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A PROBABILISTIC APPROACH TO MEAN FIELD GAMES
WITH MAJOR AND MINOR PLAYERS

BY RENÉ CARMONA AND XIUNENG ZHU

Princeton University

We propose a new approach to mean field games with major and minor
players. Our formulation involves a two player game where the optimiza-
tion of the representative minor player is standard while the major player
faces an optimization over conditional McKean–Vlasov stochastic differen-
tial equations. The definition of this limiting game is justified by proving that
its solution provides approximate Nash equilibriums for large finite player
games. This proof depends upon the generalization of standard results on the
propagation of chaos to conditional dynamics. Because it is of independent
interest, we prove this generalization in full detail. Using a conditional form
of the Pontryagin stochastic maximum principle (proven in the Appendix),
we reduce the solution of the mean field game to a forward–backward system
of stochastic differential equations of the conditional McKean–Vlasov type,
which we solve in the linear quadratic setting. We use this class of models to
show that Nash equilibriums in our formulation can be different from those
originally found in the literature.

1. Introduction. Stochastic games are widely used in economic, engineering
and social science applications, and the notion of Nash equilibrium is one of the
most prevalent notions of equilibrium used in their analyses. However, when the
number of players is large, exact Nash equilibria are notoriously difficult to iden-
tify and construct explicitly. In an attempt to circumvent this roadblock, Lasry and
Lions in [17–19] initiated the theory of mean field games for a type of games in
which all the players are statistically identical, and only interact through their em-
pirical distributions. These authors successfully identify the limiting problem as a
set of two coupled PDEs, the first one of Hamilton–Jacobi–Bellman type and the
second one of Kolmogorov type. Approximate Nash equilibria for the finite-player
games are then derived from the solutions of the limiting problem. Motivated by
the analysis of large communication networks, Huang, Malhamé and Caines de-
veloped independently a very similar program; see [15], under the name of Nash
Certainty Equivalence. A probabilistic approach was developed by Carmona and
Delarue (see [5]), in which the limiting system of coupled PDEs is replaced by
a fully coupled forward–backward stochastic differential equation (FBSDE for
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short). Recently, an approach based on the weak formulation of stochastic con-
trols was introduced in [10] and models with a common noise studied in [8].

From a modeling perspective, one of the major shortcomings of the standard
mean field game theory is the strong symmetry requirement that all the players
in the game are statistically identical. See nevertheless [15] where the asymptotic
theory is applied to several groups of players. The second requirement of the mean
field game theory is that, when the number of players is large, the influence of one
single player on the system becomes asymptotically negligible. This is in sharp
contrast with the reality of the banking system where the actions of a few System-
ically Important Financial Institutions (SIFI) impact the system no-matter how
large the number of small banks is.

In [14], Huang introduced a linear-quadratic infinite-horizon model in which
there exists a major player, whose influence will not fade away when the number
of players tends to infinity. Nguyen and Huang [23] introduce the finite-horizon
counterpart, and [24] generalizes this model to the nonlinear case. These models
are usually called “mean field game with major and minor players.” Unfortunately,
the scheme proposed in [23, 24] fails to accommodate the case where the state of
the major player enters the dynamics of the minor players. To be more specific, in
[23, 24], the major player influences the minor players solely via their cost func-
tionals. Nguyen and Huang [22] proposes a new scheme to solve the general case
for linear-quadratic-Guassian (LQG for short) games in which the major player’s
state enters the dynamics of the minor players. The limiting control problem for
the major player is solved by what the authors call “anticipative variational calcu-
lation.” In [3], the authors take, like in [24], a stochastic Hamilton–Jacobi–Bellman
approach to a type of general mean field games with major and minor players, and
the limiting problem is characterized by a set of stochastic PDEs.

In this paper, we analyze a type of general mean field games with major and
minor players, and develop a systematic scheme to find approximate Nash equi-
libria for the finite-player games using a purely probabilistic approach. The lim-
iting problem is identified as a two-player stochastic differential game, in which
the control problem faced by the major player is of conditional McKean–Vlasov
type, while the optimization problem faced by the representative minor player is a
standard control problem. A matching procedure then follows the solution of the
two-player game, which gives a FBSDE of McKean–Vlasov type as a characteriza-
tion of the solution of the limiting problem. The construction of approximate Nash
equilibria for the finite-player games with the aid of the limiting problem is also
elaborated, with the approximate Nash equilibrium property carefully proved both
for the major player and minor players, which fully justifies the scheme we pro-
pose. We believe that the results in this paper lead to a much more comprehensive
understanding of this type of problems.

While [3] is clearly the closest contribution to ours, our paper differs from [3] in
the following ways: first, we use a probabilistic approach based on a new version
of the Pontryagin stochastic maximum principle for conditional McKean–Vlasov
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dynamics in order to solve the embedded stochastic control problems, while in [3]
a HJB equation approach is taken. Second, the limiting problem is defined as a two-
player game as opposed to the three problems articulated in [3]. We believe that
this gives a better insight into this kind of mean field games with a major player.
Third, the finite-player game in [3] is a N -player game including only the minor
players, and the major player is considered exogenous, and does not provide an
active participation in the game. The associated propagation of chaos is then just a
randomized version of the usual propagation of chaos associated to the usual mean
field games, and the limiting scheme is not completely justified. Here, we define
the finite-player game as an (N + 1)-player game including the major player. The
construction of approximate Nash equilibriums is proved for the minor players,
and most importantly, for the major player as well, fully justifying our limiting
scheme for finding approximate Nash equilibria.

The classical theory of propagation of chaos, in which particles are identical is
well developed. See, for example, the elegant treatment in [26] and a more recent
account in [16]. However, when introducing a major particle in the system, even
when the number of particles tends to infinity, the influence of this major particle
on the other particles does not average out in the limit. This creates interesting
novel features not present in the classical theory. They involve conditioning with
respect to the information flow associated to the major particle. Our propagation
of chaos result for SDEs of McKean–Vlasov type with conditional distributions is
given in the stand alone Section 7. The results of this section play a crucial role
in the construction of approximate Nash equilibriums for the limiting two-player
game in Section 4. They are independent of the results on Mean Field Games. For
this reason, we include them at the end of the paper, not to disrupt the flow.

The advantages of using the probabilistic approach are threefold. First, the prob-
abilistic framework is natural when dealing with open-loop controls. In the present
situation, the persistence of the influence of the major player forces the controls
to be random, at least partially, even when looking for strategies in closed loop
form. Second, the limiting conditional McKean–Vlasov control problem faced by
the major player can be treated most elegantly using an appropriate version of
the Pontryagin stochastic maximum principle. Since such a form of the stochastic
maximum principle is not available in the published literature, we provide it in an
Appendix at the end of the paper. Third, our approach can rely on existing results
in the literature on the well-posedness of FBSDEs and their associated decoupling
fields in order to address the solvability of the limiting problem.

The mean field game model with major and minor players investigated in this
paper is as follows. The major player which is indexed by 0, can choose a con-
trol process u0,N taking values in a convex set U0 ⊂ R

k0 , and every minor player
indexed by i ∈ {1, . . . ,N} can choose a control process ui,N taking values in
a convex set U ⊂ R

k . The state of the system at time t is given by a vector
XN

t = (X
0,N
t ,X

1,N
t , . . . ,X

N,N
t ) ∈ R

d0+Nd whose controlled dynamics are given
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by ⎧⎪⎪⎨
⎪⎪⎩

dX
0,N
t = b0

(
t,X

0,N
t ,μN

t , u
0,N
t

)
dt + σ0

(
t,X

0,N
t ,μN

t , u
0,N
t

)
dW 0

t ,

dX
i,N
t = b

(
t,X

i,N
t ,μN

t ,X
0,N
t , u

i,N
t

)
dt + σ

(
t,X

i,N
t ,μN

t ,X
0,N
t , u

i,N
t

)
dWi

t ,

1 ≤ i ≤ N,

(1)

where (Wi
t )i≥0 is a sequence of independent Wiener processes, and

μN
t = 1

N

N∑
i=1

δ
X

i,N
t

(2)

is the empirical distribution of the states of the minor players, δx standing for
the point Dirac mass at x. The Wiener process W 0 is assumed to be m0 dimen-
sional while all the other Wiener processes Wi for i ≥ 1 are assumed to be m-
dimensional. X

0,N
t (and hence b0) is d0-dimensional while all the other X

i,N
t (and

hence b) are d-dimensional. Finally, for consistency reasons, the matrices σ0 and
σ are d0 × m0 and d × m dimensional, respectively. The major player aims at
minimizing the cost functional given by

J 0,N (u0,N , uN )= E

[∫ T

0
f0
(
t,X

0,N
t ,μN

t , u
0,N
t

)
dt + g0

(
X

0,N
T ,μN

T

)]
,(3)

and the minor players aim at minimizing the cost functionals

J i,N (u0,N , uN )
= E

[∫ T

0
f
(
t,X

i,N
t ,μN

t ,X
0,N
t , u

i,N
t

)
dt + g

(
X

i,N
T ,μN

T ,X
0,N
T

)]
,(4)

1 ≤ i ≤ N.

We use the notation uN for (u1,N , . . . , uN,N). We observe readily that an important
difference between the current model and the usual mean field game model is
the presence of the state of the major player in the state dynamics and the cost
functionals of the minor players. Even when the number of minor players is large,
the major player can still influence the behavior of the system in a nonnegligible
manner.

The rest of the paper is organized as follows. In the preliminary Section 2, we
review briefly the usual mean field game scheme, and then proceed to the scheme
for the mean field games with major and minor players proposed in this paper.
Some heuristic arguments leading to the scheme are also provided, and the differ-
ence between the current scheme and the one used in [23, 24] are highlighted. In
Section 3, we carry out the scheme described in Section 2 for a type of mean field
games with major and minor players with scalar interactions, and we use the Pon-
tryagin maximum principle to solve the embedded stochastic control problems.
The FBSDE of conditional mean field type characterizing the Nash equilibria for
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the limiting two-player game is derived. In Section 4, we prove that the solution
of the limiting problem can actually be used to build approximate Nash equilib-
ria for the finite-player games, justifying our scheme. In Section 5, we apply the
scheme to the case of Linear Quadratic Gaussian (LQG for short) models, and find
explicit approximate Nash equilibria for the finite-player games, and in Section 6 a
concrete example is given to show that the current scheme leads to different results
from the scheme proposed in [22] and [24]. In the independent Section 7, we prove
a conditional version of propagation of chaos which plays a pivotal role in the con-
struction of approximate Nash equilibria in Section 4. Finally, in the Appendix at
the end of the paper, we prove a version of the sufficient part of the Pontryagin
stochastic maximum principle for conditional McKean–Vlasov dynamics used in
solving the stochastic control problem faced by the major player.

2. Preliminaries.

2.1. Brief review of the standard mean field game problem. A standard intro-
duction to the mean field game (MFG for short) theory starts with an N -player
stochastic differential game, the dynamics of the states of the players being gov-
erned by stochastic differential equations (SDEs)

dX
i,N
t = b

(
t,X

i,N
t ,μN

t , u
i,N
t

)
dt + σ

(
t,X

i,N
t ,μN

t , u
i,N
t

)
dWi

t ,

i = 1,2, . . . ,N,

each player aiming at the minimization of a cost functional

J i,N (u) = E

[∫ T

0
f
(
t,X

i,N
t ,μN

t , u
i,N
t

)
dt + g

(
X

i,N
T ,μN

T

)]
,

where μN
t stands for the empirical distribution of the X

N,i
t for i = 1, . . . ,N . The

usual MFG scheme can be summarized in the following 3 steps:

(1) Fix a deterministic flow (μt )0≤t≤T of probability measures.
(2) Solve the standard stochastic control problem: minimize

J (u) = E

[∫ T

0
f (t,Xt ,μt , ut ) dt + g(XT ,μT )

]
,

when the controlled dynamics of the process Xt are given by

dXt = b(t,Xt ,μt , ut ) dt + σ(t,Xt ,μt , ut ) dWt .

(3) Solve the fixed-point problem �(μ) = μ, where for each flow μ as in
step (1), �(μ) denotes the flow of marginal distributions of the optimally con-
trolled state process found in step (2).

If the above scheme can be carried out successfully, it is usually possible to prove
that the optimal control found in step (2) can be used to provide approximate Nash
equilibriums for the finite-player game. The interested reader is referred to [15,
17–19] for detailed discussions of the PDE approach of the above scheme and to
[5, 10] for two different probabilistic approaches.
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2.2. Heuristic derivation of the MFG approach. In this subsection, we provide
a heuristic argument which leads to a scheme for mean field games with major and
minor players. The finite-player games are described by equations (1)–(4) above.
Because all the minor players are identical and influenced by the major player in
exactly the same way, it is reasonable to assume that they are exchangeable, even
when the optimal strategies (in the sense of Nash equilibrium) are implemented.
On the other hand, for any sequence of integrable exchangeable random variables
(Xi)i≥1, de Finetti’s law of large numbers states that almost surely,

1

N

N∑
i=1

δXi
�⇒ L(X1|G),

for some σ -field G where �⇒ denotes convergence in distribution. See [1] or [12].
We may want to apply this result for each time t to the individual states X

i,N
t in

which case, a natural candidate for the σ -field G could be the element F0
t of the

filtration generated by the Wiener process W 0 driving the dynamics of the state
of the major player. This suggests that in mean field games with major and minor
players, we can proceed essentially in the same way as in the standard mean field
game theory, except for the fact that instead of fixing a deterministic measure flow
in the first step, we fix an adapted stochastic measure flow, and in the last step,
match this stochastic measure flow to the flow of marginal conditional distribution
of the state of the representative minor player given F0

t . This is in accordance with
intuition since, as all the minor players are influenced by the major player, they
should make their decisions conditioned on the information provided by the major
player. Notice that this is also consistent with the procedure used in the presence
of a so-called common noise as investigated in [8].

However, the above argument fails to apply to the major player. Indeed, no mat-
ter how many minor players are present in the game, the major player’s control in-
fluences all the minor players, and in particular, the empirical distribution formed
by the minor players. When we construct the limiting problem for the major player,
it is thus more reasonable to allow the major player to control the stochastic mea-
sure flow, instead of fixing it a priori. This asymmetry between major and minor
players was also observed in [3].

