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BERNOULLI AND TAIL-DEPENDENCE COMPATIBILITY

BY PAUL EMBRECHTS∗,1, MARIUS HOFERT†,2 AND RUODU WANG†,2,3

ETH Zurich∗ and University of Waterloo†

The tail-dependence compatibility problem is introduced. It raises the
question whether a given d × d-matrix of entries in the unit interval is the
matrix of pairwise tail-dependence coefficients of a d-dimensional random
vector. The problem is studied together with Bernoulli-compatible matrices,
that is, matrices which are expectations of outer products of random vectors
with Bernoulli margins. We show that a square matrix with diagonal entries
being 1 is a tail-dependence matrix if and only if it is a Bernoulli-compatible
matrix multiplied by a constant. We introduce new copula models to construct
tail-dependence matrices, including commonly used matrices in statistics.

1. Introduction. The problem of how to construct a bivariate random vector
(X1,X2) with log-normal marginals X1 ∼ LN(0,1), X2 ∼ LN(0,16) and corre-
lation coefficient Cor(X1,X2) = 0.5 is well known in the history of dependence
modeling, partially because of its relevance to risk management practice. The short
answer is: There is no such model; see Embrechts et al. [6] who studied these kinds
of problems in terms of copulas. Problems of this kind were brought to RiskLab
at ETH Zurich by the insurance industry in the mid-1990s when dependence was
thought of in terms of correlation (matrices). For further background on quanti-
tative risk management, see McNeil et al. [12]. Now, almost 20 years later, cop-
ulas are a well established tool to quantify dependence in multivariate data and
to construct new multivariate distributions. Their use has become standard within
industry and regulation. Nevertheless, dependence is still summarized in terms of
numbers [as opposed to (copula) functions], so-called measures of association.
Although there are various ways to compute such numbers in dimension d > 2,
measures of association are still most widely used in the bivariate case d = 2.
A popular measure of association is tail dependence. It is important for applica-
tions in quantitative risk management as it measures the strength of dependence
in either the lower-left or upper-right tail of the bivariate distribution, the regions
quantitative risk management is mainly concerned with.
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We were recently asked4 the following question which is in the same spirit as the
log-normal correlation problem if one replaces “correlation” by “tail dependence”;
see Section 3.1 for a definition.

For which α ∈ [0,1] is the matrix

�d(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 α

0 1 · · · 0 α
...

...
. . .

...
...

0 0 · · · 1 α

α α · · · α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.1)

a matrix of pairwise (either lower or upper) tail-dependence coefficients?

Intrigued by this question, we more generally consider the following tail-
dependence compatibility problem in this paper:

When is a given matrix in [0,1]d×d the matrix of pairwise (either lower or upper)
tail-dependence coefficients?

In what follows, we call a matrix of pairwise tail-dependence coefficients a tail-
dependence matrix. The compatibility problems of tail-dependence coefficients
were studied in [8]. In particular, when d = 3, inequalities for the bivariate tail-
dependence coefficients have been established; see Joe [8], Theorem 3.14, as well
as Joe [9], Theorem 8.20. The sharpness of these inequalities is obtained in [13].
It is generally open to characterize the tail-dependence matrix compatibility for
d > 3.

Our aim in this paper is to give a full answer to the tail-dependence compatibility
problem; see Section 3. To this end, we introduce and study Bernoulli-compatible
matrices in Section 2. As a main result, we show that a matrix with diagonal entries
being 1 is a compatible tail-dependence matrix if and only if it is a Bernoulli-
compatible matrix multiplied by a constant. In Section 4, we provide probabilistic
models for a large class of tail-dependence matrices, including commonly used
matrices in statistics. Section 5 concludes.

Throughout this paper, d and m are positive integers, and we consider an atom-
less probability space (�,A,P) on which all random variables and random vec-
tors are defined. Vectors are considered as column vectors. For two matrices A,B ,
B ≥ A and B ≤ A are understood as component-wise inequalities. We let A ◦ B

denote the Hadamard product, that is, the element-wise product of two matrices A

and B of the same dimension. The d × d identity matrix is denoted by Id . For a
square matrix A, diag(A) represents a diagonal matrix with diagonal entries equal
to those of A, and A� is the transpose of A. We denote IE the indicator function of
an event (random or deterministic) E ∈ A. 0 and 1 are vectors with all components
being 0 and 1, respectively, as long as the dimension of the vectors is clear from
the context.

4By Federico Degen (Head Risk Modeling and Quantification, Zurich Insurance Group) and
Janusz Milek (Zurich Insurance Group).
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2. Bernoulli compatibility. In this section, we introduce and study the
Bernoulli-compatibility problem. The results obtained in this section are the ba-
sis for the tail-dependence compatibility problem treated in Section 3; many of
them are of independent interest, for example, for the simulation of sequences of
Bernoulli random variables.

2.1. Bernoulli-compatible matrices.

DEFINITION 2.1 (Bernoulli vector, Vd ). A Bernoulli vector is a random vec-
tor X supported by {0,1}d for some d ∈ N. The set of all d-Bernoulli vectors is
denoted by Vd .

Equivalently, X = (X1, . . . ,Xd) is a Bernoulli vector if and only if Xi ∼
B(1,pi) for some pi ∈ [0,1], i = 1, . . . , d . Note that here we do not make any as-
sumption about the dependence structure among the components of X. Bernoulli
vectors play an important role in credit risk analysis; see, for example, Bluhm and
Overbeck [2] and Bluhm et al. [3], Section 2.1.

In this section, we investigate the following question which we refer to as the
Bernoulli-compatibility problem.

QUESTION 1. Given a matrix B ∈ [0,1]d×d , can we find a Bernoulli vector X
such that B = E[XX�]?

For studying the Bernoulli-compatibility problem, we introduce the notion of
Bernoulli-compatible matrices.

DEFINITION 2.2 (Bernoulli-compatible matrix, Bd ). A d × d matrix B is a
Bernoulli-compatible matrix, if B = E[XX�] for some X ∈ Vd . The set of all d ×d

Bernoulli-compatible matrices is denoted by Bd .

Concerning covariance matrices, there is extensive research on the compati-
bility of covariance matrices of Bernoulli vectors in the realm of statistical sim-
ulation and time series analysis; see, for example, Chaganty and Joe [4]. It is
known that, when d ≥ 3, the set of all compatible d-Bernoulli correlation matri-
ces is strictly contained in the set of all correlation matrices. Note that E[XX�] =
Cov(X)+E[X]E[X]�. Hence, Question 1 is closely related to the characterization
of compatible Bernoulli covariance matrices.

