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DYNAMIC RANDOM NETWORKS AND THEIR GRAPH LIMITS

BY HARRY CRANE1

Rutgers University

We study a broad class of stochastic process models for dynamic net-
works that satisfy the minimal regularity conditions of (i) exchangeability
and (ii) càdlàg sample paths. Our main theorems characterize these processes
through their induced behavior in the space of graph limits. Under the as-
sumption of time-homogeneous Markovian dependence, we classify the dis-
continuities of these processes into three types, prove bounded variation of
the sample paths in graph limit space and express the process as a mixture of
time-inhomogeneous, exchangeable Markov processes with càdlàg sample
paths.

1. Introduction. Stochastic models for complex networks draw attention in
many applications, including physics, epidemiology, sociology and national se-
curity. In some cases, for example, epidemiology, the network represents the en-
vironment in which a process of interest evolves, for example, the spread of an
epidemic; in others, for example, sociology, the network structure is interesting in
its own right. Either way, the structure of the network plays an important role in
the scientific inquiry. In almost all real world applications, the underlying network
changes with time, but so far only a scattering of articles in the machine learning
[10, 14] and epidemiology [9] literature attempt to model these dynamics. Aside
from our previous development of some basic theory for time-varying network
models [6], we are not aware of any formal study of dynamic networks on a fixed
population of vertices in the probability literature.

To address this issue, we analyze a broad class of dynamic network models
whose minimal regularity properties should be appropriate for most conceivable
applications. On the space of graphs with countably many vertices, we consider
stochastic processes � = (�t )t≥0 that are:

(i) exchangeable, that is, invariant under arbitrary relabeling of vertices by fi-
nite permutations, and

(ii) càdlàg, that is, the sample path t �→ �t is a càdlàg map in the product-
discrete topology.
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Time-homogeneous, exchangeable Markov processes are perhaps the most trac-
table within this class, and we specialize to this case throughout much of the article.
Otherwise, assumptions (i) and (ii) are natural in both theoretical and applied study
of random networks. Mathematically, exchangeability is a fundamental property
of many combinatorial stochastic process models for partitions, trees and graphs,
while in practice it reflects a natural indifference to arbitrary assignment of labels,
a fundamental principle in Bayesian inference and statistical modeling. Càdlàg
paths require that every edge remains in each state it visits for a positive amount
of time. Taken together, exchangeability and càdlàg paths imply that the process
does not depend on arbitrary assignments of labels to vertices and the edges do not
behave erratically during infinitesimally small time intervals.

The graph limit of any graph is defined through the limiting homomorphism
densities of finite subgraphs. If all of these limiting densities exist for a graph G,
then they determine a unique graph limit, denoted |G|. As we see, the graph limit
of an exchangeable random graph encodes much of its structural information.

We study processes � through their projection |�| := (|�t |)t≥0 into the space of
graph limits, which we show exists at all times almost surely. If, in addition, � is a
Markov process, then so is |�|. Thus, our main theorems establish a connection be-
tween graph-valued processes satisfying (i) and (ii) Aldous’s and Hoover’s theory
of partially exchangeable arrays [1] and the Lovász–Szegedy theory of graph limits
[12, 13]. We paraphrase three of our main theorems for exchangeable, continuous-
time Markov processes �:

• Theorem 3.3: With probability one, the projection |�| := (|�t |)t≥0 of � ex-
ists and is a Markov process whose sample paths are càdlàg and have locally
bounded variation.

• Theorem 3.6: The discontinuities of � can be characterized into three classes:
at the time s of a discontinuity in �, either:

(A) each edge has a positive probability of experiencing a discontinuity at time
s or

(B) there exists a unique vertex i ∈ N such that either:
(B-1) a unique edge ij is discontinuous at time s or
(B-2) a positive proportion of edges incident to i is discontinuous at time s.

• Theorem 3.10: A Markov process on the space of graph limits whose sample
paths are càdlàg and of locally bounded variation corresponds (in distribution)
to the projection |�| of some exchangeable Markov process � satisfying (i)
and (ii).

In addition to these theorems, we obtain various auxiliary results of their own
interest. For example, in Proposition 4.8, we show a de Finetti-type theorem by
which any time-homogeneous Markov process satisfying (i) and (ii) is a mixture
of time-inhomogeneous Markov processes.



DYNAMIC RANDOM NETWORKS AND THEIR GRAPH LIMITS 693

1.1. Organization. In Section 2, we introduce notation, definitions and as-
sumptions. In Section 3, we formally state our main theorems and give illustrative
examples. In Section 4, we characterize discrete-time Markov chains under as-
sumption (i). In Section 5, we prove our main theorems for continuous-time graph-
valued processes. In Section 6, we make concluding remarks and foreshadow fu-
ture work.

2. Preliminaries.

2.1. Graphs. Throughout the paper, all graphs are undirected and have vertex
set [n] := {1, . . . , n}, if finite with n ≥ 1 vertices, or N := {1,2, . . .}, if infinite. For
fixed n ∈ N, a graph G with vertex set [n] is a collection of edges EG ⊆ [n] × [n]
that has:

(1) no self loops, that is, (i, i) /∈ EG for all i ∈ [n], and
(2) undirected edges, that is, (i, j) ∈ EG if and only if (j, i) ∈ EG.

Since G is undirected, we often write i ∼G j or ij ∈ EG to denote an edge between
i and j in G. Alternatively, we can specify G by its adjacency matrix (Gij )1≤i,j≤n,
for which

Gij :=
{

1, i ∼G j ,
0, otherwise.

We write Gn to denote the space of graphs with vertex set [n].

REMARK 2.1. There is no substantive difference between the directed and
undirected cases for the processes we study. Our analysis easily extends to pro-
cesses on directed graphs as well as more general processes on exchangeable ran-
dom arrays and hypergraphs.

For any m ≤ n and G ∈ Gn, we define the restriction of G to Gm by G|[m] :=
(Gij )1≤i,j≤m, the projection of the adjacency matrix of G to its leading m × m

submatrix. Under this projection, (Gn)n∈N is naturally embedded in the space G∞
of countably infinite graphs, which we regard as compatible sequences (Gn)n∈N
of finite graphs, that is, Gn ∈ Gn for each n ∈ N and Gn|[m] = Gm for all m ≤ n.
We regard G := (Gn)n∈N as an infinite graph with vertex set N, from which the
alternative specification as an infinite by infinite adjacency array is apparent. In
particular, for each n ≥ 1, the leading n × n submatrix (Gij )1≤i,j≤n of the ad-
jacency array (Gij )i,j≥1 of G ∈ G∞ coincides with the adjacency matrix of the
restriction G|[n] of G to Gn.

The limit space G∞ is naturally equipped with the product-discrete topology
induced by the ultrametric

d
(
G,G′) := 1/max

{
n ∈N : G|[n] = G′|[n]

}
, G,G′ ∈ G∞.(1)
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Under this topology, G∞ is compact and Polish. We also equip G∞ with the Borel
σ -field B := σ 〈⋃n∈N Gn〉 generated by the finite restriction maps ·|[n] : G∞ → Gn,
for each n ∈N.