2.3. Precise formulation of the MFG problem with major and minor players.
Using the above heuristic argument, we end up with the following formulation for
the major–minor mean field game problem. The limiting control problem for the
major player is of conditional McKean–Vlasov type with an endogenous measure
flow, and the limiting control problem for the representative minor player is stan-
dard, with an exogenous measure flow fixed at the beginning of the scheme. As
a consequence, the limiting problem becomes a two-player stochastic differential
game between the major player and a representative minor player. This is in con-
trast with the existing literature where this limiting problem is usually framed as
two consecutive stochastic control problems. Specifically:
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(1) Fix an F
0-progressively measurable stochastic measure flow (μt )0≤t≤T

where F
0 = (F0

t )t≥0 denotes the filtration generated by the Wiener process W 0.
(2) Consider the following two-player stochastic differential game where the

control (u0
t )0≤t≤T of the first player is assumed to be adapted to F

0, and the
control (ut )0≤t≤T of the second player is assumed to be adapted to the filtration
F = (Ft )t≥0 generated by W 0 and W , and where the controlled dynamics of the
state of the system are given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX0
t = b0

(
t,X0

t ,L
(
Xt |F0

t

)
, u0

t

)
dt + σ0

(
t,X0

t ,L
(
Xt |F0

t

)
, u0

t

)
dW 0

t ,

dXt = b
(
t,Xt ,L

(
Xt |F0

t

)
,X0

t , ut

)
dt + σ

(
t,Xt ,L

(
Xt |F0

t

)
,X0

t , ut

)
dWt,

dX̌0
t = b0

(
t, X̌0

t ,μt , u
0
t

)
dt + σ0

(
t, X̌0

t ,μt , u
0
t

)
dW 0

t ,

dX̌t = b
(
t, X̌t ,μt , X̌

0
t , ut

)
dt + σ

(
t, X̌t ,μt , X̌

0
t , ut

)
dWt,

(5)

with initial conditions X0
0 = X̌0

0 = x0
0 , X0 = X̌0 = x0. The cost functionals for the

two players are given by

J 0(u0, u
)= E

[∫ T

0
f0
(
t,X0

t ,L
(
Xt |F0

t

)
, u0

t

)
dt + g0

(
X0

T ,L
(
XT |F0

T

))]
,

J
(
u0, u

)= E

[∫ T

0
f
(
t, X̌t ,μt , X̌

0
t , ut

)
dt + g

(
X̌T ,μT , X̌0

T

)]
,

where L(Xt |F0
t ) stands for the conditional distribution of Xt given F0

t . We look
for Nash equilibria for this game.

(3) Satisfy the consistency condition

μt = L
(
Xt |F0

t

) ∀t ∈ [0, T ],(6)

where Xt is the second component of the state (5) when a Nash equilibrium control
couple (u0, u) found in step 2 is plugged in.

Notice that the above consistency condition amounts to solving a fixed-point prob-
lem in the space of stochastic measure flows. After the consistency condition (6)
is met, (X0,X) and (X̌0, X̌) coincide, even though at the beginning of the scheme
they emerge from different measure flows: (X0,X) is defined with the endoge-
nous measure flow (L(Xt |F0

t ))0≤t≤T , while (X̌0, X̌) is defined with the exoge-
nous measure flow (μt )0≤t≤T . Indeed, when computing his best response to the
major player, a typical minor player assumes that the stochastic flow (μt )0≤t≤T

is fixed, like in the standard approach to mean field games recalled at the begin-
ning of the section. The fact that he is responding to a major player who should
behave in the environment given by (μt )0≤t≤T , is the justification for the introduc-
tion of X̌0

t in lieu of X0
t to compute his best response. Similarly, for the reasons

given at the end of the previous subsection, the major player computes his best
response assuming that the typical minor player uses the endogenous stochastic
flow (L(Xt |F0

t ))0≤t≤T . So, he is responding to the dynamics of Xt instead of the
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dynamics given by X̌t . This explains this apparent doubling of the states which
disappears in equilibrium when the consistency condition is satisfied.

Notice also that even when the X
i,N
t are scalar, the system (5) describes the

dynamics of a 4-dimensional state driven by two independent Wiener processes.
The dynamics of the first two components are of the conditional McKean–Vlasov
type (because of the presence of the conditional distribution L(Xt |F0

t ) of Xt in the
coefficients) while the dynamics of the last two components are given by standard
stochastic differential equations with random coefficients. In this two player game,
the cost functional J 0 of the major player is of the McKean–Vlasov type while the
cost functional J of the representative minor player is of the standard type. As
explained earlier, this is the main feature of our formulation of the problem. We
end this subsection with the precise definition of a solution to the mean field game
described above.

DEFINITION 2.1. Given a tuple (�,F,P,W 0,W), we use F
0 (resp., F) to

denote the augmented natural filtration generated by W 0 (resp., W 0 and W ). A so-
lution of the limiting MFG is defined as a couple of controls (u0, u), where u0 is
F

0-progressively measurable and u is F-progressively measurable forming a Nash
equilibrium of the two-player game defined in step 2 of the scheme, and satisfying
the consistency condition defined in step 3.

Later in the paper, we show that if we are able to find a fixed point in the third
step, that is, a stochastic measure flow (μt )0≤t≤T satisfying (6), we can use it to
construct approximate Nash equilibria for the finite-player games when the number
of players is sufficiently large. The precise meaning of this statement will be made
clear in Section 4.

3. Mean field games with major and minor players: The general case. In
this section, we analyze in detail the scheme explained in the previous section, and
we derive a FBSDE characterizing the solution to the limiting problem. We assume
that � is a standard space and F is its Borel σ -field, so that regular conditional dis-
tributions exist for all sub-σ -fields. The definition of standard probability spaces
we use here can be found in [4]. The finite-player games are described by (1)–(4)
where (Wi)i≥0 is a sequence of independent Wiener processes. We shall use the
following assumptions, and we refer the readers to [7], Section 3 for the differen-
tiability and convexity with respect to the measure arguments.

(A1) There exists a constant c > 0 such that for all t ∈ [0, T ], x′
0, x0 ∈ R

d0 ,
x′, x ∈ R

d , μ′,μ ∈P2(R
d), u′

0, u0 ∈ U0 and u′, u ∈ U we have∣∣(b0, σ0)
(
t, x′

0,μ
′, u′

0
)− (b0, σ0)(t, x0,μ,u0)

∣∣
+ ∣∣(b, σ )

(
t, x′,μ′, x′

0, u
′)− (b, σ )(t, x,μ, x0, u)

∣∣(7)

≤ c
(∣∣x′

0 − x0
∣∣+ ∣∣x′ − x

∣∣+ ∣∣u′
0 − u0

∣∣+ ∣∣u′ − u
∣∣+ W2

(
μ′,μ

))
.
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(A2) For all u0 ∈ U0 and u ∈ U , we have∫ T

0

(∣∣(b0, σ0)(t,0, δ0, u0)
∣∣2 + ∣∣(b, σ )(t,0, δ0,0, u)

∣∣2)dt < ∞.

(A3) There exists a constant cL > 0 such that for all x0, x
′
0 ∈ R

d0 , u0, u
′
0 ∈ R

k0

and μ,μ′ ∈P2(R
d), we have∣∣(f0, g0)
(
t, x′

0,μ
′, u′

0
)− (f0, g0)(t, x0,μ,u0)

∣∣
≤ cL

(
1 + ∣∣(x′

0, u
′
0
)∣∣+ ∣∣(x0, u0)

∣∣+ M2
(
μ′)+ M2(μ)

)
× (∣∣(x′

0, u
′
0
)− (x0, u0)

∣∣+ W2
(
μ′,μ

))
,

and for all x0 ∈ R
d0 , x, x′ ∈ R

d , u,u′ ∈R
k and μ,μ′ ∈ P2(R

d),∣∣(f, g)
(
t, x′,μ′, x0, u

′)− (f, g)(t, x,μ, x0, u)
∣∣

≤ cL

(
1 + ∣∣(x′, u′)∣∣+ ∣∣(x, u)

∣∣+ M2
(
μ′)+ M2(μ)

)
× (∣∣(x′, u′)− (x, u)

∣∣+ W2
(
μ,μ′)),

where P2(R
d) denotes the set of probability measures of order 2 (i.e., with a fi-

nite second moment), and W2(μ,μ′) the 2-Wasserstein distance between μ,μ′ ∈
P2(R

d). Also, we used the notation M2(μ) = ∫ |x|2μ(dx) for the second moment
of μ.

(A4) The functions b0, b, σ0, σ and f0 are differentiable with respect to
(x0, u0), the mappings (x0,μ,u0) �→ ∂x0(b0, b, σ0, σ, f0) and (x0,μ,u0) �→
∂u0(b0, σ0, f0) being continuous for all t ∈ [0, T ]. The functions b,σ and f

are differentiable with respect to (x, u), the mappings (x,μ,u) �→ ∂x(b, σ, f )

and (x,μ,u) �→ ∂u(b, σ, f ) being continuous for all t ∈ [0, T ]. b0, b, σ0,
σ and f0 are differentiable with respect to μ, the mapping (x0,X,u0) �→
∂μ(b0, σ0, f0)(t, x0,L(X),u0)(X) being continuous for all t ∈ [0, T ]. Similarly,
the function g0 is differentiable with respect to x0, the mapping (x0,μ) �→
∂x0g(x0,μ) being continuous. The function g0 is also differentiable with re-
spect to the variable μ, the mapping (x0,X) �→ ∂μg0(x0,L(X)) being continu-
ous. The function g is differentiable with respect to x, the mapping (x,μ, x0) �→
∂xg(x,μ,x0) being continuous.

(A5) The function x′ �→ ∂μ(b0, σ0)(t, x0,μ,u0)(x
′) in L2(Rd0,μ) is uni-

formly bounded. There exists a constant L such that, for any R ≥ 0 and any
(t, x0,μ, x,u0) such that |x0|, M2(μ), |x| and |u0| ≤ R, |∂x0(f0, g0)(t, x0,μ,u0)|,
|∂x(f, g)(t, x,μ, x0, u)|, |∂u0f0(t, x0,μ,u0)| and |∂uf (t, x,μ, x0, u)| are bounded
by L(1 + R) and the L2(Rd0,μ)-norm of x′ �→ ∂μ(f0, g0)(t, x0,μ,u0)(x

′) is
bounded by L(1 + R).

Assumptions (A1)–(A2) guarantee that for all admissible controls, the SDEs
(1)–(4) and (5) have unique solutions and (A3) guarantees that the associated cost
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functionals are well-defined. Assumptions (A4)–(A5) will be used when we define
adjoint processes for the limiting control problems.

In the following, for a generic filtration G, we use S
2,d(G;U) to denote all

G-progressively measurable processes X taking values in U ⊂ R
d such that

E

[
sup

0≤t≤T

|Xt |2
]
< ∞,(8)

H
2,d(G;U) to denote all U -valued G-progressively measurable processes X such

that

E

[∫ T

0
|Xt |2 dt

]
< ∞,(9)

and finally we use M2,d(G) to denote the set of G-progressively measurable
stochastic measure flows μ on R

d such that

E

[∫ T

0

∫
Rd

|x|2μt(dx)

]
< ∞.(10)

In the following discussion, we use F
0 to denote the augmented natural filtration

generated W 0 and F to denote the augmented natural filtration generated by W 0

and W .

3.1. Control problem for the major player. In this subsection, we consider the
limiting two-player game and search for the major player’s best response u0 to the
control u of the representative minor player. This amounts to solving the optimal
control problem based on the controlled dynamics⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX0
t = b0

(
t,X0

t ,L
(
Xt |F0

t

)
, u0

t

)
dt + σ0

(
t,X0

t ,L
(
Xt |F0

t

)
, u0

t

)
dW 0

t ,

X0
0 = x0

0 ,

dXt = b
(
t,Xt ,L

(
Xt |F0

t

)
,X0

t , ut

)
dt + σ

(
t,Xt ,L

(
Xt |F0

t

)
,X0

t , ut

)
dWt,

X0 = x0,

(11)

and the cost functional

J 0(u0)= E

[∫ T

0
f0
(
t,X0

t ,L
(
Xt |F0

t

)
, u0

t

)
dt + g0

(
X0

T ,L
(
XT |F0

T

))]
,

where it is assumed that the control u ∈ H
2,k(F;U) is given, and the set of admis-

sible controls u0 is the space H2,k0(F0;U0). In what follows, this stochastic control
problem will be denoted by (P1). We check readily that conditions (A2.1)–(A2.4)
in the Appendix at the end of the paper are satisfied. The Hamiltonian is defined as

H0(t, x0, x,μ,p0,p, q00, q11, u0, u)

= 〈
p0, b0(t, x0,μ,u0)

〉+ 〈p,b(t, x,μ, x0, u)
〉

(12)

+ 〈q00, σ0(t, x0,μ,u0)
〉+ 〈q11, σ (t, x,μ, x0, u)

〉+ f0(t, x0,μ,u0).
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We then introduce the following assumption regarding the minimization of this
Hamiltonian.

(M0) For all fixed (t, x0, x,μ,p0,p, q00, q11, u), there exists a unique mini-
mizer of the Hamiltonian H0 as a function of u0. Note that this minimizer should
not depend upon p, q11 and u. It will be denoted by û0(t, x0,μ,p0, q00).

REMARK 3.1. This assumption is satisfied when the running cost f0 is strictly
convex in u0, the drift b0 is linear in u0 and the volatility σ0 is uncontrolled in
the sense that it does not depend upon u0. This will be the case in the examples
considered later on.

