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SOCIAL CONTACT PROCESSES AND THE PARTNER MODEL

BY ERIC FOXALL1, RODERICK EDWARDS2 AND

P. VAN DEN DRIESSCHE2

University of Victoria

We consider a stochastic model of infection spread on the complete graph
on N vertices incorporating dynamic partnerships, which we assume to be
monogamous. This can be seen as a variation on the contact process in which
some form of edge dynamics determines the set of contacts at each moment
in time. We identify a basic reproduction number R0 with the property that
if R0 < 1 the infection dies out by time O(logN), while if R0 > 1 the infec-
tion survives for an amount of time eγN for some γ > 0 and hovers around
a uniquely determined metastable proportion of infectious individuals. The
proof in both cases relies on comparison to a set of mean-field equations when
the infection is widespread, and to a branching process when the infection is
sparse.

1. Introduction. The contact process is a well-studied model of the spread of
an infection, in which an undirected graph G = (V ,E) determines a collection of
sites V and edges E which we can think of as individuals and as links between in-
dividuals along which the infection can be transmitted. Each site is either healthy
or infectious; infectious sites recover at a certain fixed rate, which is usually nor-
malized to 1, and transmit the infection to each of their neighbours at rate λ.

The contact process has been studied in a variety of different settings, including
lattices [1, 4, 8, 9] (to cite just a few), infinite trees [11], power law graphs [3, 10]
and complete graphs [12]. In each case, there is a critical value λc below which
the infection quickly vanishes from the graph, and above which the infection has
a positive probability of surviving either for all time (if the graph is infinite), or
for an amount of time that grows quickly (either exponentially or at least faster
than polynomially) with the size of the graph; in the power law case λc = 0 so
long-time survival is possible whenever λ > 0.

In a social context, G might describe a contact network in which an edge con-
nects sites x and y if and only if the corresponding individuals have sufficiently
frequent interactions that infection can be spread from one to the other. In the con-
tact process, the contact network is fixed, that is, a given pair of individuals is
either connected or not connected for all time. However, we can easily imagine
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a scenario in which connections form and break up dynamically, which we can
model by having edges open and close according to certain rules; here, we use
the convention of percolation theory, in which “open” means there is a connection
across the edge; note this is the opposite of the convention for electric circuits.
In this case, the edges E represent possible connections and we have a process
Et ⊆ E that describes the set of open edges as a function of time. This type of
process we will call a social contact process, since it involves some form of social
dynamics.

In the simplest case, edges open and close independently at some fixed rates
r+ and r−. In this case, the distribution of open edges at a given time converges
to the product measure on {0,1}E with density r+/(r− + r+). Estimates on the
survival region can then be obtained using the results of [2] and following the
pattern of [13]. On the other hand, edge dynamics could depend on the state of
the infection; for example, site x might be less likely to connect with site y, if y

is infected. If we then relax the tendency to avoid infected sites, then for a given
value of λ, we might ask at what point does the infection start to spread, if it does.

Here, we consider edges opening and closing independently as described above
but with the added restriction of monogamy, that is, if two sites are connected (i.e.,
linked by an edge) then so long as they remain connected, they cannot connect to
other sites. In this model, we think of connected pairs as partners, so we call it the
partner model. For simplicity, we study the model on the sequence of complete
graphs KN on N vertices, where N will tend to ∞; this is a reasonable model for,
say, the spread of a sexually transmitted infection through a population of monog-
amous homosexual individuals in a big city. We rescale the partner formation rate
per edge to r+/N to ensure that a given individual in a pool of entirely singles
finds a partner at total rate approximately r+. For future reference, we use inter-
changeably both the words healthy and susceptible, and the words unpartnered and
single, to describe respectively an individual that is not infectious, or an individual
that does not have a partner. Even in this simple model, as described below, there
is a phase transition between extinction and spread of the infection.

2. Statement of main results. In order to analyze the partner model, we
should first ensure that it is well defined, so following [6] we give a graphical
construction which makes it easy to visualize its evolution in time and space. We
write the model as (Vt ,Et ) where Vt ⊆ V is the set of infectious sites at time t and
Et ⊆ E is the set of open edges at time t . In general, we assume min(r+, r−, λ) > 0
since if any of the parameters is equal to zero the dynamics are trivial.

The complete graph KN = (V ,E) has sites V = {1, . . . ,N} and edges E =
{{x, y} : x, y ∈ {{1, . . . ,N}, x �= y}. On the spacetime set KN ×[0,∞), place inde-
pendent Poisson point processes (p.p.p.s) along the fibers {·} × [0,∞) as follows:

• for recovery, at each site with intensity 1 and label ×,
• for transmission, along each edge xy ∈ E with intensity λ and label ↔,
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• for partnership formation, along each edge with intensity r+/N and label ↑,
• for partnership breakup, along each edge with intensity r− and label ↓.

These define the probability space �, whose realizations ω ∈ � consist of collec-
tions of labelled points on KN ×[0,∞). Since the graph is finite, the total intensity
of p.p.p.s is finite, thus with probability 1 events are well ordered in time. Fixing
an admissible initial configuration (V0,E0), that is, such that no two edges xy and
yz are both open, we determine (Vt ,Et ) as follows. For a well-ordered realization
with event times t1 < t2 < t3 < · · · , suppose (Vti ,Eti ) is known. If the event at
time ti+1 is:

• an × at site x and x ∈ Vti then Vti+1 = Vti \ {x},
• a ↔ along edge xy, xy ∈ Eti , x ∈ Vti and y /∈ Vti then Vti+1 = Vti ∪ {y},
• a ↑ along edge xy and xz, zy /∈ Eti for all z then Eti+1 = Eti ∪ {xy},
• a ↓ along edge xy and xy ∈ Eti then Eti+1 = Eti \ {xy}.
Otherwise the configuration is unchanged. This gives (Vt ,Et ) at times t0 :=
0, t1, t2, . . . ; for t ∈ (ti, ti+1) set Vt = Vti and Et = Eti .

For the partner model, we are mostly concerned not with the exact values of Vt

and Et but with the total number of susceptible and infectious singles St and It

and the total number of partnered pairs SSt ,SIt , IIt of the three possible types; as
shown in Section 5, for each N , (St , It ,SSt ,SIt , IIt ) is a continuous time Markov
chain. In general, it will be more convenient to work with the rescaled quantities
st = St/N , it = It/N , sst = SSt /N , sit = SIt /N and iit = IIt /N .

Starting from any configuration, as shown in Section 6, after a short time the
proportion of singles yt := st + it approaches and remains close to a certain fixed
value y∗ ∈ (0,1). The computation of y∗ is given in Section 3: setting α = r+/r−,
we find that

y∗ = 1/(2α)[−1 + √
1 + 4α].(2.1)

To determine the conditions under which the infection can spread, we use a
heuristic argument. Once we know the correct values, we can then worry about
proving they are correct. Suppose we start with V0 = {x} for some x ∈ V with x

single and y0 ≈ y∗, and keep track of x until the first moment when x either:

• recovers without finding a partner, or
• if it finds a partner before recovering, breaks up from that partnership.

This leads to the continuous time Markov chain shown in Figure 1. Each of
A,B, . . . ,G represents a state for the chain, and arrows show possible transitions,
with the arrow labelled by the transition rate. Shaded circles represent infectious
individuals and unshaded circles, healthy individuals. A pair of circles connected
by a line represents a partnered pair. Starting from A, a single infectious site either
recovers (goes to D) at rate 1, or finds a healthy partner at rate r+y∗. Infection
takes place at rate λ. If only one individual in a partnership is infectious (state B),
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FIG. 1. Markov chain used to compute R0, with transition rates indicated; infectious sites are
shaded.

then it recovers at rate 1 (state E), and we do not need to worry about them any
more, since neither is infectious. If both are infectious (state C), recovery of one
or the other occurs at rate 2. While in a partnership, breakup occurs at rate r−.

Define the basic reproduction number

R0 = P(A → F) + 2P(A → G)(2.2)

which is the expected number of infectious singles upon absorption of the above
Markov chain, starting from state A. As intuition suggests, and Theorem 2.2 con-
firms, the infection can spread if R0 > 1, and cannot spread if R0 ≤ 1.

If the dynamics is in equilibrium, that is, (st , it , sst , sit , iit ) hovers around
a fixed value (s∗, i∗, ss∗, si∗, ii∗), then in particular the proportion of infectious
singles is roughly constant. To compute this proportion, we again use a heuristic
argument. Three events affect infectious singles:

• I → S, which occurs at rate It = itN ,
• I + I → II, which occurs at rate (r+/N)

(It

2

) ≈ r+(i2
t /2)N , and

• S + I → SI, which occurs at rate (r+/N)ItSt = r+it stN .

If a partnership is formed, then using these rates and Figure 1, we can compute the
expected number of infectious singles upon breakup. Fixing it = i for some i ∈
[0, y∗] and st + it = y∗, define the normalizing constant z = 1 + r+i/2 + r+(y∗ −
i) = 1 + r+(y∗ − i/2) and the probabilities pS = 1/z, pII = r+i/(2z) and pSI =
r+(y∗ − i)/z and let

�(i) = pS�S + pII�II + pSI�SI,(2.3)

where �S = −1, �II = −2 + P(C → F) + 2P(C → G) and �SI = −1 + P(B →
F) + 2P(B → G). The function �(i) tracks the expected change in the number of
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infectious singles, per event affecting one or more infectious singles. Thus, for an
equilibrium solution we should have �(i∗) = 0. As shown in Lemma 4.2, to have
a solution with i∗ > 0, we need R0 > 1.

As shown in Lemma 4.1, for fixed r+, r−, R0 is continuous and increasing in λ.
Defining

λc = sup{λ ≥ 0 : R0 ≤ 1}(2.4)

with supR+ := ∞, it follows that if λc = ∞ then R0 < 1 for all λ, and if λc < ∞
then R0 < 1 if λ < λc, R0 = 1 if λ = λc and R0 > 1 if λ > λc. In models exhibiting
a phase transition, one often seeks a critical exponent γ such that for an observable
F(λ) it holds that F(λ) ∼ C(λ−λc)

γ . As we see in the statement of the upcoming
Theorem 2.1, here the critical exponent for i∗ is equal to 1.

The following two theorems are the main results of this paper. The first result
tells us where and when we should expect a phase transition to occur. In particular,
it gives a formula for λc and describes the behaviour of i∗ near λc.

THEOREM 2.1. Let y∗,R0,�(i) and λc be as in (2.1), (2.2), (2.3) and (2.4)
and let r+, r− be fixed. Then λc < ∞ ⇔ r+y∗ > 1 ⇔ r+ > 1 + 1/r− and in this
case

λc = 2

r−
2

(r+y∗ − 1)
+ 2

r−
+ 4

r+y∗ − 1
+ 1 + r−

r+y∗ − 1
.

If R0 = R0(λ) > 1, there is a unique solution i∗(λ) ∈ (0, y∗) to the equation
�(i∗) = 0 and i∗(λ) ∼ C(λ − λc) as λ ↓ λc, for some constant C > 0.

The second result shows that our heuristics are correct. More precisely, R0 > 1
is a necessary and sufficient condition for spread and long-time survival of the
infection. Moreover, when R0 > 1 there is a unique and globally stable endemic
equilibrium with i∗ > 0 given by �(i∗) = 0.

THEOREM 2.2. Fix λ, r+, r− and let y∗,R0 and �(i) be as defined in (2.1),
(2.2) and (2.3).