In Section 2.3, we introduce exchangeable random graphs and exchangeable
Markov processes on G∞, which we then study throughout the paper. Such pro-
cesses exhibit invariance under arbitrary relabeling by finite permutations of N.
Specifically, we call a permutation σ :N →N finite if it fixes all but finitely many
n ∈ N, and we write SN to denote the set of finite permutations of N. Any σ ∈ SN

acts naturally on G ∈ G∞ by relabeling vertices, G �→ Gσ , where

Gσ := (
Gσ(i)σ (j))

i,j≥1.(2)

More generally, given an injection ψ : [m] → [n], m ≤ n, we define the projection
ψ∗ : Gn → Gm, G �→ ψ∗(G) =: Gψ , by

Gψ := (
Gψ(i)ψ(j))

1≤i,j≤m.(3)

The projection operation in (3) is key to our definition of graph limits below.

2.2. Graph limits. Lovász and Szegedy [13] introduced graph limits while
studying sequences of dense graphs. That work implicitly recalls the Aldous–
Hoover theorem [1] for partially exchangeable arrays; see Theorem 2.4 below.

For fixed integers m ≤ n and fixed graphs F ∈ Gm and G ∈ Gn, we define
ind(F ;G) as the number of injections ψ : [m] → [n] such that Gψ = F , where
Gψ is defined in (3). Informally, ind(F ;G) is the number of induced copies of F

in G. We define the density of F in G by

t (F ;G) := ind(F ;G)

n↓m
, F ∈ Gm,G ∈ Gn,m ≤ n,(4)

where the denominator n↓m := n(n − 1) · · · (n − m + 1) is the number of injective
maps [m] → [n]. For an infinite graph G ∈ G∞, we define the limiting density of
F in G by

t (F ;G) := lim
n→∞ t (F ;G|[n]), if it exists.(5)

By now it is well known (cf. [1, 13]) that the limit in (5) exists almost surely
whenever G ∈ G∞ is the realization of an exchangeable random graph.

DEFINITION 2.2. The graph limit |G| of G ∈ G∞ is defined by

|G| := (
t (F ;G)

)
F∈G∗,(6)

provided t (F ;G) exists for every F ∈ G∗, where G∗ := ⋃
n∈N Gn is the countable

collection of all finite graphs.
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REMARK 2.3 (Terminology). We use the term graph limit to distinguish from
Lovász and Szegedy’s term graphon, which is defined as a measurable function
W : [0,1]2 → [0,1]. Because the graphon is unique only up to measure-preserving
transformations of [0,1]2, it is not a convenient limiting object. On the other hand,
the graph limit (as we define it) is unique whenever it exists.

The connection between a graphon W and the graph limit (t (F ;G))F∈G∗ is
as follows. Let U1,U2, . . . be independent, identically distributed Uniform[0,1]
random variables. Given (U1,U2, . . .), we define � = (�ij )i,j≥1 to be condi-
tionally independent Bernoulli random variables such that P{�ij = 1|Ui,Uj } =
W(Ui,Uj ). Thus, the graphon determines an exchangeable probability distribu-
tion on G∞. Each of the limiting densities (5) of � exists, and the collection of
these densities corresponds to the graph limit.

Assuming it exists, |G| is an element of [0,1]G∗ ∼= [0,1]N, which we equip with
the metric

d
(
x, x′) := ∑

n∈N
2−n

∑
F∈Gn

∣∣xF − x′
F

∣∣, x, x′ ∈ [0,1]G∗
.(7)

Under (7), [0,1]G∗
is compact, complete and separable. We write D∗ to denote the

closure of the subset of [0,1]G∗
to which G∞ projects under (6). As a closed subset

of [0,1]G∗
, D∗ is also compact and Polish.

2.3. Exchangeable random graphs and the space of graph limits. An infinite
exchangeable random graph � is a random element of G∞ that satisfies

�σ =L � for all σ ∈ SN,(8)

where =L denotes equality in law. In other words, the law of � is invariant under
arbitrary relabeling of its vertices.

In general, we call a random X -valued array X := (Xij )i,j≥1 weakly exchange-
able if X is symmetric and

Xσ =L X for all σ ∈ SN,(9)

where Xσ := (Xσ(i)σ (j))i,j≥1. By the representation of � through its adjacency
array (�ij )i,j≥1, any exchangeable random graph corresponds to a weakly ex-
changeable {0,1}-valued array. The Aldous–Hoover theorem makes explicit the
connection between exchangeable random graphs and graph limits.

THEOREM 2.4 (Aldous–Hoover theorem: Aldous [1], Theorem 14.21, Hoover
[11]). Let X := (Xij )i,j≥1 be a weakly exchangeable X -valued array, where
X is Polish. Then there exists a measurable function f : [0,1]4 → X for which
f (·, b, c, ·) = f (·, c, b, ·) such that X =L X∗, where

Xij∗ := f (α, ξi, ξj , η{i,j}), i, j ≥ 1,

for {α; (ξi)i∈N; (η{i,j})i>j≥1} independent, identically distributed Uniform ran-
dom variables on [0,1].
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REMARK 2.5. As stated, Theorem 2.4 is a special case of the Aldous–Hoover
theorem; see [1], Theorem 14.11, and the surrounding discussion.

The following corollary records some useful first properties of graph limits. For
D ∈ D∗, we write D(F) = DF to denote the component of D corresponding to
F ∈ G∗.

COROLLARY 2.6. For any D ∈D∗ and any n ≥ 1:

(i) the n-sector D(n) := (DF )F∈Gn determines an exchangeable probability
distribution on Gn through

P{�n = F } = D(n)(F ), F ∈ Gn; and

(ii) the collection (D(n))n≥1 is a consistent family of exchangeable probability
distributions on (Gn)n≥1, that is, for all m ≤ n and F ∈ Gm,

D(m)(F ) = ∑
F ∗∈Gn:F ∗|[m]=F

D(n)(F ∗)
.

PROOF. Part (i) is immediate from the definition of the limit density (5).
Part (ii) also follows from this definition since, for every l ≤ m, each injection
ψ : [l] → [n] corresponds to the collection of injections ψ ′ : [m] → [n] such
that ψ = ψ ′ ◦ il,m, where il,m : [l] → [m] is the insertion map, j �→ j . For
F ∈ Gl , ind(F ;G|[n]) counts the number of ψ : [l] → [n] such that G|ψ[n] = F ,
and each of these maps corresponds to a collection of exactly n↓m/n↓l injections
ψ ′ : [m] → [n] by the above association. Consistency is an immediate byproduct.

�

From Corollary 2.6, we can regard each element of D∗ as the projective limit of
some family of exchangeable and consistent distributions on graphs with finitely
many vertices. By Carathéodory’s extension theorem, a graph limit D ∈ D∗ cor-
responds to a unique exchangeable, dissociated probability measure γD on G∞,
where

γD

({G ∈ G∞ : G|[n] = F }) = D(n)(F ), F ∈ Gn,

for each n ≥ 1. For any D ∈D∗, the marginals γ
(n)
D , n ≥ 1, satisfy

γ
(n)
D (F ) := DF , F ∈ Gn.(10)

The following proposition summarizes the relationship between exchangeable ran-
dom graphs and graph limits, which is a consequence of the Aldous–Hoover the-
orem (Theorem 2.4) and the Lovász–Szegedy graph limit theorem [13], Theo-
rem 2.7.
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PROPOSITION 2.7. Let � be an infinite exchangeable random graph. Then,
for every fixed graph F ∈ Gm, m ≥ 1, the limiting density t (F ;�) exists almost
surely and, thus, the graph limit |�| exists almost surely. Moreover, with γ

(n)
D de-

fined in (10), there exists a unique probability measure 	 on D∗ so that � ∼ γ	,
where γ	 is characterized by its marginal distributions

γ
(n)
	 (G) :=

∫
D∗

γ
(n)
D (G)	(dD), G ∈ Gn.