For each admissible control u0, the associated adjoint process (P 0,P ,Q00,

Q01,Q10,Q11) is defined as the solution of the backward stochastic differential
equation (BSDE):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP 0
t = −∂x0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, u0
t , ut

)
dt

+ Q00
t dW 0

t + Q01
t dWt ,

dPt = −∂xH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, u0
t , ut

)
dt + Q10

t dW 0
t + Q11

t dWt

−E
F0

t
[
∂μH0

(
t, X̃t ,L

(
X̃t |F0

t

)
, P̃ t , Q̃t

, u0
t , ut

)
(Xt)

]
dt,

P 0
T = ∂x0g

(
X0

T ,L
(
XT |F0

t

))
,

PT = E
F0

T
[
∂μg

(
X̃0

T ,L
(
X̃T |F0

T

))
(XT )

]
,

(13)

where to lighten the notation we write X = (X0,X), P = (P 0,P ) and Q =
(Q00,Q01,Q10,Q11). We refer the reader to the Appendix at the end of the pa-
per for (1) definitions of the tilde notation, which provides a natural extension of
random variables to an extension of the original probability space, and of EF0

t [·],
which denotes expectation with respect to the regular conditional distribution on
an extension of the original probability space, and (2) references to the defini-
tion and the properties of the differentiation with respect to the measure argument.
Despite the presence of the conditional distributions in the coefficients, standard
proofs of existence and uniqueness of solutions of BSDEs with Lipschitz coeffi-
cients still apply to (13) thanks to assumptions (A1)–(A5). See the Appendix for a
more detailed and general discussion on this issue.

In order to minimize the complexity of the notation, we systematically add a bar
on the top of a random variable to denote its conditional expectation with respect
to F0

t , for example, P̄ 0 stands for E[P 0|F0
t ].

Once properly extended to cover the present situation, (see [7] for the neces-
sary condition in the unconditional case, and the Appendix for the sufficient con-
dition) the necessary part of the Pontryagin stochastic maximum principle says
that, if the control u0 = (u0

t )t is optimal, then the Hamiltonian (12) is minimized
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along the trajectory of (X0
t ,Xt ,P t ,Qt

). So given assumption (M0) and the suf-
ficient condition of the stochastic maximum principle proven in the Appendix
at the end of the paper, combined with the fact that H0 is linear in p0 and q00,
û0

t = û0(t,X0
t ,L(Xt |F0

t ), P̄ 0
t , Q̄00

t ) will be an optimal control for the problem at
hand if we can solve the forward–backward stochastic differential equation (FB-
SDE): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX0
t = ∂p0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ut

)
dt

+ ∂q00H0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ut

)
dW 0

t ,

dXt = ∂pH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ut

)
dt

+ ∂q11H0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ut

)
dWt,

dP 0
t = −∂x0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ut

)
dt

+ Q00
t dW 0

t + Q01
t dWt ,

dPt = −∂xH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ut

)
dt

+ Q10
t dW 0

t + Q11
t dWt

−E
F0

t
[
∂μH0

(
t, X̃t ,L

(
X̃t |F0

t

)
, P̃ t , Q̃t

, ˜̂u0
t , ut

)
(Xt)

]
dt

(14)

with the initial and terminal conditions given by

X0
0 = x0

0 , X0 = x0, P 0
T = ∂x0g

(
X0

T ,L
(
XT |F0

t

))
,

PT = E
F0

T
[
∂μg

(
X̃0

T ,L
(
X̃T |F0

T

))
(XT )

]
.

In general, FBSDEs are more difficult to solve than BSDEs. This is even more ap-
parent in the case of equations of the McKean–Vlasov type. See nevertheless [6]
for an existence result in the unconditional case. In its full generality, the solvabil-
ity of FBSDE (14) of conditional McKean–Vlasov type is beyond the scope of this
paper. We will solve it only in the linear quadratic case.

We show in the Appendix that appropriate convexity assumptions are sufficient
for optimality. We summarize them for later reference.

(C0) The function Rd0 ×P2(R
d)  (x,μ) ↪→ g(x,μ) is convex. The function

R
d0 ×R

d ×P2
(
R

d)× U0  (x0, x,μ,u0) ↪→ H(t, x0, x,μ,p0,p, q00, q11, u0, u)

is convex for all fixed (t,p0,p, q00, q11, u).

We then have the following proposition.

PROPOSITION 3.1. Let us assume that (A1)–(A5), (M0) and (C0) are in force.
If (

X0,X,P 0,P ,Q00,Q01,Q10,Q11) ∈ S
2,d0+d × S

2,d0+d ×H
2,(d0+d)×(d0+d)

is a solution to the FBSDE (14), then u0
t = û0(t,X0

t ,L(XT |F0
t ), P̄ 0

t , Q̄00
t ), is an

optimal control for problem (P1) and (X0,X) is the associated optimally con-
trolled state process.
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3.2. Control problem for the representative minor player. For the representa-
tive minor player’s best response control problem, for each fixed stochastic mea-
sure flow μ in M2,d(F0) and for each admissible control u0 = (u0

t )t of the major
player, we solve the optimal control problem of the controlled dynamics{

dX̌0
t = b0

(
t, X̌0

t ,μt , u
0
t

)
dt + σ0

(
t, X̌0

t ,μt , u
0
t

)
dW 0

t , X̌0
0 = x0

0 ,

dX̌t = b
(
t, X̌t ,μt , X̌

0
t , ut

)
dt + σ

(
t, X̌t ,μt , X̌

0
t , ut

)
dWt, X̌0 = x0

(15)

for the cost functional

J (u) = E

[∫ T

0
f
(
t, X̌t ,μt , X̌

0
t , ut

)+ g
(
X̌T ,μT , X̌0

T

)]
.(16)

Note that since u0 and μ are fixed, the first SDE in (15) can be solved off line, and
its solution appears in the second SDE of (15) and the cost functional only as an
exogenous source of randomness. If we choose the set of admissible controls for
the representative minor player to be H2,k(FW0,W ;U) where FW0,W is the filtration
generated by both Wiener processes W 0 and W , this problem is a standard non-
Markovian stochastic control problem. We shall denote it by (P2) in the following.
For this reason, we introduce only adjoint variables for X̌t , and use the reduced
Hamiltonian:

H(t, x0, x,μ, y, z11, u)
(17)

= 〈
y, b(t, x,μ, x0, u)

〉+ 〈z11, σ (t, x,μ, x0, u)
〉+ f (t, x,μ, x0, u).

As before, in order to find a function satisfying the Isaac’s condition, we introduce
the following assumption regarding its minimization.

(M) For all fixed (t, x0, x,μ, y, z11), there exists a unique minimizer of the
above reduced Hamiltonian H as a function of u. This minimizer will be denoted
by û(t, x0, x,μ, y, z11).

For all admissible control u we can define the adjoint process (Y ,Z) =
(Y 0, Y,Z00,Z01,Z10,Z11) associated to u as the solution of the following BSDE:⎧⎪⎪⎨

⎪⎪⎩
dY 0

t = −∂x0H
(
t, X̌t ,μt , Y t ,Zt , u

0
t , ut

)
dt + Z00

t dW 0
t + Z01

t dWt ,

dYt = −∂xH
(
t, X̌t ,μt , Y t ,Zt , u

0
t , ut

)
dt + Z10

t dW 0
t + Z11

t dWt ,

Y 0
T = ∂x0g

(
X̌T ,μT , X̌0

T

)
, YT = ∂xg

(
X̌T ,μT , X̌0

T

)
.

(18)

Because we assume that (A1)–(A5) hold, the existence of the adjoint processes as-
sociated to a given admissible control u is a consequence of the standard existence
result of solutions of BSDEs. The necessary part of the Pontryagin stochastic max-
imum principle says that, if the admissible control u = (ut )t is optimal, then the
Hamiltonian (17) is minimized along the trajectory of (X0

t ,X
t , Y t ,Zt ). So given
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assumption (M) and the sufficient condition of the stochastic maximum principle
(see, e.g., the Appendix in Section 7.4), ût = û(t,X0

t ,Xt ,μt , Y t ,Zt ) will be an
optimal control for the problem at hand if we can solve the forward–backward
stochastic differential equation (FBSDE):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̌0
t = ∂y0H

(
t, X̌t ,μt , Y t ,Zt , u

0
t , ût

)
dt

+ ∂z00H
(
t, X̌t ,μt , Y t ,Zt , u

0
t , ût

)
dW 0

t ,

dX̌t = ∂yH
(
t, X̌t ,μt , Y t ,Zt , u

0
t , ût

)
dt

+ ∂z11H
(
t, X̌t ,μt , Y t ,Zt , u

0
t , ût

)
dWt,

dY 0
t = −∂x0H

(
t, X̌t ,μt , Y t ,Zt , u

0
t , ût

)
dt + Z00

t dW 0
t + Z01

t dWt ,

dYt = −∂xH
(
t, X̌t ,μt , Y t ,Zt , u

0
t , ût

)
dt + Z10

t dW 0
t + Z11

t dWt ,

(19)

with the initial and terminal conditions given by

X̌0
0 = x0

0 , X̌0 = x0, Y 0
T = ∂x0g

(
X̌T ,μT , X̌0

T

)
,

YT = ∂xg
(
X̌T ,μT , X̌0

T

)
.

We also need the following convexity assumption.

(C) The function R
d ×P2(R

d) ×R
d0  (x,μ, x0) ↪→ g(x,μ,x0) is convex in

(x0, x). The function

R
d0 ×R

d ×P2
(
R

d)× U  (x0, x,μ,u)

↪→ H(t, x0, x,μ, y0, y, z00, z11, u0, u)

is convex for all (t, y0, y, z00, z11, u0). Then we have the following proposition.

PROPOSITION 3.2. Assuming that (A1)–(A5), (M) and (C) are in force, if
(X̌0, X̌, Y 0, Y,Z00,Z01,Z10,Z11) ∈ S

2,d0+d ×S
2,d0+d ×H

2,(d0+d)×(d0+d) is a so-
lution to the FBSDE (19), then an optimal control of the control problem (P2) is
given by

ût = û
(
t, X̌0

t , X̌t ,μt , Yt ,Z
11
t

)
,

and (X̌0, X̌) is the associated optimally controlled state process.

3.3. Nash equilibrium for the limiting two-player game. By the very definition
of Nash equilibria, the following proposition is self-explanatory.



MFG’S WITH MAJOR AND MINOR PLAYERS 1549

PROPOSITION 3.3. Assume that (A1)–(A5), (M0), (M), (C0) and (C) are in
force. Consider the following FBSDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX0
t = ∂p0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ ∂q00H0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dW 0

t ,

dXt = ∂pH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ ∂q11H0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dWt,

dX̌0
t = ∂y0H

(
t, X̌t ,μt , Y t ,Zt , û

0
t , ût

)
dt

+ ∂z00H
(
t, X̌t ,μt , Y t ,Zt , û

0
t , ût

)
dW 0

t ,

dX̌t = ∂yH
(
t, X̌t ,μt , Y t ,Zt , û

0
t , ût

)
dt

+ ∂z11H
(
t, X̌t ,μt , Y t ,Zt , û

0
t , ût

)
dWt,

dP 0
t = −∂x0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ Q00
t dW 0

t + Q01
t dWt ,

dPt = −∂xH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ Q10
t dW 0

t + Q11
t dWt

−E
F0

t
[
∂μH0

(
t, X̃t ,L

(
X̃t |F0

t

)
, P̃ t , Q̃t

, ˜̂u0
t ,

˜̂ut

)
(Xt)

]
dt,

dY 0
t = −∂x0H

(
t, X̌t ,μt , Y t ,Zt , û

0
t , ût

)
dt + Z00

t dW 0
t + Z01

t dWt ,

dYt = −∂xH
(
t, X̌t ,μt , Y t ,Zt , û

0
t , ût

)
dt + Z10

t dW 0
t + Z11

t dWt ,

(20)

with the initial and terminal conditions given by

⎧⎪⎪⎨
⎪⎪⎩

X0
0 = x0

0 , X0 = x0,

P 0
T = ∂x0g

(
X0

T ,L
(
XT |F0

t

))
,

PT = E
F0

T
[
∂μg

(
X̃0

T ,L
(
X̃T |F0

T

))
(XT )

]
,

⎧⎪⎪⎨
⎪⎪⎩

X̌0
0 = x0

0 , X̌0 = x0,

Y 0
T = ∂x0g

(
X̌T ,μT , X̌0

T

)
,

YT = ∂xg
(
X̌T ,μT , X̌0

T

)
,

where

û0
t = û0(t,X0

t ,L
(
Xt |F0

t

)
, P̄ 0

t , Q̄00
t

)
, ût = û

(
t, X̌0

t , X̌t ,μt , Yt ,Z
11
t

)
.

If this FBSDE has a solution, then (û0, û) is a Nash equilibrium for the limiting
two-player stochastic differential game.

3.4. The consistency condition. The last step in the scheme amounts to impos-
ing the consistency condition which writes

μt = L
(
Xt |F0

t

) ∀t ∈ [0, T ].
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Plugging it into FBSDE (20) gives the following ultimate FBSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX0
t = ∂p0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ ∂q00H0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dW 0

t ,

dXt = ∂pH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ ∂q11H0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dWt,

dP 0
t = −∂x0H0

(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt

+ Q00
t dW 0

t + Q01
t dWt ,

dPt = −∂xH0
(
t,Xt ,L

(
Xt |F0

t

)
,P t ,Qt

, û0
t , ût

)
dt + Q10

t dW 0
t + Q11

t dWt

−E
F0

t
[
∂μH0

(
t, X̃t ,L

(
X̃t |F0

t

)
, P̃ t , Q̃t

, ˜̂u0
t ,

˜̂ut

)
(Xt)

]
dt

dY 0
t = −∂x0H

(
t,Xt ,L

(
Xt |F0

t

)
, Y t ,Zt , û

0
t , ût

)
dt + Z00

t dW 0
t + Z01

t dWt ,

dYt = −∂xH
(
t,Xt ,L

(
Xt |F0

t

)
, Y t ,Zt , û

0
t , ût

)
dt + Z10

t dW 0
t + Z11

t dWt ,

(21)

with initial and terminal conditions given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0
0 = x0

0 , X0 = x0,

P 0
T = ∂x0g

(
X0

T ,L
(
XT |F0

T

))
,

PT = E
F0

T
[
∂μg

(
X̃0

T ,L
(
X̃T |F0

T

))
(XT )

]
,

Y 0
T = ∂x0g

(
XT ,L

(
XT |F0

T

)
,X0

T

)
,

YT = ∂xg
(
XT ,L

(
XT |F0

T

)
,X0

T

)
,

(22)

where this time we define

û0
t = û0(t,X0

t ,L
(
Xt |F0

t

)
, P̄ 0

t , Q̄00
t

)
, ût = û

(
t,X0

t ,Xt ,L
(
Xt |F0

t

)
, Yt ,Z

11
t

)
.