• If R0 ≤ 1, for each ε > 0 there are constants C,T , γ > 0 so that, from any initial
configuration, with probability ≥ 1 − Ce−γN , |VT | ≤ εN .

• If R0 < 1 there are constants C,T , γ > 0 so that, from any initial configura-
tion, with probability tending to 1 as N → ∞ all sites are healthy by time
T + C logN .

• If R0 > 1, there is a unique vector (s∗, i∗, ss∗, si∗, ii∗), satisfying i∗ > 0, s∗ +
i∗ = y∗ and �(i∗) = 0, such that
– for each ε > 0, there are constants C,T , γ > 0 so that, from any initial config-

uration with |V0| ≥ εN , with probability ≥ 1−Ce−γN , |(st , it , sst , sit , iit )−
(s∗, i∗, ss∗, si∗, ii∗)| ≤ ε for T ≤ t ≤ eγN , and
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– there are constants δ,p,C,T > 0 so that, from any initial configuration with
|V0| > 0, with probability ≥ p, |VT +C logN | ≥ δN .

To obtain the value of the endemic equilibrium and the behaviour when |V0| ≥
εN , which we call the macroscopic regime, we use the mean-field equations
(MFE) introduced in Section 5, which are a set of differential equations that give
a good approximation to the evolution of (st , it , sst , sit , iit ) when N is large. To
describe the behaviour when 1 ≤ |V0| ≤ εN for small ε > 0, which we call the mi-
croscopic regime, we use comparison to a branching process; if R0 < 1 we bound
above and if R0 > 1 we bound below.

The paper is laid out as follows. Sections 3 and 4 contain the heuristic cal-
culations that allow us to determine y∗,R0, λc,�(i) and prove Theorem 2.1. In
Section 3, we give an informal description of the edge dynamics and compute y∗.
In Section 4, we analyze R0, λc,�(i) and prove Theorem 2.1, in two parts: Propo-
sitions 4.1 and 4.2. In Section 5, we introduce the mean-field equations and char-
acterize their dynamics. In Sections 6, 7 and 8, we consider the stochastic process
and prove Theorem 2.2. In Section 6, we develop the tools needed to relate the
stochastic model to the mean-field equations. In Section 7, we prove the macro-
scopic part of Theorem 2.2, and in Section 8 we prove the microscopic part.

3. Proportion of singles. Starting from the total number of singles Yt = St +
It , the transitions are:

• Y → Y − 2 at rate (r+/N)Y (Y − 1)/2,
• Y → Y + 2 at rate (N − Y)r−/2,

which for yt := Yt/N gives:

• y → y − 2/N at rate [r+y(y − 1/N)/2]N = (r+y2/2)N − r+y/2,
• y → y + 2/N at rate [(1 − y)r−/2]N .

Combining these transitions gives

d

dt
E(yt |yt = y) = −r+y2 + r−(1 − y) + r+y

N
.

In Lemma 6.4, we make a rigorous statement about the behaviour of yt . For
now, though, some heuristics are helpful. Letting y = Y/N and �y denote the
increment in y over a time step of size 1/N , we find E�y = O(1/N) while
E(�y)2 = O(1/N2), which means Var(�y) = O(1/N2). This suggests that as
N → ∞ we should expect the sample paths of y to approach solutions to the dif-
ferential equation

y′ = −r+y2 + r−(1 − y).(3.1)

Notice the right-hand side is positive at y = 0, negative at y = 1 and strictly de-
creases with y, so there is a unique and globally stable equilibrium for y ∈ [0,1],
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that lies in (0,1). Setting y′ = 0 and letting α = r+/r− gives the equation
αy2 + y − 1 = 0 which has the unique solution y∗ = 1/(2α)[−1 + √

1 + 4α] in
[0,1]. Notice that y∗ ∼ 1 − α as α → 0+ and y∗ ∼ 1/

√
α as α → ∞.

4. Survival analysis. In this section, we analyze R0, λc and �(i) which are
defined in Section 2. We begin with R0 defined in (2.2). Define the recruitment
probability pr = r+y∗/(1 + r+y∗) = P(A → E ∪ F ∪ G) which is the probability
of finding a partner before recovering and depends only on r+, r−. Define a =
1 + λ + r−, b = 2 + r− which are the rates at which the Markov chain of Figure 1
jumps away from states B and C, respectively. Also, let

σ =
∞∑

k=0

(
λ

a

2

b

)k

= ab

ab − 2λ
.

It is easy to check that ab > 2λ. Notice that any path from A to E ∪ F ∪ G must
go to B and then goes around the B,C loop some number of times before being
absorbed at E,F or G, and σ accounts for this looping. Summing probabilities
over all possible paths we find

P(A → F) = prσ
r−
a

and P(A → G) = prσ
λ

a

r−
b

so we obtain the explicit expression

R0 = prσr−(1 + 2λ/b)/a

which after re-substituting and a bit of algebra gives

R0 = prr−
b + 2λ

ab − 2λ
= prr−

2 + r− + 2λ

2 + 3r− + λr− + r2−
.(4.1)

LEMMA 4.1. Fixing r+ and r−, R0 is continuous and increasing with respect
to λ.

PROOF. Continuity is obvious from the formula above. We write R0(λ) and
compute the derivative R′

0(λ), noting that pr is fixed. Letting c1 = 2 + r−, c2 = 2,
c3 = 2 + 3r− + r2− and c4 = r−, R0(λ) = prr−(c1 + c2λ)/(c3 + c4λ) so R′

0(λ) =
prr−(c2c3 − c1c4)/(c3 + c4λ)2 and c2c3 − c1c4 = 4 + 4r− + r2− > 0 so R′

0(λ) > 0.
�

From this, it follows that for fixed r+, r−, if R0(λ) = 1 has a solution then it is
unique and is equal to λc. So, setting R0 = 1 gives

prr−(2 + r− + 2λc) = 2 + 3r− + λcr− + r2−.(4.2)

To get a handle on this equation, we first examine the limit of large r+, that is,
quick formation of partnerships. As noted in Section 3, y∗ ∼ 1/

√
α = √

r−/
√

r+
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as α = r+/r− → ∞, so for fixed r−, r+y∗ ∼ √
r−r+ → ∞, and so pr → 1, as

r+ → ∞. Setting pr = 1 in the equation above, after cancelling like terms and
dividing both sides by r− gives

λc = 1 + 2/r−
for fixed r−, when r+ = ∞. For the contact process on a large complete graph
λc = 1, so here the only difference is the term 2/r−, which makes it harder for the
infection to spread when partnerships last a long time.

Accounting for pr , we still get a fairly nice expression. From (4.2), putting all
terms involving λc on the left and all other terms on the right gives

λcr−(2pr − 1) = 2 + (3 − 2pr)r− + r2−(1 − pr).

Letting β = 2pr − 1 then substituting for β and dividing by r− gives

λcβ = 2/r− + (2 − β) + (1/2)r−(1 − β).(4.3)

This equation suggests that we view λβ as a sort of force of infection, which makes
sense as λ is the transmission rate and β = 2pr − 1 measures the chance of finding
a partner before recovering. Although β depends on r−, −1 ≤ β ≤ 1 regardless, so
we see from (4.3) that for fixed λ, if r− is either too small or too large, the infection
cannot spread. The reason for this can be understood as follows: if r− is too small,
partners tend both to recover before breaking up and transmitting the infection to
anyone else, whereas if r− is too large, partnerships do not last long enough for
transmission to occur.

Using (4.3), we can now prove the first assertion of Theorem 2.1.

PROPOSITION 4.1. For fixed r+, r− and λc given by (2.4), λc < ∞ if and only
if r+y∗ > 1, if and only if r+ > 1 + 1/r− and in this case

λc = 2

r−
2

(r+y∗ − 1)
+ 2

r−
+ 4

r+y∗ − 1
+ 1 + r−

r+y∗ − 1
.

PROOF. It is easy to check, using the formula y∗ = (r−/(2r+))(−1 + (1 +
4r+/r−)1/2), that r+y∗ > 1 if and only if r+ > 1 + 1/r−. Since β ∈ [−1,1], the
right-hand side of (4.3) is positive, so to have a solution it is necessary that β > 0;
dividing by β on both sides shows that it is also sufficient. Then observe that β > 0
if and only if r+y∗ > 1. To get the formula for λc, divide by β in (4.3) and observe
that β−1 − 1 = 2/(r+y∗ − 1). �

Figure 2 shows level curves of λc in the r+, r− plane. Using the formula for
λc, we can see how it scales in various limits of r+, r− and α. First, we see what
happens when we speed up and slow down the partnership dynamics. Let α be
fixed (and by extension, y∗) and let r∗− denote the unique value of r− such that
r+y∗ = 1. We find that:
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FIG. 2. Level curves of λc depicted in the r+, r− plane. Starting from the top curve and going
down, λc = 3,5,8,13,21,34,∞.

• λc ↓ 1 + 1/(αy∗) as r+ ↑ ∞ (fast partner dynamics),
• λc(r+y∗ − 1) ↓ 4/r∗− + 4 + r∗− as r+y∗ ↓ 1 (slow partner dynamics).

In particular, in the limit of fast partner dynamics λc approaches its value for the
contact process on a complete graph, plus a correction for the proportion of avail-
able singles. In the slow limit, that is, as the recruitment probability approaches
1/2, λc diverges like 1/(r+y∗ − 1), with a proportionality that itself diverges as
r∗− approaches either 0 or ∞. Now we fix r+ > 1 and vary r−. Note that y∗ ↓ 0 as
r− ↓ 0:

• as r− ↑ ∞, y∗ ↑ 1, α ↓ 0 and λc/r− ↓ 1/(r+ − 1), and
• as r+y∗ ↓ 1, λc(r+y∗ − 1) ↓ 4/r∗− + 4 + r∗−.

Here, in both limits λc diverges, in the first case like r− and in the second case like
1/(r+y∗ − 1). Finally, we fix r− and vary r+, and we find that:

• as r+ ↑ ∞, y∗ ∼ 1/
√

α = √
r−/r+ and λc → 1 + 2/r−, and

• as r+y∗ ↓ 1, λc(r+y∗ − 1) ↓ 4/r− + 4 + r−.

The first limit agrees with the previous large r+ approximation, and the second
limit shows that when r+y∗ is close to 1, λ(r+y∗ − 1)/2 ≈ λ(r+y∗ − 1)/(r+y∗ +
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1) = λβ behaves like the force of infection and we require again that r− be neither
too small nor too large in order for the infection to be able to spread.

We now examine �(i), defined in (2.3).

LEMMA 4.2. �(0) = R0 − 1, and:

• if R0 < 1 the equation �(i) = 0 has no solution i ∈ [0, y∗],
• if R0 = 1 the equation �(i) = 0 has the unique solution i = 0 and
• if R0 > 1 the equation �(i∗) = 0 has a unique solution i∗ ∈ (0, y∗).

PROOF. Letting z = 1 + r+(y∗ − i/2) we recall the definition:

�(i) = pS�S + pII�II + pSI�SI(4.4)

with pS = 1/z, pSI = r+(y∗−i)/z, pII = r+i/(2z), �S = −1, �II = −2+P(C →
F)+ 2P(C → G) and �SI = −1 +P(B → F)+ 2P(B → G), where probabilities
are with respect to the Markov chain in Figure 1.

First, we show �(0) = R0 − 1. If i = 0 then pS = 1/(1 + r+y∗) = P(A → D),
pII = 0 and pSI = r+y∗/(1 + r+y∗) = P(A → B) so

�(0) = −P(A → D) + P(A → B)
(−1 + P(B → F) + 2P(B → G)

)
= −P(A → D ∪ B) + P(A → F) + 2P(A → G)

= −1 + R0.

