ∼ j ).

Definition 4. A nearest neighbor jump process Xt is a mixture of Markov jump processes if there exists a probability
measure μ on Markov jump processes such that L(Xt ) = ∫

L(Yt )μ(dY), where L denotes the law of respective
processes. If for μ a.s. the Markov processes are reversible, then the process Xt is a mixture of reversible Markov
processes.

Freedman introduced the notion of partial exchangeability in continuous time in [7].

Definition 5 (Freedman). A continuous process Xt is partially exchangeable if for each h > 0, the law of {Xnh;n =
1,2, . . .} satisfies the following property: for any two paths ξ = (ξ0, . . . , ξl), η = (η0, . . . , ηl) such that ξ ∼ η,

P(X0 = ξ0, . . . ,Xlh = ξl) = P(X0 = η0, . . . ,Xlh = ηl).

We recall the de Finetti’s theorem in continuous time showed by Freedman [7].

Theorem 3. Let Xt be a continuous time process starting at i0 ∈ G, Xt is mixture of Markov jump processes if

(1) Xt has no fixed points of discontinuity, more precisely, for every t , if tn → t , then P(Xtn → Xt) = 1;
(2) Xt is recurrent;
(3) Xt is partially exchangeable.

Our main theorem is:
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Theorem 4. Let Xt be a nearest neighbor jump process on G satisfying the following assumptions:

(1) For all i ∈ V , there exists C2 diffeomorphisms hi such that X is partially exchangeable within the time scale
D(s) = ∑

i∈V hi(li(s));
(2) G is strongly connected (i.e. any two adjacent vertices are in a cycle);
(3) the process, at vertex i at time t , jumps to a neighbor j of i with rate fi,j (lj (t)) for some continuous functions

fi,j .

Then X is a vertex reinforced jump process within time scale, i.e. there exists another time scale D̃ such that X
D̃−1(t)

is a vertex reinforced jump process.

Remark 2. In fact, the hypothesis of Theorem 4 implies that the functions fi,j (x) are necessarily of the form
Wi,j x + ϕj .

Remark 3. Note that we do not a priori require fi,j = fj,i , i.e. there is no assumption of reversibility for Xt ; however
the VRJP is a mixture of reversible Markov jump processes within time change.

Remark 4. Concerning the third assumption, we cannot prove the result with rate fi,j (li , lj ), but the case where
fi,j (li , lj ) = fi(li)fj (lj ) can be treated. In fact, by applying a time change, the process with rate function of the form
fi(li)fj (lj ) can be reduced to our theorem.

In Section 3, we introduce an equivalent notion of partial exchangeability and, as an example, we give a different
proof of partial exchangeability of VRJP within a time scale. Section 4 contains the proof of Theorem 4.

3. The two notions of partial exchangeability

3.1. Partial exchangeability, infinitesimal point of view

Consider a nearest neighbor jump process on G satisfying the third assumption of Theorem 4. As we have assumed
regularity on the trajectory of the process (cf. Definition 3), to describe the law of our process, it is enough to describe
the probability of the following events:

σ = {X[0,t1[ = i0,X[t1,t2[ = i1,X[t2,t3[ = i2, . . . ,X[tn−1,tn[ = in−1,X[tn,t] = in},
which will be denoted

σ : i0
t1−→ i1

t2−t1−→ i2 · · · in−1
tn−tn−1−→ in

t−tn−→

in the sequel and we call such an event a trajectory.
It turns out that when the jump rate is a continuous function of local times, the law of our process can be charac-

terized by some function, which will be called density in the sequel. In fact, for the study of certain history depending
random processes, we have the following lemma:

Lemma 1. If (Xt ) is a jump process with jump rate depending only on local times and the current position of the
random walker, i.e. there exists functions fi,j (l) such that conditioned on the past, Xt jumps from i to j at rate
fi,j (l(t)), and, moreover, fi,j (l(t)) does not depend on the variable li (t). Then there exists functions dσ , such that for
all bounded measurable functions Φ defined on the trajectories,

E
(
Φ(Xu,u ≤ t)

) =
∑
n≥1

∑
i0,...,in

∫
dσ Φ(σ)dt + d

i0
t−→Φ(i0

t−→),

where dσ = exp(− ∫ t

0

∑
j∼Xs

fXs,j (l(s))ds)
∏n

k=1 fik−1,ik (l(tk)) and d
i0

t−→ = P(Xs = i0,0 ≤ s ≤ t).
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Remark 5. We believe that Lemma 1 still hold when fi,j (l) depends on li (t). In fact, if we can find a time changed
process such that its jump rates do not depend on li (t), it is immediate by re-applying the inverse time change that
Lemma 1 holds in the general cases.