Before we characterize the set Bd in Section 2.2, and thus address Question 1,
we first collect some facts about elements of Bd .

PROPOSITION 2.1. Let B,B1,B2 ∈ Bd . Then:

(i) B ∈ [0,1]d×d .
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(ii) max{bii + bjj − 1,0} ≤ bij ≤ min{bii, bjj } for i, j = 1, . . . , d and B =
(bij )d×d .

(iii) tB1 + (1 − t)B2 ∈ Bd for t ∈ [0,1], that is, Bd is a convex set.
(iv) B1 ◦ B2 ∈ Bd , that is, Bd is closed under the Hadamard product.
(v) (0)d×d ∈ Bd and (1)d×d ∈ Bd .

(vi) For any p = (p1, . . . , pd) ∈ [0,1]d , the matrix B = (bij )d×d ∈ Bd where
bij = pipj for i 	= j and bii = pi , i, j = 1, . . . , d .

PROOF. Write B1 = E[XX�] and B2 = E[YY�] for X,Y ∈ Vd , and X and Y
are independent.

(i) Clear.
(ii) This directly follows from the Fréchet–Hoeffding bounds; see McNeil et

al. [12], Remark 7.9.
(iii) Let A ∼ B(1, t) be a Bernoulli random variable independent of X,Y,

and let Z = AX + (1 − A)Y. Then Z ∈ Vd , and E[ZZ�] = tE[XX�] + (1 −
t)E[YY�] = tB1 + (1 − t)B2. Hence, tB1 + (1 − t)B2 ∈ Bd .

(iv) Let p = (p1, . . . , pd), q = (q1, . . . , qd) ∈R
d . Then

(p ◦ q)(p ◦ q)� = (piqi)d(piqi)
�
d = (piqipjqj )d×d = (pipj )d×d ◦ (qiqj )d×d

= (
pp�) ◦ (

qq�)
.

Let Z = X ◦ Y. It follows that Z ∈ Vd and E[ZZ�] = E[(X ◦ Y)(X ◦ Y)�] =
E[(XX�) ◦ (YY�)] = E[XX�] ◦E[YY�] = B1 ◦ B2. Hence, B1 ◦ B2 ∈ Bd .

(v) Consider X = 0 ∈ Vd . Then (0)d×d = E[XX�] ∈ Bd and similarly for
(1)d×d .

(vi) Consider X ∈ Vd with independent components and E[X] = p. �

2.2. Characterization of Bernoulli-compatible matrices. We are now able to
give a characterization of the set Bd of Bernoulli-compatible matrices and thus
address Question 1.

THEOREM 2.2 (Characterization of Bd ). Bd has the following characteriza-
tion:

Bd =
{

n∑
i=1

aipip�
i : pi ∈ {0,1}d, ai ≥ 0, i = 1, . . . , n,

n∑
i=1

ai = 1, n ∈ N

}
;(2.1)

that is, Bd is the convex hull of {pp� : p ∈ {0,1}d}. In particular, Bd is closed
under convergence in the Euclidean norm.

PROOF. Denote the right-hand side of (2.1) by M. For B ∈ Bd , write B =
E[XX�] for some X ∈ Vd . It follows that

B = ∑
p∈{0,1}d

pp�
P(X = p) ∈ M,
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hence Bd ⊆ M. Let X = p ∈ {0,1}d . Then X ∈ Vd and E[XX�] = pp� ∈ Bd .
By Proposition 2.1, Bd is a convex set which contains {pp� : p ∈ {0,1}d}, hence
M ⊆ Bd . In summary, M = Bd . From (2.1), we can see that Bd is closed under
convergence in the Euclidean norm. �

A matrix B is completely positive if B = AA� for some (not necessarily square)
matrix A ≥ 0. Denote by Cd the set of completely positive matrices. It is known
that Cd is the convex cone with extreme directions {pp� : p ∈ [0,1]d}; see, for
example, Rüschendorf [14] and Berman and Shaked-Monderer [1]. We thus obtain
the following result.

COROLLARY 2.3. Any Bernoulli-compatible matrix is completely positive.

REMARK 2.1. One may wonder whether B = E[XX�] is sufficient to deter-
mine the distribution of X, that is, whether the decomposition

B =
2d∑
i=1

aipip�
i(2.2)

is unique for distinct vectors pi in {0,1}d . While the decomposition is trivially
unique for d = 2, this is in general false for d ≥ 3, since there are 2d −1 parameters
in (2.2) and only d(d + 1)/2 parameters in B . The following is an example for
d = 3. Let

B = 1

4

⎛
⎝ 2 1 1

1 2 1
1 1 2

⎞
⎠

= 1

4

(
(1,1,1)�(1,1,1) + (1,0,0)�(1,0,0) + (0,1,0)�(0,1,0)

+ (0,0,1)�(0,0,1)
)

= 1

4

(
(1,1,0)�(1,1,0) + (1,0,1)�(1,0,1) + (0,1,1)�(0,1,1)

+ (0,0,0)�(0,0,0)
)
.

Thus, by combining the above two decompositions, B ∈ B3 has infinitely many
different decompositions of the form (2.2). Note that, as in the case of completely
positive matrices, it is generally difficult to find decompositions of form (2.2) for
a given matrix B .

2.3. Convex cone generated by Bernoulli-compatible matrices. In this section,
we study the convex cone generated by Bd , denoted by B∗

d :

B∗
d = {aB : a ≥ 0,B ∈ Bd}.(2.3)

The following proposition is implied by Proposition 2.1 and Theorem 2.2.
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PROPOSITION 2.4. B∗
d is the convex cone with extreme directions {pp� : p ∈

{0,1}d}. Moreover, B∗
d is a commutative semiring equipped with addition (B∗

d,+)

and multiplication (B∗
d,◦).

It is obvious that B∗
d ⊆ Cd . One may wonder whether B∗

d is identical to Cd , the
set of completely positive matrices. As the following example shows, this is false
in general for d ≥ 2.

EXAMPLE 2.1. Note that B ∈ B∗
d also satisfies Proposition 2.1, part (ii).