2.4. Graph-valued processes. We are interested in exchangeable processes
� = (�t )t∈T on G∞. Here, T denotes time and can be taken as either T = Z+ :=
{0,1, . . .} (discrete-time) or T = R+ := [0,∞) (continuous-time). We consider
both cases.

A graph-valued process � is:

• exchangeable if �σ = (�σ
t )t∈T is a version of � for every σ ∈ SN and

• càdlàg if t �→ �t almost surely determines a mapping T → G∞ that is right-
continuous and has left limits.

In particular, � := (�t )t≥0 has càdlàg sample paths if each finite restriction �[n] :=
(�t |[n])t≥0 determines a càdlàg path in Gn with the discrete topology. Equivalently,
� is càdlàg if, for every i > j ≥ 1, the edge trajectory (�

ij
t )t≥0 is a càdlàg path in

{0,1}.
For any G∞-valued process �, we call the collection (�[n])n≥1 of restrictions

to (Gn)n≥1 its finite state space sample paths. Without further conditions, we
characterize the behavior of � in terms of the finite-dimensional distributions,
that is, the distribution of (�tj )j=1,...,k for arbitrary finite collections of times
0 ≤ t1 < · · · < tk < ∞. We usually take càdlàg sample paths for granted and call
an exchangeable, càdlàg process an exchangeable graph-valued process.

Any collection �T := (�t )t∈T of graphs generates its exchangeable σ -field ET ,
which consists of events A that are measurable with respect to �T and for which
A = Aσ := {Gσ : G ∈ A} for all σ ∈ SN. These events are exchangeable in that
they are invariant under relabeling. For example, the density t (F ;G) of a finite
graph F ∈ Gm in G ∈ G∞ is invariant under arbitrary relabeling of both F and G;
see equation (4), its surrounding discussion, and also Corollary 2.6.

We pay special attention to time-homogeneous Markov processes.

DEFINITION 2.8. A Markov process � := (�t )t≥0 on G∞ is exchangeable if:

(i) its initial state is an exchangeable random graph, that is, �0 =L �σ
0 for all

σ ∈ SN, and
(ii) its transition kernel

pt

(
G,dG′) := P

{
�s+t ∈ dG′|�s = G

}
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is invariant under relabeling by SN; that is, for every σ ∈ SN and every measur-
able subset A ⊆ G∞,

pt

(
Gσ ,Aσ ) = pt(G,A) for all t ≥ 0,(11)

where Aσ := {G′σ : G′ ∈ A} is the relabeling of A by σ .

We study exchangeable Markov processes � that possess càdlàg sample paths
in the metric (1). For convenience, we call these processes exchangeable Markov
processes on G∞, or exchangeable G∞-valued Markov processes.

REMARK 2.9. In many studies of Markov processes, the Feller property is the
natural case of interest; however, under the assumed topology, the Feller property
forbids nontrivial dependence on the exchangeable σ -algebra, a strong assumption
in some applications. In this article, we do not assume the Feller property. We
characterize further structural properties of exchangeable Feller processes in [5].

2.5. Notation. We use the Greek letter � to denote random graphs, the bold
Greek letter � to denote graph-valued processes and the Roman letters F and G

to denote fixed graphs.
To avoid confusion, we use superscripts to denote edges, for example, Gij de-

notes the (i, j) entry of the adjacency array of G ∈ G∞, and subscripts to de-
note time, for example, �

ij
t is the status of edge ij in � at time t ≥ 0. For a

subset T ′ ⊆ T , �T ′ := (�t )t∈T ′ denotes the process � restricted to (or observed
at) the time points in T ′ and �

ij

T ′ := (�
ij
t )t∈T ′ denotes the trajectory of edge ij

at points in T ′. Later, we introduce the notation �[T ] := (�
ij
T )i,j≥1 to denote an

array whose (i, j) entry is the edge trajectory (�
ij
t )t∈T . When T is finite with car-

dinality n, the entries of �[T ] are n-tuples in {0,1}n; when T is a subinterval, the
entries are càdlàg paths t �→ �

ij
t in {0,1}.

3. Summary of main theorems and illustrative examples. Before summa-
rizing the main theorems, we illustrate possible behaviors of some exchangeable
graph-valued processes. For example, graph-valued Markov processes can exhibit
various, seemingly pathological, behaviors (Example 3.1) and their projection into
D∗ need not possess the Feller property (Example 3.2).

EXAMPLE 3.1. Let {U{i,j}}i>j≥1 be a collection of independent and identi-
cally distributed Uniform random variables on [0,1] and let h : [0,1] → [0,1] be
any increasing homeomorphism of the unit interval. We define � := (�t )t∈[0,1] on
G∞ by

�
ij
t =

{
1, if U{i,j} > h(t),
0, if U{i,j} ≤ h(t).
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Because {U{i,j}}i>j≥1 are independent and identically distributed, � must be ex-
changeable. Furthermore, � is Markovian and has càdlàg sample paths—each edge
makes only a single jump at a random time that depends measurably on the overall
edge density of the process. But if, for example, h is the Cantor function, then the
jumps of � occur in a predictable set of measure zero. In fact, � behaves this way
as long as the derivative of h is zero almost everywhere on [0,1].

Despite its bizarre behavior, � almost surely projects to a deterministic trajec-
tory |�| in D∗: at each t ≥ 0, |�t | is the graph limit of an Erdős–Rényi random
graph with parameter 1 − h(t). In general, our main theorems establish that the
projection into D∗ always exists and behaves regularly.

EXAMPLE 3.2. We define the upper graph limit of G ∈ G∞ by

|G|+ := (
t+(F ;G)

)
F∈G∗,

where

t+(F ;G) := lim sup
n→∞

t (F ;G|[n]), F ∈ G∗.

Since the limit superior always exists, we need not worry about existence of the
graph limit for arbitrary initial states G0.

Let {τ{i,j}}i>j≥1 be independent, identically distributed standard exponential
random variables and let G0 ∈ G∞ be any initial state with upper edge density

δ+ := lim sup
n→∞

2

n(n − 1)

∑
1≤i<j≤n

1{i ∼G0 j}.

For t > 0, we define �t by

�
ij
t =

{
1[1/2,1]

(
δ+)

, if t ≥ τ{i,j},
G

ij
0 , if t < τ{i,j}.

If G0 is the realization of an exchangeable random graph, then � is an exchange-
able Markov process on G∞ whose projection |�| into D∗ is continuous and, in
fact, deterministic. On the other hand, with �(δ+) denoting a Markov process
whose initial state has upper edge density δ+, the family {�(δ+) : δ+ ∈ [0,1]} does
not have the Feller property. Plainly, the Feller property requires that the Markov
semigroup determines a continuous mapping from all initial states, but the above
process is discontinuous at δ+ = 1/2. More succinctly, |�| enjoys the Feller prop-
erty only if the trajectories (t, δ+) �→ |�t(δ

+)| determine a jointly continuous flow.

Although the previous examples illustrate strange behaviors of exchangeable
Markov processes � with càdlàg paths, our first theorem asserts that the projection
to D∗ is well behaved. In particular, |�| exists, is a Markov process, and has càdlàg
sample paths with locally bounded variation.
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THEOREM 3.3. Let � := (�t )t≥0 be an exchangeable Markov process on G∞
with càdlàg sample paths. Then the projection (|�t |)t≥0 into the space of graph
limits exists with probability one. Moreover, |�| := (|�t |)t≥0 is a Markov process
on D∗ whose sample paths are càdlàg and have locally bounded variation.