It is easy to check that �II ≤ 0, so if �SI ≤ 0 then �(i) < 0 for i ∈ [0, y∗], since
pS > 0 and �S < 0, and the other terms are ≤ 0. Since ∂iz = −r+/2, we find

∂ipS = r+/2z2 > 0 and ∂ipII = r+/(2z) + r2+i/
(
4z2)

> 0

and since pSI = 1 − (pS + pII), ∂ipSI = −∂ipS − ∂ipII < 0. If �SI > 0 it follows
that ∂i�(i) < 0 so if R0 < 1 but �SI > 0 then �(i) ≤ �(0) < 0 for i ∈ [0, y∗].
If R0 ≥ 1, then since 0 ≤ �(0) = pS�S + pSI�SI and �S < 0, it follows that
�SI > 0 and so ∂i�(i) < 0. If R0 = 1, then since �(0) = 0 it follows that i = 0
is the only solution in [0, y∗] to the equation �(i) = 0. If i = y∗ then pSI = 0
so �(y∗) < 0, and clearly �(i) is continuous on [0, y∗]. Therefore, if R0 > 1
then since �(0) > 0, by the intermediate value theorem the equation �(i∗) has a
solution i∗ ∈ (0, y∗), and since ∂i�(i) < 0 the solution is unique. �

Write �(i) as �(λ, i) to emphasize the λ dependence. By Lemma 4.2 and since
R0 = 1 ⇔ λ = λc and R0 > 1 ⇔ λ > λc, for fixed r+, r− such that r+y∗ > 1,
we have a function i∗(λ) defined for λ ≥ λc satisfying �(λ, i∗(λ)) = 0 such that
i∗(λc) = 0 and i∗(λ) > 0 for λ > λc. Next, we see how i∗ behaves for λ > λc

near λc. As usual, C1 means continuously differentiable.

PROPOSITION 4.2. For fixed r+, r− such that r+y∗ > 1, i∗ ∼ C(λ − λc) as
λ ↓ λc for some constant C > 0.
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PROOF. Clearly, pS,pSI and pII depend only on i and are C1 in a neighbour-
hood of 0. Also, �S is fixed and �SI and �II depend only on λ and are rational
functions of λ whose range lies in a bounded interval, thus are C1 in a neigh-
bourhood of λc. Glancing at (4.4), this means that �(λ, i) is C1 in a neighbour-
hood of (λc,0). If λ ≥ λc then R0 ≥ 1, so as shown in the proof of Lemma 4.2,
∂i�(λ, i) < 0 and in particular, ∂i�(λc,0) �= 0. Applying the implicit function
theorem, there is a unique C1 function i∗(λ) defined in a neighbourhood of λc

(and thus coinciding with the previous definition of i∗(λ) when λ ≥ λc) satisfying
�(λ, i∗(λ)) = 0, and noting that i∗(λc) = 0,

i∗(λ) ∼ −(λ − λc)
∂λ�(λc,0)

∂i�(λc,0)

as λ ↓ λc. A straightforward Markov chain coupling argument shows that
∂λ�SI, ∂λ�II > 0, which implies ∂λ�(λ, i) > 0. Since ∂i�(λ, i) < 0, the result
follows. �

5. Mean-field equations. A set of differential equations defined below are
indispensable to our analysis of the partner model as they enable a (better and bet-
ter as N increases) approximate description of the model, when N is large. First,
we write down the transitions for the variables introduced in Section 2 that track
the total number of singles and pairs of various types; there are ten such transi-
tions. The existence of well-defined transitions shows that (St , It ,SSt ,SIt , IIt ) is a
continuous time Markov chain:

• I → I − 1 and S → S + 1 at rate I ,
• S → S − 2 and SS → SS + 1 at rate (r+/N)S(S − 1)/2,
• S → S − 1, I → I − 1 and SI → SI + 1 at rate (r+/N) · S · I ,
• I → I − 2 and II → II + 1 at rate (r+/N)I (I − 1)/2,
• SI → SI − 1 and SS → SS + 1 at rate SI,
• II → II − 1 and SI → SI + 1 at rate 2II,
• SI → SI − 1 and II → II + 1 at rate λSI,
• SS → SS − 1 and S → S + 2 at rate r−SS,
• SI → SI − 1, S → S + 1 and I → I + 1 at rate r−SI, and
• II → II − 1 and I → I + 2 at rate r−II.

Focusing now on the rescaled quantities (st , it , sst , sit , iit ) = (St , It ,SSt ,SIt ,

IIt )/N and noting the relation st + it + 2(sst + sit + iit ) = 1, we shall ignore
sst since it plays no role in the calculations that follow. Also, it will be convenient
to use yt := st + it instead of st . Doing so, the above transitions become:

• i → i − 1/N at rate iN ,
• y → y −2/N at rate [r+(y − i)(y − i −1/N)/2]N = [r+(y − i)2/2]N −r+(y −

i)/2,
• y → y − 2/N , i → i − 1/N and si → si + 1/N at rate r+(y − i)iN ,
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• y → y − 2/N , i → i − 2/N and ii → ii + 1/N at rate [r+i(i − 1/N)/2]N =
(r+i2/2)N − r+i/2,

• si → si − 1/N at rate siN ,
• ii → ii − 1/N and si → si + 1/N at rate 2iiN ,
• si → si − 1/N and ii → ii + 1/N at rate λsiN ,
• y → y + 2/N at rate [r−((1 − y)/2 − (si + ii))]N ,
• si → si − 1/N , y → y + 2/N and i → i + 1/N at rate r−siN , and
• ii → ii − 1/N , y → y + 2/N and i → i + 2/N at rate r−iiN .

As we did for yt in Section 3, we derive some differential equations that approxi-
mate the evolution of (yt , it , sit , iit ); since we already have an equation for yt we
focus on it , sit , iit . We have

d

dt
E(it |it = i) = −(

1 + r+(y − i) + 2r+(i − 1/N)/2
)
i + r−(si + 2ii),

d

dt
E(sit |sit = si) = r+(y − i)i + 2ii − (1 + λ + r−)si,

d

dt
E(iit |iit = ii) = r+i(i − 1/N)/2 + λsi − (2 + r−)ii

and as before, in a time step of size 1/N the increment in each variable has ex-
pected value O(1/N) while its square has expected value O(1/N2). Adding in
the y′ equation (3.1), this suggests again that in the limit as N → ∞ we should
expect the sample paths of (yt , it , sit , iit ) to approach solutions to the mean-field
equations

y′ = −r+y2 + r−(1 − y),

i′ = −(1 + r+y)i + r−(si + 2ii),
(5.1)

si′ = r+(y − i)i − (1 + λ + r−)si + 2ii,

ii ′ = r+i2/2 + λsi − (2 + r−)ii.

It is sometimes convenient to replace si with ip := si + ii, where the ip stands for
“infected partnership”. Since si = ip − ii, both forms lead to the same solutions.
After the change of variables, we have

y ′ = −r+y2 + r−(1 − y),

i′ = −(1 + r+y)i + r−(ip + ii),
(5.2)

ip′ = r+(y − i/2)i − (1 + r−)ip + ii,

ii ′ = r+i2/2 + λip − (2 + r− + λ)ii.

We will often use the shorthand u′ = F(u) for the MFE (5.1) or (5.2), where
u ∈ R

4. In both cases the MFE have the form y′ = f (y), u′ = G(y,u), where
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u ∈ R
3, that is, the y dynamics does not depend on the other 3 variables, but it

does influence them; systems of this form are often referred to as skew product.
The next three results have natural analogues for the stochastic model, and in fact
the analogue of Lemma 5.2 shows up in Section 7 as Lemma 7.1. First, we show
the domain of interest is an invariant set.

LEMMA 5.1. The following set is invariant for the MFE:

 := {
(y, i, ip, ii) ∈ R

4+ : i ≤ y ≤ 1, ii ≤ ip ≤ (1 − y)/2
}
.

PROOF. We examine the boundary and use the form (5.2) of the MFE. If y = 0
then y′ > 0 and if y = 1 then y′ < 0, so [0,1] is invariant for y. Let u = (i, ip, ii).
If u = (0,0,0), then u′ = (0,0,0), so (0,0,0) is invariant for u. If u �= (0,0,0)

and uj = 0 for coordinate j , then u′
j > 0 (note for ip′ that since i ≤ y, if i > 0

then y − i/2 > 0). If i = y �= 0, then since ip + ii ≤ (1 − y), i ′ ≤ −y − r+y2 +
r−(1 − y) = −y + y′ < y′. If i = y = 0 then i ′ ≤ −y + y′ = y′ and since y′ > 0,
i ′′ ≤ −y′ + y′′ < y′′. For the remainder, we may assume i < y. If ii = ip �= 0, then
ii′ = r+i2/2 − (2 + r−)ip ≤ r+(y − i/2)i − (2 + r−)ip < ip′ while if ii = ip = 0
then we may assume i > 0 in which case ii ′ = r+i2/2 < r+(y − i/2)i = ip′. �

Written in the form (5.2), the MFE have a useful monotonicity property which
is described in the following lemma.

LEMMA 5.2. Let (y(t), u(t)) and (y(t), v(t)) be solutions to the MFE written
in (y, i, ip, ii) coordinates, and say that u ≤ v ⇔ uj ≤ vj ∀j ∈ {1,2,3}. If u(0) ≤
v(0), then u(t) ≤ v(t) for t > 0.

PROOF. Since trajectories are continuous it suffices to check that if u ≤ v,
u �= v and uj = vj then u′

j < v′
j . Referring to (5.2), i′ increases with ip and ii, ip′

increases with i and ii [note ∂i(y − i/2)i = y − i and i ≤ y] and ii ′ increases with
i and ip. �

For what follows, we set y = y∗ in which case the MFE are three-dimensional.
Since  is invariant,

∗ := {
(y, u) ∈  : y = y∗}

is also invariant. Since ∗ ∼= {(i, ip, ii) ∈ R
3+ : i ≤ y∗, ii ≤ ip ≤ (1 − y∗)/2} is

three-dimensional, elements of ∗ are usually written as a three-vector in either
(i, si, ii) or (i, ip, ii) coordinates.

LEMMA 5.3. Say that u = (i, ip, ii) is increasing if u′
j > 0 in each coordinate.

For the MFE with y = y∗ and any solution u(t):

• if (0,0,0) is the only equilibrium then u(t) → (0,0,0) as t → ∞, and
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• if there is a unique equilibrium u∗ �= (0,0,0) and a sequence of nonzero increas-
ing states tending to (0,0,0), then for u(0) �= (0,0,0), u(t) → u∗ as t → ∞.

PROOF. Defining u := (y∗, (1 − y∗)/2, (1 − y∗)/2), u ≥ v for all v ∈ ∗, so
letting u(t) be the solution to the MFE with u(0) = u, for s ≥ 0, u(0) ≥ u(s).
Since y = y∗, by monotonicity (Lemma 5.2) u(t) ≥ u(t + s) for t > 0, so u(t) is
nonincreasing in t . Since ∗ is compact, limt→∞ u(t) exists and by continuity of
the MFE is an equilibrium. If (0,0,0) is the only equilibrium, then since u(t) ≥
(0,0,0), u(t) → (0,0,0) as t → ∞, so for any solution v(t), since u(0) ≥ v(0),
u(t) ≥ v(t) for t > 0, and since v(t) ≥ (0,0,0), v(t) → (0,0,0).