Now consider p = (p1, . . . , pd) ∈ (0,1)d with pi > pj for some i 	= j . Clearly,
pp� ∈ Cd , but pipj > p2

j = min{p2
i , p

2
j } contradicts Proposition 2.1, part (ii),

hence pp� /∈ B∗
d .

For the following result, we need the notion of diagonally dominant matri-
ces. A matrix A ∈ R

d×d is called diagonally dominant if, for all i = 1, . . . , d ,∑
j 	=i |aij | ≤ |aii |.

PROPOSITION 2.5. Let Dd be the set of nonnegative, diagonally dominant
d × d-matrices. Then Dd ⊆ B∗

d .

PROOF. For i, j = 1, . . . , d , let p(ij) = (p
(ij)
1 , . . . , p

(ij)
d ) where p

(ij)
k =

I{k=i}∪{k=j}. It is straightforward to verify that the (i, i)-, (i, j)-, (j, i)- and (j, j)-
entries of the matrix M(ij) = p(ij)(p(ij))� are 1, and the other entries are 0. For
D = (dij )d×d ∈ Dd , let

D∗ = (
d∗
ij

)
d×d =

d∑
i=1

d∑
j=1,j 	=i

dijM
(ij).

By Proposition 2.4, D∗ ∈ B∗
d . It follows that d∗

ij = dij for i 	= j and d∗
ii =∑d

j=1,j 	=i dij ≤ dii . Therefore, D = D∗ + ∑d
i=1(dii − d∗

ii)M
(ii), which, by Propo-

sition 2.4, is in B∗
d . �

For studying the tail-dependence compatibility problem in Section 3, the subset

BI
d = {

B : B ∈ B∗
d,diag(B) = Id

}
of B∗

d is of interest. It is straightforward to see from Proposition 2.1 and Theo-
rem 2.2 that BI

d is a convex set, closed under the Hadamard product and conver-
gence in the Euclidean norm. These properties of BI

d will be used later.
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3. Tail-dependence compatibility.

3.1. Tail-dependence matrices. The notion of tail dependence captures (ex-
treme) dependence in the lower-left or upper-right tails of a bivariate distribution.
In what follows, we focus on lower-left tails; the problem for upper-right tails fol-
lows by a reflection around (1/2,1/2), that is, studying the survival copula of the
underlying copula.

DEFINITION 3.1 (Tail-dependence coefficient). The (lower) tail-dependence
coefficient of two continuous random variables X1 ∼ F1 and X2 ∼ F2 is defined
by

λ = lim
u↓0

P(F1(X1) ≤ u,F2(X2) ≤ u)

u
,(3.1)

given that the limit exists.

If we denote the copula of (X1,X2) by C, then

λ = lim
u↓0

C(u,u)

u
.

Clearly, λ ∈ [0,1], and λ only depends on the copula of (X1,X2), not the marginal
distributions. For virtually all copula models used in practice, the limit in (3.1)
exists; for how to construct an example where λ does not exist; see Kortschak and
Albrecher [10].

DEFINITION 3.2 (Tail-dependence matrix, Td ). Let X = (X1, . . . ,Xd) be a
random vector with continuous marginal distributions. The tail-dependence matrix
of X is � = (λij )d×d , where λij is the tail-dependence coefficient of Xi and Xj ,
i, j = 1, . . . , d . We denote by Td the set of all tail-dependence matrices.

The following proposition summarizes basic properties of tail-dependence ma-
trices. Its proof is very similar to that of Proposition 2.1 and is omitted here.

PROPOSITION 3.1. For any �1,�2 ∈ Td , we have that:

(i) �1 = ��
1 .

(ii) t�1 + (1 − t)�2 ∈ Td for t ∈ [0,1], that is, Td is a convex set.
(iii) Id ≤ �1 ≤ (1)d×d with Id ∈ Td and (1)d×d ∈ Td .

As we will show next, Td is also closed under the Hadamard product.

PROPOSITION 3.2. Let k ∈ N and �1, . . . ,�k ∈ Td . Then �1 ◦ · · · ◦ �k ∈ Td .
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PROOF. Note that it would be sufficient to show the result for k = 2, but
we provide a general construction for any k. For each l = 1, . . . , k, let Cl

be a d-dimensional copula with tail-dependence matrix �l . Furthermore, let
g(u) = u1/k , u ∈ [0,1]. It follows from Liebscher [11] that C(u1, . . . , ud) =∏k

l=1 Cl(g(u1), . . . , g(ud)) is a copula; note that(
g−1

(
max

1≤l≤k
{Ul1}

)
, . . . , g−1

(
max

1≤l≤k
{Uld}

))
∼ C(3.2)

for independent random vectors (Ul1, . . . ,Uld) ∼ Cl , l = 1, . . . , k. The (i, j)-entry
λij of � corresponding to C is thus given by

λij = lim
u↓0

∏k
l=1 Cl,ij (g(u), g(u))

u
= lim

u↓0

k∏
l=1

Cl,ij (g(u), g(u))

g(u)

=
k∏

l=1

lim
u↓0

Cl,ij (g(u), g(u))

g(u)

=
k∏

l=1

lim
u↓0

Cl,ij (u,u)

u
=

k∏
l=1

λl,ij ,

where Cl,ij denotes the (i, j)-margin of Cl and λl,ij denotes the (i, j)th entry of
�l , l = 1, . . . , k. �

3.2. Characterization of tail-dependence matrices. In this section, we inves-
tigate the following question.

QUESTION 2. Given a d × d matrix � ∈ [0,1]d×d , is it a tail-dependence
matrix?

The following theorem fully characterizes tail-dependence matrices, and thus
provides a theoretical (but not necessarily practical) answer to Question 2.

THEOREM 3.3 (Characterization of Td ). A square matrix with diagonal en-
tries being 1 is a tail-dependence matrix if and only if it is a Bernoulli-compatible
matrix multiplied by a constant. Equivalently, Td = BI

d .

PROOF. We first show that Td ⊆ BI
d . For each � = (λij )d×d ∈ Td , suppose

that C is a copula with tail-dependence matrix � and U = (U1, . . . ,Un) ∼ C. Let
Wu = (I{U1≤u}, . . . , I{Ud≤u}). By definition,

λij = lim
u↓0

1

u
E[I{Ui≤u}I{Uj≤u}]



1644 P. EMBRECHTS, M. HOFERT AND R. WANG

and

� = lim
u↓0

1

u
E

[
WuW�

u

]
.

