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We consider the classical estimation problem of an unknown drift pa-
rameter within classes of nondegenerate diffusion processes. Using rough
path theory (in the sense of T. Lyons), we analyze the Maximum Likelihood
Estimator (MLE) with regard to its pathwise stability properties as well as
robustness toward misspecification in volatility and even the very nature of
the noise. Two numerical examples demonstrate the practical relevance of our
results.

1. Introduction. Let W be d-dimensional Wiener process and A ∈ V, some
fixed finite-dimensional vector space. Consider sufficiently regular h : Rd →
L(V,Rd) and � : Rd → L(Rd,Rd) so that3

dXt = h(Xt)Adt + �(Xt) dWt(1.1)

has a unique solution, started from X0 = x0. Throughout we shall assume nonde-
generacy of the matrix-valued diffusion coefficient �. The important example of
multidimensional Ornstein–Uhlenbeck dynamics, for instance, falls in the class of
diffusions considered here. We are interested in estimating the drift parameter A,
given some observation sample path {Xt(ω) = ωt : t ∈ [0, T ]}. To this end, we
consider the classical Maximum Likelihood Estimator (MLE), of the form

ÂT = ÂT (ω) = ÂT

(
X(ω)

) ∈V

relative to the reference measure given by the law of the drift-free process. Note
that ÂT is a functional on pathspace C([0, T ],R): for every (observation) sample
path X(ω) = ω one has a corresponding estimate ÂT (X(ω)). Let us also recall
that these MLEs are based on the Girsanov density of the pathspace measures,
with- versus without-drift, respectively, see, for example, the standard text books
of Kutoyants [12] or Liptser–Shiryaev [13]. It will be instructive to consider the
simplest possible example with its fully explicit solution.
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EXAMPLE 1 (Scalar Ornstein–Uhlenbeck process). In (1.1), take d = 1,
h(x) = x, � ≡ σ > 0 and scalar drift parameter A. The MLE for this parameter is
then given explicitly by

ÂT (X) = X2
T − x2

0 − σ 2T

2
∫ T

0 X2
t dt

.(1.2)

Despite its simplicity, the above example exhibits a few interesting properties:
First, it is not well defined for every possible path X ∈ C([0, T ],R), and indeed
X ≡ 0 leaves us with an ill-defined division by zero. Second, provided we stay
away from the zero-path, we have pathwise stability in the sense that two ob-
servation X and X̃ which are uniformly close on [0, T ] give rise to close esti-
mations ÂT (X) ≈ ÂT (X̃). (In other words, the functional ÂT is continuous on
C([0, T ],R) − {0}, with respect to the uniform topology.) At last, the estimator
depends continuously on the parameter σ , despite the fact that pathspace measures
associated to different values of σ are actually mutually singular.4

In order to understand such stability considerations in greater generality, we
now review the MLE construction for a general diffusion as given in (1.1). To
this end, recall that by Girsanov’s theorem, under the standing assumption that
C := ��T is nondegenerate, the corresponding measures on pathspace, say P

A,�

and P
0 := P

0,� , are absolutely continuous so that the MLE method is applicable.
Standard computations, partially reviewed below, show that one has

IT ÂT = ST ,

where

ST =
∫ T

0
h(Xs)

T C−1(Xs) dXs ∈ V
∗

and

IT =
∫ T

0
h(Xs)

T C−1(Xs)h(Xs) ds ∈ L
(
V,V∗)

,

where the first integral above (against dX) is understood in Itô sense. Of course,
degeneracy may be a problem, for instance, when h ≡ 0. One the other hand, for
“reasonable” nondegenerate h [such as h(x) = x in the Ornstein–Uhlenbeck model
case] one can expect a.s. invertibility of IT and thus an a.s. well-defined estimator

ÂT (ω) = I−1
T ST ∈ V.(1.3)

Let us emphasize that ST involves a stochastic (here: Itô) integral so that ST is
also only defined up to null-sets. At this stage, one has (at best) a measurable

4The laws of σW and σ̃W are mutually singular when σ �= σ̃ ; just compute the quadratic variation.
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map ÂT : C([0, T ],Rd) → V with the usual null-set ambiguity.5 The following
questions then arise rather naturally:

(Q1) Under what conditions on h (and ω) is IT = IT (X(ω)) actually invertible?
[For P0-a.e. X(ω) = ω, say, or provide a robust pathwise condition.]

(Q2) Assuming suitably invertibility of IT , so that the estimator ÂT is well de-
fined, do we have “robustness” of the estimate problem in the following sense: if
X ≈ X̃ (e.g., in the sense that supt∈[0,T ] |Xt − X̃t | � 1 or perhaps a more compli-
cated metric) is it true that

ÂT (X) ≈ ÂT (X̃)?

In other words, is the functional ÂT continuous in some topology?
(Q3) Write Âσ

T to indicate the MLE under volatility specification � = σI . As-
sume we are not entirely certain about the value of σ . Is it true—a rather sensible
request from a user’s perspective—that

σ ≈ σ̃ 	⇒ Âσ
T ≈ Âσ̃

T ?

We emphasize that (Q3) is a difficult question, last not least because the respec-
tive pathspace measures are singular whenever σ �= σ̃ . Hence, it is not even clear if
one is allowed to speak “simultaneously” of Âσ

T for all σ .6 The situation becomes
even worse if one considers all possible volatility specifications in a class like{

� : c−1I ≤ ��T ≤ cI
}
.

Indeed, this space is infinite-dimensional, leaving no hope to “fix” things with
Kolmogorov-type criteria. On the other hand, explicit computations (e.g., in the
Ornstein–Uhlenbeck case, Example 1 and Section 7) show that Â is extremely
well behaved in σ . Hence, we can certainly hope for some sort of robustness of the
MLE with respect to the volatility specification.

The last question we would like to investigate is about misspecification of the
noise W . The assumption of independent increments of W is a strong limitation
in applications and a nontrivial dependence structure in time appears in many real
data examples.

(Q4) Suppose that the model is misspecified in the sense that (1.1) is in fact
driven by a fractional Brownian motion WH with Hurst index H . Is the MLE
ÂT robust in some sense (e.g., when H ≈ 1/2) with respect to this change of the
model?