If u(0) is increasing, then u(0) �= (0,0,0) and by continuity of the MFE there
is ε > 0 so that u(s) ≥ u(0) for 0 ≤ s ≤ ε. By monotonicity u(t + s) ≥ u(t) for
0 ≤ s ≤ ε and if (k − 1)ε ≤ s ≤ kε, by iterating at most k times u(t + s) ≥ u(t), so
u(t) is increasing for all time. As in the previous case, limt→∞ u(t) exists and is
an equilibrium which in this case is not (0,0,0). If there is a unique equilibrium
u∗ �= (0,0,0), and if for any nonzero solution v(t) there is T > 0 so that v(T ) ≥ u

for some increasing u, then setting u(T ) = u, since u(t) ≥ v(t) ≥ u(t) for t ≥ T

and limt→∞ u(t) = limt→∞ u(t) = u∗ it follows that limt→∞ vt = u∗. If v(0) �=
(0,0,0), then for t > 0, vj (t) > 0 in each coordinate j ; this follows from the
fact that for j = 1,2,3, v′

j ≥ −Cvj for some C, and if vj = 0 but vk > 0 for
some k �= j then v′

j > 0. Thus, fixing T > 0, if v(0) �= (0,0,0) then since ε :=
minj vj (T ) > 0, if there is a sequence of increasing states tending to (0,0,0) there
is an increasing state u with maxj uj ≤ ε, and thus v(T ) ≥ u, as desired. �

As the next result shows, on ∗ the MFE have a simple dynamics with a bifur-
cation at R0 = 1. Since we refer back to quantities from Section 4, in this proof we
mostly use (i, si, ii) coordinates.

THEOREM 5.1. For the MFE:

• if R0 ≤ 1 there is the unique equilibrium (0,0,0) which is attracting on ∗ and
• if R0 > 1 there is a unique positive equilibrium (i∗, s∗, ii∗) satisfying �(i∗) = 0

which is attracting on ∗ \ {(0,0,0)}.

PROOF. By Lemma 5.3 it is enough to show that if R0 ≤ 1 then (0,0,0) is the
only equilibrium, and that if R0 > 1 there is a unique equilibrium (i∗, si∗, ii∗) �=
(0,0,0) satisfying �(i∗) = 0, and a sequence of increasing states converging to
(0,0,0). Treating si, ii as a separate system with input function i, we have the
nonhomogenous linear system

(
si ′
ii′

)
=

(−a 2
λ −b

)(
si

ii

)
+ r+i

((
y∗ − i

)
i/2

)
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or, in matrix form, v′ = Kv + Li, with v = (si, ii)�, K = (−a 2
λ −b

)
and L =

r+((y∗ − i), i/2)�, whose solution is given by

v(t) = �(t)v(0) +
∫ t

0
�(t − s)L(s)i(s) ds,(5.3)

where �(t) = exp(Kt) is the solution of the associated homogenous system—
note that �(t) is the restriction of the transition semigroup for the continuous-time
Markov chain from Figure 1 to the states B and C. Substituting the solution for
the si, ii system into the equation for i, we have

i′(t) = −(
1 + r+y∗)

i(t) + r−(1,2)

[
�(t)v(0) +

∫ t

0
�(t − s)L(s)i(s) ds

]
,(5.4)

where (1,2) is a row vector that multiplies the column vector in the square brack-
ets. This equation depends only on i, the initial values v(0) = (si(0), ii(0))� and
the solution matrix �(t).

Linearizing (5.4) around (i, si, ii) = (0,0,0) and using the ansatz i(t) =
exp(μt), we obtain

μeμt = −(
1 + r+y∗)

eμt + r−(1,2)

[
�(t)v0 +

∫ t

0
�(t − s)eμs ds

]
L0,

where L0 = r+(y∗,0)�, and using �(t) = exp(Kt) the integral in the square
brackets is

eKt
∫ t

0
e(μI−K)s ds = eKt (μI − K)−1(

e(μI−K)t − I
) = (μI − K)−1(

eμt − eKt ),
where I is the identity matrix. Letting t → ∞ and noting �(t) = eKt → 0 since
K is a stable matrix, we obtain the eigenvalue equation

μ = −(
1 + r+y∗) + r−(1,2)(μI − K)−1L0

which, expanding, is

μ = −(
1 + r+y∗) + r−

μ + b + 2λ

(μ + b)(μ + a) − 2λ
r+y∗

and setting μ = 0 gives the equation

1 = r+y∗

1 + r+y∗
r−

ab − 2λ
(b + 2λ)

which, comparing to (4.1), is exactly R0 = 1. Recalling that ab − 2λ > 0,

d

dμ

(
μ + b + 2λ

(μ + b)(μ + a) − 2λ

)

= (μ + b)(μ + a) − 2λ − (μ + b + 2λ)(2μ + b + a)

[(μ + b)(μ + a) − 2λ]2

= −2λ − [(μ + b)2 + 2λ(2μ + b + a)]
[(μ + b)(μ + a) − 2λ]2
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is negative when μ ≥ 0. Setting μ = 0 in (5.5), the right-hand side is positive if
R0 > 1, so since both sides are continuous in μ, the left-hand side is equal to 0 at
μ = 0 and increases unboundedly as μ increases and the right-hand side decreases
with μ it follows that (5.5) has a positive solution μ > 0 when R0 > 1.

To obtain the increasing states mentioned in Lemma 5.3, we show that for
R0 > 1 the unstable eigenvector of the linearized system near (0,0,0) is strictly
positive when viewed in (i, ip, ii) coordinates; we can then take for the initial
states small multiples of the eigenvector. To show the eigenvector is strictly pos-
itive, linearize (5.3) around (i, si, ii) = (0,0,0) with input i(t) = exp(μt), sub-
stitute the solution form v(t) = v exp(μt) and let t → ∞ to obtain v = (μI −
K)−1L0 which has positive entries, which implies that in (ip, ii) coordinates it
also has positive entries.

It remains to look for nonzero equilibria. Focusing again on (5.4), as our steady
state assumption we suppose the system was started in the distant past and has
remained in equilibrium up to the present time. Since �(t) → 0 as t → ∞ we
ignore �(t)v(0), and letting �∞ = ∫ ∞

0 �(s)ds = −K−1,
∫ t

0 �(t − s)L(s)i(s) ds

becomes
∫ t
−∞ �(t − s)L†i† ds = �∞L†i† where L† = r+((y∗ − i†), i†/2)� and

i† are the equilibrium values, and we obtain
(
1 + r+y∗) = r−(1,2)�∞L†.

Notice that r−(1,2)�∞ returns the expected number of infectious singles that re-
sult from an SI or an II partnership upon breakup, so we have r−(1,2)�∞ =
(1 + �SI,2 + �II) and

(
1 + r+y∗) = r+

[(
y∗ − i†)

(1 + �SI) + (
i†/2

)
(2 + �II)

]
= r+y∗ + r+

[(
y∗ − i†)

�SI + (
i†/2

)
�II

]

and subtracting r+y∗, 1 = r+(y∗ − i†)�SI + r+(i†/2)�II which comparing
with (4.4) is exactly the equation �(i†) = 0, as desired. By Lemma 4.2, we have
the unique solution i† = i∗ if R0 > 1, and there is no positive solution when
R0 ≤ 1. Using the steady state assumption and (5.3) gives (si†, ii†) = �∞L†i†,
that is, si†, ii† are uniquely determined by i†. This proves uniqueness of the
nonzero equilibrium when R0 > 1 and uniqueness of (0,0,0) as an equilibrium
when R0 ≤ 1. �

REMARK 5.1. Setting y = y∗ in (5.1) and writing the remaining equations in
matrix form, we have u′ = Au with u = (i, si, ii)� and

A =
⎛
⎝−(

1 + r+y∗)
r− 2r−

r+
(
y∗ − i

) −a 2
r+i λ −b

⎞
⎠
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that depends on u. Using the technique of [14], if we evaluate A at i = 0 and write
it as F − V with

F =
⎛
⎝ 0 0 0

r+y∗ 0 0
0 0 0

⎞
⎠ , V =

⎛
⎝

(
1 + r+y∗) −r− −2r−

0 a −2
0 −λ b

⎞
⎠

and define R0 = ρ(FV −1) where ρ is the spectral radius, then it can be verified
that this definition of R0 coincides with the one given in (2.2). Then, according to
Theorem 2 of [14], R0 < 1 implies (0,0,0) is locally asymptotically stable, while
R0 > 1 implies it is unstable.

6. Approximation by the mean-field equations. In this section, we show
how to approximate the sample paths of (yt , it , sit , iit ) with solutions to the
MFE (5.1), and use this to get some control on yt . Unless otherwise noted, for
a vector, | · | denotes the �∞ norm, that is, |u| = maxi |ui |. We begin with a useful
definition.

DEFINITION 6.1. An event A depending on a parameter n is said to hold with
high probability or w.h.p. in n if there exists γ > 0 and n0 so that P(A) ≥ 1− e−γ n

when n ≥ n0.

When possible, probability estimates are given more or less explicitly, but we
will occasionally use this definition to reduce clutter, especially in Section 7. We
begin with a well-known large deviations result for Poisson random variables;
since it is not hard to prove, we supply the proof. For a reference to large devi-
ations theory, see Section 1.9 in [5].

LEMMA 6.1. Let X be Poisson distributed with mean μ, then

P
(
X > (1 + δ)μ

) ≤ e−δ2μ/4 for 0 < δ ≤ 1/2,

P
(
X < (1 − δ)μ

) ≤ e−δ2μ/2 for δ > 0.

PROOF. We deal separately with X > (1 + δ)μ and X < (1 − δ)μ. For t > 0
and using Markov’s inequality we have

P
(
X > (1 + δ)μ

) = P
(
etX > e(1+δ)tμ) ≤ EetXe−(1+δ)tμ.

Notice that

EetX = ∑
k≥0

etke−μ μk

k! = e−μ
∑
k≥0

(etμ)k

k! = e−μeetμ = exp
((

et − 1
)
μ

)

so EetXe−(1+δ)tμ = exp(μ(et − 1 − (1 + δ)t)). Minimizing et − 1 − (1 + δ)t gives
t = log(1 + δ), and thus (1 + δ) − 1 − (1 + δ) log(1 + δ) = δ − (1 + δ) log(1 + δ).



1314 E. FOXALL, R. EDWARDS AND P. VAN DEN DRIESSCHE

Since log(1 + δ) ≥ δ − δ2/2 this is at most δ − (1 + δ)(δ − δ2/2) = −δ2/2 + δ3/2
which is ≤ −δ2/4 for 0 < δ ≤ 1/2.

For the other direction we take a similar approach. For t > 0 and using Markov’s
inequality we have

P
(
X < (1 − δ)μ

) = P
(
e−tX > e−(1−δ)tμ) ≤ Ee−tXe(1−δ)tμ

and using Ee−tX = exp((e−t − 1)μ) the right-hand side above is exp(μ(e−t −
1 + (1 − δ)t)). Minimizing e−t − 1 + (1 − δ)t gives −t = log(1 − δ), and thus
(1 − δ) − 1 − (1 − δ) log(1 − δ) = −δ − (1 − δ) log(1 − δ). Since log(1 − δ) ≥
−δ − δ2/2, this is at most −δ + (1 − δ)(δ + δ2/2) = −δ2/2 − δ3/2 ≤ −δ2/2. �

For the next three results, we use the notation ut = (yt , i,sit , iit ). First, we give
an a priori bound on the change in ut over a short period of time.