Since BI
d is closed and E[WuW�

u ]/u ∈ BI
d , we have that � ∈ BI

d .
Now consider BI

d ⊆ Td . By definition of BI
d , each B ∈ BI

d can be written as B =
E[XX�]/p for an X ∈ Vd and E[X] = (p, . . . , p) ∈ (0,1]d . Let U,V ∼ U[0,1],
U,V,X be independent and

Y = XpU + (1 − X)
(
p + (1 − p)V

)
.(3.3)

We can verify that for t ∈ [0,1] and i = 1, . . . , d ,

P(Yi ≤ t) = P(Xi = 1)P(pU ≤ t) + P(Xi = 0)P
(
p + (1 − p)V ≤ t

)
= p min{t/p,1} + (1 − p)max

{
(t − p)/(1 − p),0

} = t,

that is, Y1, . . . , Yd are U[0,1]-distributed. Let λij be the tail-dependence coefficient
of Yi and Yj , i, j = 1, . . . , d . For i, j = 1, . . . , d we obtain that

λij = lim
u↓0

1

u
P(Yi ≤ u,Yj ≤ u) = lim

u↓0

1

u
P(Xi = 1,Xj = 1)P(pU ≤ u)

= 1

p
E[XiXj ].

As a consequence, the tail-dependence matrix of (Y1, . . . , Yd) is B and B ∈ Td .
�

It follows from Theorem 3.3 and Proposition 2.4 that Td is the “1-diagonals”
cross-section of the convex cone with extreme directions {pp� : p ∈ {0,1}d}. Fur-
thermore, the proof of Theorem 3.3 is constructive. As we saw, for any B ∈ BI

d , Y
defined by (3.3) has tail-dependence matrix B . This interesting construction will
be applied in Section 4 where we show that commonly applied matrices in statistics
are tail-dependence matrices and where we derive the copula of Y.

REMARK 3.1. From the fact that Td = BI
d and BI

d is closed under the
Hadamard product [see Proposition 2.1, part (iv)], Proposition 3.2 directly fol-
lows. Note, however, that our proof of Proposition 3.2 is constructive. Given tail-
dependence matrices and corresponding copulas, we can construct a copula C

which has the Hadamard product of the tail-dependence matrices as correspond-
ing tail-dependence matrix. If sampling of all involved copulas is feasible, we can
sample C; see Figure 1 for examples.5

5All plots can be reproduced via the R package copula (version ≥ 0.999-13) by calling
demo(tail_compatibility).
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FIG. 1. Left-hand side: Scatter plot of 2000 samples from (3.2) for C1 being a Clayton copula
with parameter θ = 4 (λ1 = 2−1/4 ≈ 0.8409) and C2 being a t3 copula with parameter ρ = 0.8
[tail-dependence coefficient λ2 = 2t4(−2/3) ≈ 0.5415]. By Proposition 3.2, the tail-dependence co-
efficient of (3.2) is thus λ = λ1λ2 = 23/4t4(−2/3) ≈ 0.4553. Right-hand side: C1 as before, but C2
is a survival Marshall–Olkin copula with parameters α1 = 2−3/4, α2 = 0.8, so that λ = λ1λ2 = 1/2.

Theorem 3.3 combined with Corollary 2.3 directly leads to the following result.

COROLLARY 3.4. Every tail-dependence matrix is completely positive, and
hence positive semi-definite.

Furthermore, Theorem 3.3 and Proposition 2.5 imply the following result.

COROLLARY 3.5. Every diagonally dominant matrix with nonnegative entries
and diagonal entries being 1 is a tail-dependence matrix.

Note that this result already yields the if-part of Proposition 4.7 below.

4. Compatible models for tail-dependence matrices.

4.1. Widely known matrices. We now consider the following three types of
matrices � = (λij )d×d which are frequently applied in multivariate statistics and
time series analysis and show that they are tail-dependence matrices.

(a) Equicorrelation matrix with parameter α ∈ [0,1]: λij = I{i=j } + αI{i 	=j},
i, j = 1, . . . , d .

(b) AR(1) matrix with parameter α ∈ [0,1]: λij = α|i−j |, i, j = 1, . . . , d .
(c) MA(1) matrix with parameter α ∈ [0,1/2]: λij = I{i=j} +αI{|i−j |=1}, i, j =

1, . . . , d .
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Chaganty and Joe [4] considered the compatibility of correlation matrices of
Bernoulli vectors for the above three types of matrices and obtained necessary and
sufficient conditions for the existence of compatible models for d = 3. For the tail-
dependence compatibility problem that we consider in this paper, the above three
types of matrices are all compatible, and we are able to construct corresponding
models for each case.

PROPOSITION 4.1. Let � be the tail-dependence matrix of the d-dimensional
random vector

Y = XpU + (1 − X)
(
p + (1 − p)V

)
,(4.1)

where U,V ∼ U[0,1], X ∈ Vd and U,V,X are independent.

(i) For α ∈ [0,1], if X has independent components and E[X1] = · · · =
E[Xd ] = α, then � is an equicorrelation matrix with parameter α; that is, (a)
is a tail-dependence matrix.

(ii) For α ∈ [0,1], if Xi = ∏i+d−1
j=i Zj , i = 1, . . . , d , for independent B(1, α)

random variables Z1, . . . ,Z2d−1, then � is an AR(1) matrix with parameter α;
that is, (b) is a tail-dependence matrix.

(iii) For α ∈ [0,1/2], if Xi = I{Z∈[(i−1)(1−α),(i−1)(1−α)+1]}, i = 1, . . . , d , for
Z ∼ U[0, d], then � is an MA(1) matrix with parameter α; that is, (c) is a tail-
dependence matrix.

PROOF. We have seen in the proof of Theorem 3.3 that if E[X1] = · · · =
E[Xd ] = p, then Y defined through (4.1) has tail-dependence matrix E[XX�]/p.
Write � = (λij )d×d and note that λii = 1, i = 1, . . . , d , is always guaranteed.

(i) For i 	= j , we have that E[XiXj ] = α2 and thus λij = α2/α = α. This
shows that � is an equicorrelation matrix with parameter α.