REMARK 3.2. Note that after implementing the consistency condition,
(X0,X) and (X̌0, X̌) become the same. We can also check that if we replace
the current consistency condition by

μt = L
(
X̌t |F0

t

) ∀t ∈ [0, T ]
we arrive at the same FBSDE as above.

REMARK 3.3. In the limiting control problem faced by the representative mi-
nor player, the dynamic of the major player is not affected by the control u and can
be considered given. As a result, the adjoint process Y 0 is redundant and indepen-
dent of the rest of the system, and could have been discarded from the system (21).
It is there in (21) because we want to write the system in a symmetric and compact
fashion using the Hamiltonians H0 and H .
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The solvability of conditional McKean–Vlasov FBSDEs in the form of (21) is
a hard problem. If the conditional distributions in (21) are replaced by plain dis-
tributions, the resulting FBSDEs are usually called “mean field FBSDEs” and are
studied in some recent papers; see, for example, [6]. The conditioning with respect
to F0

t makes (21) substantially harder to solve compared to the ones already con-
sidered in the literature, and we leave the well-posedness of FBSDEs of the form
of (21) to future research.

4. Propagation of chaos and ε-Nash equilibrium. In this section, we prove
a central result stating that, when we apply the optimal control law found in the
limiting regime to all the players in the original (N + 1)-player game, we will find
an approximate Nash equilibrium. This justifies the whole scheme as an effective
way to find approximate Nash equilibria for the finite-player games. Throughout
this section, we assume that (A1)–(A5), (M), (M0), (C) and (C0) hold. In addition,
we assume that

(A6) The diffusion coefficients σ0 and σ are constants.

Assumption (A6) is too strong for what we really need. We should merely assume
that the two volatility σ0 and σ are independent of the controls u0 and u. All the
derivations given below can be adapted to this more general setting, but in order to
limit the complexity of the formulas appearing in the arguments, we limit ourselves
to assumption (A6).

Let us first recall the finite-player game setup under the assumption (A6): the
controlled dynamics are now given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX
0,N
t = b0

(
t,X

0,N
t ,μN

t , u
0,N
t

)
dt + σ0 dW 0

t ,

X
0,N
0 = x0

0 ,

dX
i,N
t = b

(
t,X

i,N
t ,μN

t ,X
0,N
t , u

i,N
t

)
dt + σ dWi

t ,

X
i,N
0 = x0, i = 1,2, . . . ,N,

(23)

and the cost functionals by

J 0,N = E

[∫ T

0
f0
(
t,X

0,N
t ,μN

t , u
0,N
t

)
dt + g0

(
X

0,N
T ,μN

T

)]
,

J i,N = E

[∫ T

0
f
(
t,X

i,N
t ,μN

t ,X
0,N
t , u

i,N
t

)
dt + g

(
X

i,N
T ,μN

T ,X
0,N
T

)]
,

1 ≤ i ≤ N.

The sets of admissible controls for this (N +1)-player game are defined as follows.

DEFINITION 4.1. In the above (N + 1)-player game, a process u0,N is said
to be admissible for the major player if u0,N ∈ H

2,d0(F0,U0) and it is said to be
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κ-admissible for the major player if additionally we have

E

[∫ T

0

∣∣ui,N
t

∣∣p dt

]
≤ κ,(24)

with i = 0 and p = d +5. On the other hand, a process ui,N is said to be admissible
for the ith minor player if ui,N ∈ H

2,d(FW 0,W 1,...,WN
,U), and κ-admissible for the

ith minor player if additionally it satisfies (24) with p = 2. The set of admissible
controls and κ-admissible controls for the ith player are respectively denoted by
Ai and Aκ

i , i ≥ 0. Note that Ai and Aκ
i are independent of i ≥ 1.

Note that due to (A1)–(A3), for all (u0,N , u1,N , . . . , uN,N) ∈∏N
i=0 Ai , the con-

trolled SDE (23) always has a unique solution. On the other hand, we will see that
the notion of κ-admissible controls plays an important role in Theorem 4.1 to ob-
tain a quantitative uniform speed of convergence. We then give the definition of
ε-Nash equilibrium in the context of the above finite-player game.

DEFINITION 4.2. A set of admissible controls (u0,N , u1,N , . . . , uN,N) ∈∏N
i=0 Ai is called an ε-Nash equilibrium in Aκ

0 ×∏N
i=1 Aκ

i for the above (N + 1)-
player stochastic differential game if for all u0 ∈ Aκ

0 we have

J 0,N (u0,N , u1,N , . . . , uN,N )− ε ≤ J 0,N (u0, u1,N , . . . , uN,N ),
and for all 1 ≤ i ≤ N and u ∈ Aκ

i we have

J i,N (u0,N , u1,N , . . . , uN,N )− ε ≤ J i,N (u0,N , . . . , ui−1,N , u,ui+1,N , . . . , uN,N ).
The following lemma is useful to derive explicit bounds on the rate of conver-

gence of approximate Nash equilibriums. In order to obtain a quantitative conver-
gence estimate, we rely on the following result of Horowitz and Karandikar which
can be found in [25], Theorem 10.2.1. This result will only be directly used in es-
tablishing the propagation of chaos result Theorem 7.1, but we choose to present
it here to shed more light on the convergence rate we obtain in the forthcoming
Theorem 4.1.

LEMMA 4.1. Let (Xn)n≥0 be a sequence of exchangeable random variables
taking values in R

d with directing (random) measure μ satisfying

c :=
∫

|u|d+5β(du) < ∞,

where β is the marginal of μ in the sense that β(A) = E[μ(A)]. Then there exists
a constant C depending only upon c and d such that

E
[
W 2

2
(
μN,μ

)]≤ CN−2/(d+4),

where as usual, μN is the empirical measure of X1, . . . ,XN .
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Recall that the directing measure of the sequence is the almost sure limit as
N → ∞ of the empirical measures μN . Before stating and proving the central
theorem of this section, we introduce two additional assumptions.

(A7) The FBSDE (21) admits a unique solution. Moreover, there exists a ran-
dom decoupling field θ : [0, T ] × � ×R

d0 ×R
d ↪→ θ(t,ω, x0, x) such that

Yt = θ
(
t,X0

t ,Xt

)
a.s.,

where θ satisfies:

(1) There exists a constant cθ such that∣∣θ(t,ω, x′
0, x

′)− θ(t,ω, x0, x)
∣∣≤ cθ

(∣∣x′
0 − x0

∣∣+ ∣∣x′ − x
∣∣).

(2) For all (t, x0, x) ∈ [0, T ] ×R
d0 ×R

d , θ(t, ·, x0, x) is F0
t -measurable.

The concept of (deterministic) decoupling field lies at the core of many investi-
gations of the well-posedness of standard FBSDEs; see, for example, [13, 21]. Its
non-Markovian counterpart corresponding to non-Markovian FBSDEs was intro-
duced in [20]. The possibility of applying existing results concerning the well-
posedness of non-Markovian FBSDEs is appealing, but due to the conditional
McKean–Vlasov nature of FBSDE (21) a general sufficient condition is hard to
come by, and it is highly likely that well-posedness can only be established on a
case-by-case basis. A concrete sufficient condition of well-posedness and the exis-
tence of a decoupling field will be given in Section 5 for Linear Quadratic Gaussian
(LQG for short) models.

The following theorem is the central result of this section. It stipulates that
when the number of players is sufficiently large, the solution of the limiting
problem provides approximate Nash equilibriums. Note that an important con-
sequence of assumption (A6) is that the minimizer û0 identified in the previ-
ous section is now independent of q00, and by an abuse of notation, we use
û0(t, x0) to denote û0(t, x0,L(Xt |F0

t ), P̄ 0
t ). Accordingly, û is now independent

of z11, and if we assume that (A7) is in force, Yt can then be written as
θ(t,X0

t ,Xt ), and again by a similar abuse of notation we use û(t, x0, x) to denote
û(t, x0, x,L(Xt |F0

t ), θ(t, x0, x)), where X, P 0 solve the FBSDE (21). Finally, we
impose the following.

(A8) There exists a constant c such that for all t ∈ [0, T ] and x′
0, x0 ∈ R

d0 ,∣∣û0(t, x′
0
)− û0(t, x0)

∣∣≤ c
∥∥x′

0 − x0
∥∥ a.s.

Moreover,

E

[∫ T

0

∣∣û0(t,0)
∣∣2 dt

]
< ∞.

THEOREM 4.1. Assume that (A1)–(A8), (C0), (C), (M0) and (M) hold. There
exists a sequence (εN)N≥1 and a nondecreasing function ρ :R+ →R

+ such that:
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(i) There exists a constant c such that for all N ≥ 1,

εN ≤ cN−1/(d+4).

(ii) For all κ > 0, the feedback profile (û0(t,X
0,N
t ), (û(t,X

0,N
t ,X

i,N
t ))1≤i≤N)

forms an (ρ(κ)εN)-Nash equilibrium for the (N + 1)-player game when the ad-
missible control sets are taken as Aκ

0 ×∏N
i=1 Aκ

i .

PROOF. For a fixed N , we start with investigating what happens if the major
player deviates from the strategy û0(t, X̂

0,N
t ) unilaterally. When all the players

apply the feedback controls identified in the statement of the theorem, the resulting
controlled state processes will be denoted by (X̂i,N )i≥0 and solve

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dX̂
0,N
t = b0

(
t, X̂

0,N
t , μ̂N

t , û0(t, X̂0,N
t

))
dt + σ0 dW 0

t ,

X̂
0,N
0 = x0

0 ,

dX̂
i,N
t = b

(
t,X

i,N
t , μ̂N

t , X̂0
t , û

(
t, X̂

0,N
t , X̂

i,N
t

))
dt + σ dWi

t ,

X̂
i,N
0 = x0, i ≥ 1,

(25)

where the empirical measures are defined as in (2). Following the approach pre-
sented in Section 7, we define the limiting nonlinear processes as the solution of⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX̂0
t = b0

(
t, X̂0

t ,L
(
X̂1

t |F0
t

)
, û0(t, X̂0

t

))
dt + σ0 dW 0

t ,

X̂0
0 = x0

0 ,

dX̂i
t = b

(
t, X̂i

t ,L
(
X̂1

t |F0
t

)
, X̂0

t , û
(
t, X̂0

t , X̂
i
t

))
dt + σ dWi

t ,

X̂i
0 = x0, i ≥ 1.

(26)

The stochastic measure flow L(X̂1
t |F0

t ) will be sometimes denoted by μ̂t in the
following. A direct application of Theorem 7.1 in Section 7 yields the existence of
a constant ĉ such that

max
0≤i≤N

E

[
sup

0≤t≤T

∣∣X̂i,N
t − X̂i

t

∣∣2]≤ ĉN−2/(d+4),(27)

and by applying the usual upper bound for 2-Wasserstein distance we also have

E

[
sup

0≤t≤T

W 2
2

(
μ̂N

t ,
1

N

N∑
i=1

δ
X̂i

t

)]
≤ ĉN−2/(d+4),(28)

where ĉ depends upon T , the Lipschitz constants of b0, b, û0 and û, and

η̂ = E

∫ T

0

∣∣X̂1
t

∣∣d+5
dt.
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Now we turn our attention to the cost functionals. We define

Ĵ 0,N = E

[∫ T

0
f0
(
t, X̂

0,N
t , μ̂N

t , û0(t, X̂0,N
t

))
dt + g0

(
X̂

0,N
T , μ̂N

T

)]
,

Ĵ 0 = E

[∫ T

0
f0
(
t, X̂0

t , μ̂t , û
0(t, X̂0

t

))
dt + g0

(
X̂0

T , μ̂T

)]
,

and we have, by assumptions (A3) and (A6), that∣∣Ĵ 0,N − Ĵ 0∣∣
=
∣∣∣∣E
[∫ T

0
f0
(
t, X̂

0,N
t , μ̂N

t , û0(t, X̂0,N
t

))+ g0
(
X̂

0,N
T , μ̂N

T

)]

−E

[∫ T

0
f0
(
t, X̂0

t , μ̂t , û
0(t, X̂0

t

))+ g0
(
X̂0

T ,μT

)]∣∣∣∣
≤ E

[∫ T

0
c
(
1 + ∣∣X̂0,N

t

∣∣+ ∣∣X̂0
t

∣∣+ ∣∣û0(t, X̂0,N
t

)∣∣
(29)

+ ∣∣û0(t, X̂0
t

)∣∣+ M2
(
μ̂N

t

)+ M2(μ̂t )
)

× (∣∣X̂0,N
t − X̂0

t

∣∣+ W2
(
μ̂N

t , μ̂t

))
dt

]

≤ cE

[∫ T

0
1 + ∣∣X̂0,N

t

∣∣2 + ∣∣X̂0
t

∣∣2 + 1

N

N∑
i=1

∣∣X̂i,N
t

∣∣2 + ∣∣X̂1
t

∣∣2 dt

]1/2

×E

[∫ T

0

∣∣X̂0,N
t − X̂0

t

∣∣2 + W 2
2
(
μ̂N

t , μ̂t

)
dt

]1/2

and by applying (27) and (28) we deduce that

Ĵ 0,N = Ĵ 0 + O
(
N−1/(d+4)).(30)

Assume now that the major player uses a different admissible control v0 ∈ Aκ
0 ,

and other minor players keep using the strategies (û(t, X̂
i,N
t ))i≥1. The resulting

perturbed state processes will be denoted by (X̃
i,N
t )i≥0 and is the solution of the

system ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dX̃
0,N
t = b0

(
t, X̃

0,N
t , μ̃N

t , v0
t

)
dt + σ0 dW 0

t ,

X̃
0,N
0 = x0

0 ,

dX̃
i,N
t = b

(
t, X̃

i,N
t , μ̃N

t , X̃
0,N
t , û

(
t, X̂

i,N
t

))
dt + σ dWi

t ,

X̃
i,N
0 = x0,1 ≤ i ≤ N,

(31)

where as usual, μ̃N
t denotes the empirical distribution of the X̃

i,N
t . Note that X̂i,N

is not F0
t -progressively measurable in general, in order to apply Theorem 7.1 we
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combine (25) and (31) and consider the limiting nonlinear processes defined as the
solution of⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX̂0
t = b0

(
t, X̂0

t ,L
(
X̂1

t |F0
t

)
, û0(t, X̂0

t

))
dt + σ0 dW 0

t , X̂0
0 = x0

0 ,

dX̂i
t = b

(
t, X̂i

t ,L
(
X̂i

t |F0
t

)
, X̂0

t , û
(
t, X̂i

t

))
dt + σ dWi

t , X̂i
0 = x0, i ≥ 1,

dX̃0
t = b0

(
t, X̃0

t ,L
(
X̃i

t |F0
t

)
, v0

t

)
dt + σ0 dW 0

t , X̃0
0 = x0

0 ,

dX̃i
t = b

(
t, X̃i

t ,L
(
X̃i

t |F0
t

)
, X̃0

t , û
(
t, X̂i

t

))
dt + σ dWi

t , X̃i
0 = x0, i ≥ 1,

(32)

and now Theorem 7.1 yields the existence of a constant c̃ such that

E

[
sup

0≤t≤T

∣∣X̃i,N
t − X̃i

t

∣∣2]≤ c̃N−2/(d+4),

where c̃ depends upon T , the Lipschitz constants of b0, b, û0, u, η̂ and

η̃ = E

∫ T

0

∣∣X̃1
t

∣∣d+5
dt.