5The situation is reminiscent of SDE theory: the Itô-map is also a measurable map on pathspace,
in general only defined up to null-sets.

6The situation is reminiscent of stochastic flow theory: for each fixed starting point, SDE solution
may be (well-) defined (up to null-sets), but it is far from clear—and not true in general in infinite
dimension—that one can define solutions for all starting points on a common set of full measure.
The financial theory of uncertain volatility (see [1] and [15]) also poses related problems.
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Our main theorem in Section 4 provides reasonable answers to question (Q1)
to (Q3) based on T. Lyons’ rough path theory [8, 9, 16, 18], a short review of
which will be given in Section 3 below. It is worth emphasizing that the rough path
ideas are pivotal to the pathwise robustness results obtained here: in Section 7, we
give an explicit example illustrating the failure of robustness if one uses the usual
uniform topology. Question (Q4) will be addressed in Section 6.

In Section 8, we present two numerical examples demonstrating the practical
value of our theoretical results. The first one concerns an Ornstein–Uhlenbeck
process driven by physical Brownian motion in a magnetic field. As was re-
cently demonstrated in [7], physical Brownian motion in a magnetic field does
not converge—in the zero mass limit—to standard Brownian motion on the level
of rough paths; a correction term appears. Nonetheless, our main theorem tells us
how to appropriately correct the estimator for the OU process driven by a standard
Brownian motion in order to still get reasonable results. The second example con-
cerns the Ornstein–Uhlenbeck process driven by fractional Brownian motion WH

with Hurst parameter H . For H < 1/2 naively applying the classical estimator is
not well-posed, since the Itô integrals are not well defined. There exists, though,
a canonical rough path lift for H > 1/3 and plugging this into the estimator of
Theorem 8 leads to surprisingly good results even for H �= 1/2. The theoretical
background for this example is presented in Section 6; most importantly, the fact
that the rough path lift is continuous in H .

The interplay of statistics and rough paths is very recent. The first and (to our
knowledge) only paper is [20] where the authors consider general rough differ-
ential equations driven by random rough paths and propose parametric estima-
tion of the coefficients based on Lyons’ notion of expected signature. That said,
the present paper constitutes the first use of rough path analysis toward robust-
ness questions related to classical statistical estimation problems for diffusion pro-
cesses.

2. A first step: Stratonovich estimators. Let us recall a few basic facts about
convergence of discrete approximations of stochastic integrals. This is a central
issue when applying the maximum likelihood estimators in the context of discrete
observations and will be of importance for our numerical examples in Section 8.

Let X be a (possibly multi-dimensional) continuous semimartingale. Then for
regular enough functions f :

(i) the left-point Riemann sums converge to the Itô integral in probability

∑
[u,v]∈Pn

f (Xu)[Xv − Xu] →n→∞
∫

f (Xr) dXr,

for any sequence Pn of partitions with mesh-size going to 0;
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(ii) the trapezoidal Riemann sums converge to the Stratonovich integral in
probability

∑
[u,v]∈Pn

1

2

[
f (Xu) + f (Xv)

][Xv − Xu] →n→∞
∫

f (Xr) ◦ dXr,

for any sequence Pn of partitions with mesh-size going to 0;
(iii) for any reasonable7 smooth approximations Xn →n→∞ X the correspond-

ing classical Riemann–Stieltjes integrals converge to the Stratonovich integral in
probability∫

f
(
Xn

s

)
dXn

s =
∫

f
(
Xn

s

)
Ẋn

s ds →n→∞
∫

f (Xr) ◦ dXr.

The first point illustrates how a MLE is usually used in practice, for discrete time
observations: Since the process X is only known at a finite number of time points
(discrete observations), the stochastic integrals are usually approximated by left-
point Riemann sums. This is in fact a quite unstable procedure, as will be illustrated
in Section 6.

On the other hand, looking at (iii), it is reasonable to expect, that any positive
answer to (Q2) will start out with the Stratonovich formulation of the MLE:

IT (X)ÂT (X) = SStrat
T (X),(2.1)

where

SStrat
T (X)i,j =

∫ T

0
hi(Xs)

T C−1
j · (Xs) ◦ dXs

− 1

2

∫ T

0
Tr

[
D

(
hiC

−1
j ·

)
(Xs)�(Xs)�(Xs)

T ]
ds,

IT (X) =
∫ T

0
h(Xs)

T C−1(Xs)h(Xs) ds ∈ L
(
V,V∗)

.

There is, at first, only a notational difference between SStrat and S, since we have
just rewritten the Itô integral as a Stratonovich one. Taking a hint from point (iii)
above though, we define from now on SStrat

T (X) for smooth paths X (a null-set un-
der the diffusion measure) with the Stratonovich integrals replaced by Riemann–
Stieltjes integrals. Before stating our first stability result which justifies this defini-
tion, we give the following well-posedness result on the estimator. We assume this
result to be folklore in the statistical community, but were unable to find a relevant
reference. The proof will be given in Section 5.

7For example, piecewise linear, mollified, etc.
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PROPOSITION 2. The MLE for A in equation (1.1) is characterized by (2.1).
Moreover, if we define

Rh := {
X ∈ C

([0, T ],Rd) : ∀M ∈ V,M �= 0,∃t ∈ [0, T ] s.t. h(Xt)M �= 0
}
,

and assume that

P
0,�(Rh) = 1,

then IT = IT (X) is P
0,�-almost surely invertible so that AT = AT (X) :=

I−1
T ST (X) is P0,�-almost surely well defined.

We then have the following first stability result.

PROPOSITION 3. Assume that P0,�(Rh) = 1, and let Xn be piecewise linear
approximations to X such that Rh has full measure under the image measure of
Xn for all n. Then in probability

ÂStrat
T

(
Xn) := I−1

T

(
Xn)

SStrat
T

(
Xn) →n→∞ ÂT (X).

PROOF. The claimed stability (in probability) of Stratonovich integrals, which
can be found, for example, in Section 6.6 in [10] (see [8], Section 9.2, for a modern
proof), yields SStrat

T (Xn) → SStrat
T (X) as n → ∞. Moreover I−1

T is continuous in
supremum norm in X on Rh, and hence the statement follows. �

Note that the preceding result only concerns convergence in probability; it there-
fore does not provide a good answer to (Q2). To wit, for the Stratonovich estimator
ÂStrat

T it is in general not true that paths that are uniformly close in supremum norm,
that the resulting estimates will be close. We give an explicit (deterministic) coun-
terexample in Section 7. A stochastic counterexample will be given in Section 8,
in the setting of a physical Brownian motion in a magnetic field.