(ii) For i < j , we have that

E[XiXj ] = E

[
i+d−1∏

k=i

Zk

j+d−1∏
l=j

Zl

]
= E

[j−1∏
k=i

Zk

]
E

[
i+d−1∏
k=j

Zk

]
E

[j+d−1∏
k=i+d

Zk

]

= αj−iαi+d−jαj−i = αj−i+d

and E[Xi] = E[X2
i ] = αd . Hence, λij = αj−i+d/αd = αj−i for i < j . By symme-

try, λij = α|i−j | for i 	= j . Thus, � is an AR(1) matrix with parameter α.
(iii) For i < j , note that 2(1 − α) ≥ 1, so

E[XiXj ] = P
(
Z ∈ [

(j − 1)(1 − α), (i − 1)(1 − α) + 1
])

= I{j=i+1}P
(
Z ∈ [

i(1 − α), (i − 1)(1 − α) + 1
]) = I{j=i+1}

α

d

and E[Xi] = E[X2
i ] = 1

d
. Hence, λij = αI{j−i=1} for i < j . By symmetry, λij =

αI{|i−j |=1} for i 	= j . Thus, � is an MA(1) matrix with parameter α. �
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4.2. Advanced tail-dependence models. Theorem 3.3 gives a characterization
of tail-dependence matrices using Bernoulli-compatible matrices and (3.3) pro-
vides a compatible model Y for any tail-dependence matrix �(= E[XX�]/p).

It is generally not easy to check whether a given matrix is a Bernoulli-
compatible matrix or a tail-dependence matrix; see also Remark 2.1. Therefore,
we now study the following question.

QUESTION 3. How can we construct a broader class of models with flexible
dependence structures and desired tail-dependence matrices?

To enrich our models, we bring random matrices with Bernoulli entries into
play. For d,m ∈ N, let

Vd×m =
{
X = (Xij )d×m : P(

X ∈ {0,1}d×m) = 1,

m∑
j=1

Xij ≤ 1, i = 1, . . . , d

}
,

that is, Vd×m is the set of d × m random matrices supported in {0,1}d×m with
each row being mutually exclusive; see Dhaene and Denuit [5]. Furthermore, we
introduce a transformation L on the set of square matrices, such that, for any i, j =
1, . . . , d , the (i, j)th element b̃ij of L(B) is given by

b̃ij =
{

bij , if i 	= j ,
1, if i = j ;

(4.2)

that is, L adjusts the diagonal entries of a matrix to be 1, and preserves all the other
entries. For a set S of square matrices, we set L(S) = {L(B) : B ∈ S}. We can now
address Question 3.

THEOREM 4.2 (A class of flexible models). Let U ∼ CU for an m-dimensional
copula CU with tail-dependence matrix � and let V ∼ CV for a d-dimensional
copula CV with tail-dependence matrix Id . Furthermore, let X ∈ Vd×m such that
X,U,V are independent and let

Y = XU + Z ◦ V,(4.3)

where Z = (Z1, . . . ,Zd) with Zi = 1 − ∑m
k=1 Xik , i = 1, . . . , d . Then Y has tail-

dependence matrix � = L(E[X�X�]).
PROOF. Write X = (Xij )d×m, U = (U1, . . . ,Um), V = (V1, . . . , Vd), � =

(λij )d×d and Y = (Y1, . . . , Yd). Then, for all i = 1, . . . , d ,

Yi =
m∑

k=1

XikUk + ZiVi =
{

Vi, if Xik = 0 for all k = 1, . . . ,m, so Zi = 1,
Uk, if Xik = 1 for some k = 1, . . . ,m, so Zi = 0.

Clearly, Y has U[0,1] margins. We now calculate the tail-dependence matrix � =
(γij )d×d of Y for i 	= j . By our independence assumptions, we can derive the
following results:
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(i) P(Yi ≤ u,Yj ≤ u,Zi = 1,Zj = 1) = P(Vi ≤ u,Vj ≤ u,Zi = 1,Zj =
1) = CV

ij (u,u)P(Zi = 1,Zj = 1) ≤ CV
ij (u,u), where CV

ij denotes the (i, j)th mar-

gin of CV. As V has tail-dependence matrix Id , we obtain that

lim
u↓0

1

u
P(Yi ≤ u,Yj ≤ u,Zi = 1,Zj = 1) = 0.

(ii) P(Yi ≤ u,Yj ≤ u,Zi = 0,Zj = 1) = ∑m
k=1 P(Uk ≤ u,Vj ≤ u,Xik =

1,Zj = 1) = ∑m
k=1 P(Uk ≤ u)P(Vj ≤ u)P(Xik = 1,Zj = 1) ≤ u2, and thus

lim
u↓0

1

u
P(Yi ≤ u,Yj ≤ u,Zi = 0,Zj = 1) = 0.

Similarly, we obtain that

lim
u↓0

1

u
P(Yi ≤ u,Yj ≤ u,Zi = 1,Zj = 0) = 0.

(iii) P(Yi ≤ u,Yj ≤ u,Zi = 0,Zj = 0) = ∑m
k=1

∑m
l=1 P(Uk ≤ u,Ul ≤ u,

Xik = 1,Xjl = 1) = ∑m
k=1

∑m
l=1 CU

kl(u,u)P(Xik = 1,Xjl = 1) =∑m
k=1

∑m
l=1 CU

kl(u,u)E[XikXjl] so that

lim
u↓0

1

u
P(Yi ≤ u,Yj ≤ u,Zi = 0,Zj = 0) =

m∑
k=1

m∑
l=1

λklE[XikXjl]

= E

[
m∑

k=1

m∑
l=1

XikλklXjl

]

= (
E

[
X�X�])

ij .

By the law of total probability, we thus obtain that

γij = lim
u↓0

P(Yi ≤ u,Yj ≤ u)

u
= lim

u↓0

P(Yi ≤ u,Yj ≤ u,Zi = 0,Zj = 0)

u

= (
E

[
X�X�])

ij .

This shows that E[X�X�] and � agree on the off-diagonal entries. Since � ∈ Td

implies that diag(�) = Id , we conclude that L(E[X�X�]) = �. �

A special case of Theorem 4.2 reveals an essential difference between the tran-
sition rules of a tail-dependence matrix and a covariance matrix. Suppose that for
X ∈ Vd×m, E[X] is a stochastic matrix (each row sums to 1), and U ∼ CU for
an m-dimensional copula CU with tail-dependence matrix � = (λij )d×d . Now we
have that Zi = 0, i = 1, . . . , d in (4.3). By Theorem 4.2, the tail dependence matrix
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of Y = XU is given by L(E[X�X�]). One can check the diagonal terms of the
matrix �∗ = (λ∗

ij )d×d = X�X� by

λ∗
ii =

m∑
j=1

m∑
k=1

XikλkjXij =
m∑

k=1

Xikλkk = 1, i = 1, . . . ,m.