Proof of Lemma 1. As fi,j (l(t)) does not depend on li (t), the holding time of Xt at i is exponentially distributed
with rate∑

j∼i

fi,j

(
l(t)

)

and the probability of jumping from i to j is

p(i, j) := fi,j (l(t))∑
k∼i fi,k(l(t))

.

Moreover, the process up to time t is characterized by the events

i0
s1−→ i1

s2−→· · · sn−→ in
sn+1−→, s1, . . . , sn+1 > 0,

n+1∑
i=1

si ≤ t.

For 1 ≤ k ≤ n + 1, denote tk = s1 + · · · + sk ,

P

(
Xt follows the trajectory i0

s1−→ i1
s2−→· · · sn−→ in

sn+1−→, sk > 0,
∑

sk ≤ t
)

=
∫

tn≤t

n∏
k=1

(
p(ik−1, ik) exp

(
−

∑
j∼ik−1

fik−1,j

(
l(tk−1)

)
sk

)
·

∑
j∼ik−1

fik−1,j

(
l(tk−1)

))
P(sn+1 > t − tn)ds

=
∫

t1<t2<···<tn<t

exp

(
−

∫ t

0

∑
j∼Xs

fXs,j

(
l(s)

)
ds

) n∏
k=1

fik−1,ik

(
l(tk−1)

)
dt,

with ds = ds1 · · ·dsn,dt = dt1 · · ·dtn. Now the lemma follows by distinguishing different trajectories. �

Definition 6. We say that Xt admits a density if the assumptions in Lemma 1 are satisfied, and we denote its density
as dσ .

Let us now give another definition of partial exchangeability for continuous time processes in terms of density.
Define two trajectories σ and τ to be equivalent and denoted σ ∼ τ , if their discrete chain strings are equivalent and
the local times are equal at each vertex. Formally,

Definition 7. Let

σ = i0
t1−→ i1

t2−t1−→ i2 · · · in−1
tn−tn−1−→ in

t−tn−→,

τ = j0
s1−→ j1

s2−s1−→ j2 · · · jn−1
sn−sn−1−→ jn

t−sn−→ .

Then σ and τ are equivalent if and only if{∀i ∈ V, lσi (t) = lτi (t),

∀i, jNi,j (σ ) = Ni,j (τ ),

where Ni,j (σ ) denotes the number of jumps from i to j in σ , i.e. Ni,j (σ ) = Ni,j ((i0, . . . , in)), and lσi (t) = ∫ t

0 1σs=i ds

denotes the local time.
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Definition 8. A continuous time nearest neighbor jump process is said to be partially exchangeable in density if the
densities are equal for any two equivalent trajectories. Or equivalently, the density depends only on final local times
and the transition counts.

3.2. Equivalence of the two notions

It turns out that in the case of nearest neighbor jump process with continuous jump rate functions, the notion of partial
exchangeability in Definition 5 and in Definition 8 are equivalent.

Proposition 1. If a continuous time nearest neighbor jump process is partially exchangeable in the sense of Defini-
tion 8, then it is partially exchangeable in the sense of Definition 5.

Proof. Suppose that the process Xt is partially exchangeable in density, let h > 0, consider the event I = {X0 = i0,

Xh = i1, . . . ,Xnh = in}, let (j0 = i0, j1, . . . , jn) be an equivalent string of (i0, . . . , in), and J = {X0 = j0,