REMARK 3.4. Because the paths of |�| have bounded variation, the contin-
uous portion of |�| is purely deterministic, that is, there can be no Brownian-like
component. Consequently, there is no analog to Brownian motion for exchange-
able Markov processes on G∞ under the product-discrete topology.

REMARK 3.5. Càdlàg sample paths for � means that �[n] has a strictly posi-
tive hold time in every state it visits, for every n ∈ N. On the other hand, the pro-
jection |�| tracks the flow of densities associated to the whole process � through
its exchangeable σ -field. Conditional on E� , |�| determines the transition proba-
bilities of a time-inhomogeneous Markov process on Gn, for every n ∈ N. Thus, if
|�| had unbounded variation, then there would be a positive probability that the
sample paths of � are not càdlàg. We make this heuristic rigorous in Theorem 5.8.

Without the Feller property, the infinitesimal generator need not exist; therefore,
we cannot describe the discontinuities directly through the jump rates. Also, the
finite restrictions of � need not be Markovian, and so the common technique of
discretization by projection to finite spaces has limited use. Nevertheless, we are
able to characterize the discontinuities of � and |�|.

THEOREM 3.6. An exchangeable G∞-valued Markov process � := (�t )t≥0
with càdlàg paths has at most countably many discontinuities almost surely. The
discontinuities of � classify into three types: if � is discontinuous at t = s, then
either:

(A) P(�ij is discontinuous at s|E[0,∞)) > 0 for every i �= j ∈ N or
(B) there exists a unique i ∈ N such that either:

(B-1) �ij is discontinuous at s for some unique j �= i or
(B-2) there exist constants 0 ≤ p0,p1 ≤ 1 (possibly depending on E[0,∞))

such that

P
{
�ij is discontinuous at s|E[0,∞)

} = pk on the event �
ij
s− = k,

for all j �= i;
and P {�i′j ′

is discontinuous at s|E[0,∞)} = 0 if i /∈ {i ′, j ′}.

We take a moment to discuss the intuition behind cases (A) and (B) and why
they exhaust all possibilities for discontinuities in �.

Broadly, we can classify discontinuities of � as one of two types: for a discon-
tinuity time t ≥ 0, let S

(n)
t := ∑

1≤i<j≤n 1{�ij
t− �= �

ij
t } be the number of edges of
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�[n] with a discontinuity at time t and define Ft := limn→∞ 2n−1(n − 1)−1S
(n)
t as

the limiting fraction of edges at which there is a discontinuity. By exchangeability,
the limit Ft exists a.s. and satisfies either:

(A) Ft > 0 or
(B) Ft = 0.

Given a discontinuity at time t , (�t−,�t ) is a jointly exchangeable pair of {0,1}-
valued arrays. Marginally, �t is a weakly exchangeable array and, therefore, is
itself an exchangeable random graph. By Aldous–Hoover in conjunction with
Lovász–Szegedy, case (A) is covered by discontinuities of type-(A). Indeed, if
a positive fraction of edges changes status, then exchangeability forces a positive
probability that each edge has a discontinuity, conditional on the exchangeable σ -
algebra. On the other hand, if a zero fraction of edges changes status, then either:

(B-1) limn→∞ S
(n)
t < ∞ or

(B-2) limn→∞ S
(n)
t = ∞.

In case (B-1), only finitely many edges are discontinuous at time t . But by ex-
changeability and the strong law of large numbers, if exactly two disjoint edges
share a discontinuity at t , then there is positive probability that any two edges
share a discontinuity at t , which would imply we are in case (A) above. In case
(B-2), the discontinuous edges must have a vertex in common because case (B-1)
precludes disjoint edges from jumping simultaneously.

The next example illustrates a process that evolves only by type-(B-2) disconti-
nuities.

EXAMPLE 3.7. Let Ni := {Ni(t)}t≥0 be a rate-1 Poisson process, for each
i ≥ 1. We assume that the processes {Ni}i≥1 are mutually independent. As in Ex-
ample 3.2, let δ+

t denote the upper edge density of � at time t ≥ 0. We assume
� starts at 0N, the empty graph. For each arrival time τ in Ni , i ≥ 1, we change
the edges incident to vertex i independently according to flips of a (1 − δ+

τ−)-
coin. The above process is Markov, exchangeable, and each of its discontinuities
is type-(B-2).

COROLLARY 3.8. The projection |�| of any exchangeable Markov process �

has càdlàg paths with discontinuities only at the times of type-(A) discontinuities
of �.

The following example illustrates that the projection |�| of � into D∗ does
not uniquely determine the law of �. Theorem 3.10 gives a partial converse: any
Markov process on D∗ with càdlàg sample paths of locally bounded variation cor-
responds to the projection of some exchangeable G∞-valued Markov process.
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EXAMPLE 3.9. Let τ1 < τ2 < · · · be the occurrence times of a rate-1 Poisson
process on [0,∞) and let �0 be an Erdős–Rényi random graph with parameter
p = 1/3. We construct processes �1 := (�1(t))t≥0 and �2 := (�2(t))t≥0 that have
different transition laws and project to the same process in D∗. For this example
only, let δ(G) denote the edge density of G, that is, δ(G) := limn→∞ 2n−1(n −
1)−1 ∑

1≤i<j≤n 1{ij ∈ G}.
(1) In �1:

(a) if δ(�1(τn−)) = 2/3, then all pairs ij for which �
ij
1 (τn−) = 1 simultane-

ously toss fair coins to determine whether there is an edge between i and
j in �1(τn) and

(b) if δ(�1(τn−)) = 1/3, then all pairs ij for which �
ij
1 (τn−) = 0 simultane-

ously toss fair coins to determine whether there is an edge between i and
j in �1(τn).

(2) In �2, all pairs ij , regardless of their status at time τn−, toss 1 − δ(�2(τn−))

coins to determine whether there is an edge between i and j at time τn.

The transition laws of �1 and �2 differ, but both projections |�1| and |�2| follow
the same trajectory in D∗—they alternate between the graph limits of Erdős–Rényi
random graphs with p = 2/3 and p = 1/3.

THEOREM 3.10. Let D := (Dt)t≥0 be a Markov process on D∗ whose sam-
ple paths are càdlàg and have locally bounded variation. Then there exists an
exchangeable Markov process � := (�t )t≥0 on G∞ whose projection |�| into D∗
has the same law as D.

We now move to our main discussion. In Section 4, we discuss discrete-time
Markov chains on G∞. The observations in Section 4 are important to some of
our main theorems about continuous-time processes, which we prove throughout
Section 5.

4. Discrete-time Markov chains. Let � := (�t )t∈T be an exchangeable G∞-
valued Markov process observed at an arbitrary set of times T . For a finite sub-
sequence of times T ′ := {0 ≤ t0 < t1 < · · · < tn < ∞} ⊂ T , we define �[T ′] =
�[t0, t1, . . . , tn] := (�

ij

T ′)i,j≥1, where

�
ij

T ′ := (
�

ij
tk

)n
k=0, i, j ≥ 1,

is an (n + 1)-tuple that records the status of the edge between i and j in T ′. Thus,
�[T ′] is a {0,1}n+1-valued array that tracks the status of edges at all times in T ′.
Regarding �[T ′] as an array, rather than a process, avails us of the Aldous–Hoover
theorem for partially exchangeable arrays.

