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RANDOM REVERSIBLE MARKOV MATRICES WITH TUNABLE
EXTREMAL EIGENVALUES

BY ZHIYI CHI

University of Connecticut

Random sampling of large Markov matrices with a tunable spectral gap,
a nonuniform stationary distribution and a nondegenerate limiting empiri-
cal spectral distribution (ESD) is useful. Fix c > 0 and p > 0. Let An be
the adjacency matrix of a random graph following G(n,p/n), known as the
Erdős–Rényi distribution. Add c/n to each entry of An and then normal-
ize its rows. It is shown that the resulting Markov matrix has the desired
properties. Its ESD weakly converges in probability to a symmetric non-
degenerate distribution, and its extremal eigenvalues, other than 1, fall in
[−1/

√
1 + c/k,−b] ∪ [b,1/

√
1 + c/k] for any 0 < b < 1/

√
1 + c, where

k = �p� + 1. Thus, for p ∈ (0,1), the spectral gap tends to 1 − 1/
√

1 + c.

1. Introduction. The spectral properties of random Markov matrices have re-
ceived increasing attention over the years [4–6, 10, 24, 28]. In applications, it is
useful to randomly sample a large Markov matrix, such that the mixing rate of the
associated Markov chain is controllable. The chain can be used, for example, to
evaluate the performance of a data analytic procedure under various strengths of
statistical dependency within data [25]. By the well-known connection between
mixing rate and eigenvalues of Markov matrix [12, 26], the issue may be cast as
how to sample large Markov matrices with a specified spectral gap. This note ad-
dresses the issue for reversible Markov matrices.

Denote by Mn the set of n × n matrices with all entries being nonnegative.
For M ∈ Mn, if its eigenvalues are λ1(M), . . . , λn(M), counting multiplicity, then
its spectral radius is �(M) = max |λi(M)| and its empirical spectral distribution
(ESD) is

μM = n−1
n∑

i=1

δλi(M),

where δx is the probability measure concentrated at x. By the Perron–Frobenius
theorem ([16], page 534), �(M) is an eigenvalue of M . If M1n = 1n, where 1n

is the column vector of n 1’s, then M is called a Markov matrix and �(M) = 1.
Letting λn(M) = �(M), λ�(M) = maxi<n |λi(M)| and 1 − λ�(M) are known as
the second largest absolute eigenvalue and the spectral gap of M , respectively.
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For X ∈ Mn, if all the entries of a := X1n are positive, then its row-normalized
version refers to the Markov matrix M = D−1

a X, where Da denotes the diagonal
matrix whose diagonal equals a. If X is symmetric, then the Markov chain with
transition matrix M and initial distribution π = a/1′

na is stationary and has the
same distribution as its time reversal, and for this reason M is called reversible
relative to π . Moreover, all λi(M) are real as M is similar to D

−1/2
a MD

−1/2
a ,

where D
1/2
a denotes any symmetric matrix whose square equals Da .

Let Xn ∈Mn be symmetric random matrices with positive entries almost surely
(a.s.). Let Mn be its row-normalized version. Suppose the diagonal and upper diag-
onal entries of Xn are i.i.d. ∼ νn. If νn = ν for all n, then by [4], provided that the
4th moment of ν is finite, λ�(Mn) → 0 a.s. as n → ∞. On the other hand, if ν is in
the domain of attraction of a stable law of index in (0,2), then by [5], λ�(Mn) → 1
a.s. In either case, the spectral gap of Mn cannot be tuned. The results suggest that,
in order for the spectral gap or, equivalently, λ�(Mn) to be tunable, the (marginal)
distribution of the entries of Xn needs to change according to n.

Indeed, there are simple solutions along this line. Given n ≥ 5, randomly pick
four different numbers k, l, s and t from 1, . . . , n. Let An = (εij ) ∈ Mn with εij =
1{{i, j} = {k, l} or {s, t}}, where 1{·} is the indicator function; An is the adjacency
matrix of a graph on n vertices with only two edges. Given c > 0, let Mn be
the row-normalized version of cJn + An, with Jn ∈ Mn a matrix of 1/n’s. As
det(z−Mn) = [z+ 1/(1 + c)]2zn−5[z− (1 − 4/n)/(1 + c)][z− 1/(1 + c)](z− 1),
λ�(Mn) = 1/(1 + c), so it can be set at any value in (0,1).

The main problem with the example is that Mn has few features. It is nearly the
transition matrix of a chain of i.i.d. random variables uniformly taking n values.
The lack of features is also reflected in the ESD of Mn, which converges to δ0 as
n → ∞. Despite this, the example shows that it is possible to tune the spectral gap
by using sparse random graphs. In general, let An be the adjacency matrix of a
random graph. Define the row-normalized version of cJn + An as

Mn = D−1
n (cJn + An) with Dn = Dc1n+An1n.(1)

Although An can be highly reducible, Mn is always irreducible and aperiodic and
so λ�(Mn) < 1. Since all the eigenvalues of Mn are real, we always assume that
they are sorted as

−1 < λ1(Mn) ≤ · · · ≤ λn−1(Mn) < λn(Mn) = 1.

Then λ�(Mn) = max(|λ1(Mn)|, |λn−1(Mn)|). We simply call Mn reversible, as
there is only one stationary distribution associated with it. The closely related ma-
trix In − D

−1/2
n (cJn + An)D

−1/2
n is known as a normalized Laplacian regularized

by c. The effects of c on spectral clustering and concentration of the ESD have
been studied in statistical machine learning [19, 21].