Xh = j1, . . . ,Xnh = jn}.
We construct a bijection T which maps trajectories of I to those of J . As (i0, . . . , in), (j0, . . . , jn) are equivalent,

for any pair of neighbors (i, j), there are exactly a same number of transition counts from i to j . Let us define T

to be the transformation which is a permutation of the time segmentations [lh, (l + 1)h) of size h; which, for any k,

moves the kth transition i
kth−→ j of I to the kth transition i

kth−→ j of J , and leaving the last time segmentation [nh,∞)

invariant. Figure 1 illustrates an example of such application.
Let

σ = k0
s1−→ k1

s2−→k2 · · ·kN−1
sN−→kN

sN+1−→

be one trajectory of the event I , we check that

T (σ ) = k′
0

s′
1−→ k′

1

s′
2−→k′

2 · · ·k′
N−1

s′
N−→k′

N

s′
N+1−→

is a trajectory of the event J , and that T is one–one and on–to (cf. Figure 2). If we fix the total number of jumps N

and the discrete trajectory (k0, k1, . . . , kN), then T can be though as a substitution of integration. Thus

P(I ) =
∑
N

∑
k0,k1,...,kN

∫
1s1,...,sN+1∈I (N,k0,...,kN )dσ ds1 · · · dsN+1

=
∑
N

∑
k′

0,k
′
1,...,k

′
N

∫
1s′

1,...,s
′
N+1∈I ′(N,k′

0,...,k
′
N)dT (σ ) ds′

1 · · · ds′
N+1 = P(J ),

where I (N, k0, . . . , kN) is the subset of RN+1 defined as the set of (s1, . . . , sN+1) such that the event k0
s1−→ k1

s2−→
· · · sN−→ kN

sN+1−→ is in I ; and I ′(N, k′
0, . . . , k

′
N) is its image by applying T ; see Figure 2 for a concrete example. As T

preserves local times and the numbers of transition counts, these two integrals are whence equal. �

Fig. 1. The transformation T for I = {X0 = 0,Xh = 1,X2h = 0,X3h = 2,X4h = 1} and J = {X0 = 0,Xh = 2,X2h = 1,X3h = 0,X4h = 1}.
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Fig. 2. An example of σ and T (σ).

Proposition 2. If a jump process is partially exchangeable in the sense of Definition 5, and its jump rate is a contin-
uous function of local times, then it is also partially exchangeable in the sense of Definition 8.

Proof. Let Xt denote such a process, for h > 0, consider the σ -algebra Fh = σ(Xnh,n ≥ 0), let

F0 = σ

(⋃
h>0

Fh

)

and

F = σ(Xt , t ≥ 0).

As in [7], we only consider h running through the binary rationals. Note that F0 = F thanks to the right continuity of
the trajectories.

Let σ = i0
t1−→ i1

t2−t1−→ i2 · · · in t−tn−→ be a trajectory with n jumps (say n ≥ 1 to avoid triviality). Let {X(h) ∼ σ/h}
denotes the event{

X0 = σ0,Xh = σh, . . . ,XNh = σNh, with N = 
t/h�}.
It turns out that

dσ = lim
h→0

P
(
X(h) ∼ σ/h

)
h−n.

In fact, let Ψ = 1X(h)∼σ/h, by definition of dσ ,

E
(
Ψ (Xu,u ≤ t)

) = P
(
X(h) ∼ σ/h

) =
∑
k≥1

∑
i1,...,ik

∫
dτΨ (τ)dt1 · · · dtk, (1)

where

τ = i0
t1−→ i1

t2−t1−→ i2 · · · ik−1
tk−tk−1−→ ik

t−tk−→ .

When h is small enough, the sum in (1) must be over k ≥ n, and we have

P
(
X(h) ∼ σ/h

) = P1 + P2,

where for some pk, k = 1, . . . , n depending on h

P1 = P
(
(Xu)0≤u≤t makes n jumps at times s1, . . . , sn

with sk ∈ (
pkh, (pk + 1)h

]
and the trajectory is i0, . . . , in

)
,

P2 = P
(
(Xu)0≤u≤t makes more than n + 1 jumps and X(h) ∼ σ/h

)
.
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Note that the jump rates are bounded from both below and above, and any holding time in the event of P2 must be
in an interval of length lesser than 2h, whence the probability of making n + l (l ≥ 1) jumps following the trajectory
σ/h is smaller than the probability of n + l independent exponential variables (of parameter C) each smaller than 2h,
where C is an upper bound of the jump rates. Whence

P2 ≤
∑
l≥1

(
P
(
cst ≤ Exp(C) < cst + 2h

))n+l ≤
∑
l≥1

(
P
(
Exp(C) < 2h

))n+l = O
(
hn+1).