Hence, the tail-dependence matrix of Y is indeed E[X�X�].

REMARK 4.1. In summary:

(i) If an m-vector U has covariance matrix 
, then XU has covariance matrix
E[X
X�] for any d × m random matrix X independent of U.

(ii) If an m-vector U has uniform [0,1] margins and tail-dependence matrix �,
then XU has tail-dependence matrix E[X�X�] for any X ∈ Vd×m independent of
U such that each row of X sums to 1.

It is noted that the transition property of tail-dependence matrices is more restricted
than that of covariance matrices.

The following two propositions consider selected special cases of this construc-
tion which are more straightforward to apply.

PROPOSITION 4.3. For any B ∈ Bd and any � ∈ Td we have that L(B ◦�) ∈
Td . In particular, L(B) ∈ Td , and hence L(Bd) ⊆ Td .

PROOF. Write B = (bij )d×d = E[WW�] for some W = (W1, . . . ,Wd) ∈ Vd

and consider X = diag(W) ∈ Vd×d . As in the proof of Theorem 4.2 (and with the
same notation), it follows that for i 	= j , γij = E[XiiλijXjj ] = E[WiWjλij ]. This
shows that E[X�X�] = E[WW� ◦ �] and B ◦ � agree on off-diagonal entries.
Thus, L(B ◦ �) = � ∈ Td . By taking � = (1)d×d , we obtain L(B) ∈ Td . �

The following proposition states a relationship between substochastic matrices
and tail-dependence matrices. To this end, let

Qd×m =
{
Q = (qij )d×m :

m∑
j=1

qij ≤ 1, qij ≥ 0, i = 1, . . . , d, j = 1, . . . ,m

}
,

that is, Qd×m is the set of d ×m (row) substochastic matrices; note that the expec-
tation of a random matrix in Vd×m is a substochastic matrix.

PROPOSITION 4.4. For any Q ∈ Qd×m and any � ∈ Tm, we have that
L(Q�Q�) ∈ Td . In particular, L(QQ�) ∈ Td for all Q ∈ Qd×m and L(pp�) ∈ Td

for all p ∈ [0,1]d .
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PROOF. Write Q = (qij )d×m and let Xik = I{Zi∈[∑k−1
j=1 qij ,

∑k
j=1 qij )} for inde-

pendent Zi ∼ U[0,1], i = 1, . . . , d , k = 1, . . . ,m. It is straightforward to see that
E[X] = Q, X ∈ Vd×m with independent rows, and

∑m
k=1 Xik ≤ 1 for i = 1, . . . , d ,

so X ∈ Vd×m. As in the proof of Theorem 4.2 (and with the same notation), it
follows that for i 	= j ,

γij =
m∑

l=1

m∑
k=1

E[Xik]E[Xjl]λkl =
m∑

l=1

m∑
k=1

qikqjlλkl.

This shows that Q�Q� and � agree on off-diagonal entries, so L(Q�Q�) =
� ∈ Td . By taking � = Id , we obtain L(QQ�) ∈ Td . By taking m = 1, we obtain
L(pp�) ∈ Td . �

4.3. Corresponding copula models. In this section, we derive the copulas of
(3.3) and (4.3) which are able to produce tail-dependence matrices E[XX�]/p and
L(E[X�X�]) as stated in Theorems 3.3 and 4.2, respectively. We first address the
former.

PROPOSITION 4.5 [Copula of (3.3)]. Let X ∈ Vd , E[X] = (p, . . . , p) ∈
(0,1]d . Furthermore, let U,V ∼ U[0,1], U,V,X be independent and

Y = XpU + (1 − X)
(
p + (1 − p)V

)
.

Then the copula C of Y at u = (u1, . . . , ud) is given by

C(u) = ∑
i∈{0,1}d

min
{

minr:ir=1{ur}
p

,1
}

max
{

minr:ir=0{ur} − p

1 − p
,0

}
P(X = i),

with the convention min∅= 1.

PROOF. By the law of total probability and our independence assumptions,

C(u) = ∑
i∈{0,1}d

P(Y ≤ u,X = i)

= ∑
i∈{0,1}d

P

(
pU ≤ min

r:ir=1
{ur},p + (1 − p)V ≤ min

r:ir=0
{ur},X = i

)

= ∑
i∈{0,1}d

P

(
U ≤ minr:ir=1{ur}

p

)
P

(
V ≤ minr:ir=0{ur} − p

1 − p

)
P(X = i);

the claim follows from the fact that U,V ∼ U[0,1]. �

For deriving the copula of (4.3), we need to introduce some notation; see also
Example 4.1 below. In the following theorem, let supp(X) denote the support of X.
For a vector u = (u1, . . . , ud) ∈ [0,1]d and a matrix A = (Aij )d×m ∈ supp(X), de-
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note by Ai the sum of the ith row of A, i = 1, . . . , d , and let uA = (u1I{A1=0} +
I{A1=1}, . . . , ud I{Ad=0}+I{Ad=1}), and u∗

A = (minr:Ar1=1{ur}, . . . ,minr:Arm=1{ur}),
where min∅= 1.

PROPOSITION 4.6 [Copula of (4.3)]. Suppose that the setup of Theorem 4.2
holds. Then the copula C of Y in (4.3) is given by

C(u) = ∑
A∈supp(X)

CV (uA)CU (
u∗

A

)
P(X = A).(4.4)

PROOF. By the law of total probability, it suffices to verify that P(Y ≤ u|X =
A) = CV(uA)CU(u∗

A). This can be seen from

P(Y ≤ u|X = A)

= P

(
m∑

k=1

AjkUk + (1 − Aj)Vj ≤ uj , j = 1, . . . , d

)

= P(UkI{Ajk=1} ≤ uj ,Vj I{Aj=0} ≤ uj , j = 1, . . . , d, k = 1, . . . ,m)

= P

(
Uk ≤ min

r:Ark=1
{ur},Vj ≤ uj I{Aj=0} + I{Aj=1},

j = 1, . . . , d, k = 1, . . . ,m
)

= P

(
Uk ≤ min

r:Ark=1
{ur}, k = 1, . . . ,m

)
P(Vj ≤ uj I{Aj=0} + I{Aj=1},

j = 1, . . . , d)

= CU(
u∗

A

)
CV(uA). �

As long as CV has tail-dependence matrix Id , the tail-dependence matrix of
Y is not affected by the choice of CV. This theoretically provides more flexibil-
ity in choosing the body of the distribution of Y while attaining a specific tail-
dependence matrix. Note, however, that this also depends on the choice of X; see
the following example where we address special cases which allow for more in-
sight into the rather abstract construction (4.4).