The close relation between random matrices and random graphs is well known;
see [5, 7, 13, 15, 17, 18, 20, 22, 23, 27–29] and references therein. In [22], it is



TUNABLE EXTREMAL EIGENVALUES 2259

shown that if An is the adjacency matrix of a random graph following the uni-
form distribution Gn,d on the set of regular graphs on n vertices with fixed de-
gree d ≥ 2, then as n → ∞, μAn weakly converges a.s. with limiting density

f (x) = d(4d − 4 − x2)
1/2
+ /[2π(d2 − x2)], where a+ := max(a,0). By Weyl’s

inequality, λi(D
−1
n An) ≤ λi(Mn) ≤ λi+1(D

−1
n An) for i < n [cf. (2)]. Conse-

quently, Mn and D−1
n An = (c + d)−1An have the same limiting ESD density

(c + d)f ((c + d)x), whose support is the interval between ±2
√

d − 1/(c + d).
Thus λ�(Mn) is asymptotically lower bounded by 2

√
d − 1/(c + d). On the other

hand, by the above Weyl’s inequality and the fact that �(An) is less than the maxi-
mum row sum of An ([16], pages 345–347), λ�(Mn) ≤ �(An)/(c+d) ≤ d/(c+d).
In particular, when d = 2, in which case the graph consists of disjoint cycles,
λ�(Mn) → 2/(c + 2) a.s. Also, under various distributions on regular multigraphs
of fixed degree d that allow multiple edges and, in some cases, self-loops, for
any fixed l, |λl(An)| and λn−l(An) converge to 2

√
d − 1 in probability, yielding

λ�(Mn) → 2
√

d − 1/(c + d) [14]. However, when d > 2, λ�(Mn) cannot be ar-
bitrarily tuned as it is asymptotically upper bounded by 2

√
d − 1/d < 1. Perhaps

important, under any distribution on regular (multi)graphs, since Mn is doubly
Markov, that is, M ′

n is Markov as well, the stationary distribution associated with
Mn is uniform. If one wishes to sample a large Markov matrix with a nonuni-
form stationary distribution, then a different random graph needs to be exploited.
We also mention that for a uniformly sampled doubly Markov matrix, which is
irreversible a.s., its limiting ESD is degenerate [24].

We shall consider the row-normalized version Mn of cJn + An with An the ad-
jacency matrix of a random graph following G(n,p/n), the distribution on graphs
on n vertices such that each pair of vertices is connected by an edge with proba-
bility p/n, independently from the other pairs ([2], VII). It is easy to see that for
large n, the stationary distribution associated with Mn is nonuniform with high
probability. We shall fix c > 0 and p > 0 when deriving the asymptotic spectral
properties of Mn. It is known that for both Gn,d and G(n,p/n), if d → ∞ and
p → ∞ as n → ∞, then the ESD of suitably scaled and centered An tends to the
semi-circle law [13, 28]. It is also known that when p > 1 is fixed, the adjacency
matrix of the giant component of a G(n,p/n)-distributed graph has a spectral gap
asymptotically equal to 0 [23]. However, these results provide no indication on the
spectral properties of Mn.

For the rest of the note, denote

τc = 1/
√

1 + c, c ≥ 0.

One of the main results of the note is the following.

THEOREM 1. Fix c > 0 and p > 0. For n > p, let An be the adjacency matrix
of a random graph following G(n,p/n). Let k = �p�+1. Fix l ≥ 1 and 0 < b < τc.
Then P{b ≤ λn−l(Mn) ≤ τc/k and − τc/k ≤ λl(Mn) ≤ −b} → 1 as n → ∞.



2260 Z. CHI

Thus, roughly speaking, λ�(Mn) asymptotically lies between τc and τc/k . In
particular, if p ∈ (0,1), then λ�(Mn) → τc in probability. To prove Theorem 1,
in Section 2, we show that λ�(Mn) is asymptotically dominated by τc/k . Then, in
Section 3, we show that μMn weakly converges in probability to a symmetric non-
degenerate distribution and characterize the moments of the limiting distribution in
terms of a random walk on a Galton–Watson tree. The proof uses the local conver-
gence of random graphs [5, 8]. In Section 4, we show that the essential supremum
of the limiting distribution is τc, which together with the result in Section 2 proves
Theorem 1. In this section, we also report some numerical results which suggest
that bounds for λ�(Mn) are not tight, especially the upper bound when p is large.
Finally, in Section 5, we provide a more explicit formula for the moments of the
limit of μMn , using the standard moment method. Some of the results in previous
sections can also be established by the method [11].