In order to fix this problem (and in order to answer the other questions), we will
adopt a rough path perspective in the next section. To this end, we now give some
recalls on rough path theory.

3. Brief review of rough paths. In this section, we introduce some basic no-
tions from Lyons’ rough paths theory. Our notation here follows Friz–Hairer [8],
which is also a source of much more on this material, together with the standard
references [9, 16, 18].

We start by giving a definition of Hölder continuous rough paths that is suitable
for our purpose. Let X : [0, T ] →R

d be a smooth path and define the second-order
iterated integrals X : [0, T ]2 →R

d ⊗R
d of X by

Xs,t :=
∫ t

s
Xs,r ⊗ dXr,



PATHWISE STABILITY OF LIKELIHOOD ESTIMATORS 2175

where Xs,r = Xr − Xs are the increments of X. Then the pair (X,X) has the
analytic property

(ANA)α :
{ |Xs,t |� |t − s|α,

|Xs,t |� |t − s|2α

for any α ≤ 1 and satisfies the algebraic relation

(ALG) : Xs,t + Xs,t ⊗ Xt,u +Xt,u = Xs,u,(
ALG′) : 2 Sym(Xs,t ) = Xs,t ⊗ Xs,t ,

for s, t, u ∈ [0, T ]. More generally speaking, these two conditions are used to de-
fine a rough path in R

d .

DEFINITION 4. Fix α ∈ (1/3,1/2]. Any X = (X,X) for which (ANA)α +
(ALG) holds is called (weak α-Hölder) rough path. If also (ALG′) is satisfied call
it geometric. The space of α-Hölder rough paths and its subset of geometric rough
paths are denoted by C α([0, T ],Rd) and C α

g ([0, T ],Rd), respectively.

Rough paths arise naturally as sample paths of stochastic processes. The basic
example is a d-dimensional Brownian motion B enhanced with its iterated inte-
grals

Bs,t :=
∫ t

s
Bs,r ⊗ dBr ∈ R

d×d,

where the integral on the right-hand side can be understood in Itô or Stratonovich
sense leading to Itô or Stratonovich enhanced Brownian motion, respectively. Then
with probability one B = (B,B) ∈ C α([0, T ],Rd) for any α ∈ (1/3,1/2) and
T > 0. We also say that we can lift B to a rough path B by adding the second-
order terms B. A similar rough paths lift is given in our main result for the solution
of (1.1).

To investigate stability questions for the parameter estimation problem in a path-
wise sense, we need suitable metric on C α([0, T ],Rd). It turns out that an adequate
metric on C α([0, T ],Rd) can be defined from (ANA)α as follows.

DEFINITION 5. For X,Y ∈ C α([0, T ],Rd) the α-Hölder rough path metric is
given by

ρα(X,Y) := sup
s �=t∈[0,T ]

|Xs,t − Ys,t |
|t − s|α + sup

s �=t∈[0,T ]
|Xs,t −Ys,t |

|t − s|2α
.

REMARK 6. In the original formulation of rough paths theory in [17], distance
was measured in p-variation norm instead of the α-Hölder norm used here. The
results in this work can be rephrased without difficulty in a p-variation setting.
This applies in particular to the continuity of the map ÂT in Theorem 8(ii) and
(iii) below.



2176 J. DIEHL, P. FRIZ AND H. MAI

We conclude this section with rough integrals and its relation to stochastic in-
tegration. Let P be a partition of [0, T ] and denote by |P| the length of its largest
element. For X = (X,X) ∈ C α([0, T ],Rd) and α > 1/3 we aim at integrating
F(X) for F ∈ C2

b(Rd,L(Rd,Rm)) against X. It is well known that classical Young
integration is possible for expressions of the form∫ T

0
F(Xt) dXt

only if X ∈ Cα for α > 1/2. This excludes, for example, paths of Brownian motion
which are of order α < 1/2. This barrier was overcome by rough paths theory by
taking into account “second order” terms. Indeed, one can show that the limit in∫ T

0
F(Xs) dXs := lim|P|→0

∑
(s,t)∈P

F(Xs)Xs,t + DF(Xs)Xs,t

exists and is called a (Lyons’) rough integral [17]. Most importantly for us, rough
integrals depend continuously in rough path metric on X and by taking X = B to
be (Stratonovich) enhanced Brownian motion one recovers with probability one
the Stratonovich integral.

We shall need the following standard result; see, for example, Friz–Victoir [9],
Section 13, or Friz–Hairer [8], Section 10.

PROPOSITION 7. Fix α ∈ (1/3,1/2). Then, P0,�-almost surely, X(ω) lifts to
a (random) geometric α-Hölder rough path, that is, a random element in the rough
path space C α

g ([0, T ],Rd) (as reviewed in the next section), via the (existing) limit
in probability

X(ω) := (
X(ω),X(ω)

) := lim
n

(
Xn,

∫
Xn ⊗ dXn

)
,

where Xn denotes dyadic piecewise linear approximations to X.

4. Main result. We are now ready to formulate our main result. By construct-
ing an estimator on rough path space, we resolve the pathwise stability problem
that is inherent to the Stratonovich estimator (compare Proposition 3 and Sec-
tion 7).

THEOREM 8. Assume that P0,�(Rh) = 1, so that the MLE Â is well defined
by Proposition 2.

(i) Define D ⊂ C α
g ([0, T ],Rd) by

D = {
(X,X) ∈ C α

g : X ∈ Rh

}
.