EXAMPLE 4.1. 1. For m = 1, the copula C in (4.4) is given by

C(u) = ∑
A∈{0,1}d

CV(uA)CU(
u∗

A
)
P(X = A);(4.5)

note that X,A in equation (4.4) are indeed vectors in this case. For d = 2, we
obtain

C(u1, u2) = M(u1, u2)P

(
X =

(
1
1

))
+ CV(u1, u2)P

(
X =

(
0
0

))

+ �(u1, u2)P

(
X =

(
1
0

)
or X =

(
0
1

))
,
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and therefore a mixture of the Fréchet–Hoeffding upper bound M(u1, u2) =
min{u1, u2}, the copula CV and the independence copula �(u1, u2) = u1u2. If
P

(
X = (0

0

)) = 0 then C is simply a mixture of M and � and does not depend on
V anymore.

Now consider the special case of (4.5) where V follows the d-dimensional inde-
pendence copula �(u) = ∏d

i=1 ui and X = (X1, . . . ,Xd−1,1) is such that at most
one of X1, . . . ,Xd−1 is 1 [each randomly with probability 0 ≤ α ≤ 1/(d − 1) and
all are simultaneously 0 with probability 1 − (d − 1)α]. Then, for all u ∈ [0,1]d ,
C is given by

C(u) = α

d−1∑
i=1

(
min{ui, ud}

d−1∏
j=1,j 	=i

uj

)
+ (

1 − (d − 1)α
) d∏
j=1

uj .(4.6)

This copula is a conditionally independent multivariate Fréchet copula studied in
Yang et al. [16]. This example will be revisited in Section 4.4; see also the left-hand
side of Figure 3 below.

2. For m = 2, d = 2, we obtain

C(u1, u2) = M(u1, u2)P

(
X =

(
1 0
1 0

)
or X =

(
0 1
0 1

))

+ CU(u1, u2)P

(
X =

(
1 0
0 1

))
+ CU(u2, u1)P

(
X =

(
0 1
1 0

))
(4.7)

+ CV(u1, u2)P

(
X =

(
0 0
0 0

))

+ �(u1, u2)P

(
X =

(
0 0
1 0

)
or

(
0 0
0 1

)
or

(
1 0
0 0

)
or

(
0 1
0 0

))
.

Figure 2 shows samples of size 2000 from (4.7) for V ∼ � and two different
choices of U (in different rows) and X (in different columns). From Theorem 4.2,
we obtain that the off-diagonal entry γ12 of the tail-dependence matrix � of Y is
given by

γ12 = p(1,2)(1,1) + p(1,2)(2,2) + λ12(p(1,2)(2,1) + p(1,2)(1,2)),

where λ12 is the off-diagonal entry of the tail-dependence matrix � of U.

4.4. An example from risk management practice. Let us now come back to
problem (1.1) which motivated our research on tail-dependence matrices. From
a practical point of view, the question is whether it is possible to find one finan-
cial position, which has tail-dependence coefficient α with each of d − 1 tail-
independent financial risks (assets). Such a construction can be interesting for risk
management purposes, for example, in the context of hedging.
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FIG. 2. Scatter plots of 2000 samples from Y for V ∼ � and U following a bivariate (m = 2) t3
copula with Kendall’s tau equal to 0.75 (top row) or a survival Marshall–Olkin copula with parame-
ters α1 = 0.25, α2 = 0.75 (bottom row). For the plots on the left-hand side, the number of rows of X

with one 1 are randomly chosen among {0,1,2 (= d)}, the corresponding rows and columns are then
randomly selected among {1,2 (= d)} and {1,2 (= m)}, respectively. For the plots on the right-hand
side, X is drawn from a multinomial distribution with probabilities 0.5 and 0.5 such that each row
contains precisely one 1.

Recall problem (1.1):

For which α ∈ [0,1] is the matrix

�d(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 α

0 1 · · · 0 α
...

...
. . .

...
...

0 0 · · · 1 α

α α · · · α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.8)

a matrix of pairwise (either lower or upper) tail-dependence coefficients?

Based on the Fréchet–Hoeffding bounds, it follows from Joe [8], Theorem 3.14,
that for d = 3 (and thus also d > 3), α has to be in [0,1/2]; however, this is not
a sufficient condition for �d(α) to be a tail-dependence matrix. The following



1654 P. EMBRECHTS, M. HOFERT AND R. WANG

proposition not only gives an answer to (4.8) by providing necessary and sufficient
such conditions, but also provides, by its proof, a compatible model for �d(α).

PROPOSITION 4.7. �d(α) ∈ Td if and only if 0 ≤ α ≤ 1/(d − 1).

PROOF. The if-part directly follows from Corollary 3.5. We provide a con-
structive proof based on Theorem 4.2. Suppose that 0 ≤ α ≤ 1/(d − 1). Take a
partition {�1, . . . ,�d} of the sample space � with P(�i) = α, i = 1, . . . , d − 1,
and let X = (I�1, . . . , I�d−1,1) ∈ Vd . It is straightforward to see that

E
[
XX�] =

⎛
⎜⎜⎜⎜⎜⎜⎝

α 0 · · · 0 α

0 α · · · 0 α
...

...
. . .

...
...

0 0 · · · α α

α α · · · α 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By Proposition 4.3, �d(α) = L(E[XX�]) ∈ Td .
For the only if part, suppose that �d(α) ∈ Td ; thus α ≥ 0. By Theorem 3.3,

�d(α) ∈ BI
d . By the definition of BI

d , �d(α) = Bd/p for some p ∈ (0,1] and a
Bernoulli-compatible matrix Bd . Therefore,

p�d(α) =

⎛
⎜⎜⎜⎜⎜⎜⎝

p 0 · · · 0 pα

0 p · · · 0 pα

...
...