1.1. Notation. Following [2], a (labeled) graph G has no multiple edges or
self-loops, and all its edges are undirected. Denote by V (G) and E(G) the vertex
set and edge set of G, respectively. Each e ∈ E(G) is an unordered pair {u, v}, with
u = v ∈ V (G); u is called an endpoint of e, denoted u ∈ e. When direction has to
be taken into account, denote by (u, v) the directed edge starting at u and ending
at v. The adjacency matrix of G is AG = (εuv)u,v∈G with εuv = 1{{u, v} ∈ E(G)}.
Denote by |A| the cardinality of a set A. Denote |G| = |V (G)| and e(G) = |E(G)|,
and refer to them as the order and size of G, respectively. For brevity, denote
u ∈ G if u ∈ V (G). Denote by d(u,G) := |{e ∈ E(G) : u ∈ e}| the degree of u ∈
G. If G′ is another graph, denote by G ∪ G′ the graph with vertex set V (G) ∪
V (G′) and edge set E(G) ∪ E(G′), and denote G ∼ G′ if the two graphs are
isomorphic ([2], page 3). If v ∈ G and v′ ∈ G′, and if there is a graph isomorphism
σ : G → G′, such that σ(v) = v′, then (G,v) and (G′, v′) are called isomorphic
rooted graphs (rooted with v and v′, resp.). For a finite set I , denote by 1I the
column vector of 1’s indexed by I . For k ≥ 1, a path on I of length k is a sequence
v = (v1, . . . , vk+1) with vi ∈ I and vi = vi+1 for i ≤ k; note the requirement that
adjacent vi ’s be different. If vk+1 = v1, then v is said to be closed.

For properties of G(n, a), see [2, 3]. For a ∈ [0,1], denote by Bern(a) the
Bernoulli distribution with mass a on 1. Denote by Po(p) the Poisson distribu-
tion with mean p ≥ 0. The essential supremum of a measure ν on R is ess supν =
sup{x : ν(x,∞) > 0}. For M ∈ Mn and k ≥ 0, denote by βk(M) the kth moment
of μM , which equals (1/n) tr(Mk) ([1], equation (1.3.2)).

2. Upper bound of spectral radius. Fix c > 0 and p > 0. For n > p, let
An = AG with G ∼ G(n,p/n). Define Mn and Dn by (1). The spectrum of Mn

is identical to that of D
−1/2
n (cJn + An)D

−1/2
n . Since D

−1/2
n JnD

−1/2
n is of rank

one with the only nonzero eigenvalue being positive, by Weyl’s inequality ([16],
Corollary 4.3.3)

λi

(
D−1

n An

) ≤ λi(Mn) ≤ λi+1
(
D−1

n An

)
, 1 ≤ i < n.(2)
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Consequently, to prove the bound involving τc/k in Theorem 1, that is, given l ≥ 1,
P{λn−l(Mn) ≤ τc/k and λl(Mn) ≥ −τc/k} → 1, it suffices to prove the following.

PROPOSITION 2. Let p > 0 and k = �p�+1. Then P{�(D−1
n An) ≤ τc/k} → 1

as n → ∞.

For graph G, denote

KG = KG(c) = D−1
c1V (G)+AG1V (G)

AG(3)

and analogously Kn = D−1
n An. Put q = �(KG). By the Perron–Frobenius theorem

([16], page 534) q = λ|G|(KG) and if |G| > 1 and G is connected, then q > 0 and
there is a vector f = (f (u))u∈G with all fu > 0, such that

KGf = qf.(4)

Denote by N(u) the neighborhood of u in G, that is, the set of v ∈ G with {u, v} ∈
E(G).

LEMMA 3. Let G be connected with |G| > 1 and C = ∅ be a subset of V (G).
Denote by h(u) the distance of u ∈ G to C. Define ω(u) = f (u)qh(u). For i =
0,±1, define Ni(u) = {v ∈ N(u) : h(v) = h(u) + i} and di(u) = |Ni(u)|. Then

q−1
∑

d0(u)ω(u) + q−2
∑

d−1(u)ω(u)
(5)

= ∑[
d0(u) + d−1(u) + c

]
ω(u).

The result actually holds for any function h on V (G) with the property that
h(v) − h(u) ∈ {0,±1} for any u ∈ G and v ∈ N(u). It is also easy to generate
the result to integer-valued functions on V (G). However, so far only h defined in
Lemma 3 has proved to be useful.

PROOF OF LEMMA 3. Since N0(u), N−(u) and N+1(u) partition N(u), (4)
can be written as∑

v∈N−1(u)

f (v) + ∑
v∈N0(u)

f (v) + ∑
v∈N+1(u)

f (v) = q
[
c + d(u,G)

]
f (u).

Multiplying both sides by qh(u)−1 yields∑
v∈N−1(u)

ω(v) + q−1
∑

v∈N0(u)

ω(v) + q−2
∑

v∈N+1(u)

ω(v) = [
c + d(u,G)

]
ω(u).

Take sum over u. Since v ∈ N−1(u) ⇐⇒ u ∈ N+1(v) and v ∈ N0(u) ⇐⇒ u ∈
N0(v), ∑

u

∑
v∈N−1(u)

ω(v) = ∑
v

∑
u∈N+1(u)

ω(v) = ∑
v

d+1(v)ω(v)
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and likewise,∑
u

∑
v∈N0(u)

= ∑
v

d0(v)ω(v),
∑
u

∑
v∈N+1(u)

= ∑
v

d−1(v)ω(v).