It is important to note that η̃ depends on the control v0. On the other hand, the
coefficients b0 and b are globally Lipschitz-continuous, so by usual estimates and
Gronwall’s inequality, for all κ > 0 there exists a constant ρ1(κ) such that

E

∫ T

0

∣∣v0
t

∣∣d+5
dt ≤ κ �⇒ η̃ ≤ ρ0

1(κ).

It is then clear that for all κ > 0 there exists a constant ρ2(κ) such that

E

∫ T

0

∣∣v0
t

∣∣d+5
dt ≤ κ �⇒ c̃ ≤ ρ0

2(κ).

By using the same estimates as in (29), we deduce that there exists a constant ρ(κ)

such that for all v0 ∈Aκ
0 , we have

∣∣J̃ 0,N − J̃ 0∣∣≤ ρ(κ)εNN−1/(d+4).(33)

Finally, since (û0(t, X̂0
t ), û(t, X̂t )) solves the limiting two-player game problem,

it is clear that

Ĵ 0 ≤ J̃ 0,(34)

and combining (30), (33) and (34) we get the desired result for the major player.
We then consider the case when a minor player changes his strategy unilaterally,

and without loss of generality we consider the case when the minor player with
index 1 changes his strategy to v ∈ Aκ

1 . This part of the proof is highly similar
with that of Theorem 3 in [5], and we will refer to [5] for some details of the proof
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in the following. The resulting perturbed controlled dynamics are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄
0,N
t = b0

(
t, X̄

0,N
t , μ̄N

t , û0(t, X̂0,N
t

))
dt + σ0 dW 0

t ,

X̄
0,N
0 = x0

0 ,

dX̄
1,N
t = b

(
t, X̄

1,N
t , μ̄N

t , X̄
0,N
t , vt

)
dt + σ dW 1

t ,

X̄
1,N
0 = x0,

dX̄
i,N
t = b

(
t, X̄

i,N
t , μ̄N

t , X̄
0,N
t , û

(
t, X̂

i,N
t

))
dt + σ dWi

t ,

X̄
i,N
0 = x0,2 ≤ i ≤ N.

By the usual estimates on the difference between X̄i,N and X̂i,N , and by applying
Gronwall’s inequality we can show that

E

[
sup

0≤t≤T

∣∣X̄0,N
t − X̂

0,N
t

∣∣2]+ 1

N

N∑
i=1

E

[
sup

0≤t≤T

∣∣X̄i,N
t − X̂

i,N
t

∣∣2]
(35)

≤ c

N

∫ T

0

∣∣vt − û
(
t, X̂

1,N
t

)∣∣2 dt.

Combining the above bound, the growth properties of û and (27), we see that for
all κ > 0, there exists a nondecreasing function ρ1 :R+ →R

+ such that∫ T

0
|vt |2 ≤ κ ⇒

E

[
sup

0≤t≤T

∣∣X̄0,N
t − X̂0

t

∣∣2]+E

[
sup

0≤t≤T

W 2
2 (μ̄t ,μt )

]
≤ ρ1(κ)N−2/(d+4).

We hence conclude that there exists a nondecreasing function ρ2 : R+ →R
+ such

that when
∫ T

0 |vt |2 ≤ κ , we have

E

[
sup

0≤t≤T

∣∣X̄1,N
t − X̄1

t

∣∣2]≤ ρ2(κ)N−2/(d+4),

where X̄1 is the solution of the SDE

dX̄1
t = b

(
t, X̄1

t ,μt ,X
0
t , vt

)
dt + σ dW 1

t , X̄1
0 = x0,(36)

where μ and X0 are in the solution of the FBSDE (21). We then conclude in the
same way as for the major player. �

5. MFG with major–minor agents: The LQG case. The linear-quadratic-
Gaussian (LQG) stochastic control problems are among the best-understood mod-
els in stochastic control theory. It is thus natural to expect explicit results for the
major–minor mean field games in a similar setting. This type of model was first
treated in [14] in infinite horizon. The finite-horizon case was treated in [23]. How-
ever, the state of the major player does not enter the dynamics of the states of the
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minor players in [23]. The general finite-horizon case is solved in [22] by the use
of the so-called nonanticipative variational calculus. It is important to point out
that the notion of Nash equilibrium used in [22] corresponds to the Markovian
feedback Nash equilibrium while here, we work with open-loop Nash equilibri-
ums. See for example [9] for some of the striking differences. In what follows, we
carry out the general systematic scheme introduced in the previous discussions and
derive approximate Nash equilibria for the LQG major–minor mean field games.

The dynamics of the states of the players are given by the following linear SDEs:{
dX

0,N
t = (

A0X
0,N
t + B0u

0,N
t + F0X̄

N
t

)
dt + D0 dW 0

t ,

dX
i,N
t = (

AX
i,N
t + Bu

i,N
t + FX̄N

t + GX0
t

)
dt + D dWi

t ,
(37)

where as usual, X0,N and Xi,N are d0 and d-dimensional, respectively, u0,N and
ui,N take values in R

k0 and R
k , respectively, W 0 is a m0-dimensional Wiener pro-

cess and Wis are m-dimensional. The coefficient matrices in (37) are deterministic
and are of appropriate dimensions, and X̄N

t stands for 1
N

∑N
i=1 X

i,N
t . For the sake

of presentation, we introduce the linear transformations � and � defined by

�(X) = H0X + η0 and �(X,Y ) = HX + ĤY + η.

The cost functionals for the major and minor players are given by

J 0(u) = E

[∫ T

0

{(
X0

t − �
(
X̄N

t

))†
Q0
(
X0

t − �
(
X̄N

t

))+ u
0†
t R0u

0
t

}
dt

]
,

J i,N (u) = E

[∫ T

0

{(
X

i,N
t − �

(
X0

t , X̄
N
t

))†
× Q

(
X

i,N
t − �

(
X0

t , X̄
N
t

))+ u
i,N†
t Ru

i,N
t

}
dt

]
,

in which Q, Q0, R and R0 are symmetric matrices and R and R0 are assumed to
be positive definite. We use the notation a† for the transpose of a.

Because of the linear quadratic structure, we check that assumptions (A1)–(A6),
(M0)–(M) and (C0)–(C) are satisfied. We then arrive directly at the non-Markovian
conditional McKean–Vlasov FBSDE (21) which writes (note Remark 3.3)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX0
t = (

A0X
0
t − 1

2B0R
−1
0 B

†
0E
[
P 0

t |F0
t

]+ F0E
[
Xt |F0

t

])
dt + D0 dW 0

t ,

dXt = (
AXt − 1

2BR−1B†Yt + FE
[
Xt |F0

t

]+ GX0
t

)
dt + D dWt,

dP 0
t = (−A

†
0P

0
t − G†Pt − 2Q0

(
X0

t − �
(
E
[
Xt |F0

t

])))
dt

+ Q00
t dW 0

t + Q01
t dWt ,

dPt = −A†Pt + Q10
t dW 0

t + Q11
t dWt

− F
†
0 E
[
P 0

t |F0
t

]
dt − F †

E
[
Pt |F0

t

]
dt

− 2H
†
0 Q0

(
X0

t − �
(
E
[
Xt |F0

t

]))
dt,

dYt = (−A†Yt − 2Q
(
Xt − �

(
X0

t ,E
[
Xt |F0

t

])))
dt + Z0

t dW 0
t + Zt dWt,

(38)
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with the initial and terminal conditions given by

X0
0 = x0

0 , X0 = x0,

P 0
T = PT = YT = 0.

As already explained at the end of Section 3, the solvability of general conditional
McKean–Vlasov FBSDEs is a difficult problem. However, due to the special lin-
ear structure of (38) we can go one step further and look for more explicit suffi-
cient conditions of well-posedness. As before, we use a bar to denote the condi-
tional expectation with respect to F0

t , so we arrive at the following more compact
form: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX0
t = (

A0X
0
t − 1

2B0R
−1
0 B

†
0 P̄ 0

t + F0X̄t

)
dt + D0 dW 0

t ,

dXt = (
AXt − 1

2BR−1B†Yt + FX̄t + GX0
t

)
dt + D dWt,

dP 0
t = (−A

†
0P

0
t − G†Pt − 2Q0X

0
t + 2Q0H0X̄t + 2Q0η0

)
dt

+ Q00
t dW 0

t + Q01
t dWt ,

dPt = −A†Pt + Q10
t dW 0

t + Q11
t dWt − F

†
0 P̄ 0

t dt − F †P̄t dt

− (2H
†
0 Q0X

0
t − 2H

†
0 Q0H0X̄t − 2H

†
0 Q0η0

)
dt,

dYt = (−A†Yt − 2QXt + 2QHX0
t + 2QĤX̄t + 2Qη

)
dt

+ Z0
t dW 0

t + Zt dWt .

(39)

We then condition all the equations by the filtration F0
t . The following well-

known lemma will be useful when we deal with the Itô stochastic integral terms.

LEMMA 5.1. As before, we use F to denote the filtration generated by W 0 and
W , and F

0 to denote the filtration generated by W 0. If H is a process in H
2,r (F)

where r is a dimension making the following integrals meaningful, then

E

[∫ t

0
Hs dW 0

s

∣∣∣F0
t

]
=
∫ t

0
E
[
Hs |F0

s

]
dW 0

s ,

E

[∫ t

0
Hs dWs

∣∣∣F0
t

]
= 0,(40)

E

[∫ t

0
Hs ds

∣∣∣F0
t

]
=
∫ t

0
E
[
Hs |F0

s

]
.

We then use this lemma to derive the SDEs satisfied by the conditional ver-
sions of the above processes. We add a bar on the various processes to denote the
conditional versions, and since X0

t is already F0
t -adapted, its notation will stay un-

changed. If (X0,X,P 0,P ,Y ) ∈ H
2,d0 ×H

2,d ×H
2,d0 ×H

2,d ×H
2,d is a solution
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to (39), then (X0, X̄, P̄ 0, P̄ , Ȳ ) must solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX0
t = (

A0X
0
t − 1

2B0R
−1
0 B

†
0 P̄ 0

t + F0X̄t

)
dt + D0 dW 0

t ,

dX̄t = (
AX̄t − 1

2BR−1B†Ȳt + FX̄t + GX0
t

)
dt,

dP̄ 0
t = (−A

†
0P̄

0
t − G†P̄t − 2Q0X

0
t + 2Q0H0X̄t + 2Q0η0

)
dt

+ Q̄00
t dW 0

t ,

dP̄t = −A†P̄t + Q̄10
t dW 0

t

− F
†
0 P̄ 0

t − F †P̄t − (2H
†
0 Q0X

0
t − 2H

†
0 Q0H0X̄t − 2H

†
0 Q0η0

)
dt,

dȲt = (−A†Ȳt − 2QX̄t + 2QHX0
t + 2QĤX̄t + 2Qη

)
dt + Z̄0

t dW 0
t .

(41)

If we use X to denote (X0, X̄) and Y for (P̄ 0, P̄ , Ȳ ), we can write the above
FBSDE in the following standard form:{

dXt = (AXt +BYt +C) dt +DdW 0
t ,

dYt = −(ÂXt + B̂Yt + Ĉ) dt + Zt dW 0
t ,

(42)

with initial and terminal conditions given by

X0 =
(

x0
0

x0

)
, YT =

⎛
⎜⎝

0

0

0

⎞
⎟⎠ ,

in which

A =
(

A0 F0

G A + F

)
, B =

(−1
2B0R

−1
0 B

†
0 0 0

0 0 −1
2BR−1B†

)
,

D =
(

D0

0

)
, Â =

⎛
⎜⎝

2Q0 −2Q0H0

2H
†
0 Q0 −2H

†
0 Q0H0

−2QH 2Q − 2QĤ

⎞
⎟⎠ ,

B̂ =
⎛
⎜⎝

A
†
0 G† 0

F
†
0 A† + F † 0

0 0 A†

⎞
⎟⎠ .

In order to find explicit sufficient conditions of the well-posedness of the linear
FBSDE (42), we follow the usual four step scheme and look for solutions in the
form Yt = StXt + st , where S and s are two deterministic functions defined on
[0, T ]. Consider the following matrix Riccati equation with terminal condition:

Ṡt + StA+ B̂St + StBSt + Â= 0, ST = 0,(43)

and the linear ODE

ṡt = −(B̂+ StB)st − (Ĉ+ StC), sT = 0.(44)
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We observe that, when S is a solution of (43), the backward ODE (44) is always
uniquely solvable. It turns out that the existence and uniqueness of solutions for
the matrix Riccati equation (43) lies at the heart of the well-posedness of the FB-
SDE (41), which is established in the following proposition. A sufficient condition
for the well-posedness of (43) will later be given in Proposition 5.3.