Thus P2 can be dropped when taking the limit. In addition,

P1 =
∫ (pn+1)h

pnh

· · ·
∫ (p1+1)h

p1h

dσ dt1 · · · dtn,

note that here dσ depends only on t1, . . . , tn and it is an absolutely integrable function, by Lebesgue differentiation
theorem (Theorem 1.6.19 in [13]) limh→0 P1/hn = dσ . Now let σ ∼ τ ,

when h is sufficiently small, proceeding as in the diagram shows that dσ = dτ . �

3.3. Example: VRJP is partially exchangeable within a time change

Recall that Ys = XD−1(s) with D(s) = ∑
i∈V (li(s)

2 + 2li (s)). It turns out that we can write down the density of the
trajectory σ of the (time changed) VRJP process Y (for convenience, write sn+1 for s in the sequel). The density of

σ := i0
s1−→ i1

s2−s1−→ i2 · · · in−1
sn−sn−1−→ in

s−sn−→

is (cf. [11]), denoting Si(t) = ∫ t

0 1Yu=i du the local time of Y ,

dσ =
(

1

2

)n n∏
k=1

Wik−1,ik

∏
i∈V,i �=in

1√
1 + Si(s)

· exp

(
−

∑
i∼j

Wi,j

(√(
Si(s) + 1

)(
Sj (s) + 1

) − 1
))

, (2)

which clearly depends only on final local times and transition counts, thus by Proposition 1, Y is partially exchange-
able. On finite graph it is rather easy to prove that the VRJP is recurrent (for example, using a representation of VRJP
by time changed Poisson point process as in [10], and then use an argument as in [2] or [12]). Therefore, Y is a mixture
of Markov jump processes.

For convenient, we include a proof of this in the sequel (after the proof of Proposition 3), since the mechanisms of
the proof enlightens the proof of the main theorem.

4. Proof of Theorem 4

4.1. Computation of densities

Let X be a nearest neighbor jump process on G satisfying the assumptions of Theorem 4, in particular, recall the time
scale

D(s) =
∑
i∈V

hi

(
li (s)

)
. (3)



How VRJP arises 1069

Let li (t) be the local time of the process X at vertex i at time t . Let us denote the process after time change to be

Yt = XD−1(t), (4)

let

Si(s) =
∫ s

0
1Yu=i du (5)

denote the local time of Y . Consider the trajectory

σ : i0
t1−→ i1

t2−t1−→ i2 · · · in−1
tn−tn−1−→ in

t−tn−→, (6)

where 0 < t1 < · · · < tn < t , after applying the time change, the corresponding trajectory for Y is

σY : i0
s1−→ i1

s2−s1−→ i2 · · · in−1
sn−sn−1−→ in

s−sn−→,

where sk = D(tk).

Proposition 3. With the same settings as in Equations (3)–(6), the density of the trajectory σY for Y is

dY
σ = exp

(
−

∫ s

0

∑
j∼Yv

fYv,j (h
−1
j (Sj (v)))

h′
Yv

(h−1
Yv

(SYv (v)))
dv

) n∏
k=1

fik−1,ik (h
−1
ik

(Sik (sk−1)))

h′
ik−1

(h−1
ik−1

(Sik−1(sk)))
.

Proof. Applying Lemma 1 to the process X,

dσ = exp

(
−

∫ t

0

∑
j∼Xu

fXu,j

(
lj (u)

)
du

) n∏
k=1

fik−1,ik

(
lik (tk−1)

)
.

Recall that in (3) we assumed that hi :R+ →R
+ are diffeomorphisms satisfying hi(0) = 0.

Next we compute the density for the same trajectory σ but for the process Ys = XD−1(s), as we have Si(D(s)) =
hi(li(s)), derivation leads to

Si

(
D(s)

)′ = D′(s)1YD(s)=i = h′
i

(
li (s)

)
1Xs=i .

Hence

(
D−1(t)

)′ = 1

D′(D−1(t))
= 1

h′
Yt−

◦ h−1
Yt−

(SYt− (t))
,

lik (tk−1) = h−1
ik

(
Sik

(
D(tk−1)

)) = h−1
Ysk

(
SYsk

(sk−1)
)
.