Combining the equations and noticing d(u,G) = d0(u) + d−1(u) + d+1(u),
(5) then follows. �

LEMMA 4. Let G be a connected graph. If G is a tree or a unicyclic graph,
then

�(KG) < τc.(6)

Furthermore, if G is a unicyclic graph, then

�(KG) ≥ (1 + c/2)−1 with “=” ⇐⇒ G is a cycle.(7)

PROOF. First, let G be a tree. If |G| = 1, then KG = 0 and (6) is trivial. Let
|G| ≥ 2. Pick an arbitrary vertex θ ∈ G and let C = {θ}. It is easy to see that for
any u ∈ G, d0(u) = 0 and d−1(u) = 1{u = θ}. Then (6) follows from (5), which
now takes the form

q−2
∑
u=θ

ω(u) = (1 + c)
∑
u=θ

ω(u) + cω(θ).(8)

Next, let G be unicyclic. Let C be the cycle subgraph of G. Then |C| ≥ 3. The
subgraph of G obtained by removing the edges in C consists of |C| isolated trees,
each containing exactly one vertex in C. It can be seen that d0(u) = 21{u ∈ C} and
d−1(u) = 1{u /∈ C}. Then by (5),

(2/q)
∑
u∈C

ω(u) + q−2
∑
u/∈C

ω(u) = (c + 2)
∑
u∈C

ω(u) + (c + 1)
∑
u/∈C

ω(u).

If G is a cycle, then C = G and the equation yields q = 1/(1 + c/2). If G is
not a cycle, then

∑
u/∈C ω(u) > 0. If q ≤ 1/(1 + c/2), then from 2/q ≥ c + 2 and∑

u∈C ω(u) > 0, it follows that c + 1 ≥ q−2, or q ≥ τc > 1/(1 + c/2), which is a
contradiction. Thus, q > 1/(1+c/2). But then 2/q < c+2, implying q−2 > c+1,
or q < τc. �

It may be worth noting that if G is a tree, then |G| → ∞ does not guarantee that
�(KG) → τc. For example, suppose d(v,G) < 1 + c for all v ∈ G. Put d0 = �c�.
Then d(v,G) ≤ d0. Let f be as in (4) and θ = arg maxf (v). Then for k ≥ 1,∑

h(u)=k ω(u) ≤ dk
0qkf (θ) < [d0/(1+ c)]kω(θ), giving

∑
u=θ ω(u) ≤ bω(θ) with

b = ∑
k[d0/(1 + c)]k < ∞. Then by (8), q → τc.

PROOF OF PROPOSITION 2. By definition, Kn = D−1
n An = KG with G ∼

G(n,p/n). First, suppose 0 < p < 1. Write the connected components of G as
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G1, . . . ,Gs . Then KG can be partitioned as

KG =
⎛
⎜⎝

KG1

. . .

KGs

⎞
⎟⎠ .

The eigenvalues of KG therefore are exactly those of KGi
, counting multiplicity.

Since 0 < p < 1, P{all Gi are trees or unicyclic graphs} → 1 as n → ∞ ([3],
Corollary 5.8). This combined with Lemma 4 yields P{�(Kn) ≤ τc} → 1.

To continue, note that given 0 < p0 < p1 < 1, as n → ∞,

inf
p0≤p≤p1

Pp

{
�(Kn) ≤ τc

} → 1,(9)

where Pp denotes probability under G(n,p/n). Indeed, from the proof of Theo-
rem 5.7 and Corollary 5.8 in [3], as n → ∞, infp0≤p≤p1 P{every component of G

is a tree or a unicyclic graph} → 1. Then (9) follows from the same argument for
the already-proved case 0 < p < 1.

Now let p ≥ 1. Then k := �p� + 1 > 1. For n > p, let T1,n, . . . , Tk,n be
i.i.d. ∼ AG with G ∼ G(n,p′

n/n), where

p′
n = p

k − (k − 1)p/n
.

Since p′
n ∈ (0, n), G is well defined. Let Tn = (tij ) = ∑k

s=1 Ts,n. Since tij , i < j ,
are i.i.d., for any B = (bij ) ∈ {0,1}n×n with bij = bji and bii = 0,

P
{
Tn = B|Tn ∈ {0,1}n×n} = P{tij = bij , i < j}

P{tij ∈ {0,1}, i < j}
= ∏

i<j

P{tij = bij }
P{tij ∈ {0,1}} .

Since P{tij = 0} = (1 − p′
n/n)k and P{tij = 1} = k(p′

n/n)(1 − p′
n/n)k−1, direct

calculation shows that conditional on it being in {0,1}n×n, Tn has the same dis-
tribution as An. For i < j , P{tij ∈ {0,1}} ≥ 1 − [k(k − 1)/2](p′

n/n)2. On the
other hand, p′

n → p/k as n → ∞. Then for n large enough, P{Tn ∈ {0,1}n} >

exp(−p2), so letting �n = Dc1n+Tn1n and C = exp(p2), for any x,

P
{
�(Kn) > x

} = P
{
�
(
�−1

n Tn

)
> x|Tn ∈ {0,1}n×n}

(10)
≤ CP

{
�
(
�−1/2

n Tn�
−1/2
n

)
> x

}
.

Put �s,n = Dc1n/k+Ts,n1n and Bs,n = �
−1/2
s,n Ts,n�

−1/2
s,n . Then �n = �1,n + · · · +

�k,n and

�−1/2
n Tn�

−1/2
n = ∑

s

�−1/2
n �1/2

s,n Bs,n�
1/2
s,n �−1/2

n .
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Fix an arbitrary a ∈ (p/k,1). For n large enough, p′
n ∈ [p/k, a]. Then by (9),

the probability of the event that �(Bs,n) ≤ τc/k for all 1 ≤ s ≤ k tends to 1. On this
event, for any u ∈ R

n,∣∣u′�−1/2
n Tn�

−1/2
n u

∣∣ ≤ ∑
s

∣∣u′�−1/2
n �1/2

s,n Bs,n�
1/2
s,n �−1/2

n u
∣∣

≤ ∑
s

�(Bs,n)
∣∣�1/2

s,n �−1/2
n u

∣∣2
≤ τc/k

∑
s

∣∣�1/2
s,n �−1/2

n u
∣∣2 = τc/k|u|2.