Then for every fixed, nondegenerate volatility function �,

P
0,�[

X(ω) ∈ D
] = 1.
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(ii) There exists a deterministic, continuous (with respect to α-Hölder rough
path metric; see Definition 5) map

ÂT :
{
D→V,

X �→ ÂT (X)

so that, for every fixed, nondegenerate volatility function �,

P
0,�[

ÂT

(
X(ω)

) = ÂT (ω)
] = 1.(4.1)

In fact, ÂT is explicitly given, for (X,X) ∈ D⊂ C α
g , by

Â(X,X) := I−1
T (X)ST (X,X),

where

IT (X) :=
∫ T

0
h(Xs)

T C−1(Xs)h(Xs) ds,

ST (X,X)i,j :=
∫ T

0
hi(Xs)

T C−1
j · (Xs) dXs

− 1

2

∫ T

0
Tr

[
D

(
hiC

−1
j ·

)
(Xs)�(Xs)�(Xs)

T ]
ds

and the dX integral is understood as a (deterministic) rough integration against
X = (X,X).

(iii) The map ÂT is also continuous with respect to the volatility specification.
Indeed, fix c > 0 and set

� := {
� ∈ C2

b : c−1I ≤ ��T ≤ cI
}
.

Then ÂT viewed as map from D× � →R
d is continuous.

EXAMPLE 9. The case of the d-dimensional Ornstein–Uhlenbeck process

dXt = Af (Xt) dt + �(Xt) dWt,

with A ∈ L(Rd,Rd), f : Rd → R
d is covered by our setting by taking V =

L(Rd,Rd) and h = I ⊗ f , in coordinates(
h

k,j
i

) = (
f j δk

i

)
,

so that (with summation over up-down indices)

h
k,j
i (x)Ai

j = Ak
jf

j (x).

In this case, the nondegeneracy condition in point (i) is, for example, satisfied
if the set of critical points of f has no accumulation points [i.e., on every bounded
set, there is only a finite set of points at which detDf (x) = 0], which can be seen
by an application of the (functional) law of the iterated logarithm for diffusions
(Strassen’s law), for example, Proposition 4.1 in [3].
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REMARK 10. Note that Proposition 3 can be regarded as a corollary of Theo-
rem 8 and Proposition 7.

REMARK 11. The continuity statements in (ii) and (iii) also hold with respect
to p-variation metric, p ∈ (2,3). This and other rough path metrics are discussed
in Section 3.

REMARK 12. By (4.1) the well-known asymptotic properties of the maximum
likelihood estimator ÂT like consistency and asymptotic normality (see, e.g., [12])
also hold for ÂT .

REMARK 13. We briefly discuss in what sense Theorem 8 provides answers
to (Q1)–(Q3) above:

(Q1) Proposition 2 gives a pathwise condition for existence of the MLE in
terms of the drift coefficient h.

(Q2) The discussion in Section 7 shows that the classical MLE violates the
pathwise stability property that (Q2) asks for. Theorem 8 shows that by considering
the signal X as a rough path we can construct a continuous estimator ÂT that
overcomes this difficulty.

(Q3) The question of stability in the volatility coefficient σ can also be solved
by moving to a rough path space. Indeed, Theorem 8(iii) shows that Âσ

T is con-
tinuous with respect to the observations and the volatility coefficient. Here, the
pathwise approach is crucial, since in the classical setting it is not even clear how
to define the estimator as a mapping in both variables whereas in the rough paths
approach this is an obvious consequence.

REMARK 14. While our answer to (Q2) above is best possible, in the sense
that one cannot hope for pathwise stability without introducing rough paths (see
the explicit counterexample in Section 7), it leaves the user with the question of
how to exactly understand discrete or continuous data as a rough path.

In essence, this amounts to measuring the Lévy area associated to an observed
path. In this direction, there are in fact cases where the measurement of the area is
feasible within the physical system under observation; see [2].

5. Proof of the main result. To recall, let W be d-dimensional Wiener pro-
cess on (	,F, (Ft )t≥0,P), A ∈ V (some fixed finite-dimensional vector space)
and

h :Rd → L
(
V,Rd)

, � :Rd → L
(
R

d,Rd)
are Lipschitz continuous coefficients, so that the stochastic differential equation

dXt = h(Xt)Adt + �(Xt) dWt, t ∈R+,
(5.1)

X0 = x0,
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has a unique solution. We are interested in estimation of A, as function of some
observed sample path X = X(ω) : [0, T ] → R

d when the coefficients f and � are
known.

LEMMA 15. Write P = P
A,� for the path-space measure induced by the so-

lution X to (5.1). Assume C = ��T is nondegenerate (say c−1I ≤ C−1 ≤ cI for
some c > 0). Then the V-valued MLE (relative to P

0), A = ÂT , is characterized
by

IT ÂT = ST ,(5.2)

where

ST =
∫ T

0
h(Xs)

T C−1(Xs) dXs ∈V
∗

and

IT =
∫ T

0
h(Xs)

T C−1(Xs)h(Xs) ds ∈ L
(
V,V∗)

.

PROOF. The statement follows from Girsanov’s theorem; see, for example,
[11], Theorem III.5.34. �

PROOF OF PROPOSITION 2. The first statement follows from Lemma 15. Now
we need to understand when IT is nondegenerate. To this end, pick any nonzero
M ∈ V. Then, with g = hM we have

〈M,IT M〉 =
∫ T

0

〈
g,C−1g

〉
ds ≥ 0

and since 〈g,C−1g〉 ≥ 0 we see that 〈M,IT M〉 vanishes iff〈
g,C−1g

〉 = 〈
h(X·)M,C−1(X·)h(X·)M

〉 ≡ 0

on [0, T ]. Thanks to (assumed) nondegeneracy of C this happens iff

h(X·)M ≡ 0

on [0, T ]. Hence, for every path in Rh, IT is invertible. �

PROOF OF THEOREM 8. (i) Follows as combination of Proposition 2 and
Proposition 7.

(ii) Recall that for (X,X) ∈ C α
g we have

Â(X,X) := I−1
T (X)ST (X,X),
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where

IT (X) :=
∫ T

0
h(Xs)

T C−1(Xs)h(Xs) ds,

ST (X,X)i,j := ∑
k

∫ T

0
hi(Xs)

T C−1
jk (Xs) dXk

s ,

−∑
k

1

2

∫ T

0

∑
n,m

[
hi(Xs)∂xnC

−1
jk (Xs) + ∂xnhi(Xs)C

−1
jk (Xs)

]
�n,m(Xs)�k,m(Xs) ds

= ∑
k

∫ T

0
hi(Xs)

T C−1
j · (Xs) dXs

− 1

2

∫ T

0
Tr

[
D

(
hiC

−1
j ·

)
(Xs)�(Xs)�(Xs)

T ]
ds,

where the dX integral is understood as a rough path integral (Section 3). Note that
in the definition of ST we have formally used the Stratonovich form SStrat

T , which
is sensible since rough path lift given in Proposition 7 is the Stratonovich lift of X.