Substituting s = D(t), we have

dY
σ = exp

(
−

∫ s

0

∑
j∼Yv

fYv,j (h
−1
j (Sj (v)))

h′
Yv

(h−1
Yv

(SYv (v)))
dv

) n∏
k=1

fik−1,ik (h
−1
ik

(Sik (sk−1)))

h′
ik−1

(h−1
ik−1

(Sik−1(sk)))
.

�

Back to the partial exchangeability of VRJP

Proof of formula (2) in Section 3.3. Apply the previous proposition to VRJP, where fi,j (lj ) = Wi,j (1 + lj ) and
hi(li) = l2

i + 2li . The density dY
σ is

1

2n
exp

(
−

∫ s

0

∑
j∼Yu

WYu,j

√
Sj (u) + 1

2
√

SYu(u) + 1
du

) n∏
k=1

(
Wik−1,ik

√
Sik (sk−1) + 1√
Sik−1(sk) + 1

)
.
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As our trajectory is left continuous without explosion, starting at i0, if we calculate the product through the trajectory,
by telescopic simplification, it results that the product reduces to

∏
i∈V,i �=in

1√
Si(s) + 1

n∏
k=1

Wik−1,ik .

To compute the integral inside the exponential, it is enough to note that, in the expression:

∑
i∼j

Wi,j

(√(
Si(s) + 1

)(
Sj (s) + 1

) − 1
)
,

the local times Si(s), i ∈ V of the process Y only vary (linearly) with s when the process is at i, i.e., when Yt = i.
Therefore, the derivative of the above expression with respect to s equals to

∑
j∼Ys

WYs,j

√
Sj (s) + 1

2
√

SYs (s) + 1

which is what we integrate inside the exponential.
Whence (2) is proved, and expression (2) depends only on final local times and transition counts, the result hence

follows. �

4.2. Determination of time change h

In the sequel we work with the time changed process Y , to simplify notations, we will write dσ for dY
σ when it does not

lead to any confusion. By Proposition 3, the density of certain trajectory contains an exponential term and a product
term, let us denote

dσ = exp

(
−

∫
σ

)
·
∏

σ,

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
σ = ∫ s

0

∑
j∼Yv

fYv,j (h−1
j (Sj (v)))

h′
Yv

(h−1
Yv

(SYv (v)))
dv,

∏
σ = ∏n

k=1
fik−1,ik

(h−1
ik

(SYsk
(sk−1)))

h′
ik−1

(h−1
ik−1

(SYsk−1
(sk)))

,

where the exponential term stems from those exponential waiting times, and the product term corresponds to the
probability of the discrete chain.

The heuristics of the proof in this subsection is the following: as we assumed partial exchangeability, if we consider
two equivalent trajectories, then their densities share the same expression, by comparing them we can hence deduce
certain equalities involving fi,j and hi etc. It turns out that these equalities determine hi ’s then fi,j ’s.

The following fact is simple but important, suppose that at time s, the random walker arrives at i0, each vertex i

has accumulated local time li := Si(s); then it jumps to i1 after an amount of time t , by Proposition 3, the density has
acquired a multiplicative factor

exp

(
−

∫ s+t

s

∑
j∼i0

fi0,j ◦ h−1
j (lj )

h′
i0

◦ h−1
i0

(li0 + v)
dv

)
· fi0,i1 ◦ h−1

i1
(li1)

h′
i0

◦ h−1
i0

(li0 + t)
. (7)

This fact is in constant use in the sequel, when we explicit the density of certain trajectory.
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Lemma 2. Let σ = i0
s1−→ i1

s2−s1−→ i2 · · · in−1
sn−sn−1−→ in

s−sn−→ be a trajectory, then
∫

σ = ∫
σ̃ + ∫

σ̂ where

∫
σ̃ =

∫ s

0

∑
j∈σ,j∼Yv

fYv,j (h
−1
j (Sj (v)))

h′
Yv

(h−1
Yv

(SYv (v)))
dv,

∫
σ̂ =

∫ s

0

∑
j /∈σ,j∼Yv

fYv,j (h
−1
j (Sj (v)))

h′
Yv

(h−1
Yv

(SYv (v)))
dv

and if τ is such that τ ∼ σ , then
∫

σ̂ = ∫
τ̂ .