It follows that P{�(�
−1/2
n Tn�

−1/2
n ) ≤ τc/k} → 1, so by (10), P{�(D−1

n An) ≤
τc/k} → 1. �

3. Convergence of ESD. Let An, Mn, Dn and Kn = D−1
n An be as in previ-

ous sections. We shall show that μMn weakly converges as n → ∞. From Weyl’s
inequality (2), μMn weakly converges in probability (resp., a.s.) ⇐⇒ μKn does so
in probability (resp., a.s.) and, provided the convergence holds, the two ESDs have
the same limit. Therefore, we shall focus on μKn instead. The approach we shall
take is the local convergence of random graphs; see [8] and references therein,
and [5] for extension to the ESD of random matrices whose entries belong to the
domain of attraction of stable laws.

Let G be a graph and v0 ∈ G. Fix c ≥ 0. Consider the following random walk on
G starting from v0 at step 0. If d(v0,G) ≥ 1, then if at step k ≥ 0 the random walk
is at v with d(v,G) = d(≥ 1), then at step k + 1, it either moves to a neighbor of v

with probability 1/(c + d), or is killed with probability c/(c + d). If d(v0,G) = 0,
then the random walk is killed at step 1, regardless of the value of c. Let

rk(G,v0, c) = P{the random walk is alive and at v0 at step k}.
Let ∅ be an arbitrary element. Denote by [(G,v0)] the class of graphs rooted
with ∅ that are isomorphic to (G,v0). Then rk(G,v0, c) depends on (G,v0) only
through [(G,v0)].

Recall that in order for Kn = D−1
n An to be always well defined, c has to be

strictly positive. In the following, we redefine Dn such that its ith diagonal element
is 1 if the entire ith row of An is 0. With this definition, c can be 0.

THEOREM 5. Let c ≥ 0. As n → ∞, μKn weakly converges in probability. The
weak convergence is a.s. if n is replaced with any subsequence nj with

∑
n−1

j <

∞. The limiting distribution is symmetric and nondegenerate, and for k ≥ 1, its
kth moment is βk = Erk(T ,∅, c), where T is a random Galton–Watson tree rooted
with ∅ and with Po(p) offspring distribution.
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Note that for any tree T , if k is odd, then rk(T ,∅, c) = 0 and hence βk = 0.
This immediately leads to the symmetry of the limiting distribution.

PROOF OF THEOREM 5. Put Kn = (xij ). Denote by Ck,n the set of closed
paths of length k on {1, . . . , n}. For i ∈ Ck,n, denote x(i) = xi1i2xi2i3 · · ·xik−1ik xiki1 .
Then for k ≥ 1 and s = 1, . . . , n, the sth diagonal entry of Kk

n is(
Kk

n

)
ss = ∑

i∈Ck,n,i1=ik=s

x(i).

Since x(i) is the probability that the random walk is alive after traversing the closed
path i, (

Kk
n

)
ss = rk(G, s, c), s = 1, . . . , n.

For a random walk on G that starts from s, if it returns to s at step k, then the
vertices it visits by then each has at most distance k − 1 from s, and so the
neighbors of each such vertex has at most distance k from s. Denote by Gk,s

the subgraph of G whose vertex set consists of vertices with distance from s no
greater than k and whose edge set consists of edges in G connecting these ver-
tices. Then rk(G, s, c) = rk(Gk,s, s, c). It is well known that, given s, as n → ∞,
G rooted with s converges locally to T in distribution. This means that for any
k, Gk,s rooted with s converges in distribution to Tk , the subtree of T consisting
of ∅ and its first k generations of descendants; see, for example, [8]. As a result,
rk(Gk,1,1, c) → rk(Tk,∅, c) = rk(T ,∅, c) in distribution. By the above displays,
βk(Kn) = n−1 ∑n

s=1 rk(G, s, c). Then by exchangeability and dominated conver-
gence, Eβk(Kn) = Erk(G,1, c) = Erk(Gk,1,1, c) → Erk(T ,∅, c).

We need to show that βk(Kn) → βk in probability as n → ∞, and a.s. if n is
replaced with nj → ∞ such that

∑
n−1

j < ∞. Put ξs = rk(G, s, c). By exchange-
ability,

Var
[
βk(Kn)

] = n−1 Var(ξ1) + 2
(
1 − n−1)

Cov(ξ1, ξ2)
(11)

≤ n−1 + 2
∣∣Cov(ξ1, ξ2)

∣∣.
Let S1 = 1{distance between 1 and 2 in G is > 2k}. Then

P{S1 = 0} ≤
2k−1∑
l=0

P
{∃i1, . . . , i2k−1 s.t. {it , it+1} ∈ E(G),

0 ≤ t < 2k, with i0 = 1, i2k = 2
}

≤
2k−1∑
l=0

n2k−1(p/n)2k = Ok(1/n),

where Ok(·) denotes that the implicit constant depends only on k in addition to
the fixed p and c. Note that when S1 = 1, Gk,1 and Gk,2 are disjoint. Let S2 =
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1{|Gk,s | ≤ n/2, s = 1,2}. Denote by dis(u, v) = distance between u and v in G.
By |G0,s | = |{u : dis(s, u) = 0}| = 1,