Now ST (X,X) is continuous in rough path metric by the just mentioned refer-
ences. Moreover, IT (X) is obviously continuous in supremum metric, and hence
is its inverse [everywhere defined on D by (i)].

Finally, by Proposition 17.1 in [9], ST (X,X)|X=X(ω) coincides with ST (ω).
IT (X)|X=X(ω) trivially coincides with IT (ω), since it only depends on the path
(the first level of the rough path). Hence, ÂT (X(ω)) = AT (ω) a.s. under P0,� .

(iii) This boils down to continuity of the rough integrals as functions of inte-
grand 1-form; see, for example, Theorem 10.47 in [9]. �

6. Misspecification of the noise. In this section, we investigate the behavior
of the MLE under misspecification of the noise W in the sense that we suppose
that the true model has a driving process with nontrivial dependence structure in
time. For the sake of argument, we shall consider (1.1) with fractional Brownian
noise. Fractional noise was first used in stochastic modeling by Mandelbrot and
van Nees in their seminal paper [19] and is now heavily used in such diverse fields
as the study of turbulence or mathematical finance, see, for example, [4, 23].

For further simplicity, assume � ≡ I so that the dynamics are

dXH
t = h

(
XH

t

)
Adt + dWH

t ,(6.1)

started from a fixed starting point x0, with WH a multi-dimensional Volterra frac-
tional Brownian motion with Hurst index H ∈ (0,1), that is,

WH
t =

∫ t

0
KH(t, s) dWs,(6.2)
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where W is a standard Brownian motion, KH(t, s) = (t − s)H−1/2 is the Volterra
kernel.8 Note that WH |H=1/2 = W is a standard Brownian motion and that
XH → X, for example, in probability uniformly on [0, T ] as H → 1/2, where

dXt = h(Xt)Adt + dWt .(6.3)

[Thanks to additivity of the noise in (6.1) this is a truly elementary statement,
namely a consequence of the continuity of the Itô-map as detailed below.] Suppose
now that the true dynamics correspond to (6.1) with H = 1/2 − ε. Clearly, for
very small ε > 0, the model (6.3), mathematically much easier, is still an excellent
description of the true dynamics. Indeed, it is well known that in the additive noise
case (6.1) or (6.3) the solution map(

Wt : t ∈ [0, T ]) �→ (
XH

t : t ∈ [0, T ])
is locally Lipschitz continuous with respect to sup-norm (see, e.g., [6], page 188).
We can then try to perform classical MLE estimation using the wrong model (6.3)
and write down the estimator ÂT = I−1

T ST as was done in (1.3).
If we use the Itô form of the estimator, the Itô integrals appearing blow up when

applied to fractional Brownian sample paths “rougher” than Brownian motion.9 As
pointed out in Section 2, the Stratonovich version of the estimator is much more
stable. Using rough path theory, and in particular our rough path estimator ÂT , we
can show not only that the estimator remains well defined when H = 1/2 − ε, but
also that it behaves continuously in H . This is spelled out fully in the following
theorem.

THEOREM 16. Suppose that H ∈ (1/3,1). Then, for every α ∈ (1/3,H),
there exists a geometric α-Hölder rough path lift XH = (XH ,XH) of XH (natural
in the sense that XH is the common rough path limit, in probability, of piecewise
linear, mollifier or Karhunen–Loeve approximations to XH). Moreover, there is a
continuous modification of XH : H ∈ (1/3,1). As a consequence, ÂT (XH) is well
defined and robust with respect to the Hurst parameter,

ÂT

(
XH,XH ) → ÂT (X,X)

almost surely, as H → 1/2, where (X,X) is the lift X of X from Theorem 8.

8The results of this section also hold true for classical fractional Brownian motion, using the kernel
given in [5]. The only difference is that the estimates in the proof of Theorem 16 become more
technical.

9This is well known and in fact easy to see: just consider the left-point Riemann–Stieltjes approx-

imations to the Itô-integral
∫ 1
0 WH dWH where WH is a scalar fractional Brownian motion. When

H > 1/2 one has convergence to the Young integral [actually equal to (1/2)(WH
1 )2]. When H = 1/2

one has convergence to the Itô integral. When H < 1/2 the approximations diverge, as may be seen
by computing their (exploding) variance.
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PROOF. Without loss of generality T = 1. It is a well-known fact (Section 15
in [9]) that for fixed H ∈ (1/3,1], XH can be lifted to an α-Hölder rough path
XH = (XH ,XH).

We will apply Kolmogorov’s continuity theorem to construct WH that is almost
surely continuous in H . First, using (6.2)

R
WH −WH ′ (s, t) = E

[(
WH

s − WH ′
s

)(
WH

t − WH ′
t

)]
≤ sup

t∈[0,1]
E

[(
WH

t − WH ′
t

)2]

= sup
t∈[0,1]

∫ t

0

(|t − r|H−1/2 − |t − r|H ′−1/2)2
dr

=
∫ 1

0

(
rH−1/2 − rH ′−1/2)2

dr

= O
(∣∣H − H ′∣∣2)

.

We can now apply Remark 15.38 in [9] to get

E
[
ρα

(
WH ,WH ′)q] ≤ C

∣∣H − H ′∣∣θ ,
for some q,C large enough and θ > 0 small enough. Applying Kolmogorov’s con-
tinuity criterion, we get a version of WH that is continuous in H . Since XH is the
solution to a rough differential equation driven by WH , that is, the continuous im-
age of WH , it is clear that XH is also continuous in H (with respect to α-Hölder
rough path topology). The convergence of ÂT (XH ,XH) follows now from Theo-
rem 8(ii). �

7. Failure of continuity for the classical MLE. We consider the two-
dimensional Ornstein–Uhlenbeck process. This class of processes was first used
by Ornstein and Uhlenbeck to describe the movement of a particle due to random
impulses known as physical Brownian motion (see [7] for a detailed analysis in a
rough path context). Later these dynamics were applied extensively in finance, for
example, to model commodity prices [22] or interest rates, where it is called the
Vasicek model [24].