. . .
...

...

0 0 · · · p pα

pα pα · · · pα p

⎞
⎟⎟⎟⎟⎟⎟⎠

is a compatible Bernoulli matrix, so p�d(α) ∈ Bd . Write p�d(α) = E[XX�] for
some X = (X1, . . . ,Xd) ∈ Vd . It follows that P(Xi = 1) = p for i = 1, . . . , d ,
P(XiXj = 1) = 0 for i 	= j , i, j = 1, . . . , d − 1 and P(XiXd = 1) = pα for i =
1, . . . , d − 1. Note that {XiXd = 1}, i = 1, . . . , d − 1, are almost surely disjoint
since P(XiXj = 1) = 0 for i 	= j , i, j = 1, . . . , d − 1. As a consequence,

p = P(Xd = 1) ≥ P

(
d−1⋃
i=1

{XiXd = 1}
)

=
d−1∑
i=1

P(XiXd = 1) = (d − 1)pα,

and thus (d − 1)α ≤ 1. �

It follows from the proof of Theorem 4.2 that for α ∈ [0,1/(d − 1)], a com-
patible copula model with tail-dependence matrix �d(α) can be constructed as
follows. Consider a partition {�1, . . . ,�d} of the sample space � with P(�i) = α,
i = 1, . . . , d − 1, and let X = (X1, . . . ,Xd) = (I�1, . . . , I�d−1,1) ∈ Vd ; note that
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FIG. 3. Pairs plot of 2000 samples from Y ∼ C which produces the tail dependence matrix �4(1/3)

as given by (1.1). On the left-hand side, V ∼ � [α determines how much weight is on the diagonal
for pairs with one component being Y4; see (4.6)] and on the right-hand side, V follows a Gauss
copula with parameter chosen such that Kendall’s tau equals 0.8.

m = 1 here. Furthermore, let V be as in Theorem 4.2, U ∼ U[0,1] and U,V,X be
independent. Then

Y = (
UX1 + (1 − X1)V1, . . . ,UXd−1 + (1 − Xd−1)Vd−1,U

)
has tail-dependence matrix �d(α). Example 4.1, part 1 provides the copula C of
Y in this case. It is also straightforward to verify from this copula that Y has tail-
dependence matrix �d(α). Figure 3 displays pairs plots of 2000 realizations of Y
for α = 1/3 and two different copulas for V.

REMARK 4.2. Note that �d(α) is not positive semidefinite if and only if
α > 1/

√
d − 1. For d < 5, element-wise nonnegative and positive semidefinite

matrices are completely positive; see Berman and Shaked-Monderer [1], Theo-
rem 2.4. Therefore, �3(2/3) is completely positive. However, it is not in T3. It
indeed shows that the class of completely positive matrices with diagonal entries
being 1 is strictly larger than Td .

5. Conclusion and discussion. Inspired by the question whether a given ma-
trix in [0,1]d×d is the matrix of pairwise tail-dependence coefficients of a d-
dimensional random vector, we introduced the tail-dependence compatibility prob-
lem. It turns out that this problem is closely related to the Bernoulli-compatibility
problem which we also addressed in this paper and which asks when a given matrix
in [0,1]d×d is a Bernoulli-compatible matrix (see Question 1 and Theorem 2.2).
As a main finding, we characterized tail-dependence matrices as precisely those
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square matrices with diagonal entries being 1 which are Bernoulli-compatible ma-
trices multiplied by a constant (see Question 2 and Theorem 3.3). Furthermore, we
presented and studied new models (see, e.g., Question 3 and Theorem 4.2) which
provide answers to several questions related to the tail-dependence compatibility
problem.

The study of compatibility of tail-dependence matrices is mathematically dif-
ferent from that of covariances matrices. Through many technical arguments in
this paper, the reader may have already realized that the tail-dependence matrix
lacks a linear structure which is essential to covariance matrices based on tools
from linear algebra. For instance, let X be a d-random vector with covariance ma-
trix 
 and tail-dependence matrix �, and A be an m × d matrix. The covariance
matrix of AX is simply given by A
A�; however, the tail-dependence matrix of
AX is generally not explicit (see Remark 4.1 for special cases). This lack of lin-
earity can also help to understand why tail-dependence matrices are realized by
models based on Bernoulli vectors as we have seen in this paper, in contrast to
covariance matrices which are naturally realized by Gaussian (or generally, ellip-
tical) random vectors. The latter have a linear structure, whereas Bernoulli vec-
tors do not. It is not surprising that most classical techniques in linear algebra
such as matrix decomposition, diagonalization, ranks, inverses and determinants
are not very helpful for studying the compatibility problems we address in this
paper.

Concerning future research, an interesting open question is how one can (theo-
retically or numerically) determine whether a given arbitrary nonnegative, square
matrix is a tail-dependence or Bernoulli-compatible matrix. To the best of our
knowledge there are no corresponding algorithms available. Another open question
concerns the compatibility of other matrices of pairwise measures of association
such as rank-correlation measures (e.g., Spearman’s rho or Kendall’s tau); see [6],
Section 6.2. Recently, [7] and [15] studied the concept of tail-dependence func-
tions of stochastic processes. Similar results to some of our findings were found in
the context of max-stable processes.

From a practitioner’s point-of-view, it is important to point out limitations of
using tail-dependence matrices in quantitative risk management and other applica-
tions. One possible such limitation is the statistical estimation of tail-dependence
matrices since, as limits, estimating tail dependence coefficients from data is non-
trivial (and typically more complicated than estimation in the body of a bivariate
distribution).

After presenting the results of our paper at the conferences “Recent Develop-
ments in Dependence Modelling with Applications in Finance and Insurance—2nd
Edition, Brussels, May 29, 2015” and “The 9th International Conference on Ex-
treme Value Analysis, Ann Arbor, June 15–19, 2015,” the references [7] and [15]
were brought to our attention (see also Acknowledgments below). In these papers,
a very related problem is treated, be it from a different, more theoretical angle,
mainly based on the theory of max-stable and Tawn–Molchanov processes as well
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as results for convex-polytopes. For instance, our Theorem 3.3 is similar to Theo-
rem 6(c) in [7].
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