E
∣∣{u : dis(s, u) = k

}∣∣ ≤ E

[ ∑
v:dis(s,v)=k−1

n∑
u=1

1
{{u, v} ∈ E(G)

}]

≤ pE
∣∣{u : dis(s, u) = k − 1

}∣∣,
and induction, E|Gk,s | ≤ 1 + p + · · · + pk = Ok(1). Then by Markov inequal-
ity, P{S2 = 0} = Ok(1/n). Let S = S1S2. Then P{S = 0} = Ok(1/n). Condition-
ing on S = 1, [(Gk,1,1)] and [(Gk,2,2)] are i.i.d. ∼ [(Gk,1,1)] conditioning on
|Gk,1| ≤ n/2. Since for s = 1,2, ξs = rk(Gk,s, s, c) only depends on [(Gk,s, s)],
Cov(ξ1, ξ2|S = 1) = 0. By exchangeability E(ξ1|S) = E(ξ2|S), denoted by hS .
Then

Cov(ξ1, ξ2) = E
[
Cov(ξ1, ξ2|S)

] + Cov
(
E(ξ1|S),E(ξ2|S)

)
= Cov(ξ1, ξ2|S = 0)P{S = 0} + Var(hS)

= Ok(1/n) + (h1 − h0)
2P{S = 0}P{S = 1} = Ok(1/n),

so by (11), Var[βk(Kn)] = Ok(n
−1). This implies that βk(Kn) − E[βk(Kn)] → 0

in probability, so βk(Kn) → βk in probability. Moreover, for nj → ∞ with∑
n−1

j < ∞, by the Borel–Cantelli lemma, βk(Knj
)−E[βk(Knj

)] → 0 a.s., giving
βk(Knj

) → βk a.s.
Since the entries of Kn are nonnegative with row sums no greater than 1,

�(D−1
n An) ≤ 1 and hence μKn is supported in [−1,1]. Meanwhile, by the Weier-

strass theorem, polynomials are dense in C([−1,1]). Then by the convergence in
probability of βk(Kn) and standard results on weak convergence ([9], Section 8.4),
μKn weakly converges in probability to a probability distribution with support in
[−1,1] and moments βk . Finally, for any nj → ∞ with

∑
n−1

j < ∞, the a.s. weak
convergence of the ESD of Knj

follows from the a.s. convergence of βk(Knj
). �

4. Essential supremum of the limit of ESD. Let μ∞ be the limiting distri-
bution of μKn , where again Kn = D−1

n An. The main result of this section is the
following.

THEOREM 6. For any p > 0, ess supμ∞ = τc.

Thus, for fixed c > 0, as p → ∞, ess supμ∞ does not vanish. This may be
compared to the case where the underlying random graph follows Gn,d . By [22],
the corresponding essential supremum is 2

√
d − 1/(c+d) so, given c > 0, it tends

to 0 as d → ∞.

PROOF OF THEOREM 6. Given s ≥ 1, the probability qs that T is a tree on
{∅, v1, . . . , vs} with E(T ) = {{∅, vi}, i = 1, . . . , s} is positive. For this T and k =
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2m, it is easy to get rk(T ,∅, c) = [s/(c + s)]m[1/(c + 1)]m. Then by Theorem 5,
βk ≥ qs[s/(c + s)]m[1/(c + 1)]m, yielding ess supμ∞ ≥ √

s/(c + s)τc. Letting
s → ∞ then gives ess supμ∞ ≥ τc.

To show ess supμ∞ ≤ τc, it suffices to consider c > 0. For k = 2m, arguing as
in the proof of Theorem 5, βk = Erk(T ,∅, c) = Erk(Tm+1,∅, c) = E(Kk

Tm+1
)∅∅.

We claim that for any finite graph G, v ∈ G, and k ≥ 1,∣∣(Kk
G

)
vv

∣∣ ≤ �(KG)k.(12)

Together with Lemma 4, this implies |(Kk
Tm+1

)∅∅| ≤ τ k
c . As a result βk ≤ τ k

c , and
hence ess supμ∞ ≤ τc, which completes the proof.

To prove (12), suppose V (G) = {1, . . . , n}. Then KG = D−1
a AG, where a =

(a1, . . . , an)
′ = c1n + AG1n. Let b = (

√
a1, . . . ,

√
an)

′. Then Kk
G = D−1

b BkDb,
where B = D−1

b AGD−1
b . Since Db is diagonal, (Kk

G)ii = (Bk)ii , i ≤ n. Since B

is symmetric, so is Bk . In general, for any symmetric real-valued matrix H , since
�(H) ± H is nonnegative definite, maxi |Hii | ≤ �(H). Thus, |(Kk

G)ii | ≤ �(Bk) =
�(B)k = �(KG)k , as claimed. �

We now can prove Theorem 1. Without loss of generality, let b ∈ (0, τc) be
a continuity point of the distribution function of μ∞. Then by Theorems 5–6,
μKn(J ) → μ∞(b,∞) > 0 in probability for J = (−∞,−b), (b,∞), and so for
any l ≥ 1, P{λl(Kn) ≤ −b and λn−l+1(Kn) ≥ b} → 1. Together with Proposi-
tion 2, this yields

P
{
b ≤ λn−l+1(Kn) ≤ τc/k and −τc/k ≤ λl(Kn) ≤ −b

} → 1.