PROPOSITION 4.1. For every finite sequence of times T ′ ⊂ T , the array �[T ′]
is weakly exchangeable as in (9).
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PROOF. This follows directly from the exchangeability property of � (Defi-
nition 2.8). More explicitly, if �T := (�t )t∈T is an exchangeable Markov process,
then (�t )t∈T =L(�σ

t )t∈T and �[T ′]=L �[T ′]σ for all σ ∈ SN, establishing weak
exchangeability. �

PROPOSITION 4.2. For every t ≥ 0, �t determines a weakly exchangeable
{0,1}-valued array (�

ij
t )i,j≥1 whose limit |�t | exists almost surely. Moreover, the

projection |�| := (|�t |)t∈T is a Markov process on D∗.

PROOF. Weak exchangeability of �t is a special case of Proposition 4.1 with
T ′ = {t}. To prove existence of |�t | for fixed t ∈ T , we appeal to weak exchange-
ability and the Aldous–Hoover theorem [1], Theorem 14.21.

To show that |�| is a Markov process, we let (Ft )t∈T denote the natural fil-
tration of �, that is, Ft := σ 〈�s, s ≤ t〉 for each t ∈ T . By defining the cemetery
state |G| = ∂ whenever |G| does not exist, the map | · | : G∞ → D∗ ∪ {∂} is mea-
surable. Furthermore, since |�σ

t | = |�t | for all σ ∈ SN, |�t | is measurable with
respect to the exchangeable σ -field Et generated by �t . The Markov property of �

implies that the conditional law of |�t ′ |, given Ft , depends only on (�t ,�t ′), for
all t, t ′ ∈ T with t ′ > t . Exchangeability of � implies (�t ,�t ′)=L(�σ

t ,�σ
t ′ ) for all

σ ∈ SN. Together, exchangeability and the Markov property imply that the condi-
tional law of |�t ′ | given |�t | is the same as the conditional law of |�t ′ | given |�σ

t |
and, therefore, |�t ′ | depends on �t only through Et . Since |�t | generates Et , the
conditional law of |�t ′ | given Ft is the same as the conditional law of |�t ′ | given
|�t | and |�| is a Markov process. �

REMARK 4.3. The above assertion that |�| is a Markov process only applies
for conditional distributions at finitely many time points. In Section 5, we show that
|�t | exists simultaneously for all t with probability one, from which we deduce that
the projection |�| into D∗ has bounded variation almost surely.

4.1. Characterization of discrete-time Markov chains on G∞. We characterize
the transition law of exchangeable discrete-time Markov chains � by extending
the definition of subgraph density and graph limit, (4) and (6), respectively, to
finite collections of graphs. For any finite k,m,n ∈ N, let F1, . . . ,Fk ∈ Gm and
G1, . . . ,Gk ∈ Gn. We define

ind(F1, . . . ,Fk;G1, . . . ,Gk) = ind
(
(Fi)1≤i≤k; (Gi)1≤i≤k

)
as the number of injections ψ : [m] → [n] for which the subsequence that
G1, . . . ,Gk induces on Gm through ψ coincides with F1, . . . ,Fk , that is,

ind
(
(Fi)1≤i≤k; (Gi)1≤i≤k

) = #
{
ψ : [m] → [n] : (

G
ψ
i

)
1≤i≤k = (Fi)1≤i≤k

}
.
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For G1, . . . ,Gk ∈ G∞, we define the limiting density of (Fi)1≤i≤k in (Gi)1≤i≤k by

t
(
(Fi)1≤i≤k; (Gi)1≤i≤k

)
(12)

:= lim
n→∞ t

(
(Fi)1≤i≤k; (Gi |[n])1≤i≤k

)
, if it exists,

where

t
(
(Fi)1≤i≤k; (Gi |[n])1≤i≤k

) := ind((Fi)1≤i≤k; (Gi |[n])1≤i≤k)

n↓m

is the natural extension of (4).

PROPOSITION 4.4. Let � = (�t )t≥0 be an exchangeable Markov process on
G∞. For every 0 ≤ s < t < ∞ and F,F ′ ∈ Gm, m ∈N,

Q
(m)
s,t

(
F,F ′) := lim

n→∞
ind((F,F ′); (�s |[n],�t |[n]))

ind(F ;�s |[n])
(13)

= t ((F,F ′); (�s,�t ))

t (F ;�s)

exists whenever t (F ;�s) > 0. By specifying Q
(m)
s,t (F,F ′) = δF (F ′), the point mass

at F , whenever t (F ;�s) = 0, Q
(m)
s,t determines a transition probability on Gm for

every m ∈ N. Moreover, for m ≤ n, the transition probability measures Q
(m)
s,t and

Q
(n)
s,t are consistent in the sense that

Q
(m)
s,t

(
F,F ′) = ∑

F ′′∈Gn:F ′′|[m]=F ′
Q

(n)
s,t

(
F ∗,F ′′),(14)

for all F,F ′ ∈ Gm and F ∗ ∈ {F ′′ ∈ Gn : F ′′|[m] = F }.
PROOF. By Proposition 4.1, �[s, t] is a weakly exchangeable {0,1} × {0,1}-

valued array. Therefore, by the Aldous–Hoover theorem and extension of the
Lovász–Szegedy theorem [13], Theorem 2.7, the limiting density t ((F,F ′);
(�s,�t )) exists for all F,F ′ ∈ Gm. As long as t (F ;�s) > 0, the bounded con-
vergence theorem implies

t (F ;�s) = lim
n→∞

ind(F ;�s |[n])
n↓m

= lim
n→∞

∑
F ′∈Gm

ind((F,F ′); (�s |[n],�t |[n]))
n↓m

= ∑
F ′∈Gm

t
((

F,F ′); (�s,�t )
)
,

so that Q
(m)
s,t (F,F ′) determines a transition probability on Gm for every m ∈ N.

Consistency follows by a similar argument to Corollary 2.6(ii). �
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REMARK 4.5. By the same argument, the definition of limiting pairwise den-
sity in (13) extends to a limiting density of any k-tuple of finite graphs. These
limiting densities determine the finite-dimensional distributions of �.

For each s ≤ t , the transition probabilities (Q
(n)
s,t )n≥1 in (13) can be arranged in

an infinite by infinite array Qs,t whose rows and columns are indexed by G∗. We
define Qs,t by

Qs,t

(
F,F ′) :=

{
Q

(n)
s,t

(
F,F ′), F,F ′ ∈ Gn for some n ≥ 1,

0, otherwise.
In this way, Qs,t is a concatenation of random transition probability matrices on
the finite state spaces (Gn)n≥1. By ordering the rows and columns so that each
element of Gm occurs before each element of Gn, for all m ≤ n, Qs,t has a block
diagonal structure, that is, Qs,t has the form

Qs,t :=

⎛
⎜⎜⎜⎜⎝

Q
(1)
s,t 0 0 · · ·
0 Q

(2)
s,t 0 · · ·

0 0 Q
(3)
s,t · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .(15)

The analog to Corollary 2.6 is now apparent for the collection (Q
(n)
s,t )n≥1.

PROPOSITION 4.6. Let Qt,t+1 = Q := (Q(F,F ′))F,F ′∈G∗ be the block-
diagonal matrix obtained by the limiting pairwise frequencies of two infinite
graphs as in (13). Then:

(i) the n-sector Q(n) := (Q(F,F ′))F,F ′∈Gn
determines an exchangeable tran-

sition probability measure on Gn through

P
{
�t+1 = F ′|�t = F

} = Q(n)(F,F ′), F,F ′ ∈ Gn, and

(ii) the collection (Q(n))n≥1 is a family of exchangeable transition probability
measures with the projective Markov property (14).