Proof. Note that for j /∈ σ , Sj (u) = 0 for all u ≤ s. Let Ĥi be the primitive of 1
h′

i◦h−1
i

such that Ĥi(0) = 0,

∫
σ̂ =

∑
j /∈σ

∫ s

0
1Yv∼j

fYv,j (0)

h′
Yv

(h−1
Yv

(SYv (v)))
dv

=
∑

j /∈σ,i∈σ,j∼i

fi,j (0)

∫ s

0

1Yv=i

h′
i (h

−1
i (Si(v)))

dv

=
∑

j /∈σ,i∈σ,j∼i

fi,j (0)Ĥi

(
Si(s)

)

which depends only on final local times, thus if τ ∼ σ , then
∫

τ̂ = ∫
σ̂ . �

In the sequel cst denotes some constant, which can vary from line to line.

Lemma 3. If the process X admits such a time change D which makes it partially exchangeable in density, then for
any i ∼ j , there exists some constants λi,j such that

fi,j (x) = λi,j h
′
j (x), ∀x ≥ 0. (8)

Proof. Let ε > 0, consider the following two trajectories for the process Y :

σ = i
ε−→ j

ε−→ i
t−→ j

s−→ i
·−→,

τ = i
t−→ j

s−→ i
ε−→ j

ε−→ i
·−→ .

Note that σ and τ have the same transition counts and the final local times on vertex i, j are respectively equal. Thus
the densities of these trajectories are a.s. equal by partial exchangeability. By Lemma 2,

dσ =
∏

σ · exp

(∫
σ̃ +

∫
σ̂

)
,

where

⎧⎪⎪⎨
⎪⎪⎩

∏
σ = fi,j ◦h−1

j (0)

h′
i◦h−1

i (ε)
· fj,i◦h−1

i (ε)

h′
j ◦h−1

j (ε)
· fi,j ◦h−1

j (ε)

h′
i◦h−1

i (ε+t)
· fj,i◦h−1

i (ε+t)

h′
j ◦h−1

j (ε+s)
,

∫
σ̃ = ∫ ε

0
fi,j ◦h−1

j (0)

h′
i◦h−1

i (v)
dv + ∫ ε

0
fj,i◦h−1

i (ε)

h′
j ◦h−1

j (v)
dv + ∫ t

0
fi,j ◦h−1

j (ε)

h′
i◦h−1

i (ε+v)
dv + ∫ s

0
fj,i◦h−1

i (ε+t)

h′
j ◦h−1

j (ε+v)
dv,

dτ =
∏

τ · exp

(∫
τ̃ +

∫
τ̂

)
,
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where⎧⎪⎪⎨
⎪⎪⎩

∏
τ = fi,j ◦h−1

j (0)

h′
i◦h−1

i (t)
· fj,i◦h−1

i (t)

h′
j ◦h−1

j (s)
· fi,j ◦h−1

j (s)

h′
i◦h−1

i (t+ε)
· fj,i◦h−1

i (ε+t)

h′
j ◦h−1

j (ε+s)
,

∫
τ̃ = ∫ t

0
fi,j ◦h−1

j (0)

h′
i◦h−1

i (v)
dv + ∫ s

0
fj,i◦h−1

i (t)

h′
j ◦h−1

j (v)
dv + ∫ ε

0
fi,j ◦h−1

j (s)

h′
i◦h−1

i (t+v)
dv + ∫ ε

0
fj,i◦h−1

i (ε+t)

h′
j ◦h−1

j (s+v)
dv.

We do not explicit
∫

σ̂ and
∫

τ̂ as they cancel when we compare these expressions (cf. Lemma 2).
Letting ε → 0 yields that exp(

∫
σ̃ ) = exp(

∫
τ̃ ); therefore

∏
σ = ∏

τ , i.e.

∀s, t,
fi,j ◦ h−1

j (s)

h′
j ◦ h−1

j (s)
· fj,i ◦ h−1

i (t)

h′
i ◦ h−1

i (t)
= cst.

Now fix t , let s vary, whence

∀s, fi,j ◦ h−1
j (s) = cst ·h′

j ◦ h−1
j (s),

and let λi,j denotes this constant, as h−1
j is a diffeomorphism, its range is R+, which allows us to conclude. �

The next lemma states in some sense that the exponential part and the product part appearing in the density of a
trajectory can be treated separately.