Since the convergence holds for all l ≥ 1, then by Weyl’s inequality (2), the proof
is complete.

We conducted a simulation study to examine the tightness of the bounds in The-
orem 1. Given c, for each p ∈ {0.5,1,1.5,2,2.5,3}, we used MATLAB function
eig to calculate λ�(Mn) for 200 randomly sampled Mn with n = 4000. In each
panel of Figure 1, the boxplot of the sample values of λ�(Mn) is shown as a func-
tion p. On each box, the central mark is the sample median, the edges of the box are
the 1st and 3rd sample quartiles, the whiskers extend to the most extreme sample
values considered by MATLAB to be nonoutliers, and the outliers are plotted indi-
vidually as “x”. The y-coordinate of the long horizon line extending from p = 0.5
to 3 equals τc. As Figure 1 shows, for p = 0.5 and most of p ≥ 1, even when
n = 4000, λ�(Mn) is still quite below τc. Since λ�(Mn) is asymptotically lower
bounded by τc according to Theorem 6, this suggests that its convergence is slow.
The plots also indicate that for different values of c, there are different values of
p for which the convergence is fastest in terms of how fast λ�(Mn) approaches or
goes above τc and how fast its variation decreases. Among all the pairs of c and p,
only (c,p) = (0.5,1.5) and (1,2) generated a significant number of λ�(Mn) that
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FIG. 1. Boxplots of randomly sampled λ�(Mn).

were no less than τc, with the fraction of such λ�(Mn) equal to 22% and 20%, re-
spectively. When n was increased to 6000, the fraction changed to 18% and 22%,
respectively. However, the differences in fraction are not statistically significant.
To see if the relatively high fractions were due to fluctuations of the bulk of the
eigenvalues, we counted the total number of eigenvalues with absolute values no
less than τc. When n = 4000, for each pair, there were 200 × 4000 = 8 × 105 ab-
solute eigenvalues in total. Only 246 and 243 of them, respectively, were no less
than τc. When n = 6000, the counts changed to 239 and 246, respectively. Thus,
the fluctuation of the bulk had little to do with the relatively high percentages of
λ�(Mn) greater than τc.

We were unable to go beyond n = 6000 due to limited computing capacity.
Nevertheless, the numerical results suggest that for p > 1, τc is not a tight lower
bound, at least in the probabilistic sense that there is t ′ > τc, such that P{λ�(Mn) ≥
t ′} → 0. The numerical results also suggest, more convincingly, that the upper
bound in Theorem 1 is far from being tight, especially for large p. It would be
interesting to see whether λ�(Mn) has a nonrandom limit or weakly converges to
a nondegenerate distribution and in either case, at what rate of convergence.

5. A formula for moments of the limit of ESD. This section gives a more
explicit formula for the moments βk of the limiting distribution μ∞. To state the



TUNABLE EXTREMAL EIGENVALUES 2269

result, if v is a path on In := {1, . . . , n}, denote by [v] the graph whose vertex
set consists of the distinct elements among vi , and whose edge set consists of the
distinct unordered pairs among {vi, vi+1}, 1 ≤ i ≤ k. Denote by Ck,n the set of
closed paths of length k on In. Denote by n(·,v) the number of times an object
appears in v. Thus, for u,u′ ∈ I and e = {u,u′}, n(u,v) = ∑k+1

i=1 1{vi = u} and
n(e,v) = ∑k

i=1 1{{vi, vi+1} = e}. Also, denote n+(u,v) = ∑
x∈I n((u, x),v), that

is, the number of directed edges in v starting at u. Denote by En the set of edges
of the complete graph on In. Following the definition on page 17 of [1], a path
i ∈ Ck,n is called canonical if i1 = 1 and ij ≤ max(i1, . . . , ij−1) + 1 for 2 ≤ j ≤ k.
For such a path i, if |[i]| = t , then the set of distinct values of ij is {1, . . . , t}. Let

�k,t = {
i ∈ Ck,n : i is canonical, [i] is a tree of size t

}
.

As long as n ≥ t , the definition is independent of n. Note that for i ∈ Ck,n, [i] is a
tree ⇐⇒ |[i]| = e([i]) + 1, and when this is the case, each e ∈ E([i]) is traversed
by i on both directions the same number of times, and hence k is even. Therefore,
�k,t = ∅ if k is odd.

PROPOSITION 7. Let c > 0. Then for even k = 2m,

βk =
m+1∑
t=2

pt−1
∑

i∈�k,t

t∏
a=1

E
[(

c + d
(
a, [i]) + ξ

)−n+(a,i)]
, ξ ∼ Po(p).

PROOF. Given n, write An = (εij ) ∈ {0,1}n×n. For e = {i, j} ∈ En, denote
εe = εij = εji . Put

wi = c +
n∑

j=1

εij , xij = εij /wi.