4.2. Discrete-time processes and weakly exchangeable arrays. The following
definition of dissociated array follows Aldous [1].

DEFINITION 4.7 (Dissociated random array). A random array X :=
(Xij )i,j≥1 is dissociated if(

Xij )
1≤i,j≤n and

(
Xij )

i,j≥n+1 are independent for every n ≥ 1.(16)

By the Aldous–Hoover theorem, dissociated arrays are extreme in the space of
weakly exchangeable arrays, in the same way that independent, identically dis-
tributed sequences are extreme in the space of exchangeable sequences; cf. de
Finetti’s theorem. In general, the law of any weakly exchangeable array can be
expressed as a mixture of dissociated weakly exchangeable arrays.
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PROPOSITION 4.8. Let � be a time-homogeneous Markov process and let
T ′ be a finite set of times. Conditional on ET ′ , �[T ′] is a dissociated weakly ex-
changeable array. Moreover, for each n ∈ N the restriction �

[n]
T ′ of �T ′ to Gn is

a conditionally time-inhomogeneous Markov chain with transition probabilities
Q

(n)
s,t as in (13).

PROOF. Given ET ′ , �[T ′] is conditionally dissociated by Proposition 4.1 and
[1], Proposition 14.6. We need only show that �

[n]
T ′ := (�

[n]
t )t∈T ′ is a conditionally

time-inhomogeneous Markov chain with the appropriate transition probabilities.
We write T ′ := {0 ≤ s0 < s1 < · · · < sk < ∞}. By Proposition 4.1, �[T ′] is

weakly exchangeable. The Aldous–Hoover theorem and the strong law of large
numbers imply that the limiting density (12) exists almost surely for all collections
(Ft )t∈T ′ in Gm, m ≥ 1. We need to show that these limiting densities satisfy

lim
n→∞ t

(
(Ft )t∈T ′ ;�[n]

T ′
) = P {�s0 |[n] = Fs0 |Es0}

k∏
l=1

Q(n)
sl−1,sl

(Fsl−1,Fsl );

that is, we must show that the limiting density of Fsr in �sr depends only on the
limiting density of �sr−1 .

To show this, we generate �
[n]
T ′ as follows. For each 1 ≤ r ≤ n − 1, the Markov

property implies that the conditional law of �[n]
sr+1

given σ 〈�sj ,0 ≤ j ≤ r〉 is a

measurable function of |�sr |. Moreover, by Proposition 4.4, Q
(n)
sr ,sr+1 is a random

transition probability on Gn whose distribution is a measurable function of Esr .
Therefore, given σ 〈�sj ,0 ≤ j ≤ r〉, we generate �sr+1 recursively by determining
�sr+1 |[n+1], for n ∈ N, from the conditional law

P
{
�sr+1 |[n+1] = G∗|�sr+1 |[n] = G,�sr |[n+1] = G′}

(17)

= Q
(n+1)
sr ,sr+1(G

′,G∗)
Q

(n)
sr ,sr+1(G

′|[n],G)
,

where G∗ is chosen from {G′′ ∈ Gn+1 : G′′|[n] = G}. By the strong law of
large numbers, Qsr,sr+1 in (13) is identical to (17) for all pairs (G′|[n],G)

with Q
(n)
sr ,sr+1(G

′|[n],G) > 0. Moreover, Qsr,sr+1 is measurable with respect to

E(sr ,sr+1) ⊂ ET ′ . We conclude that, given ET ′ , �
[n]
T ′ is a conditionally time-

inhomogeneous Markov chain with transition probabilities (13). �

THEOREM 4.9. Let � := (�t )t∈Z+ be a discrete-time exchangeable Markov
chain on G∞ with projection D := (Dt)t∈Z+ into the space of graph limits, that is,
Dt := |�t | for every t ∈ Z+. Then the conditional distribution of Qt,t+1 in (15),
given σ 〈Ds,Qs,s+1〉0≤s≤t−1, is a measurable function of Dt such that

Dt+1 =L DtQt,t+1(18)
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and, for each m ∈ N, the conditional law of �t+1|[m] given σ 〈�s,0 ≤ s ≤ t〉 is

the m-sector Q
(m)
t,t+1. Conversely, for any measurable mapping π from D∗ into the

space of transition probability measures on G∞ and any initial point D ∈ D∗, there
is a unique Markov chain (�t )t∈Z+ on G∞ whose transition probability measure is
governed by π , whose initial state has distribution γD , and whose projection into
D∗ satisfies (18).

PROOF. The first half follows from Propositions 4.2, 4.4, 4.8 and the law of
large numbers. The converse follows immediately, as we can explicitly construct a
Markov chain on G∞ that projects to D almost surely. �

5. Continuous-time processes. The Aldous–Hoover theorem implies that �t

possesses a graph limit |�t | almost surely for any fixed t . In this section, we show
that the graph limit |�t | exists simultaneously for all t ≥ 0 with probability one.
Moreover, if � is a Markov process, then so is its projection |�| into D∗. To show
these properties, we use weak exchangeability of �[T ] from Proposition 4.1.

REMARK 5.1. Since R+ is covered by countably many intervals of unit
length, it is sufficient to show that these properties hold with probability one for
�[T ′], where T ′ = [0,1].

The key to our study of |�| at all time points is the following description of
�[0,1] in terms of an array taking values in a Polish space I∗. As we only consider
undirected graphs, each edge trajectory �

ij
[0,1], i �= j , is an alternating collection

of 0s and 1s, called an on-off cycle. Formally, an on-off cycle y is a partition of
[0,1] into finitely many non-overlapping intervals Ji along with an initial sta-
tus y0 ∈ {0,1}. The starting condition y0 is enough to determine the entire path
{yt }t∈[0,1], since the on-off cycle alternates between being on (yt = 1) and off
(yt = 0) in successive subintervals Ji . We denote the space of on-off cycles by I ,
which is a subset of the Skorokhod space of càdlàg functions [0,1] → {0,1}.
By letting I∗ denote the closure of I in the Skorokhod space, we can partition
I∗ := ⋃

m∈N I∗
m, where I∗

m is the closure of on-off cycles with exactly m sub-
intervals. Consequently, I∗ is complete, separable and Polish. The fact that I∗ is
Polish allows us to apply the Aldous–Hoover theorem to characterize the behavior
of � at an uncountable set of times.

PROPOSITION 5.2. Let � be an exchangeable process on G∞ with càdlàg
paths. Then the collection (�

ij
[0,1])i,j≥1 of on-off cycles induced by � is a weakly

exchangeable I∗-valued array. Consequently, there is a random probability mea-
sure � on I∗ that generates the exchangeable σ -field E[0,1] of (�

ij
[0,1])i,j≥1 and,

conditional on � , (�
ij
[0,1])i,j≥1 is distributed the same as (Y ij )i,j≥1, where

Y ij := F(Ui,Uj ,V{i,j}), i, j ≥ 1,
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for a measurable function F : [0,1]3 → I∗ satisfying F(a, b, ·) = F(b, a, ·) and a
collection {(Ui)i≥1; (V{i,j})i>j≥1} of independent, identically distributed Uniform
random variables on [0,1].