LEMMA 6.2. Let ut = (yt , it , sit , iit ). There are constants C,γ > 0 so that
for all h > 0 and fixed t ,

P

(
sup

t≤s≤t+h

|us − ut | ≤ Ch
)

≥ 1 − e−γNh.

PROOF. Looking to the transitions listed in Section 5, jumps in ut are of size
≤ 2/N and occur at total rate ≤ MN for some M > 0 that depends only on param-
eters. Thus, in a time step h > 0 the number of events affecting ut is stochastically
bounded above by a Poisson random variable X with mean MNh, so if X ≤ x then
|us − ut | ≤ 2x/N for all s ∈ [t, t + h]. By Lemma 6.1, P(X > (1 + δ)MNh) ≤
e−δ2MNh/4 for 0 < δ ≤ 1/2. Taking δ = 1/4 and C = 2(1 + δ)M , γ = δ2M/4
completes the proof. �

Let u′ = F(u) denote the MFE (5.1). As N becomes large, for small h > 0
we expect that with probability tending to 1, ut+h = ut + hF(ut ) + o(h). Using
Lemma 6.2 and re-using the estimate from Lemma 6.1 we obtain a quantitative
bound on the remainder.

LEMMA 6.3. Let ut = (yt , it , sit , iit ). For each ε > 0 there are constants
C,γ > 0 so that for small enough h > 0,

P
(∣∣ut+h − ut − hF(u)

∣∣ ≤ εh
) ≥ 1 − Ce−γNh.

PROOF. Let Qj(u), j = 1, . . . ,10, denote the transition rates of the ten tran-
sitions introduced in Section 5, as a function of u, and let Xj(t, h) denote the
number of type j transitions occurring in the time interval [t, t + h]. For each j ,
Qj(u) = Nqj (u) + Rj(u) where qj (u) is a quadratic function of u and Rj(u) is a
remainder that satisfies |Rj(u)| ≤ M for some M > 0 and all u ∈ [0,1]4. It is easily
verified that if ut = u and Xj(t, h) = Nqj (u)h for each j then ut+h = u+hF(u).
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Since each transition changes u by at most 2/N , it is therefore enough to show
that there are constants C,γ > 0 so that for each j , small enough h > 0, and all u,

P
(∣∣Xj(t, h) − Nqj (u)h

∣∣ ≤ εNh/20|ut = u
) ≥ 1 − Ce−γNh.

Since the domain of qj (u) is a subset of [0,1]4, and thus bounded it follows that
qj is bounded and Lipschitz continuous, that is, for some L > 0 and all v,u in
the domain of qj , qj (u) ≤ L and |qj (v) − qj (u)| ≤ L|v − u|, and in particular,
|Qj(v)−Qj(u)| ≤ NL|v −u|+ 2M ; for what follows, take L ≥ ε. Let A(t, h) be
the event {

sup
t≤s≤t+h

|us − ut | ≤ C1h
}
,

from Lemma 6.2, then on the event {ut = u} ∩ A(t, h),

sup
t≤s≤t+h

∣∣Qj(us) − Nqj (u)
∣∣ ≤ sup

t≤s≤t+h

∣∣Qj(us) − Qj(u)
∣∣ + ∣∣Qj(u) − Nqj (u)

∣∣
≤ N(LC1h + 3M/N).

For ease of notation, let q = qj (u) and let r = LC1h + 3M/N , and note that
r → 0 as max(h,1/N) → 0. Then, on {ut = u}∩A(t, h), Xj(t, h) is stochastically
bounded above and below respectively by Poisson random variables with means
Nh(q + r) and Nh(q − r), so from Lemma 6.1 it follows that for 0 < δ ≤ 1/2,

P
({∣∣Xj(t, h) − Nhq

∣∣ ≤ Nh
(
qδ + r(1 + δ)

)} ∩ {ut = u} ∩ A(t, h)
)

(6.1)
≥ 1 − 2e−Nh(q−r)δ2/4.

Recalling that q ≤ L, let h, δ,1/N > 0 be chosen small enough that Lδ + r(1 +
δ) ≤ ε/20, then Nh(qδ+r(1+δ)) ≤ εNh/20. To bound the probability uniformly
in q , we split into two cases according as q ≥ qδ + r(1 + δ) or not, that is, as q ≥
r(1+δ)/(1−δ) or not. If q ≥ r(1+δ)/(1−δ) then letting γ1 = r[(1+δ)/(1−δ)−
1]δ2/4 which is > 0 it follows that Nh(q − r)δ2/4 ≥ γ1Nh. If q < qδ + r(1 + δ)

the lower bound on Xj(t, h) − Nhq is trivial and so in that case

P
({∣∣Xj(t, h) − Nhq

∣∣ ≤ Nh
(
qδ + r(1 + δ)

)} ∩ {ut = u} ∩ A(t, h)
)

≥ 1 − e−Nh(q+r)δ2/4.

Letting γ2 = rδ2/4 which is > 0 it follows that Nh(q + r)δ2/4 ≥ γ2Nh. Letting
γ3 be such that P(A(t, h)) ≥ 1−e−γ3Nh and letting γ = min(γ1, γ2, γ3) and C = 3
completes the proof. �

Using the above estimate, we obtain finite-time control on the evolution of ut ,
as N becomes large.
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PROPOSITION 6.1. Let ut = (yt , it , sit , iit ). For each ε, T > 0 there are con-
stants δ,C, γ > 0 so that from any initial condition u0 and any solution u(t) to the
MFE (5.1) satisfying |u0 − u(0)| ≤ δ,

P

(
sup

0≤t≤T

∣∣ut − u(t)
∣∣ ≤ ε

)
≥ 1 − Ce−γN .

PROOF. The proof is analogous to the proof in numerical analysis that the
Euler method is O(h) accurate. Fix h = T/M for integer M and define events
A1, . . . ,Am as follows: A1 = B1 ∩ D1 and given Aj−1, Aj = Aj−1 ∩ Bj ∩ Dj

where

Bj =
{

sup
h(j−1)≤t≤hj

|ut − uhj | ≤ C1h
}

is the event from Lemma 6.2 and

Dj = {∣∣uhj − uh(j−1) − hF(uh(j−1))
∣∣ ≤ μh

}
is the event from Lemma 6.3, for μ > 0 to be chosen. If μ,h > 0 are fixed and
h is small enough, then there are constants C,γ > 0 so that P(Bj ∩ Dj) ≥ 1 −
(C/M)e−γN , and since AM = ⋂M

j=1(Bj ∩ Dj), P(AM) ≥ 1 − Ce−γN . For j =
1, . . . ,M let

Ej = sup
ω∈Aj

∣∣uhj (ω) − u(hj)
∣∣,

where ω denotes an element of the probability space for the partner model. Letting
u′ = F(u) denote (5.1), we have

u(hj) − u
(
h(j − 1)

) =
∫ hj

h(j−1)
F

(
u(s)

)
ds.

Since F(u) is quadratic in u and its domain is bounded, it is bounded and Lipschitz
continuous, that is, for some L > 0 and all u, v in the domain, |F(u)| ≤ L and
|F(v)−F(u)| ≤ L|v−u|. From the first inequality, it follows that |u(s)−u(h(j −
1))| ≤ L(s − h(j − 1)) for s ≥ h(j − 1) and from this and the second inequality it
follows that ∣∣u(hj) − u

(
h(j − 1)

) − hF
(
u
(
h(j − 1)

))∣∣
=

∣∣∣∣
∫ hj

h(j−1)

(
F

(
u(s)

) − F
(
u
(
h(j − 1)

)))
ds

∣∣∣∣

≤
∫ hj

h(j−1)

∣∣F (
u(s)

) − F
(
u
(
h(j − 1)

))∣∣ds

≤
∫ hj

h(j−1)
L

∣∣u(s) − u
(
h(j − 1)

)∣∣ds

≤
∫ hj

h(j−1)
L2(s − hj)ds = L2

∫ h

0
s ds = L2h2/2.
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Also,∣∣uhj − u(hj)
∣∣ = ∣∣uhj − uh(j−1) − hF(uh(j−1)) + uh(j−1) − u

(
h(j − 1)

)
+ hF(uh(j−1)) − hF

(
u
(
h(j − 1)

)) + u
(
h(j − 1)

)
+ hF

(
u
(
h(j − 1)

)) − u(hj)
∣∣

≤ ∣∣uhj − uh(j−1) − hF(uh(j−1))
∣∣ + ∣∣uh(j−1) − u

(
h(j − 1)

)∣∣
+ ∣∣hF(uh(j−1)) − hF

(
u
(
h(j − 1)

))∣∣
+ ∣∣u(hj) − u

(
h(j − 1)

) − hF
(
u
(
h(j − 1)

))∣∣
so using the definition of Aj , letting E0 := |u0 − u(0)| ≤ δ and using once more
Lipschitz continuity of F it follows that for j = 1, . . . ,M ,

Ej ≤ μh + Ej−1 + hLEj−1 + L2h2/2 = (1 + hL)Ej−1 + h
(
μ + hL2/2

)
.

Setting q = (1 + hL) and r = μ + hL2/2 and iterating the inequality Ej ≤
qEj−1 + hr , we find EM ≤ qME0 + [(qM − 1)/(q − 1)]hr ≤ qM [E0 + hr/(q −
1)] = (1+hL)M [E0 +hr/(hL)] = (1+LT/M)M [E0 + r/L] ≤ eLT [E0 + r/L] ≤
eLT [δ + r/L] and the same inequality holds for all Ej , j = 1, . . . ,M . Since on
Aj , |us − uhj | ≤ C1h for h(j − 1) ≤ s ≤ hj , on AM we find for j = 1, . . . ,M and
h(j − 1) ≤ s ≤ hj that∣∣us − u(s)

∣∣ ≤ |us − uhj | +
∣∣uhj − u(hj)

∣∣ + ∣∣u(hj) − u(s)
∣∣

≤ C1h + Ej + Lh ≤ h(C1 + L) + eLT [δ + r/L]
and taking h,μ, δ > 0 small enough, this is ≤ ε. �

Our first application of Proposition 6.1 is to control yt .

LEMMA 6.4. For each ε > 0, there are constants C,T , γ > 0 so that from any
value y0 ∈ [0,1],

P

(
sup

T ≤t≤eγN

∣∣yt − y∗∣∣ ≤ ε
)

≥ 1 − Ce−γN .

Moreover, if |y0 − y∗| ≤ 2ε/3 we may take T = 0.