For (yij ) ∈ R
n×n and (zi) ∈ R

n, and for i ∈ Ck,n, denote y(i) = yi1i2yi2i3 · · ·
yik−1ik yiki1 and z(i) = zi1 · · · zik . Then from the proof of Theorem 5,

E
[
tr

(
Kk

n

)] = ∑
i∈Ck,n

E
[
x(i)

]
.(13)

Given i ∈ Ck,n, let t = |[i]| and s = e([i]). Since ε(i) = ∏
e∈E([i]) ε

n(e,i)
e with all

n(e, i) ≥ 1, x(i) = ε(i)/w(i) = 0 ⇐⇒ εe = 1 for all e ∈ E([i]) ⇐⇒ ε(i) = 1. As
εe, e ∈ E([i]), are i.i.d. ∼ Bern(p/n), P{ε(i) = 1} = (p/n)s . For j ≤ k, wij ≥
c + εij ij+1 and {ij , ij+1} ∈ E([i]). Consequently, ε(i) = 1 implies wij ≥ c + 1 for
all j . As a result,

E
[
x(i)

] = E
[
1
{
ε(i) = 1

}
/w(i)

] ≤ (c + 1)−kP
{
ε(i) = 1

} = (c + 1)−k(p/n)s.
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Since [i] is connected, 1 ≤ e([i]) ≤ k and 2 ≤ |[i]| ≤ e([i]) + 1. For 2 ≤ t ≤ k, the
number of i ∈ Ck,n with |[i]| = t is less than

(n
t

)
tk . As a result, for n ≥ 2,

∑
i∈Ck,n:|[i]|≤e([i])

E
[
x(i)

] =
k∑

s=1

s∑
t=2

∑
i∈Ck,n:|[i]|=t,e([i])=s

E
[
x(i)

]

≤
k∑

s=1

s∑
t=1

nt tk(c + 1)−k(p/n)s

≤ (c + 1)−k
k∑

s=1

skps
s∑

t=1

nt−s ≤ 2(c + 1)−k
k∑

s=1

skps.

Since p and c are fixed, then by (13)

E
[
tr

(
Kk

n

)] = ∑
i∈Ck,n:|[i]|=e([i])+1

E
[
x(i)

] + Ok(1) as n → ∞.(14)

Let i be a path counted on the right-hand side of (14) and |[i]| = t . Then 2 ≤ t ≤
m + 1 and

x(i) = ε(i)
w(i)

=
t∏

a,b=1

(
εab

wa

)n((a,b),i)
.

Clearly, x(i) is a deterministic function of An, denoted by F(An). Arrange the
elements of V ([i]) as z1, . . . , zt in the order of initial appearance in i and let
σ(zl) = l. Then σ : V ([i]) → {1, . . . , t} is the unique bijection such that σ(i) :=
(σ (i1), . . . , σ (ik), σ (i1)) ∈ �k,t . Extend σ to a permutation of {1, . . . , n}, still de-
noted σ . Let S = (sij ) ∈ Mn with sij = 1{i = σ(j)}. From S′AnS = (ε̃ij ) with
ε̃ij = ∑

kl skiεij slj = εσ(i)σ (j), x(σ (i)) = ε(σ (i))/w(σ(i)) = F(S′AnS). Since
An ∼ S′AnS, then x(i) ∼ x(σ (i)), in particular, E[x(i)] = E[x(σ (i))].

It is easy to see that for each i ∈ �k,t , there are exactly n!/(n− t)! paths counted
on the right-hand side of (14) that can be mapped in the above way to i. As a
result,

E
[
tr

(
Kk

n

)] =
m+1∑
t=2

n!
(n − t)!

∑
i∈�k,t

E
[
x(i)

] + Ok(1), n → ∞.(15)

Given t = 2, . . . ,m + 1 and i ∈ �k,t , for a = 1, . . . , t , write

qa = ∑
a∈e∈E([i])

εe, ya = ∑
a∈e∈Et\E([i])

εe, Sa = ∑
a∈e∈En\Et

εe.

Then wa = c + qa + ya + Sa . Put y = (y1, . . . , yt ). Then y, S1, . . . , St , and εe,
e ∈ E([i]), are all independent, and x(i) = 0 ⇐⇒ εe = 1 for all e ∈ E([i]). Since
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e([i]) = t − 1, then

E
[
x(i)

] = E
[
x(i)1

{
εe = 1 ∀e ∈ E

([i])}]
= (p/n)t−1E

[
t∏

a,b=1

(c + qa + ya + Sa)
−n((a,b),i)

∣∣∣εe = 1 ∀e ∈ E
([i])

]
.

On the other hand, when εe = 1 for all e ∈ E([i]), qa = d(a, [i]) for all a =
1, . . . , t . Then

E
[
x(i)

] = (p/n)t−1E

[
t∏

a=1

(
c + d

(
a, [i]) + ya + Sa

)−∑t
b=1 n((a,b),i)

]

= (p/n)t−1E

[
t∏

a=1

(
c + d

(
a, [i]) + ya + Sa

)−n+(a,i)
]
.

Let n → ∞. Since t is fixed, (y, S1, . . . , St ) → (0, ξ1, . . . , ξt ) in distribution,
with ξi i.i.d. ∼ Po(p). Then by (15) and dominated convergence, for k =
2m,

E
[
βk(Kn)

] = n−1E
[
tr

(
Kk

n

)] →
m+1∑
t=2

pt−1
∑

i∈�k,t

E

[
t∏

a=1

(
c + d

(
a, [i]) + ξa

)−n+(a,i)
]
,

finishing the proof. �
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