PROOF. By assumption, each �
ij
[0,1] is càdlàg and so �

ij
[0,1] ∈ I ⊂ I∗ for each

i, j ∈ N. Weak exchangeability of (�
ij
[0,1])i,j≥1 follows from Proposition 4.1, be-

cause σ 〈�ij
Q∩[0,1]〉i,j≥1 generates the Borel σ -field on I and exchangeability does

not rely on the Markov assumption. As I∗ is Polish, the rest follows from the
Aldous–Hoover theorem. �

COROLLARY 5.3. If (�t )t≥0 is an exchangeable Markov process on G∞ with

càdlàg sample paths, then (�
ij
[0,1])i,j≥1 is conditionally dissociated given E[0,1]

and each restriction (�
ij
[0,1])1≤i,j≤n has the same conditional law as the path of an

inhomogeneous, continuous-time Markov chain on Gn with transition probabilities
Q

(n)
s,t defined in (13); that is, for all 0 ≤ s < t ≤ 1,

P
{
�t |[n] = G′|E[0,1] ∨ σ 〈�r |[n]〉0≤r≤s,�s |[n] = G

} = Q
(n)
s,t

(
G,G′).(19)

PROOF. By Propositions 4.8 and 5.2, (�
ij
[0,1])i,j≥1 is conditionally dissociated

given E[0,1]. That the finite restrictions of (�
ij
[0,1])i,j≥1 behave like inhomogeneous

continuous-time Markov chains with transition probabilities (19) follows routinely
from Propositions 4.6 and 4.8, because E[0,1] is generated by

∨∞
i=1 EDn , where Dn

is the set of nth-level dyadic rationals m/2n in [0,1]. �

5.1. Existence of graph limits. We now show that the projection |�| into D∗
exists almost surely and that the Markov and càdlàg paths properties for � imply
the same for |�|.

REMARK 5.4. Since Y is an I∗-valued array, we define |Y | in the same way
as for G∞-valued processes �. That is, for every i > j ≥ 1, we regard Y ij as an
on-off cycle and we treat Y as a process Y := (Yt )t∈[0,1] in G∞. The limit |Y |
corresponds to (|Yt |)t∈[0,1], with each Yt regarded as an element of G∞.

THEOREM 5.5. Let Y := (Y ij )i,j≥1 be a dissociated weakly exchangeable

random array in I∗. Then, with probability one, for every t ∈ [0,1], (Y
ij
t )i,j≥1

determines a deterministic graph limit, that is, for every F ∈ Gm, m ∈ N, and t ∈
[0,1],

lim
n→∞ t

(
F ;Y [n]

t

)
exists,(20)

where t (F ;Y [n]
t ) has the same definition as in (5) by regarding Yt as the adjacency

array of an infinite graph.
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PROOF. For any ε > 0 and F ∈ G∗, we show that the limits inferior and supe-
rior of the sequence of densities (t (F ;Y [n]

t ))n∈N are within ε of one another. To
this end, we fix F ∈ Gm, m ∈ N, and for each t ∈ [0,1] we define

δ+
t (F ) := lim sup

n→∞
t
(
F ;Y [n]

t

)
and

δ−
t (F ) := lim inf

n→∞ t
(
F ;Y [n]

t

)
.

By Proposition 4.2, δ+
t (F ) = δ−

t (F ) for all fixed t ∈ [0,1], but we wish to show
that δ+

t (F ) = δ−
t (F ) almost surely for all t ∈ [0,1] simultaneously, that is,

sup
t∈[0,1]

∣∣δ+
t (F ) − δ−

t (F )
∣∣ = 0.

By assumption, Y ij is an on-off cycle for every i, j ≥ 1, so that the path Y
ij
[0,1] =

(Y
ij
t )t∈[0,1] in {0,1} has finitely many discontinuities almost surely and so must

Y
[n]
[0,1] := (Y

ij
[0,1])1≤i,j≤n, for every n ∈ N. For every ε > 0, there is a finite subset

Sε ⊂ [0,1] and an at most countable partition J1, J2, . . . of the open set [0,1] \ Sε

such that

P
{
Y

ij
[0,1] is discontinuous at s ∈ Sε

} ≥ ε and

P
{
Y

ij
[0,1] is discontinuous in Jl

}
< ε, l = 1,2, . . . .

The existence of such a partition is guaranteed by the strong law of large num-
bers since, if such a partition did not exist, then there must be a sequence of inter-
vals (t − ρn, t + ρn) with ρn → 0 that converges to t /∈ Sε such that

P
{
Y

ij
[0,1] is discontinuous in (t − ρn, t + ρn)

} ≥ ε for every n ≥ 1.

Continuity from above implies

P
{
Y

ij
[0,1] is discontinuous at t /∈ Sε

} ≥ ε > 0,

which contradicts the assumption t /∈ Sε .
The strong law of large numbers also implies that

lim
n→∞

2

n(n − 1)

∑
1≤i<j≤n

1
{
Y ij is discontinuous in Jl

}
< ε

for each sub-interval Jl , l = 1,2, . . . . Thus, δ+
t (F ) and δ−

t (F ) cannot vary by more
than ε over Jl and, since δ+

t (F ) = δ−
t (F ) almost surely for each endpoint of Jl ,

sup
t∈Jl

∣∣δ+
t (F ) − δ−

t (F )
∣∣ ≤ 2ε
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for all l = 1,2, . . . with probability one. Since [0,1] is covered by at most count-
ably many subintervals Jl , l = 1,2, . . . , and the nonrandom set S := ⋃

ε>0 Sε , it
follows that

sup
t∈[0,1]

∣∣δ+
t (F ) − δ−

t (F )
∣∣ ≤ 2ε a.s.

for every ε > 0 and every F ∈ G∗. Thus, the limit (20) exists almost surely for
every F ∈ ⋃

m∈N Gm. Countable additivity of probability measures implies that the
limit (20) exists almost surely for all F ∈ ⋃

m∈N Gm and, thus, Y[0,1] determines a
process on D∗ almost surely.

The fact that these limits are deterministic follows from the 0–1 law and our
assumption that Y is dissociated: the homomorphism densities of any �t de-
pend only on the tail σ -field generated by (�t |N\[n])n≥1. Almost sure existence
of the limit follows by a straightforward martingale argument, as the sequence
(t (F ;�t |[n]))n≥1 is a reverse martingale for every fixed F ∈ G∗. �

5.2. Characterization of discontinuities. We restate Theorem 3.6 for the
reader’s benefit.

Theorem 3.6. An exchangeable G∞-valued Markov process � := (�t )t≥0 with
càdlàg paths has at most countably many discontinuities almost surely. We can
classify these discontinuities into three types: if � is discontinuous at t = s, then
either:

(A) P(�ij is discontinuous at s|E[0,∞)) > 0 for every i �= j ∈ N or
(B) there exists a unique i ∈ N such that either:

(B-1) �ij is discontinuous at s for some unique j �= i or
(B-2) there exist constants 0 ≤ p0,p1 ≤ 1 (possibly depending on E[0,∞))

such that

P
{
�ij is discontinuous at s|E[0,∞)

} = pk on the event �
ij
s− = k,

for all j �= i;
and P {�i′j ′

is discontinuous at s|E[0,∞)} = 0 if i /∈ {i ′, j ′}.
PROOF. By Theorem 2.4 and Proposition 5.2, it is enough to prove the above

statement for a weakly exchangeable dissociated I∗-valued array Y := (Y ij )i,j≥1.
For i > j ≥ 1, let Sij denote the set of all s ∈ [0,1] such that

P
{
Y ij is discontinuous at t = s

}
> 0.