PROPOSITION 5.1. If the matrix Riccati equation (43) and the backward
ODE (44) are uniquely solvable and their solutions are denoted by

St =
⎛
⎜⎝

S
1,1
t S

1,2
t

S
2,1
t S

2,2
t

S
3,1
t S

3,2
t

⎞
⎟⎠ , st =

⎛
⎜⎝

s1
t

s2
t

s3
t

⎞
⎟⎠ ,

then the FBSDE (41) is uniquely solvable. The first two components of the solution,
namely (X0, X̄0), are given by the solution of the linear SDE⎧⎨
⎩dX̄0

t = (
A0X̄

0
t − 1

2B0R
−1
0 B

†
0

(
S

1,1
t X0

t + S
1,2
t X̄t + s2

t

)+ F0X̄t

)
dt + D0 dW 0

t ,

dX̄t = (
AX̄t − 1

2BR−1B†(S3,1
t X0

t + S
3,2
t X̄t + s3

t

)+ FX̄t + GX̄0
t

)
dt,

with initial conditions given by

X0
0 = x0

0 , X̄0 = x0.

The processes (P̄ 0, P̄ , Ȳ ) are given by

P̄ 0
t = S

1,1
t X0

t + S
1,2
t X̄t + s1

t , P̄t = S
2,1
t X0

t + S
2,2
t X̄t + s2

t ,

Ȳt = S
3,1
t X0

t + S
3,2
t X̄t + s3

t .

PROOF. The existence part of the proof is a pure verification procedure. The
uniqueness is also a standard result; cf. Chapter 2, Section 5 of [21]. �

We now turn to the original conditional FBSDE (39). Now that X0, X̄t , P̄ 0

and P̄ are found, we plug them into the FBSDE which becomes a standard lin-
ear FBSDE with random coefficients. By using the fact that X0, X̄t , P̄ 0 and P̄

are actually solutions of linear SDEs with deterministic coefficients, we have the
following proposition.

PROPOSITION 5.2. If the matrix Riccati equation (43) is uniquely solvable,
the FBSDE (39) has a unique solution. Moreover, there exists a deterministic func-
tion K and a F

0-progressively measurable process k such that

Yt = KtXt + kt .(45)
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PROOF. We plug X0, X̄, Ȳ , P̄ 0 and P̄ into (39), and we readily observe that
the second and the last equations form a standard linear FBSDE with random co-
efficients (X0 is already known). The structure of this FBSDE is standard in the
sense that it can be derived from a stochastic optimal control problem, which yields
(45). We now plug all the known processes into the third and the fourth equations
in (39), which yields a standard BSDE whose well-posedness is well known. The
processes P 0 and P thus follow. �

Proposition 5.1 and Proposition 5.2 are built on the assumption that the matrix
Riccati equation (43) is uniquely solvable, and we proceed to derive a sufficient
condition to shed more light on this issue. We first define the (2d0 + 3d) × (2d0 +
3d)-matrix B as

B =
(
A B

Â B̂

)
.

We then define �(t, s) as

�(t, s) = exp
(
B(t − s)

)
,

in other words �(t, s) is the propagator of the matrix ODE Ẋt = BXt and satisfies

d

dt
�(t, s) = B�(t, s),

with initial condition �(s, s) = I2d0+3d . We further consider the block structure of
�(T , t) and write

�(T , t) =
(

�
1,1
t �

1,2
t

�
2,1
t �

2,2
t

)
.

We have the following sufficient condition for the unique solvability of (43).

PROPOSITION 5.3. If for each t ∈ [0, T ], the (d0 + 2d) × (d0 + 2d)-matrix
�

2,2
t is invertible and the inverse is a continuous function of t , then

St = −(�2,2
t

)−1
�

2,1
t

solves the Riccati equation (43).

The assumption in Proposition 5.3 will be denoted by assumption (A′). As
we have already mentioned, assumptions (A1)–(A6), (M0)–(M) and (C0)–(C) are
satisfied in our current linear-quadratic setting. According to (45), (A7) is satis-
fied, and because û0(t, x0,L(Xt |F0

t ), P̄ 0
t ) = −1

2B0R
−1
0 B

†
0 P̄ 0

t , (A8) is satisfied.
We thus conclude that if assumption (A′) holds, we can apply Theorem 4.1.

THEOREM 5.1. Assume that assumption (A′) is in force. There exists a se-
quence (εN)N≥1 and a nondecreasing function ρ :R+ →R

+such that:
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(i) There exists a constant c such that for all N ≥ 1,

εN ≤ cN−1/(d+4).

(ii) The partially feedback profile(−1
2R−1

0 B
†
0

(
S

1,1
t X

0,N
t + S

1,2
t X̄t + s1

t

)
,
(−1

2R−1B†(KtX
i,N
t + kt

))
1≤i≤N

)
forms an ρ(κ)εN -Nash equilibrium for the (N + 1)-player LQG game when the
sets of admissible controls are taken as Aκ

0 ×∏N
i=1 Aκ

i .

6. A concrete example. The scheme proposed in this paper differs from the
one proposed in [22, 24] as the control problem faced by the major player is here of
the conditional McKean–Vlasov type, and the measure flow is endogenous to the
controller. This makes the limiting problem a bona fide two-player game instead
of a succession of two consecutive standard optimal control problems. Essentially,
this adds another fixed point problem, coming from the Nash equilibrium for the
two-player game, on top of the fixed-point problem of step 3 of the standard mean
field game paradigm. The reader may wonder whether after solving the two fixed-
point problems of the current scheme, we could end up with the same solution as
in the scheme proposed in [22, 24]. In order to answer this question, we provide
a concrete example, in which we show that the two solutions are different, and
the Nash equilibria for finite-player games indeed converge to the solution of the
scheme proposed in this paper.

We consider the (N + 1)-player game whose state dynamics are given by⎧⎪⎪⎨
⎪⎪⎩

dX
0,N
t =

(
a

N

N∑
i=1

X
i,N
t + bu

0,N
t

)
dt + D0 dW 0

t , X
0,N
0 = x0

0 ,

dX
i,N
t = cX

0,N
t dt + D dWi

t , X
i,N
0 = x0, i = 1,2, . . . ,N ,

the objective function of the major player is given by

J 0,N = E

[∫ T

0

(
q
∣∣X0,N

t

∣∣2 + ∣∣u0,N
t

∣∣2)dt

]
,

and the objective functions of the minor players are given by

J i,N = E

[∫ T

0

∣∣ui,N
t

∣∣2 dt

]
.

All the processes considered in this section one-dimensional. We search for an
open loop Nash equilibrium. As we can readily observe, in this finite-player
stochastic differential game, the minor players’ best responses are always 0, re-
gardless of other players’ control processes. Therefore, the only remaining issue
is to determine the major player’s best response to the minor players using a zero
control. This amounts to solving a stochastic control problem. This minimalist
structure of the problem will facilitate the task of differentiating the current scheme
from those of [22, 24].
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6.1. Finite-player game Nash equilibrium. We use the stochastic maximum
principle. The admissible controls for the major player are the square-integrable
F0

t -progressively measurable processes. His Hamiltonian is given by

H = y0

(
a

N

N∑
i=1

xi + bu0

)
+ cx0

N∑
i=1

yi + qx2
0 + u2

0.

The minimization of the Hamiltonian is straightforward. We get û0 = −by0/2.
Applying the game version of the Pontryagin stochastic maximum principle leads
to the FBSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
0,N
t =

(
a

N

N∑
i=1

X
i,N
t − 1

2
b2Y

0,N
t

)
dt + D0 dW 0

t ,

dX
i,N
t = cX

0,N
t dt + D dWi

t , 1 ≤ i ≤ N ,

dY
0,N
t = −

(
c

N∑
i=1

Y
i,N
t + 2qX

0,N
t

)
dt +

N∑
j=0

Z
0,j,N
t dW

j
t ,

dY
i,N
t = − a

N
Y

0,N
t dt +

N∑
j=0

Z
i,j,N
t dW

j
t , 1 ≤ i ≤ N .

The initial conditions for the state processes are the same as always, and will be
omitted systematically in the following. The terminal conditions read Y

i,N
T = 0

for 0 ≤ i ≤ N . Keeping in mind the fact that the optimal control identified by the
necessary condition of the Pontryagin stochastic maximum principle is û

0,N
t =

−bY
0,N
t /2 it is clear that, what matters in the above equations, is the aggregate

behavior of the processes (Xi,N) and (Y i,N). Accordingly, we introduce

XN
t = 1

N

N∑
i=1

X
i,N
t , YN

t =
N∑

i=1

Y
i,N
t ,

and the above FBSDE leads to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
0,N
t =

(
aXN

t − 1

2
b2Y

0,N
t

)
dt + D0 dW 0

t ,

dXN
t = cX

0,N
t dt + D

N
d

(
N∑

i=1

Wi
t

)
,

dY
0,N
t = −(cYN

t + 2qX
0,N
t

)
dt +

N∑
j=1

Z
0,j,N
t dW

j
t ,

dYN
t = −aY

0,N
t dt +

N∑
i=1

N∑
j=0

Z
i,j,N
t dW

j
t ,
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and by conditioning with respect to F0
t for the last two equations we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
0,N
t =

(
aXN

t − 1

2
b2Ȳ

0,N
t

)
dt + D0 dW 0

t ,

dXN
t = cX

0,N
t dt + D

N
d

(
N∑

i=1

Wi
t

)
,

dȲ
0,N
t = −(cȲN

t + 2qX
0,N
t

)
dt + Z

0,0
t dW 0

t ,

dȲ N
t = −aȲ

0,N
t dt +∑

i

Z
i,0
t dW 0

t ,

where we used an over line on top of a random variable to denote its conditional
expectation with respect to F0

t . Following the usual scheme of solving FBSDEs
we see that the solvability of the above FBSDE depends on the solvability of

Ṡt + StA + B̂St + StBSt + Â = 0, ST = 0,(46)

where we define

A =
(

0 a

c 0

)
, B =

⎛
⎝−b2

2
0

0 0

⎞
⎠ , Â =

(
2q 0

0 0

)
, B̂ =

(
0 c

a 0

)
,

and St is a 2 × 2 matrix which can be decomposed as

S =
(

S
0,0
t S

0,1
t

S
1,0
t S

1,1
t

)
.

Compared with the matrix Riccati equation (43), the matrix Riccati equation (46)
is in standard form in the language of [21], because it’s 2 × 2, A† = B̂ and con-
dition (4.23) in [21] is satisfied. We can hence apply Theorem 7.2. in the same
reference to conclude that (46) admits a unique solution. We then proceed to solve
the following forward SDE:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
dX

0,N
t =

(
aXN

t − 1

2
b2(S0,0

t X
0,N
t + S

0,1
t XN

t

))
dt + D0 dW 0

t ,

dXN
t = cX

0,N
t dt + D

N
d

(
N∑

i=1

Wi
t

)

and we obtain the optimally controlled dynamic for the major player. The optimal
control is given by

u0
t = −b

2
Ȳ

0,N
t .
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6.2. The current scheme. The scheme introduced in this paper proposes to
solve the McKean–Vlasov control problem consisting of the controlled dynamics{

dX0
t = (

aE
[
Xt |F0

t

]+ bu0
t

)
dt + D0 dW 0

t ,

dXt = cX0
t dt + D dWt,

the objective function remains to be

J 0 = E

∫ T

0

[
q
(
X0

t

)2 + (u0
t

)2]
dt.

Applying directly the result in the LQG part of the paper, we get the FBSDE⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX0
t = (

aX̄t − 1
2b2P̄ 0

t

)
dt + D0 dW 0

t ,

dXt = cX0
t dt + D dWt,

dP 0
t = −(2qX0

t + cPt

)
dt + Q00

t dW 0
t + Q01

t dWt ,

dPt = −aP̄ 0
t dt + Q10

t dW 0
t + Q11

t dWt ,

and after conditioning we get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX0
t = (

aX̄t − 1
2b2P̄ 0

t

)
dt + D0 dW 0

t ,

dX̄t = cX0
t dt,

dP̄ 0
t = −(2qX0

t + cP̄t

)
dt + Q̄00

t dW 0
t ,

dP̄t = −aP̄ 0
t dt + Q̄10

t dW 0
t .

(47)

We still use the four-step scheme to solve this FBSDE, and we see that the associ-
ated Riccati equation is again (46). We then solve the forward SDE{

dX0
t = (

aX̄t − 1
2b2(S0,0

t X0
t + S

0,1
t X̄t

))
dt + D0 dW 0

t ,

dX̄t = cX0
t dt,

and we obtain the solution. The optimal control u0 is given by −b
2 P̄ 0

t . We have the
following proposition.

PROPOSITION 6.1. For all t ∈ [0, T ], we have

∣∣X0,N
t − X0

t

∣∣+ ∣∣XN
t − X̄t

∣∣≤ eKt D

N

∣∣∣∣∣
N∑

i=1

Wi
t

∣∣∣∣∣.
As a result, we have that for all t ∈ [0, T ],

X
0,N
t → X0

t , XN
t → X̄t , Y

0,N
t → P̄ 0

t , YN
t → P̄t a.s.,

and finally we have the convergence of the optimal controls for the finite-player
games toward the limiting optimal control, namely

u
0,N
t → u0

t a.s. ∀t ∈ [0, T ].
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PROOF. For a fixed t > 0, by calculating the difference between the SDEs
satisfied by processes X0,N , XN , X0 and X̄, we see that there exists a constant K

such that ∣∣X0,N
t − X0

t

∣∣+ ∣∣XN
t − X̄t

∣∣
≤ K

∫ t

0

∣∣X0,N
s − X0

s

∣∣+ ∣∣XN
s − X̄s

∣∣ds + D

N

∣∣∣∣∣
N∑

i=1

Wi
s

∣∣∣∣∣,
and by Gronwall’s inequality, we have the desired inequality. The convergence of
the processes follows by letting N go to infinity. �

6.3. The scheme in [22, 24]. We now turn to the scheme proposed in [22, 24].
We start by fixing a F0

t -progressively measurable process m, and solve the control
problem consisting of the dynamics

dX0
t = (

amt + bu0
t

)
dt + D0 dW 0

t , X0
0 = x0

0 ,

and the objective function

J 0 = E

∫ T

0

[
q
(
X0

t

)2 + (u0
t

)2]
dt.