Lemma 4. Let σ, τ be two trajectories, and denote

dσ = exp

(∫
σ

)
·
∏

σ, dτ = exp

(∫
τ

)
·
∏

τ,

if σ ∼ τ , then
∏

σ = ∏
τ .

Proof. We have SYsk
(sk) = SYsk

(sk−1), thus Lemma 3 yields that fik−1,ik ◦ h−1
ik

(SYsk
(sk−1)) = λik−1,ik h

′
ik

◦
h−1

ik
(SYsk

(sk)). Whence the product part is

∏
σ =

n∏
k=1

fik−1,ik (h
−1
ik

(SYsk
(sk−1)))

h′
ik−1

(h−1
ik−1

(SYsk−1
(sk)))

=
n∏

k=1

λik−1,ik

∏
i �=i0

h′
i ◦ h−1

i (0)∏
i �=in

h′
i ◦ h−1

i (Si(s))
,

and the last term depends only on the transition counts and final local times. �

Lemma 5. Let Hi = h′
i ◦ h−1

i , then for some constant Ai (recall that hi is assumed C2 diffeomorphism),(
H 2

i

)′ = Ai and if i ∼ j, then λi,jAj = λj,iAi.

Remark 6. The latest equality tells that the process is reversible. However, we did not assume the reversibility of the
process, but vertex reinforced jump processes are reversible (as a mixture of reversible Markov jump process), so are
the edge reinforced random walks. In contrast, directed edge reinforced random walks are mixtures of non reversible
Markov chains, with independent Dirichlet environments. We can hence expect that the reversibility is a consequence
of a non-oriented linear reinforcement (where linearity leads to partial exchangeability).

Proof of Lemma 5. Recall that we have assumed that the graph is strongly connected, i.e. if i, j are two adjacent
vertices, there exists a shortest cycle i1 ∼ i2 ∼ i3 ∼ · · · ∼ in ∼ i1 with i1 = i, in = j and the ik’s are distinct and n ≥ 2.

Let (i1 = i, i2, i3, . . . , in = j) be a cycle as described, consider the trajectories (cf. Figure 3)

σ = i1
r1−→ in

r2−→ i1
s1−→ i2

s2−→ i3 · · · in−2
sn−2−→ in−1

sn−1−→ in,

τ = i1
r1−→ i2

s2−→ i3 · · · in−2
sn−2−→ in−1

sn−1−→ in
r2−→ i1

s1−→ in.
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Fig. 3. The trajectories σ and τ in Lemma 5.

As σ ∼ τ , by Lemma 4 and Lemma 2,
∫

σ̃ = ∫
τ̃ . Also let

σ ′ = i1
r1−→ in

r2−→ i1
s1−→ i2

s2−→ i1,

τ ′ = i1
r1−→ i2

s2−→ i1
s1−→ in

r2−→ i1,

thus
∫

σ̃ ′ = ∫
τ̃ ′. We are going to compute explicitly

∫
σ̃ ,

∫
τ̃ etc., using (7), let s = r1 + r2 + s1 + · · · + sn−1 and

recall that Ĥi is the primitive of 1
h′

i◦h−1
i

such that Ĥi(0) = 0.

∫
σ̃ =

∑
(i,j)∈σ 2,i∼j

λi,j

∫ s

0
1Yv=i

h′
j ◦ h−1

j (Sj (v))

h′
i ◦ h−1

i (Si(v))
dv

= λi1,i2Hi2(0)Ĥi1(r1 + s1)

+ λi2,i1Hi1(r1 + s1)Ĥi2(s2)

+ λi1,in

(
Hin(0)Ĥi1(r1) + Hin(r2)

(
Ĥi1(r1 + s1) − Ĥi1(r1)

))
+ λin,i1Hi1(r1)Ĥin(r2) + λin,in−1Hin−1(0)Ĥin(r2)

+ λin−1,inHin(r2)Ĥin−1(sn−1) + Δ,

where Δ is defined as follows: let Qk := Hik (0)Ĥik−1(sik−1) and Q′
k := Hik (sk)Ĥik+1(sik+1),

Δ =
n−1∑
k=3

λik−1,ikQk + λik,ik−1Q
′
k−1.