PROOF. Let y′ = f (y) denote the y′ equation in (5.1) and let φ(t, y), φ :
[0,1] × R+ → [0,1] denote the flow for this equation, that is, the unique func-
tion satisfying ∂tφ(t, y) = f (φ(t, y)) and φ(0, y) = y for each (t, y) in its
domain. Since φ(t,0) ≤ φ(t, y) ≤ φ(t,1) and limt→∞ φ(t, y) = y∗ for each
y ∈ [0,1], for each ε > 0 there is T > 0 so that |φ(T , y) − y∗| ≤ ε/3 for all
y ∈ [0,1]. Letting y(t) = φ(t, y0) and using Proposition 6.1, there are constants
C1, γ1 > 0 depending on ε but not on y0 so that with probability ≥ 1 − C1e

−γ1N ,
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|yT − y∗| ≤ |yT − y(T )| + |y(T ) − y∗| ≤ ε/3 + ε/3 = 2ε/3. Then, for t ≥ 0 and
y ∈ [y∗ − (2ε/3), y∗ + (2ε/3)],

y∗ − (2ε/3) ≤ φ
(
t, y∗ − (2ε/3)

) ≤ φ(t, y) ≤ φ
(
t, y∗ + (2ε/3)

) ≤ y∗ + (2ε/3)

and since all solutions approach y∗ there is h > 0 so that φ(h, y∗ − 2ε/3) ≥
y∗ − ε/3 and φ(h, y∗ + 2ε/3) ≤ y∗ + ε/3. Thus, for the given value of h and
any solution y(t) of y′ = f (y), if |y(T ) − y∗| ≤ 2ε/3 then |y(t) − y∗| ≤ 2ε/3
for t ≥ T and |y(T + h) − y∗| ≤ ε/3. Given yT such that |yT − y∗| ≤ 2ε/3
and setting y(T ) = yT , by Proposition 6.1 there are constants C2, γ2 > 0 so that
supT ≤t≤T +h |yt − y(t)| ≤ ε/3 with probability ≥ 1 − C2e

−2γ2N , in which case

sup
T ≤t≤T +h

∣∣yt − y∗∣∣ ≤ sup
T ≤t≤T +h

∣∣yt − y(t)
∣∣ + sup

T ≤t≤T +h

∣∣y(t) − y∗∣∣
≤ ε/3 + 2ε/3 = ε

and |yT +h −y∗| ≤ |yT +h −y(T +h)|+ |y(T +h)−y∗| ≤ ε/3+ ε/3 = 2ε/3 with
the same probability. Iterating this for eγ2N/h time steps, we find that

sup
T ≤t≤eγ2N

∣∣yt − y∗∣∣ ≤ max
i∈{1,...,eγ2N/h}

sup
T +(i−1)h≤t≤T +ih

∣∣yt − y∗∣∣ ≤ ε

with probability ≥ 1 − (C2/h)eγ2Ne−2γ2N = 1 − (C2/h)e−γ2N , then choose C =
C1 + C2/h and γ = min(γ1, γ2). Note that if |y0 − y∗| ≤ 2ε/3, the iteration step
is immediately applicable, in which case we may take T = 0. �

7. Macroscopic behaviour. In this section, we prove the macroscopic side of
Theorem 2.2 that is, when |V0| ≥ εN . We begin with the analogue of Lemma 5.2
for the partner model, which we refer to later on as monotonicity. As for the MFE,
define ipt := sit + iit .

LEMMA 7.1. Let ≤ denote the partial order on R
3 given by u ≤ v ⇔ uj ≤

vj ,∀j ∈ {1,2,3}, and let ut = (it , ipt , iit ). If (V
(1)
t ,E

(1)
t ) and (V

(2)
t ,E

(2)
t ) are two

copies of the partner model with E
(1)
0 = E

(2)
0 and V

(1)
0 ⊆ V

(2)
0 then with respect to

the coupling given by the graphical construction, E
(1)
t = E

(2)
t and V

(1)
t ⊆ V

(2)
t for

t > 0 and correspondingly y
(1)
t = y

(2)
t and u

(1)
t ≤ u

(2)
t .

PROOF. If E
(1)
0 = E

(2)
0 then E

(1)
t = E

(2)
t =: Et for t > 0. Given {Et : t ≥ 0},

the only transitions affecting V
(1)
t and V

(2)
t are recovery of infectious sites and

transmission from infectious to healthy sites along open edges, both of which
preserve the order V

(1)
t ⊆ V

(2)
t . The equality y

(1)
t = y

(2)
t follows directly from

|E(1)
t | = |E(2)

t | and the inequality u
(1)
t ≤ u

(2)
t follows directly from V

(1)
t ⊆ V

(2)
t .
�
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Using Proposition 6.1 and Lemma 7.1, we can prove the macroscopic part of
Theorem 2.2 when R0 ≤ 1. In this section, ut will generally refer to (it , sit , iit ) or
(it , ipt , iit ), with yt written separately.

PROPOSITION 7.1. If R0 ≤ 1, for each ε > 0 there are constants C,T , γ > 0
so that, from any initial configuration, with probability ≥ 1 − Ce−γN , |VT | ≤ εN .

PROOF. By Lemma 7.1, it is enough to show the result holds when V0 = V

that is, everyone is initially infectious; in this case y0 = 1 − 2E0/N , i0 = y0
and ip0 = ii0 = (1 − y0)/2. Let ut = (it , ipt , iit ) and let (y(t), u(t)) be the so-
lution to the MFE with y(0) = y0 and u(0) = u0. By Lemma 6.4 and Proposi-
tion 6.1, for each δ > 0 there are constants C1, T1, γ1 > 0 so that with probability
≥ 1−C1e

−γ1N , |yT1 −y∗| ≤ δ and |uT1 −u(T1)| ≤ δ, so with the same probability
|(yT1, uT1) − (y∗, u(T1))| ≤ δ.

Recall the set ∗ and let (y∗, u(t)) be the solution to the MFE with u(0) =
(y∗, (1 − y∗)/2, (1 − y∗)/2). As shown in the proof of Lemma 5.3, u(t) de-
creases to an equilibrium. Since R0 ≤ 1, (0,0,0) is the only equilibrium, so
u(t) → (0,0,0) as t → ∞. Moreover, u(0) ≥ v for each v ∈ ∗ so for any so-
lution (y∗, u(t)), u(0) ≥ u(0). By Lemma 5.2, u(t) ≥ u(t) for t ≥ 0, so there is T2
not depending on u(0) so that |u(T2)| ≤ ε/2. Using Proposition 6.1, there are con-
stants C2, γ2, δ > 0 not depending on u(0) so that with probability ≥ 1−C2e

−γ2N ,
if |(y0, u0)− (y∗, u(0))| ≤ δ then |uT2 | ≤ |u(T2)|+ |uT2 −u(T2)| ≤ ε/2+ ε/2 = ε.
Letting T = T1 + T2, C = C1 + C2 and γ = min(γ1, γ2) and combining the two
steps completes the proof. �

Using similar ideas, we can prove the macroscopic part of Theorem 2.2 when
R0 > 1. Before showing the approach to equilibrium, we first have to show long
time survival of the infection, and to do that we need the following result concern-
ing the MFEs.

LEMMA 7.2. Suppose R0 > 1 and let v ∈ R
3 with |v| = 1 be an unstable

eigenvector of the MFEs on ∗ as given in the proof of Theorem 5.1, written in
(i, ip, ii) coordinates. For 0 < δ′ ≤ δ let (y(t), u(t)) be a solution to the MFE with
|y(0) − y∗| ≤ δ and u(0) := (i(0), ip(0), ii(0)) = δ′v. If δ > 0 is small enough,
then there is T > 0 so that minj uj (T ) ≥ 2δ′ for all 0 < δ′ ≤ δ.

PROOF. First, write the MFE (5.2), without the y equation, in matrix form as
follows:⎛

⎝ i ′
ip′
ii′

⎞
⎠ =

⎛
⎝ −(1 + r+y) r− r−

r+
(
y∗ − i/2

) −(1 + r−) 1
r+i/2 λ −(2 + r− + λ)

⎞
⎠

⎛
⎝ i

ip

ii

⎞
⎠ .(7.1)

The y dynamics proceeds as in (5.1), and note |y(t) − y∗| ≤ |y(0) − y∗| for t > 0.
Write (7.1) as u′ = A(i, y)u with u = (i, si, ii)� to emphasize the dependence on
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i, y. As noted in the proof of Theorem 5.1, if R0 > 1 then A := A(0, y∗) has a pos-
itive eigenvalue μ > 0 with positive eigenvector v such that |v| = 1, so the system
v′ = Av has solutions v(t) = cveμt for any c > 0. Let | · | denote the operator norm
and let

L = sup
(i,y)∈[0,1]2

∣∣A(i, y)
∣∣

then any solution u(t) to (7.1) has |u(t)| ≤ |u(0)|eLt for t > 0. Fix T > 0, then
for each ε > 0, by continuity there is δ > 0 so that if max(y − y∗, i) ≤ eLT δ then
|A(i, y) − A| ≤ ε. Let |y(0) − y∗| ≤ δ and for 0 < δ′ ≤ δ let u(t) be the solution
to (7.1) with u(0) = δ′v, then for 0 ≤ t ≤ T ,

∣∣(u − v)′
∣∣ = ∣∣A(i, y)u − Av

∣∣ ≤ ∣∣(A(i, y) − A
)
u
∣∣ + ∣∣A(u − v)

∣∣
≤ ∣∣A(i, y) − A

∣∣|u| + |A||u − v|
≤ ε|u| + L|u − v|
≤ εeLtδ′ + L|u − v|.

Letting v(0) = u(0), defining E(t) := |u(t) − v(t)|, noting that E(0) = 0 and in-
tegrating,

E(T ) ≤ eLT εδ′T .

Since v(T ) = δveμT ,

min
j

uj (T ) ≥ min
j

vj (T ) − max
j

∣∣vj (T ) − uj (T )
∣∣

≥ δ′eμT min
j

vj − εeLT δ′T

= δ′eμT
(
min

j
vj − εe(L−μ)T T

)
.

Choose T > 0 so that eμT minj vj /2 ≥ 2, then choose ε > 0 so that εe(L−μ)T T ≤
minj vj /2, then it follows that minj uj (T ) ≥ 2δ′. �

Now we can show long-time survival of the infection when R0 > 1 and |V0| ≥
εN .

LEMMA 7.3. Suppose R0 > 1. For each ε > 0, there are constants δ,C, γ > 0
so that if |V0| ≥ εN then

P

(
inf

0≤t≤eγN
|Vt | ≥ δN

)
≥ 1 − Ce−γN .



THE PARTNER MODEL 1321

PROOF. Recall that an event holds with high probability or w.h.p. in N if for N

large enough it occurs with probability ≥ 1 −Ce−γN for some C,γ > 0. If |V0| ≥
εN then max(i0, ip0, ii0) ≥ ε/3, so in view of Lemma 7.1 it is enough to prove the
result starting from u0 := (i0, ip0, ii0) ∈ E := {(ε/3,0,0), (0, ε/3,0), (0,0, ε/3)}.
For δ1 > 0, by Proposition 6.4 there are T ,γ1 > 0 so that w.h.p. |yt − y∗| ≤ δ1
for T ≤ t ≤ eγ1N . If u(0) �= (0,0,0) then for t > 0, minj uj (t) > 0; this is
shown for u(0) ∈ ∗ in the proof of Lemma 5.3, but the same proof applies
if y �= y∗. Also, since (0,0,0) is an equilibrium solution, by uniqueness of so-
lutions u(t) �= (0,0,0) for 0 ≤ t ≤ T , so by continuity of solutions inf{|u(t)| :
0 ≤ t ≤ T } > 0. Therefore, there exists 0 < δ2 ≤ δ1 so that minj uj (T ) ≥ δ2
and inf{maxj uj (t) : 0 ≤ t ≤ T } ≥ δ2 for all u(0) ∈ E . For u0 = u(0) ∈ E with
y0 = y(0) ∈ [0,1], by Proposition 6.1, w.h.p. |ut − u(t)| ≤ δ2/2 for 0 ≤ t ≤ T in
which case min(iT , ipT , iiT ) ≥ δ2/2 and inf{max(it , ipt , iit ) : 0 ≤ t ≤ T } ≥ δ2/2,
which means that for the eigenvector v with |v| = 1 mentioned in the proof of
Lemma 7.2, (iT , siT , iiT ) ≥ (δ2/2)v, and also |Vt | ≥ (δ2/2)N for 0 ≤ t ≤ T .