More precisely, let A ∈ V := L(R2,R2), h(x) = x for all x, g ≡ 0 and � = I

and consider the model10

dXt = AXt dt + dWt,

X0 = x0 ∈ R
2.

10. . .which of course fits in the framework of this paper, as pointed out in Example 9.
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By Lemma 15, the (classical) likelihood estimator ÂT ∈R
2×2 is obtained from the

relation

IT ÂT = ST .(7.1)

A straightforward calculation gives

Â
i,j
T (ω) = 1

U(X)

(∫ T

0

(
Xj̄

s

)2
ds

∫ T

0
Xj

s dXi
s −

∫ T

0
Xi

sX
ı̄
s ds

∫ T

0
Xj̄

s dXi
s

)
,(7.2)

where ı̄ := 3 − i, j̄ := 3 − j , U(X) = ∫ T
0 (X1

r )
2 dr

∫ t
0 (X2

r )
2 dr − (

∫ T
0 X1

r X
2
r dr)2

and all stochastic integrals are understood in Itô sense. Note that this allows us to
see the precise dependence of the MLE on the iterated integrals of the observation.
The Stratonovich version reads as

Â
Strat,i,j
T (ω) = 1

U(X)

(∫ T

0

(
Xj̄

s

)2
ds

(∫ T

0
Xj

s ◦ dXi
s − δi,j

T

2

)

−
∫ T

0
Xi

sX
ı̄
s ds

(∫ T

0
Xj̄

s ◦ dXi
s − δj,i

T

2

))
.

As shown in Section 2 this estimator, defined on smooth path by replacing
Stratonovich with Riemann–Stieltjes integrals, possesses a certain continuity in
probability.

We now show that pathwise stability fails for this MLE.11 To this end, it suffices
to consider the case i = j = 1 and we construct a sequence of observations paths
Xn that converges uniformly to some limit X, but∣∣ÂStrat,1,1

T (Xn) − Â
Strat,1,1
T (X)

∣∣ → ∞,

as n → ∞. This means that observations can be arbitrarily close in uniform norm,
but the corresponding estimates for A diverge. At the core of this robustness prob-
lem lies, as we will see below, the fact that multi-dimensional iterated integrals (as
the ones appearing in ÂT ) are discontinuous in sup-norm.

We modify the usually given example of “spinning fast enough around the ori-
gin” (see, e.g., Section 1.5.2 in [18]), since we want the limiting path to yield an
IT (X) that is invertible.

We start with the path X : [0,1] → R
2 that goes, at constant speed, clockwise,

through the square with corners (0,0) and (1,1). This path lies in the set Rh of
Theorem 8 (see Remark 9 for the definition of h).

Now we attach a fast spinning loop at the end as follows:

Xn(t) := X

(
n

n − 1
t

)
, t ∈ [

0, (n − 1)/n
]
,

Xn(t) := 1

n

(
ei2πn3(t−(n−1)/n) − 1

)
, t ∈ [

(n − 1)/n,1
]
.

11In fact, more is true: by the result in [14], there exists no continuous functional F on pathspace,

such that Â
Strat,i,j
T (ω) = F(X).
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Evaluating the upper left component of the likelihood estimator ÂT from (7.2)
for X = (X(1),X(2)) and T = 1 yields

Â
Strat,1,1
T (X) = 1

U(X)

(∫ 1

0
X(2)

r X(2)
r dr

(∫ 1

0
X(1)

r dX(1)
r − T

2

)

−
∫ 1

0
X(1)

r X(2)
r dr

(∫ 1

0
X(2)

r dX(1)
r − T

2

))
.

The prefactor U(X), consisting only of Riemann integrals, is continuous in supre-
mum and so U(X(n)) converges to a finite limit as n → ∞. The same holds true for
the first factor in the large bracket (the stochastic integral is seen to be continuous
by an application of Itô’s formula) and the factor

∫ 1
0 X

(1)
r X

(2)
r dr in the last term.

Now for
∫ 1

0 X
(2)
r dX

(1)
r , note first that∫ 1

0
X(2)(r) dX(1)(r) =

∫ (n−1)/n

0
X(2)(r) dX(1)(r)

+
∫ 1

(n−1)/n
X(2)(r) − X(2)((n − 1)/n

)
dX(1)(r).

Moreover, since the X(n) have the same value at t = 0, (n − 1)/n,1 it is easy to
see that ∫ (n−1)/n

0
X(2)(r) dX(1)(r) =A0,(n−1)/n

(
X(n)),

∫ 1

(n−1)/n
X(2)(r) dX(1)(r) = A(n−1)/n,1

(
X(n)),

where As,t (X) is (two times) the area between that curve {X(r) ≡ (X1(r),X2(r)) :
s ≤ r ≤ t} and the chord from X(t) to X(s).12 Hence, A0,(n−1)/n(X

(n)) ≡ −2 and
A(n−1)/n,1(X

(n)) = −πn and, therefore, as desired,∣∣ÂStrat,1,1
T (Xn)

∣∣ → ∞.

In conclusion, the estimation problem is not well-posed if one measures distance
of paths in supremum norm. Let us note that by working in stronger topologies on
pathspace, say α-Hölder with α < 1/2 (so that they support Wiener measure), the
situation does not change; see, for example, [14].

On the other hand, as was seen in Section 4, the “rough” estimator ÂT built in
Theorem 8 restores continuity. In the present example, this reduces to the fact that
the iterated stochastic integrals which appear in ÂT (ω) may be rewritten in terms
of rough integrals against the rough path lift of X.

12It is given as

As,t (X) =
∫ t

s

(
X1(r) − X1(s)

)
dx2(r) −

∫ t

s

(
X2(r) − X2(s)

)
dx1(r).
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8. Numerical examples. We illustrate our theoretical results in two numerical
examples. The first example uses a fractional Brownian motion with Hurst parame-
ter H as driving noise. The Itô integral is not even well defined for Hurst parameter
H �= 1

2 , but we show that the estimator using the rough path lift of the fractional
Brownian motion performs well in this setting. We use Stratonovich-type Riemann
sums to approximate the rough path lift (and hence are strictly speaking only per-
forming the robustification laid out in Section 2), and hence this example can fore-
most be seen as a strong encouragement to use them over Itô-type approximations.