By applying the usual Pontryagin maximum principle, we quickly arrive at the
following FBSDE characterizing the optimally controlled system:⎧⎪⎪⎨

⎪⎪⎩
dX0

t = (
amt − 1

2b2Y 0
t

)
dt + D0 dW 0

t ,

dY 0
t = −2qX0

t dt + Z0
t dW 0

t ,

X0
0 = x0

0 , Y 0
T = 0.

We then impose the consistency condition mt = E[Xt |F0
t ] := X̄t which leads to

the FBSDE ⎧⎪⎪⎨
⎪⎪⎩

dX0
t = (

aX̄t − 1
2b2Y 0

t

)
dt + D0 dW 0

t ,

dX̄t = cX0
t dt,

dY 0
t = −2qX0

t dt + Z0
t dW 0

t .

(48)

The comparison of (48) and (47) will be based on the following proposition.

PROPOSITION 6.2. There exists t ∈ [0, T ] and an event E ⊂ � such that
P(E) > 0 and on E,

P̄ 0
t �= Y 0

t .
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PROOF. We prove this proposition by contradiction. Assume that for all t ,
almost surely P̄ 0

t = Y 0
t . Plugging them into the first two equations of (48) and (47),

by uniqueness of solutions of SDEs, we know that the X0 and X̄ in these two
systems are equal. Computing the difference between the third equations of (48)
and (47), we conclude that P̄ is 0 by uniqueness of solutions of BSDE. Using the
fourth equation in (47), we see that P̄ is 0, and finally again by uniqueness of
solutions of BSDE we see that X0 is 0 because it is the driver in the third equation
in (47). This is a contradiction. �

Note that the optimal control provided by the scheme in [22, 24] is given by
−b

2Y 0. In light of Propositions 6.1 and 6.2, we conclude that the two schemes lead
to different optimal controls, and the Nash equilibria for the finite-player games
converge toward the one produced by the current scheme, instead of the one pro-
duced by the scheme proposed in [22, 24].

7. Conditional propagation of chaos. In this section, we consider a system
of (N + 1) interacting particles with stochastic dynamics:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX
0,N
t = b0

(
t,X

0,N
t ,μN

t

)
dt + σ0

(
t,X

0,N
t ,μN

t

)
dW 0

t ,

dX
i,N
t = b

(
t,X

i,N
t ,μN

t ,X
0,N
t

)
dt + σ

(
t,X

i,N
t ,μN

t ,X
0,N
t

)
dWi

t ,

i = 1,2, . . . ,N,

X
0,N
0 = x0

0 , X
i,N
0 = x0, i = 1,2, . . . ,N,

(49)

on a probability space (�,F,P), where the empirical measure μN was defined
in (2). Here, (Wi)i≥0 is a sequence of independent Wiener processes, W 0 being
n0-dimensional and Wi n-dimensional for i ≥ 1. The major-particle process X0,N

is d0-dimensional, and the minor-particle processes Xi,N are d-dimensional for
i ≥ 1. The coefficient functions

(b0, σ0) : [0, T ] × � ×R
d0 ×P2

(
R

d)→R
d0 ×R

d0×m0,

(b, σ ) : [0, T ] × � ×R
d ×P2

(
R

d)×R
d0 →R

d ×R
d×m,

are allowed to be random, and as usual, P2(E) denotes the space of probability
measures on E having a finite second moment. We shall make the following as-
sumptions.

(A1.1) The functions b0 and σ0 (resp., b and σ ) are PW 0 ⊗ B(Rd0) ⊗
B(P(Rd))-measurable [resp., PW 0 ⊗B(Rd) ⊗B(P(Rd)) ⊗B(Rd0)-measurable],
where PW 0

is the progressive σ -field associated with the filtration F0
t on

[0, T ] × � and B(P(Rd)) is the Borel σ -field generated by the metric W2.
(A1.2) There exists a constant K > 0 such that for all t ∈ [0, T ], ω ∈ �, x, x′ ∈

R
d , x0, x

′
0 ∈ R

d0 and μ,μ′ ∈P2(R
d),∣∣(b0, σ0)(t,ω, x0,μ) − b0

(
t,ω, x′

0,μ
′)∣∣≤ K

(∣∣x0 − x′
0
∣∣+ W2

(
μ,μ′)),
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∣∣(b, σ )(t,ω, x,μ, x0) − b
(
t,ω, x′,μ′, x′

0
)∣∣

≤ K
(∣∣x − x′∣∣+ ∣∣x0 − x′

0
∣∣+ W2

(
μ,μ′)).

(A1.3) We have

E

[∫ T

0

∣∣(b0, σ0)(t,0, δ0)
∣∣2+∣∣(b, σ )(t,0, δ0,0)

∣∣2 dt

]
< ∞.

Our goal is to study the limiting behaviour of the solution of the system (49)
when N tends to infinity. The limit will be given by the so-called limiting nonlinear
processes, but before defining it, we need to introduce notations and definitions
for the regular versions of conditional probabilities which we use throughout the
remainder of the paper.

7.1. Regular conditional distributions and optional projections. We consider
a measurable space (�,F) and we assume that � is standard (see for example
[11]), and F is its Borel σ -field to allow us to use regular conditional distributions
for any sub-σ -field of F . In fact, if (Gt ) is a right continuous filtration, we make
use of the existence of a map �G : [0,∞) × � ↪→ P(�) which is (O,B(P(�))-
measurable and such that for each t ≥ 0, {�G

t (ω,A);ω ∈ �,A ∈ F} is a regular
version of the conditional probability of P given the σ -field Gt . Here, O denotes
the optional σ -field of the filtration (Gt ). This result is a direct consequence of
Proposition 1 in [28] applied to the process (Xt) given by the identity map of
� and the constant filtration Ft ≡ F . For each t ≥ 0, we define the probability
measures P⊗ �G

t and �G
t ⊗ P on �2 = � × � via the formulas

P⊗ �G
t (A × B) =

∫
A

�G
t (ω,B)P(dω) and

(50)
�G

t ⊗ P(A × B) =
∫
B

�G
t (ω,A)P(dω).

It is easy to check that, integrals of functions of the form �2  (ω, ω̃) ↪→
ϕ(ω)ψ(ω̃) with respect to these two measures are equal. This shows that these
two measures are the same. We will use this result in the following way: if X is
measurable and bounded on �2, we can interchange ω and ω̃ in the integrand of∫

�2
X(ω, ω̃)�G

t (ω, dω̃)P(dω)

without changing the value of the integral.
In this section, we often use the notation E

Gt for the expectation with respect
to the transition kernel �G

t , that is, for all random variable X : �2  (ω, ω̃) ↪→
X(ω, ω̃) ∈ R, we define

E
Gt
[
X(ω, ω̃)

]= ∫
�

X(ω, ω̃)�G
t (ω, dω̃),



1570 R. CARMONA AND X. ZHU

which, as a function of ω, is a random variable on �. Also, we still use E to denote
the expectation with respect to the first argument, that is,

E[X] =
∫
�

X(ω, ω̃)P(dω),

which, as a function of ω̃, is a random variable on �. Finally, whenever we have a
random variable X defined on �, we define the random variable X̃ on �2 via the
formula X̃(ω, ω̃) = X(ω̃).

7.2. Conditional McKean–Vlasov SDEs. In order to define properly the lim-
iting nonlinear processes, we first derive a few technical properties of the condi-
tional distribution of a process with respect to a filtration. We now assume that the
filtration (Gt ) is a sub-filtration of a right continuous filtration (Ft ), in particular
Gt ⊆ Ft for all t ≥ 0, and that (Xt) is an Ft -adapted continuous process taking
values in a Polish space (E,E). Defining μX

t (ω) as the distribution of the random
variable Xt under the probability measure �G

t (ω, ·), we obtain the following result
which we state as a lemma for future reference.

LEMMA 7.1. There exists a stochastic measure flow μX : [0,∞)×� → P(E)

such that:

(1) μX is P /B(P(E))-measurable, where P is the progressive σ -field associ-
ated to (Gt ) on [0,∞) × �, and B(P(E)) the Borel σ -field of the weak topology
on P(E);

(2) ∀t ≥ 0, μX
t is a regular conditional distribution of Xt given Gt .

We first study the well-posedness of the SDE

dXt = b
(
t,Xt ,L(Xt |Gt )

)
dt + σ

(
t,Xt ,L(Xt |Gt )

)
dWt .(51)

We say that this SDE is of the conditional McKean–Vlasov type because the con-
ditional distribution of Xt with respect to Gt enters the dynamics. Note that when
Gt is the trivial σ -field, (51) reduces to a classical McKean–Vlasov SDE. In the
following, when writing L(Xt |Gt ) we always mean μX

t , for the stochastic flow μX

whose existence is given in Lemma 7.1.
The analysis of the SDE (51) is done under the following assumptions. We let W

be a m-dimensional Wiener process on a probability space (�,F,P), F0
t its (raw)

filtration, Ft = FW
t its usual P-augmentation, and Gt a subfiltration of Ft also

satisfying the usual conditions. We impose the following standard assumptions on
b and σ :

(B1.1) The function

(b, σ ) : [0, T ] × � ×R
n ×P

(
R

n)  (t,ω, x,μ)

↪→ (
b(t,ω, x,μ), σ (t,ω, x,μ)

) ∈R
n ×R

n×m
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is PG ⊗ B(Rn) ⊗ B(P(Rn))-measurable, where PG is the progressive σ -field as-
sociated with the filtration Gt on [0, T ] × �;

(B1.2) There exists K > 0 such that for all t ∈ [0, T ], ω ∈ �, x, x ′ ∈ R
n, and

μ,μ′ ∈ P2(R
n), we have∣∣b(t,ω, x,μ) − b

(
t,ω, x′,μ′)∣∣+ ∣∣σ(t,ω, x,μ) − σ

(
t,ω, x′,μ′)∣∣

≤ K
(∣∣x − x′∣∣+ W2

(
μ,μ′)).

(B1.3) It holds that

E

[∫ T

0

∣∣b(t,0, δ0)
∣∣2 + ∣∣σ(t,0, δ0)

∣∣2 dt

]
< ∞.

DEFINITION 7.1. By a (strong) solution of (51) we mean an Ft -adapted con-
tinuous process X taking values in R

n such that for all t ∈ [0, T ],

Xt = x0 +
∫ t

0
b
(
s,Xs,L(Xs |Gs)

)
ds

+
∫ t

0
σ
(
s,Xs,L(Xs |Gs)

)
dWs a.s.

In order to establish the well-posedness of (51), we need some form of con-
trol on the 2-Wasserstein distance between two conditional distributions. We shall
use the following dual representation which is a special case of Theorem 5.10
in [27].

PROPOSITION 7.1. If μ,ν ∈ Pp(E) where E is an Euclidean space and
p ≥ 1, then

Wp
p (μ, ν) = sup

{∫
E

φ(y)ν(dy) −
∫
E

ψ(x)μ(dx)
∣∣∣(ψ,φ) ∈ Cb(E)2,

φ(x) − ψ(y) ≤ |x − y|p
}
.

We shall use the following consequences of this representation.

LEMMA 7.2. If X and Y are two random variables of order 2 taking values
in a Euclidean space, and G a sub-σ -field of F , then for all p ≥ 2 we have

W
p
2

(
L(X|G),L(Y |G)

)≤ E
[|X − Y |p|G] a.s.

By taking expectations on both sides, we further have

E
[
W

p
2

(
L(X|G),L(Y |G)

)]≤ E
[|X − Y |p].
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PROOF. We first prove the case p = 2. By using Proposition 7.1, we have

W 2
2
(
L(X|G),L(Y |G)

)
= sup

{∫
φ(x)L(X|G)(dx) −

∫
ψ(y)L(Y |G)(dy)

∣∣∣(ψ,φ) ∈ Cb × Cb,

φ(x) − ψ(y) ≤ |x − y|2
}

= sup
{∫

φ(x) − ψ(y)L
(
(X,Y )|G)(dx, dy)

∣∣∣(ψ,φ) ∈ Cb × Cb,

φ(x) − ψ(y) ≤ |x − y|2
}

≤
∫

|x − y|2L((X,Y )|G)(dx, dy) = E
[|X − Y |2|G],

and it suffices to apply conditional Jensen’s inequality to obtain the desired result
for all p ≥ 2. �

We then have the following well-posedness result.

PROPOSITION 7.2. The conditional McKean–Vlasov SDE (51) has a unique
strong solution. Moreover, for all p ≥ 2, if we replace the assumption (B1.3) by

E

∫ T

0

∣∣b(t,0, δ0)
∣∣p + ∣∣σ(t,0, δ0)

∣∣p dt < ∞,

then, the solution of (51) satisfies

E

[
sup

0≤t≤T

|Xt |p
]
< ∞.

PROOF. The proof is an application of the contraction mapping theorem. For
each c > 0, we consider the space of all Ft -progressively measurable processes
satisfying

‖X‖2
c := E

[∫ T

0
e−ct |Xt |2 dt

]
< ∞.

This space will be denoted by H
2
c . It can be easily proven to be a Banach space.