For τ̃ we have:

∫
τ̃ =

∑
(i,j)∈τ 2,i∼j

λi,j

∫ s

0
1Yv=i

h′
j ◦ h−1

j (Sj (v))

h′
i ◦ h−1

i (Si(v))
dv

= λi1,i2Hi2(0)Ĥi1(r1) + Hi2(s2)
(
Ĥi1(r1 + s1) − Ĥi1(r1)

)
+ λi2,i1Hi1(r1)Ĥi2(s2)

+ λi1,in

(
Hin(0)Ĥi1(r1) + Hin(r2)

(
Ĥi1(r1 + s1) − Ĥi1(r1)

))
+ λin,i1Hi1(r1)Ĥin(r2) + λin,in−1Hin−1(sn−1)Ĥin(r2)

+ λin−1,inHin(0)Ĥin−1(sn−1) + Δ
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with the same Δ. Also∫
σ̃ ′ = λi1,i2

(
Hi2(0)Ĥi1(r1) + Hi2(0)

(
Ĥi1(r1 + s1) − Ĥi1(r1)

))
+ λi2,i1Hi1(r1 + s1)Ĥi2(s2)

+ λi1,in

(
Hin(0)Ĥi1(r1) + Hin(r2)

(
Ĥi1(r1 + s1) − Ĥi1(r1)

))
+ λin,i1Hi1(r1)Ĥin(r2),∫

τ̃ ′ = λi1,i2

(
Hi2(0)Ĥi1(r1) + Hi2(s2)

(
Ĥi1(r1 + s1) − Ĥi1(r1)

))
+ λi2,i1Hi1(r1)Ĥi2(s2)

+ λi1,in

(
Hin(0)Ĥi1(r1) + Hin(0)

(
Ĥi1(r1 + s1) − Ĥi1(r1)

))
+ λin,i1Hi1(r1 + s1)Ĥin(r2).

Recall that
∫

σ̃ − ∫
σ̃ ′ = ∫

τ̃ − ∫
τ̃ ′, which leads to

λin,in−1Hin−1(0)Ĥin(r2) + λin−1,inHin(r2)Ĥin−1(sn−1)

= λi1,in

(
Hin(r2) − Hin(0)

)(
Ĥi1(r1 + s1) − Ĥi1(r1)

)
+ λin,i1

(
Hi1(r1) − Hi1(r1 + s1)

)
Ĥin(r2)

+ λin,in−1Hin−1(sn−1)Ĥin(r2) + λin−1,inHin(0)Ĥin−1(sn−1)

letting sn−1 → 0 leads to

λi1,in

(
Hin(r2) − Hin(0)

)(
Ĥi1(r1 + s1) − Ĥi1(r1)

)
= λin,i1

(
Hi1(r1 + s1) − Hi1(r1)

)
Ĥin(r2)

as i1, in, r2, s1, r1 are arbitrary, divide the formula by r2s1 and let r2, s1 go to zero leads to

λi1,inH
′
in
(0)Ĥ ′

i1
(r1) = λin,i1H

′
i1
(r1)Ĥ

′
in
(0),

finally note that Ĥ ′
i = 1/Hi , thus λi1,in (H

2
in
)′(0) = λin,i1(H

2
i1
)′(r1). �

Lemma 6. For all i ∼ j , let Wi,j = λi,jAj/2 = λj,iAi/2, there exists constant ϕj depends only on j , such that
fi,j (x) = Wi,j x + ϕj .

Proof. As (H 2
j (s))′ = Aj , there exists Bj such that H 2

j (s) = Ajs + Bj , therefore

fi,j ◦ h−1
j (s) = λi,jHj (s) = λi,j

√
Ajs + Bj .

On the other hand, (h−1
j )′(s) = 1√

Aj s+Bj
, thus for some Cj ,

h−1
j (s) = 2

Aj

√
Ajs + Bj + Cj .

fi,j (h
−1
j (s)) = fi,j (

2
Aj

√
Ajs + Bj + Cj ) = λi,j

√
Ajs + Bj , which leads to

fi,j (x) = Wi,j x + ϕj ,
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where ϕj is some constant depends only on j . Applying the time change

D̃(s) =
∑

i

li (s) − ϕi

ϕi

,

the resulting process will be of jump rate

Wi,jϕiϕj

(
1 + Tj (t)

)
,

where Tj (t) is the local time for the time changed process Zt = X
D̃−1(t)

. �
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