In the second example, the driving noise is replaced by a physical Brownian
motion in a magnetic field. On the level of the path this is known to converge to
Brownian motion, but its lifted rough path does not (cf. [7]). We demonstrate that
the classical MLE breaks down in this setting and how a deterministic correction
on the second level of the rough path leads nonetheless to good estimation results.

8.1. Fractional Ornstein–Uhlenbeck process.

8.1.1. One-dimensional. In this section, we demonstrate in the setting of Ex-
ample 1 the instability of the MLE due to the Itô integrals, if one does not get
rid of the stochastic integral via integration by parts. Furthermore, we show that
by using Stratonovich-type approximations as suggested in Section 2 we obtain a
stable estimator.

We simulate samples from a one-dimensional fractional Ornstein–Uhlenbeck
process defined by

dXH
t = AXH

t dt + dWH
t , t ∈ [0, T ].(8.1)

We use an exact simulation scheme to draw equidistant samples

XH
� ,XH

2�, . . . ,XH
n� for � > 0

from XH such that T = n�. The discretized maximum likelihood estimator ÂT

for A in this model is given by

Ân
T

(
XH ) =

∑n−1
i=1 XH

i�(XH
(i+1)� − XH

i�)∑n−1
i=1 (XH

i�)2�
.

From Theorem 8, we obtain the discretized rough MLE

Ân
T

(
XH ) =

∑n−1
i=1 XH

i�(XH
(i+1)� − XH

i�) +Xi� −X(i+1)�∑n−1
i=1 (XH

i�)2�
.

In Figure 1, Monte Carlo estimates of variances of Ân
T and the rough MLE Ân

T

are depicted for varying Hurst index from each 500 Monte Carlo iterations. The
sample size is n = 100 (i.e., the time mesh size of observation is 1/n) and the time
horizon T = 1. We clearly see that the variance increases when H moves away
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FIG. 1. Monte Carlo estimate of the variance of the classical MLE (red) and rough MLE (blue) for
different Hurst indices H .

from 1/2 and explodes for H going to 0. On the contrary, the rough MLE remains
stable on the whole range of H values with an almost constant variance.

Note that the rate of convergence for the variance of Ân
T is proportional to

n(1/2 − H) so that the effect that can be seen in Figure 1 becomes more severe
with growing sample size. This connection is depicted in Figure 2 where we see
Monte Carlo estimates of the variance of ÂT for increasing sample size. The num-
ber of Monte Carlo iterations for each n is N = 100, the time horizon T = 1 and
the Hurst index H = 0.35.

In Table 1, the mean and standard deviation of the RMLE Ân
T are estimated for

the fractional Ornstein–Uhlenbeck model and for various Hurst indices. Each es-
timate consists of 1000 Monte Carlo iterations and the true parameter was A = 2.
We find that already for quite moderate sample size of n = 100 the estimator per-
forms very well. We also observe that when T grows a slight discretization bias
appears that is typically of the order �. Surprisingly, the RMLE gives accurate re-
sults even when the Hurst parameter is far away from the classical case at H = 1/2.

8.1.2. Two-dimensional. Here, we give numerical examples for the two-
dimensional Ornstein–Uhlenbeck dynamics. We apply a Euler scheme to draw an
equidistant sample XH

� ,XH
2�, . . . ,XH

n� for � > 0 from the process X solving

dXt = AXt dt + dWH
t ,

X0 = x0 ∈R
2,
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FIG. 2. Estimated variance of the classical MLE for varying sample size.

where WH is a two-dimensional fractional Brownian motion with Hurst parameter
H ∈ (0,1) and A is given by

A =
(

1 2

−2 1

)
.

The expression for the classical maximum likelihood estimator [see (7.2)] is of
course only valid for H = 1/2. Moreover, for H < 1/2 the Itô integrals appearing
in that estimator are in general not even well defined. Nonetheless, since we simu-

TABLE 1
Mean and standard deviation of the RMLE Ân

T for varying Hurst indices in the misspecified model

H = 0.5 H = 0.4 H = 0.3

a T n Mean Std dev Mean Std dev Mean Std dev

2 1 100 2.0 0.20 2.0 0.18 2.0 0.33
200 2.0 0.17 2.0 0.18 2.0 0.20
500 2.0 0.16 2.0 0.19 2.0 0.19

2 100 2.0 0.023 2.0 0.023 2.0 0.026
200 2.0 0.025 2.0 0.026 2.0 0.024
500 2.0 0.022 2.0 0.022 2.0 0.051

5 100 2.1 8.1e−05 2.1 8.3e−05 2.1 9.2e−05
200 2.1 6.7e−05 2.1 6.6e−05 2.1 7.0e−05
500 2.0 5.6e−05 2.0 5.6e−05 2.0 6.4e−05
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late on a discrete time grid, we can calculate its discretized version, replacing the
stochastic integrals by Itô-type Riemann sums.

On the other hand, for every H > 1/3 fractional Brownian motion possesses a
natural rough path lift (see, e.g., [9], Chapter 15), so the expression for the “rough”
MLE (8.3) is at least well defined, also for H �= 1/2. Since we deal with a sim-
ulation at discrete timepoints, we have to approximate this rough path lift. We
shall use Stratonovich-type Riemann sums, which are well known to converge
(see, e.g., [8], Chapter 10, and the references therein). We then plug the result into
the rough path estimator (8.3).

We give the estimation results for the upper right coordinate of A with true value
equal to 2, on a discrete grid for varying number of observations n and observation
length T .

In Table 2, the estimated mean and standard deviation for the discretized classi-
cal MLE (top) and the discretized “rough” MLE (bottom) are given. Each value is
based on 100 Monte Carlo runs of the estimator.