Taking y(t) = yt and u(T ) = (δ2/2)v, if |yt − y∗| ≤ δ1 then by Lemma 7.2
there is h > 0 so that minj uj (T + h) ≥ δ2, and as before there is δ3 > 0 so that
inf{maxj uj (t) : T ≤ t ≤ T + h} ≥ δ3. By Lemma 7.1 and the last paragraph, it
is enough to consider the case uT = u(T ) = (δ2/2)v. Letting δ = min(δ2/2, δ3/2)

and using Proposition 6.1, with probability ≥ 1 − Ceγ2N , |ut − u(t)| ≤ δ for T ≤
t ≤ T +h, in which case uT +h ≥ (δ2/2)v and |Vt | ≥ N min(it , ipt , iit ) ≥ (δ3/2)N

for T ≤ t ≤ T + h. Letting γ = min(γ1/2, γ2/2) and iterating for eγN/h time
steps as in the proof of Lemma 6.4, w.h.p. |Vt | ≥ N min(it , ipt , iit ) ≥ (δ3/2)N

for T ≤ t ≤ eγN . Combining with the previous estimate, w.h.p. |Vt | ≥ δN for
0 ≤ t ≤ eγN as we wanted to show. �

We now wrap up the macroscopic side of Theorem 2.2.

PROPOSITION 7.2. Suppose R0 > 1 and let (y∗, i∗, ip∗, ii∗) with i∗ > 0 be
the nontrivial equilibrium solution to the MFE (5.2). Let ut = (it , ipt , iit ) and
let u∗ = (i∗, ip∗, ii∗). For each ε > 0, there are constants C,T , γ > 0 so that if
|V0| ≥ εN then

P

(
sup

T ≤t≤eγN

∣∣(yt , ut ) − (
y∗, u∗)∣∣ ≤ ε

)
≥ 1 − Ce−γN .

PROOF. We begin with the lower bound. As shown in the proof of Lemma 7.3
there are T1, h1, δ1, γ1 > 0 so that w.h.p. min(it , ipt , iit ) ≥ δ1, and thus ut ≥ δ1v,
for t = T1 + kh1, k = 1, . . . , (eγ1N − T1)/h1, where v with |v| = 1 is the eigen-
vector from Lemma 7.2. Let y(0) = y∗ and u(0) := (i(0), ip(0), ii(0)) = δ1v. If
δ1 > 0 is small enough, then u′

j (0) > 0 in each coordinate and since u∗ �= (0,0,0)

is unique, as shown in the proof of Lemma 5.3 u(t) is increasing with respect to
(i, ip, ii) coordinates and limt→∞ u(t) = u∗, and in particular u(t) ≤ u∗ for t ≥ 0.
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We will need the stronger fact uj (t) < u∗
j for j = 1,2,3. Looking to the equa-

tions for i ′, ip′, ii ′ in (5.2), the derivative of each variable increases with the other
two variables, and of course is equal to 0 at u∗. If we had i(t) = i∗, then since
ip(t) ≤ ip∗ and ii(t) ≤ ii∗ we would have i ′ < 0 which contradicts the fact that
u(t) is increasing, and the same applies to ip(t) and ii(t).

Using the above facts, there is T2 so that u(T2) ≥ u∗ − ε/2, and since 0 <

minj (u
∗
j − uj (T2)) =: ε′ ≤ ε, there is h2 so that u(T2 + h2) ≥ u∗ − ε′/2. By

Proposition 6.1, there is δ2 > 0 so that if u0 = u(0) and |y0 − y∗| ≤ δ2 then
w.h.p. |ut − u(t)| ≤ ε′/2 for T2 ≤ t ≤ T2 + h2 in which case ut ≥ u∗ − ε for
T2 ≤ t ≤ T2 + h2 and uT2+h2 ≥ u∗ − ε′, which means that uT2+h2 ≥ u(T2). By
Lemma 6.4, there are T3, γ2 so that w.h.p. |yt −y∗| ≤ min(δ2, ε) for T3 ≤ t ≤ eγ2N .
Let k be such that T1 + kh1 ≥ T3 and let T4 = T1 + kh1, then setting u(T4) = δ1v,
w.h.p. uT4 ≥ u(T4) so it is enough to consider the case where uT4 = u(T4). Letting
T = T4 + T2, then for some γ3 > 0, with probability ≥ 1 − Ce−γ3N , ut ≥ u∗ − ε

for T ≤ t ≤ T + h2 and uT +h2 ≥ u(T ). Letting γ = min(γ2/2, γ3/2) and iterating
for (eγN − T )/h2 time steps (subtracting T to make sure yt stays in bounds) as in
the proof of Lemma 6.4 it follows that ut ≥ u∗ − ε for T ≤ t ≤ eγN .

To prove the upper bound, it is enough to consider any value of y0 and let u0 =
(y0, (1/2)(1 − y0), (1/2)(1 − y0)). Setting y(0) = y∗ and u(0) = (y∗, (1/2)(1 −
y∗), (1/2)(1 − y∗)), then as shown in the proof of Lemma 5.3, u(t) decreases
to u∗. Moreover, uj (t) − u∗

j > 0 for the same reason as above, so there is T1 so
that u(T1) ≤ u∗ + ε/2, and since 0 < minj (uj (T1) − u∗

j ) =: ε′ ≤ ε, there is h so
that u(T1 + h) ≥ u∗ − ε′/2. By Proposition 6.1, there is δ > 0 so that if max(|u0 −
u(0)|, |y0 − y(0)|) ≤ δ then w.h.p. |ut − u(t)| ≤ ε′/2 for T1 ≤ t ≤ T1 + h in which
case ut ≤ u∗ + ε for T1 ≤ t ≤ T1 + h and uT1+h ≤ u∗ + ε′ which means that
uT1+h ≤ u(T1). By Lemma 6.4, there are T2, γ1 so that w.h.p. |yt −y∗| ≤ δ for T2 ≤
t ≤ eγ1N . Letting T = T1 + T2 and setting u(T2) = (y∗, (1/2)(1 − y∗), (1/2)(1 −
y∗) and uT2 = (yT2, (1/2)(1 − yT2), (1/2)(1 − yT2)), then for some γ2 > 0, with
probability ≥ 1 − Ce−γ2N , ut ≤ u∗ + ε for T ≤ t ≤ T + h and uT +h ≤ u(T ).
Letting γ = min(γ1/2, γ2/2) and iterating for (eγN − T )/h time steps it follows
as before that ut ≤ u∗ + ε for T ≤ t ≤ eγN . �

In the next section, we use a comparison to prove that if R0 < 1 the infection
disappears quickly from the population. To make this work, we will need a com-
plementary result to Lemma 7.3.

LEMMA 7.4. If R0 ≤ 1, then for each ε > 0 there are C,T , γ > 0 so that

P

(
sup

T ≤t≤eγN

|Vt | ≤ εN
)

≥ 1 − Ce−γN .

PROOF. The proof is similar to that of Lemma 7.3. Letting u = (y∗, (1 −
y∗)/2, (1 − y∗)/2) as in Lemma 5.3 and letting (y∗, u(t)) be the solution to
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the MFE with u(0) = u, since u(t) decreases to (0,0,0) and u ≥ v for all
v ∈ ∗, there is T1 so that for any solution (y∗, u(t)), |u(T1)| ≤ ε/6, and since
ε′ := minj uj (T1) > 0, there is h so that |u(T1 + h)| ≤ ε′/2. There is δ > 0 so
that if max(|u0 −u(0)|, |y0 − y∗|) ≤ δ then w.h.p. |ut −u(t)| ≤ min(ε′/2, ε/6) for
T1 ≤ t ≤ T1 + h in which case |ut | ≤ ε/3 for T1 ≤ t ≤ T1 + h and |uT1+h| ≤ ε′
which means uT1+h ≤ u(T1). There are γ1, T2 > 0 so that w.h.p. |yt − y∗| ≤ δ for
T2 ≤ t ≤ eγ1N . By monotonicity, it is enough to consider uT2 = u. Letting u(T2) =
uT2 and T = T1 + T2, there are C1, γ2 so that with probability ≥ 1 − C1e

γ2N ,
|ut | ≤ ε/3 for T ≤ t ≤ T + h and uT ≤ u(T ). Letting γ = min(γ1, γ2) and it-
erating for (eγN − T )/h time steps, w.h.p. |ut | ≤ ε/3 and thus |VT | ≤ εN for
T ≤ t ≤ eγN . �

8. Microscopic behaviour. In this section, we compare the partner model in
the regime |V | ≤ εN for small ε > 0 to a branching process to get decisive infor-
mation when R0 �= 1.

8.1. Subcritical case: R0 < 1. First, we introduce the comparison process to
use when R0 < 1.

DEFINITION 8.1. Define the upperbound process (UBP) Bt = (It ,SI t ,II t )

on state space {0,1,2, . . .}3 with parameter 0 ≤ δ ≤ y∗ by the following transi-
tions:

• I → I − 1 at rate I ,
• I → I − 1 and SI → SI + 1 at rate r+(y∗ − δ)I ,
• SI → SI + 1 at rate 2r+δI ,
• II → II + 1 at rate r+δI ,
• SI → SI − 1 at rate SI ,
• SI → SI − 1 and I → I + 1 at rate r−SI ,
• SI → SI − 1 and II → II + 1 at rate λSI ,
• II → II − 1 and SI → SI + 1 at rate 2II ,
• II → II − 1 and I → I + 2 at rate r−II .

Note the UBP describes the evolution of the total number of particles of each
of the three types I,SI,II in a multi-type continuous-time branching process;
for an introduction to branching processes, see [7]. We now show that for fixed
R0 < 1, if δ > 0 is small enough the UBP quickly dies out.

LEMMA 8.1. For fixed λ, r+, r−, let Bt denote the UBP with parameter δ′ and
let R0 be as defined in (4.1). If R0 < 1, there are C,δ > 0 so that if |B0| ≤ N and
δ′ ≤ δ then

P
(|BC logN | = 0

) → 1 as N → ∞.
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PROOF. For a multi-type continuous time branching process Bt = (b1(t), . . . ,

bn(t)), with bj (t) denoting the number of type j particles alive at time t , we can
extract some useful information from the mean matrix Mt defined by mij (t) =
E(bj (t)|bk(0) = δik). Since particles evolve independently, E(Bt ) = B0Mt and it
is not hard to show that Mt satisfies the equation

d

dt
Mt = AMt

and, therefore, Mt = exp(At), where A = (rij ) is the matrix whose entries rij give
the rate at which a particle of type i produces particles of type j . If Re(λ) < 0
for each eigenvalue λ of A, then letting γ0 = min{|Re(λ)| : λ ∈ σ(A)} where σ(·)
denotes the spectrum, from standard matrix theory it follows that for any γ1 < γ0,
there is C1 > 0 so that mij ≤ C1e

−γ1t for each pair ij . Since each bi(t) is valued
on nonnegative integers,

P
(
Bt �= (0, . . . ,0)

) ≤ ∑
i

P
(
bi(t) �= 0

) ≤ ∑
i

Ebi(t)

= ∑
ij

bi(0)mij (t) ≤ ∣∣B(0)
∣∣n2C1e

−γ1t .