Furthermore, for all X ∈ H
2
c , we have

L(Xt |Gt ) ∈ P2
(
R

n) a.s., a.e.

and we can define

Ut = x0 +
∫ t

0
b
(
s,Xs,L(Xs |Gs)

)
ds +

∫ t

0
σ
(
s,Xs,L(Xs |Gs)

)
dWs.
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It is easy to show that U ∈ H
2
c . On the other hand, if we fix X,X′ ∈ H

2
c and let U

and U ′ be the processes defined via the above equality from X and X′ respectively,
we have

E

[∣∣∣∣
∫ t

0
b
(
s,X′

s,L
(
X′

s |Gs

))− b
(
s,Xs,L(Xs |Gs)

)
ds

∣∣∣∣
2]

≤ 2T K2
E

[∫ t

0

∣∣X′
s − Xs

∣∣2 + W 2
2
(
L
(
X′

s |Gs

)
,L(Xs |Gs)

)
ds

]

≤ 2T K2
E

[∫ t

0

∣∣X′
s − Xs

∣∣2 ds

]
,

and we have the same type of estimate for the stochastic integral term by replacing
the Cauchy–Schwarz inequality by the Itô isometry. This yields

∥∥U ′ − U
∥∥2
c = E

[∫ T

0
e−ct

∣∣U ′
t − Ut

∣∣2 dt

]

≤ 2(T + 1)K2
E

[∫ T

0
e−ct

(∫ t

0

∣∣X′
s − Xs

∣∣2 ds

)
dt

]

≤ 2(T + 1)K2

c

∥∥X′ − X
∥∥2
c,

and this proves that the map X → U is a strict contraction in the Banach space
H

2
c if we choose c sufficiently large. The fact that the solution possesses finite

moments can be obtained by using standard estimates and Lemma 7.2. We omit
the proof here. �

In the above discussion, Gt is a rather general subfiltration of the Brownian
filtration FW

t . From now on, we shall restrict ourselves to subfiltrations Gt equal to
the Brownian filtration generated by the first r components of W for some r < m.
We rewrite (51) as

dXt = b
(
t,Xt ,L

(
Xt |GW

t

))
dt + σ

(
t,Xt ,L

(
Xt |GW

t

))
dWt,(52)

and we expect that the solution of the SDE (52) is given by a deterministic func-
tional of the Brownian paths. In order to prove this fact in a rigorous way, we need
the following notion.

DEFINITION 7.2. By a set-up we mean a 4-tuple (�,F,P,W) where
(�,F,P) is a probability space with a d-dimensional Wiener process W . We use
FW

t to denote the natural filtration generated by W and GW
t to denote the natural

filtration generated by the first r components of W . By the canonical set-up, we
mean (�c,Fc,W,B), where �c = C([0, T ];Rm), Fc is the Borel σ -field associ-
ated with the uniform topology, W is the Wiener measure and Bt is the coordinate
(marginal) projection.
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Proposition 7.2 basically states that the SDE (52) is uniquely solvable on any
set-up, and in particular it is uniquely solvable on the canonical set-up. The so-
lution on the canonical set-up, denoted by Xc, gives us a measurable functional
from C([0, T ];Rd) to C([0, T ];Rn). Because of the important role played by this
functional, in the following we use � (instead of Xc) to denote it.

LEMMA 7.3. Let ψ : C([0, T ];Rm) →R
n be FB

t -measurable, then we have

L
(
ψ |GB

t

)
(W·) = L

(
ψ(W·)|GW

t

)
.

PROOF. By the definition of conditional distributions, it suffices to prove that
for all bounded measurable functions f :Rn →R

+ we have

E
[
f
(
ψ(W·)

)|GW
t

]= E
[
f (ψ)|GB

t

]
(W·),

and by using the definition of conditional expectations the above equality can be
easily proved. �

With the help of Lemma 7.3, we can state and prove the following.

PROPOSITION 7.3. On any set-up (�,F,P,W), the solution of (52) is given
by

X· = �(W·).

PROOF. We are going to check directly that �(W·) is a solution of (52). By
the definition of � as the solution of (52) on the canonical set-up, we have

�(w) = x0 +
∫ t

0
b
(
s,�(w)s,L

(
�(·)s |GB

s

)
(w)
)
ds

+
∫ t

0
σ
(
s,�(w)s,L

(
�(·)s |GB

s

)
(w)
)
dBs, W-a.s.,

where w stands for a generic element in the canonical space C([0, T ];Rm). By
using Lemma 7.3, we thus have

�(W·) = x0 +
∫ t

0
b
(
s,�(W·)s,L

(
�(W·)s |GB

s

))
ds

+
∫ t

0
σ
(
s,�(W·)s,L

(
�(W·)s |GB

s

))
dWs, P-a.s.,

which proves the desired result. �
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7.3. The nonlinear processes. The limiting nonlinear processes associated
with the particle system (49) is defined as the solution of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX0
t = b0

(
t,X0

t ,L
(
X1

t |F0
t

))
dt + σ0

(
t,X0

t ,L
(
X1

t |F0
t

))
dW 0

t ,

dXi
t = b

(
t,Xi

t ,L
(
Xi

t |F0
t

)
,X0

t

)
dt + σ

(
t,Xi

t ,L
(
Xi

t |F0
t

)
,X0

t

)
dWi

t ,

i ≥ 1,

X0
0 = x0

0 , Xi
0 = x0, i ≥ 1.

(53)

Under the assumptions (A1.1)–(A1.3), the unique solvability of this system is
ensured by Proposition 7.2. Due to the strong symmetry among the processes
(Xi)i≥1, we first prove the following proposition.

PROPOSITION 7.4. For all i ≥ 1, the solution of (53) solves the conditional
McKean–Vlasov SDE{

dX0
t = b0

(
t,X0

t ,L
(
Xi

t |F0
t

))
dt + σ0

(
t,X0

t ,L
(
Xi

t |F0
t

))
dW 0

t ,

dXi
t = b

(
t,Xt ,L

(
Xi

t |F0
t

)
,X0

t

)
dt + σ

(
t,Xi

t ,L
(
Xi

t |F0
t

)
,X0

t

)
dWi

t ,

and for all fixed t ∈ [0, T ], the random variables (Xi
t )i≥1 are F0

t -conditionally
i.i.d.

PROOF. This is an immediate consequence of Proposition 7.3. �

Now that the nonlinear processes are well-defined, in the next subsection we
prove that these processes give the limiting behavior of (49) when N tends to
infinity.

7.4. Conditional propagation of chaos. We extend the result of the uncondi-
tional theory to the conditional case involving the influence of a major player. As
in the classical case, the propagation appears in a strong path wise sense.

THEOREM 7.1. There exists a constant C such that

max
0≤i≤N

E

[
sup

0≤t≤T

∣∣Xi,N
t − Xi

t

∣∣2]≤ CN−2/(d+4),

where C only depends on T , the Lipschitz constants of b0 and b and

η = E

[∫ T

0

∣∣X1
t

∣∣d+5
dt

]
.

PROOF. We first note that, by the SDEs satisfied by X0 and X0,N and the
Lipschitz conditions on the coefficients,∣∣X0,N

t − X0
t

∣∣2
=
(∫ t

0
b0

(
s,X0,N

s ,
1

N

N∑
j=1

δ
X

j,N
s

)
− b

(
s,X0

s ,μs

)
ds

)2
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≤ K

(∫ t

0

∣∣X0,N
s − X0

s

∣∣2 ds +
∫ t

0
W 2

2

(
1

N

N∑
j=1

δ
X

j,N
s

,
1

N

N∑
j=1

δ
X

j
s

)
ds

+
∫ t

0
W 2

2

(
1

N

N∑
j=1

δ
X

j
s
,μs

)
ds

)

≤ K

(∫ t

0

∣∣X0,N
s − X0

s

∣∣2 ds +
∫ t

0

1

N

N∑
j=1

(
Xj,N

s − Xj
s

)2
ds

+
∫ t

0
W 2

2

(
1

N

N∑
j=1

δ
X

j
s
,μs

)
ds

)
.

We take the supremum and the expectation on both sides, by the exchangeability
we get

E

[
sup

0≤s≤t

∣∣X0,N
s − X0

s

∣∣2]

≤ K

(∫ t

0
E

[
sup

0≤u≤s

∣∣X0,N
u − X0

u

∣∣2]ds +
∫ t

0
E
[(

X1,N
s − X1

s

)2]
ds

+
∫ t

0
E

[
W 2

2

(
1

N

N∑
j=1

δ
X

j
s
,μs

)]
ds

)

≤ K

(∫ t

0
E

[
sup

0≤u≤s

∣∣X0,N
u − X0

u

∣∣2]ds +
∫ t

0
E

[
sup

0≤u≤s

∣∣X1,N
u − X1

u

∣∣2]ds

+
∫ t

0
E

[
W 2

2

(
1

N

N∑
j=1

δ
X

j
s
,μs

)]
ds

)
.

By following the above computation, we can readily obtain the same type of esti-
mate for X1,N − X1:

E

[
sup

0≤s≤t

∣∣X1,N
s − X1

s

∣∣2]

≤ K ′
(∫ t

0
E

[
sup

0≤u≤s

∣∣X0,N
u − X0

u

∣∣2]ds +
∫ t

0
E

[
sup

0≤u≤s

∣∣X1,N
u − X1

u

∣∣2]ds

+
∫ t

0
E

[
W 2

2

(
1

N

N∑
j=1

δ
X

j
s
,μs

)]
ds

)
,
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by summing up the above two inequality and using the Gronwall’s inequality we
get

E

[
sup

0≤t≤T

∣∣X0,N
t − X0

t

∣∣2]+E

[
sup

0≤t≤T

∣∣X1,N
t − X1

t

∣∣2]

≤ K

∫ T

0
E

[
W 2

2

(
1

N

N∑
j=1

δ
X

j
t
,μt

)]
ds ≤ KE

[∫ T

0

∣∣X1
t

∣∣d+5
]
N−2/(d+4),

where the second inequality comes from a direct application of Lemma 4.1, with
the help of Lemma 7.2, and this proves the desired result. �

APPENDIX: A MAXIMUM PRINCIPLE FOR CONDITIONAL
MCKEAN–VLASOV CONTROL PROBLEMS

In this last section, we establish a version of the sufficient part of the stochastic
Pontryagin maximum principle for a type of conditional McKean–Vlasov con-
trol problem. In some sense, these results are extensions of the results in [7], and
we will sometimes refer the reader to [7] for details and proofs. The setup is the
following: (�,F,P) is a probability space, F is a filtration satisfying the usual
conditions on �. G and H are two subfiltrations of F also satisfying the usual
conditions, and (Wt)t≥0 is a n-dimensional F-Wiener process. We assume that the
probability space � is standard.

The controlled dynamics are given by

dXt = b
(
t,Xt ,L(Xt |Gt ), ut

)
dt + σ

(
t,Xt ,L(Xt |Gt ), ut

)
dWt,

(54)
X0 = x0,

and the objective function to minimize is given by

J (u) = E

[∫ T

0
f
(
t,Xt ,L(Xt |Gt ), ut

)+ g
(
XT ,L(XT |GT )

)]
,

where X is d-dimensional and u takes values in U ⊂ R
k which is convex. The

set of admissible controls is the space H
2,k(H,U) defined in (9). We assume that

assumptions (A1)–(A4) in [7] are satisfied, and we relabel them (A2.1)–(A2.4) in
the following.

We see that in the current setting of the stochastic control problem we have
three filtrations. Intuitively, F corresponds to all the possible information, H corre-
sponds to the information available to the agent and G is the filtration with respect
to which we take conditional distribution of X in the coefficients. This model is
sometimes referred to as control problem with “partial information” in the litera-
ture, for example, cf. [2], while the conditioning with respect to G seems to be new.
We will see in the following that with slight modifications to the existing methods,
a sufficient maximum principle can be readily established.
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A.1. Hamiltonian and adjoint processes. The Hamiltonian of the problem
is defined as

H(t, x,μ, y, z, u) = 〈
y, b(t, x,μ,u)

〉+ 〈z, σ (t, x,μ,u)
〉+ f (t, x,μ,u).

Given an admissible control u ∈ H
2,k(H,U), the associated adjoint equation is

defined as the following BSDE:⎧⎪⎪⎨
⎪⎪⎩

dYt = −∂xH
(
t,Xt ,L(Xt |Gt ), Yt ,Zt , ut

)
dt + Zt dWt

−E
Gt
[
∂μH

(
t, X̃t ,L(X̃t |Gt ), Ỹt , Z̃t , ũt

)
(Xt)

]
dt,

YT = ∂xg
(
XT ,L(XT |GT )

)+E
GT
[
∂μg

(
X̃T ,L(X̃T |GT )

)
(XT )

]
,

(55)

where X = Xu denotes the state controlled by u, and whose dynamics are given
by (54). We refer the reader to [7], Section 3 for the definition of differentiability
and convexity with respect to the measure argument. This BSDE is of the McKean–
Vlasov type because of the presence of conditional distributions of the unknown
processes (Y,Z) in the coefficients. However, as noted in [7], Section 3.4, un-
der assumptions (A2.1)–(A2.4), standard fixed point arguments can be used to
prove existence and uniqueness of a solution to these equations (it suffices to use
Lemma 7.2 when appropriate to deal with 2-Wasserstein distance between condi-
tional distributions).

A.2. Sufficient Pontryagin maximum principle. The following theorem
gives us a sufficient condition of optimality.

THEOREM A.1. On the top of assumptions (A2.1)–(A2.4), we assume that:

(1) The function R
d ×P2(R

d)  (x,μ) ↪→ g(x,μ) is convex.
(2) The function R

d ×P2(R
d) × U  (x,μ,u) ↪→ H(t, x,μ,Yt ,Zt , u) is con-

vex dt ⊗ P a.e.
(3) For any admissible control u′, we have the following integrability condition:

E

[(∫ T

0

∥∥σ (t,X′
t ,L

(
X′

t |Gt

)
, u′

t

) · Yt

∥∥2
dt

)1/2]
< ∞,

(56)

E

[(∫ T

0

∥∥X′
t · Zt

∥∥2
dt

)1/2]
< ∞.

Moreover, if

E
[
H
(
t,Xt ,L(Xt |Gt ), Yt ,Zt , ut

)|Ht

]
(57)

= inf
u∈U

E
[
H
(
t,Xt ,L(Xt |Gt ), Yt ,Zt , u

)|Ht

]
,

then (ut )0≤t≤T is an optimal control of the conditional McKean–Vlasov control
problem.
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PROOF. The various steps of the proof of Theorem 4.6 in [7] can be followed
mutatis mutandis once we remark that, the interchanges of variables made in The-
orem 4.6 of [7] when using independent copies can be done in the same way in the
present situation. Indeed, the justification for these interchanges was given at the
end of Section 7.1 earlier in the previous section. �

One final observation is that a sufficient condition for the integrability condi-
tion (57) is that, on the top of (A2.1)–(A2.4), we have Y ∈ S

2,d and Z ∈ H
2,d×n,

which is an easy consequence of the Burkholder–Davis–Gundy inequality.
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