TABLE 2
We consider the “true” parameter value A1,2 = 2 and give estimates of the mean and standard

deviation of the classical MLE Â
1,2
T ,n (top) and the “rough” MLE Â1,2

T ,n (bottom) based on 100
Monte Carlo iterations for varying Hurst indices for the 2-dim. OU process. Here, n

is the number of time-steps in the Euler approximation

H = 0.5 H = 0.4 H = 0.35

T n Mean Std dev Mean Std dev Mean Std dev

1 100 2.7 1.6 3.4 2.0 5.5 2.9
200 2.7 1.8 3.7 2.6 6.9 3.2
500 2.7 1.8 4.8 2.7 9.7 4.6

5 100 2.1 0.90 2.7 1.13 3.9 1.1
200 2.2 0.99 3.1 1.1 4.9 1.4
500 2.2 1.06 3.9 1.3 6.5 1.9

10 100 2.0 0.61 2.5 0.70 3.0 0.43
200 2.0 0.73 2.7 0.75 3.9 0.54
500 2.1 0.74 3.3 0.90 5.1 0.90

1 100 2.7 1.6 2.3 1.6 2.1 2.2
200 2.8 1.6 2.4 2.0 2.2 1.9
500 2.7 1.6 2.3 1.9 2.2 2.2

5 100 2.2 1.0 2.1 1.2 1.8 1.1
200 2.3 1.0 1.9 1.1 1.8 1.2
500 2.2 1.0 1.9 1.1 1.9 1.3

10 100 2.0 0.64 1.8 0.71 1.8 0.83
200 2.1 0.75 1.9 0.86 1.8 0.87
500 2.0 0.75 2.0 0.91 1.9 0.89
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We find that for H = 1/2 the classical MLE performs well if the observation
length T is large enough. When H moves away from 1/2 the instability of the
estimator becomes apparent. The standard deviation increases significantly and
the estimator is strongly biased.

In contrast to that the “rough” MLE Â1,2
T ,n performs equally well over the whole

range of Hurst indices. For H = 1/2, both estimators give similar results as ex-
pected from our results in Theorem 8 whereas in the dependent regime Â1,2

T ,n clearly
outperforms the classical MLE.

8.2. Physical Brownian motion in a magnetic field. The dynamics of a two-
dimensional physical Brownian motion W̄α,m in a magnetic field are given by
(see [7])

dW̄
α,m
t = 1

m
P

α,m
t dt,

dP
α,m
t = − 1

m
MP α,m dt + dWt .

Here,

M = Mα =
(

1 α

−α 1

)
,

with strength of the magnetic field given by the scalar parameter α and mass m > 0
of the particle, assumed to carry unit charge.

As in the preceding section, we observe the realization of an Ornstein–
Uhlenbeck process, but now driven by the physical Brownian motion and with
covariance matrix M :

dX
α,m
t = AX

α,m
t dt + M dW̄

α,m
t .(8.2)

Now, it is quite easy to show (see, e.g., [21], Section 11.7.7) that MW̄α,m → W

in supremum norm, as m → 0. In the one-dimensional case (where the MLE is
continuous in supremum norm, as we saw in Example 1), it automatically follows
that

ÂT

(
Xα,m) →

m→0
ÂT (X),

where X solves the classical OU equation dX = AX dt + dW and ÂT is the MLE
for the latter. On the other hand, in dimension d ≥ 2, and in presence of a magnetic
field α �= 0 we still have MW̄α,m → W but the desired convergence fails, that is,

ÂT

(
Xα,m)

�
m→0

ÂT (X).

The underlying reason is failure of convergence at the level of iterated integrals to
the Stratonovich iterated integrals of W . Instead, as was shown in detail in [7], one
has (

MW̄α,m
s ,

∫ t

s
MW̄α,m

s,r ⊗ dMW̄r

)
→

(
Ws,

∫ t

s
Ws,r ⊗ ◦Wr + (t − s)D

)
,
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with correction term

D := 1

2
Anti[M]Sym[M]−1 = 1

2

(
0 α

−α 0

)
.

As an easy consequence,(
Xα,m

s ,

∫ t

s
Xα,m

s,r ⊗ dXα,m
r

)
→

(
Xs,

∫ t

s
Xs,r ⊗ ◦Xr + (t − s)D

)
,

and so, by Theorem 8, we have a “modified” MLE stability of the form

ÂT

((
Xα,m

s ,

∫ t

s
Xα,m

s,r ⊗ dXα,m
r − (t − s)D

))
→ ÂT

((
Xs,

∫ t

s
Xs,r ⊗ ◦Xr

))
,

where, with ı̄ := 3 − i, j̄ := 3 − j and U(X) = ∫ T
0 (X1

r )
2 dr

∫ t
0 (X2

r )
2 dr −

(
∫ T

0 X1
r X

2
r dr)2,

Âi,j
T (X,X) = 1

U(X)

(∫ T

0

(
Xj̄

s

)2
ds

{
X

i,j
0,T − δi,j

T

2

}
(8.3)

−
∫ T

0
Xi

sX
ı̄
s ds

{
X

j,i
0,T − δj,i

T

2

})
.

In summary, it is perfectly justified, in the small mass regime m � 1, to consider
the effective dynamics dXt = AXt dt + dWt as approximation for (8.2). However,
it would be wrong to use the resulting MLE estimator on the realizations of real-
ization of Xα,m, even in the limit m → 0. Instead, the estimation procedure based
on Xα,m must take account of the correction term D we exhibited above. At last,
we support our findings with concrete numerical results, taking

A =
(−3 2

0 −4

)
,

and 100 Monte Carlo simulations. The force of the magnetic field is chosen as
α = 1.0, the mass of the particle as m = 0.01 and discretization is done on a time
grid of 105 equidistant points.

The results are shown in Table 3. As is clearly visible, the corrected estimator
yields good results, with decreasing standard variation for increasing time hori-

TABLE 3
Mean and standard deviation of Â

1,2
T over 100 Monte Carlo runs for the physical Brownian motion
model. The correct value is 2.0

T = 1.0 T = 3.0 T = 10.0 T = 30.0

Mean Std dev Mean Std dev Mean Std dev Mean Std dev

w/correction 2.0 0.84 2.0 0.72 2.1 0.59 2.2 0.45
w/o correction 1.7 0.79 1.1 0.64 0.3 0.49 −0.4 0.35
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zons. The uncorrected estimator on the other hand yields useless results for times
larger then 3.0.
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