If |B(0)| ≤ N , then letting t = C logN for C > 1/γ1 and setting γ = Cγ1 − 1 and
C2 = n2C1 we find

P
(
BC logN �= (0, . . . ,0)

) ≤ NC2e
−γ1C logN = NC2N

−γ1C

= C2N
1−γ1C = C2N

−γ

which tends to 0 as N → ∞. In our case,

A = A(δ) =
⎛
⎝−(

1 + r+
(
y∗ − δ

))
r+

(
y∗ + δ

)
r+δ

r− −(1 + r− + λ) λ

2r− 2 −(2 + r−)

⎞
⎠ .

Letting σ(A) denote the spectrum and defining the spectral abcissa μ(A) :=
max{Re(λ) : λ ∈ σ(A)}, if μ(A(δ)) < 0, then the real part of each eigenvalue of
A is negative, and the above argument applies. By continuity of eigenvalues in the
entries of a matrix, it is enough to show μ(A(0)) < 0, since then there is δ > 0 so
that if δ′ ≤ δ then μ(A(δ′)) ≤ μ(A(0))/2 < 0. Setting δ = 0,

A(0) =
⎛
⎝−(

1 + r+y∗)
r+y∗ 0

r− −(1 + r− + λ) λ

2r− 2 −(2 + r−)

⎞
⎠

and looking to Section 5 we see that A(0,0) is the (transpose of the) linearized ma-
trix at (0,0,0) for the MFE on ∗, which we denote A. As noted in Remark 5.1,
(0,0,0) is locally asymptotically stable when R0 < 1, and in the proof of Theo-
rem 2 in [14] this is done by showing that μ(A) < 0. �

We now complete the proof of the case R0 < 1 in Theorem 2.2.
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PROPOSITION 8.1. If R0 < 1 there are constants C,T , γ > 0 so that, from
any initial configuration,

P
(|VT +C logN | = 0

) → 1 as N → ∞.

PROOF. Let Ut := (It ,SIt , IIt ) denote variables in the partner model and
for δ > 0 such that y∗ − δ ≥ 0 and y∗ + δ ≤ 1, let Bt denote the UBP with
parameter δ. We first describe a coupling with the property that U0 ≤ B0 ⇒
Ut ≤ Bt for t > 0, with respect to the usual partial order U ≤ V ⇔ Uj ≤
Vj , j = 1,2,3. For j = 1, . . . ,10, define a countable number of independent
Poisson point processes (p.p.p.’s) {ej (n) : n = 1,2, . . .} with respective rates
1, r+, r+,1, r−, λ,2, r−, r+, r−, together with independent uniform [0,1] random
variables attached to each event in e2(n), e3(n), e9(n), n = 1,2, . . . . These corre-
spond to the nine transitions listed in the definition of the UBP, except that the
second and third transition in the UBP are lumped into e2, plus an additional tran-
sition for S + S → SS and one for SS → S + S. Note that the rates of e2, e3, e9
appear too large at the moment and are corrected in the next paragraph.

Construct the UBP one transition at a time as follows, letting (I,SI,II) de-
note the present state. Each event in e1(1), . . . , e1(I) reduces I by 1. For an
event in e2, e3 let p denote the corresponding uniform [0,1] random variable.
If an event in e2(1), . . . , e2(I) occurs and p ≤ (y∗ − δ), reduce I by 1 and in-
crease SI by 1, while if y∗ − δ < p ≤ y∗ + δ simply increase SI by 1. If an
event in e3(1), . . . , e3(I) occurs and p ≤ δ, increase II by 1. Each event in
e4(1), . . . , e4(SI) reduces SI by 1, each event in e5(1), . . . , e5(SI) reduces SI
by 1 and increases I by 1, each event in e6(1), . . . , e6(SI) reduces SI by 1 and
increases II by 1, each event in e7(1), . . . , e7(II) reduces II by 1 and increases
SI by 1, and each event in e8(1), . . . , e8(II) reduces II by 1 and increases I
by 2. It can be checked that the transition rates are correct.

Similarly, construct the Markov chain (St , It ,SSt ,SIt , IIt ) for the partner model
as follows, letting (S, I,SS,SI, II) denote the present state. Define αt = yt −y∗− it
and βt = it /2 − 1/(2N) and note that αt and βt are piecewise constant in time.
Each event in e1(1), . . . , e1(I ) reduces I by 1 and increases S by 1. If an event
in e2(1), . . . , e2(I ) occurs and p ≤ y∗ + αt reduce S and I by 1 and increase SI
by 1. If an event in e3(1), . . . , e3(I ) occurs and p ≤ βt reduce I by 2 and increase
II by 1. Each event in e4(1), . . . , e4(SI) reduces SI by 1 and increases SS by 1,
each event in e5(1), . . . , e5(SI) reduces SI by 1 and increases S and I by 1, and
events in e6, e7, e8 have the same effect as before. If an event in e9(1), . . . , e9(S)

occurs and p ≤ st/2 − 1/(2N) reduce S by 2 and increase SS by 1, and each
event in e10(1), . . . , e10(SS) reduces SS by 1 and increases S by 2. Recalling that
Ut := (It ,SIt , IIt ), if U0 ≤ B0 and sups≤t max(|αs |, βs) ≤ δ then Ut ≤ Bt since (as
can be easily checked) the order is preserved at each transition.

By Lemma 6.4, there are T1, γ1 > 0 so that w.h.p. |yt − y∗| ≤ δ/2 for T1 ≤ t ≤
eγN and since R0 < 1, by Lemma 7.4 there are T2, γ2 so that |Vt | ≤ (δ/2)N , and
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thus it ≤ δ/2 for T2 ≤ t ≤ eγ2N . Letting T = max(T1, T2) and γ = min(γ1, γ2),
w.h.p. max(|αt |, βt ) ≤ δ for T ≤ t ≤ eγN . Setting BT = UT and using Lemma 8.1
completes the proof. �

8.2. Supercritical case: R0 > 1. We introduce the comparison process for
R0 > 1, which is similar to the UBP, but different.

DEFINITION 8.2. Define the lowerbound process (LBP) Bt = (It ,SI t ,II t )

on state space {0,1,2, . . .}3 with parameters δ ≥ 0 such that y∗ − δ ≥ 0 by the
following transitions:

• I → I − 1 at rate (1 + 2r+δ)I ,
• I → I − 1 and SI → SI + 1 at rate r+(y∗ − δ)I ,
• I → I − 2 at rate r+δI ,
• SI → SI − 1 at rate SI ,
• SI → SI − 1 and I → I + 1 at rate r−SI ,
• SI → SI − 1 and II → II + 1 at rate λSI ,
• II → II − 1 and SI → SI + 1 at rate 2II ,
• II → II − 1 and I → I + 2 at rate r−II .

As before, the LBP describes the evolution of the total number of particles of
each of the three types I,SI,II in a multi-type continuous-time branching pro-
cess. We now show that for fixed R0 > 1, if δ > 0 is small enough then the LBP
survives.

LEMMA 8.2. Let Bt denote the LBP with parameter δ′. If λ, r+, r− are such
that R0 > 1 then there are C,δ > 0 so that if δ′ ≤ δ then lim infN→∞ P(BC logN �=
(0,0,0)) > 0 and

P
(|BC logN | ≥ δN |BC logN �= (0,0,0)

) → 1 as N → ∞.

PROOF. As in the proof of Lemma 8.1, define the mean matrix M(t) =
exp(At) and the spectral abcissa μ(A). If δ′ = 0 for both the UBP and the LBP they
coincide, in which case A is the transpose of the linearized matrix at (0,0,0) of
the MFE on ∗. As shown in the proof of Theorem 5.1, if R0 > 1 then μ(A) > 0.
By continuity of eigenvalues in the entries of a matrix, there is δ > 0 so that if
δ′ ≤ δ then μ(A(δ′)) ≥ μ(A)/2 > 0. As shown in V.7 of [7], if M(t) is such that
for some t0 > 0 and each entry mij (t) of M(t) one has mij (t0) > 0 (which is the
case here), then μ(A) =: λ1 is an eigenvalue of A, and if λ1 > 0 the process is said
to be supercritical. In this case, Bte

−λ1t → Wv where v is a left eigenvector of A

with eigenvalue λ1 and W is a real-valued random variable. Setting t = C logN

with C > 1/λ1 and letting γ = Cλ1 > 1, BC logNN−γ → Wv, so for each ε > 0,

lim inf
N→∞ P

(|BC logN | ≥ δN
) ≥ lim

N→∞P
(|BC logN | ≥ εNγ ) = P

(
W |v| ≥ ε

)
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and letting ε → 0+ and using continuity of measure,

lim inf
N→∞ P

(|BC logN | ≥ δN
) ≥ P(W > 0).

Under a mild regularity assumption on the offspring distribution that holds triv-
ially in this case, P(W > 0) = limt→∞P(Bt �= (0,0,0)) > 0. Since |Bt | ≥ δN im-
plies Bt �= (0,0,0), this means lim supN→∞ P(|BC logN | ≥ δN) ≤ limt→∞P(Bt �=
(0,0,0)) = P(W > 0), so limN→∞ P(|BC logN | ≥ δN) exists and is equal to
P(W > 0). The result then follows by observing that for t, x > 0, P(|Bt | ≥ x|Bt �=
(0,0,0)) = P(|Bt | ≥ x)/P(Bt �= (0,0,0)). �

We now complete the proof of Theorem 2.2.

PROPOSITION 8.2. If R0 > 1, there are constants δ,p,C,T > 0 so that if
|V0| > 0 then P(|VT +C logN | ≥ δN) ≥ p.

PROOF. We use the same approach as in the proof of Proposition 8.1. Let
Ut := (It ,SIt , IIt ) denote variables in the partner model and for δ1 > 0 such that
δ1 ≤ 1, y∗ − δ1 ≥ 0 and y∗ + δ1 ≤ 1, let Bt denote the LBP with parameter δ1. Let
e1, . . . , e10 be as in the proof of Proposition 8.1.

Construct the LBP one transition at a time as follows, letting (I,SI,II) denote
the present state. Each event in e1(1), . . . , e1(I) reduces I by 1. For an event in
e2, e3 let p denote the corresponding uniform [0,1] random variable. If an event
in e2(1), . . . , e2(I) occurs and p ≤ (y∗ − δ1), reduce I by 1 and increase SI by 1,
while if y∗−δ1 < p ≤ y∗+δ1 simply reduce I by 1. If an event in e3(1), . . . , e3(I)

occurs and p ≤ δ1, reduce I by 2. Events in e4, e5, e6, e7, e8 have the same effect as
in the dynamics of the UBP. The Markov chain (St , It ,SSt ,SIt , IIt ) for the partner
model is constructed in the same way as in the proof of Proposition 8.1, with αt , βt

defined in the same way, and it is easy to check in this case that if U0 ≥ B0 and
sups≤t max(|αs |, βs) ≤ δ1 then Ut ≥ Bt .

Define the stopping time τ = inf{t : |Ut | ≥ δ1N/2} and note that |Vτ | ≥
(δ1/2)N . By Lemma 7.3 and using the strong Markov property, there are δ, γ > 0
so that w.h.p. |Vt | ≥ δN for τ ≤ t ≤ τ + eγN . There are T ,γ > 0 so that w.h.p.
|yt − y∗| ≤ δ1/2 for T ≤ t ≤ eγN . If τ ≤ T , then since T is fixed, we are done. If
t < τ then it ≤ δ1/2, so letting BT = UT , if T ≤ t < τ then max(|αt |, βt ) ≤ δ1,
so Ut ≥ Bt for T ≤ t < τ . The result follows from this inequality and from
Lemma 8.2. �
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