In Theorem 5.5, we showed that

Sij
ε := {

s ∈ [0,1] : P {
Y

ij
[0,1] is discontinuous at s

} ≥ ε
}

is a finite set and Sij := ⋃
ε>0 S

ij
ε is at most countable. We break down our argu-

ment into cases, depending on whether a discontinuity occurs inside or outside of
S := ⋃

i,j≥1 Sij .
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CASE A: s ∈ S . For any fixed s ∈ S, the strong law of large numbers and weak
exchangeability of Y imply that

lim
n→∞

ind((F,F ′); (Y [n]
s− , Y [n]

s ))

n↓m
= P

{
Y

[n]
s− = F and Y [n]

s = F ′}
for every F,F ′ ∈ Gm, m ∈ N. Consequently, given E[0,1], there is a measurable
function that determines how Y behaves at s, for each s ∈ S. By weak exchange-
ability, either zero edges change or a positive fraction does. Since a positive frac-
tion of edges can change, it follows that the projection of Y into D∗ can have a
discontinuity at time s as well.

CASE B: s /∈ S . The next case involves a discontinuity of Y at s /∈ S. First
of all, if Y is discontinuous at s /∈ S, then the overall proportion of pairs ij for
which Y

ij
[0,1] is discontinuous at s must be zero; otherwise, the strong law of large

numbers implies

P
{
Y 12[0,1] is discontinuous at s /∈ S

}
= lim

n→∞
2

n(n − 1)

∑
1≤i<j≤n

1
{
Y

ij
[0,1] is discontinuous at s

}
> 0,

contradicting our assumption that s /∈ S.
On the event that the proportion of pairs is 0, the total number of pairs that

are discontinuous can be (B-1) finite or (B-2) infinite. Treating case (B-2) first,
we define Dij to be the set of discontinuity times of Y

ij
[0,1], for any i, j ∈ N. For

distinct vertices i, i′, j, j ′ ∈ N, we must have

P
{
Y

ij
[0,1] and Y

i′j ′
[0,1] discontinuous at t ∈ Dij \ S|Dij }

≤ P
{
Y

i′j ′
[0,1] discontinuous at s /∈ S

} = 0,

by our definition of S. Furthermore, for all distinct pairs i, i ′, j, j ′, the uncon-

ditional probability that Y
ij
[0,1] and Y

i′j ′
[0,1] have a common point of discontinuity

outside S is 0. Since there are countably many disjoint pairs ij and i ′j ′, it easily
follows that two disjoint edges (i.e., {i, j} ∩ {i ′, j ′} = ∅) cannot have a common
discontinuity outside S.

The above argument forbids disjoint pairs ij and i ′j ′ from having a com-
mon discontinuity outside of S, but it does not restrict how a set of edges in-
cident a given vertex i ∈ N can behave. In the restriction �

[n]
t , there are n − 1

edges/nonedges incident to each vertex i = 1, . . . , n; thus, the previous argument
does not rule out any of the possible behaviors including a change of all edges
incident vertex i, because

0 ≤ lim
n→∞ 2n−1(n − 1)−1

∑
1≤j≤n

1
{
�

ij
t− �= �

ij
t

} ≤ lim
n→∞ 2n−1 = 0.
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Our claim, however, is that either a single edge changes or a positive fraction of
edges incident some fixed i ∈ N changes at any discontinuity time s /∈ S. To show
this, we define Dij to be the set of discontinuity times of edge ij , j �= i, and
Di := ⋃

j �=i D
ij to be the set of discontinuities of all edges incident vertex i. For

fixed j �= j ′ �= i, we have

P
{
�

ij
[0,1] and �

ij ′
[0,1] both discontinuous at t ∈ Dij \ S|Dij ,E[0,1]

}
= P

{
�

ij ′
[0,1] discontinuous at t ∈ Dij \ S|Dij ,E[0,1]

}
= pt

jj ′ .

Either pt
jj ′ = 0 or pt

jj ′ > 0. If pt
jj ′ > 0, then, by exchangeability,

P
{
�

ij
[0,1] and �

ij ′′
[0,1] discontinuous at t ∈ Dij \ S|Dij ,E[0,1]

} = pt
jj ′ > 0,

for all j ′′ �= i with �
ij ′
t− = �

ij ′′
i− . By the strong law of large numbers, a positive pro-

portion of edges incident i is discontinuous at t /∈ S. On the other hand, if pt
jj ′ = 0,

then the conditional probability that �
ij
[0,1] and �

ij ′′
[0,1] have a shared discontinuity

at t ∈ Dij \ S, given Dij and E[0,1], is zero for all j ′′ �= i. Since the set of j ′′ �= i is
countable, edge ij is the only discontinuity at t ∈ Dij .

Cases (A) and (B) exhaust all possibilities. The proof is complete. �

5.3. Bounded variation of sample paths in D∗. Let � := (�t )t≥0 be an ex-
changeable Markov process on G∞ with càdlàg sample paths and let D := (Dt)t≥0

be its projection into D∗. By Proposition 4.4, the limiting density Q
(m)
s,t (F,F ′) ex-

ists for all F,F ′ ∈ Gm and all 0 ≤ s ≤ t < ∞, and Dt ∈ D∗ determines a unique
probability measure on G∞ for every fixed t ≥ 0.

With B denoting the Borel σ -algebra on G∞, we define the variation of D be-
tween times s and t by

Vs,t = ‖Ds − Dt‖TV := sup
A∈B

∣∣Ds(A) − Dt(A)
∣∣.(21)

For each n ≥ 1, we write D
(n)
t to denote the measure Dt induces on Gn by restric-

tion. Because Gn is a finite state space, we can define the variation of D(n) between
s and t by

V
(n)
s,t = ∥∥D(n)

s − D
(n)
t

∥∥
TV := 1

2

∑
G∈Gn

∣∣D(n)
s (G) − D

(n)
t (G)

∣∣.
Conditional on E[0,1], Qs,t is a transition probability measure on G∞, which we

can regard as an array for which only a finite number of entries in each row and
column are nonzero, making the product Qs,t ◦Qt,u well-defined and finite for s ≤
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t ≤ u. Furthermore, {Qs,t }0≤s≤t determines a collection of transition probabilities
for which

Qs,t ◦ Qt,u = Qs,u a.s. for all s ≤ t ≤ u,(22)

cf. the Chapman–Kolmogorov theorem for Markov chains. It follows that D satis-
fies

DsQs,t = Dt a.s.(23)

for all 0 ≤ s ≤ t .
We define the density transfer Ts,t of D between times s and t by

Ts,t :=
∫
G∞

Qs,t

(
G,G∞ \ {G})Ds(dG).(24)

For each of the component processes (D
(n)
t )t≥0, the density transfer is

T
(n)
s,t := ∑

F,F ′∈Gn:F ′ �=F

D(n)
s (F )Q

(n)
s,t

(
F,F ′).(25)

Note that the density transfer quantifies how much mass moves between times s

and t .

PROPOSITION 5.6. For every n ≥ 1 and all s ≤ u ≤ t , the density transfer and
variation of D satisfy

V
(n)
s,t ≤ T

(n)
s,t ≤ T (n)

s,u + T
(n)
u,t .(26)

The analogous inequalities hold for the variation of the infinite process D.

PROOF. For fixed n ∈ N and F ∈ Gn, we write Ds(F ) := D
(n)
s (F ) := t (F,�s).

Then

Dt(F ) = ∑
F ′∈Gn

Ds

(
F ′)Q(n)

s,t

(
F ′,F

);
whence, ∑

F∈Gn

∣∣Ds(F ) − Dt(F )
∣∣

= ∑
F∈Gn

∣∣∣∣Ds(F ) − ∑
F ′∈Gn

Ds

(
F ′)Q(n)

s,t

(
F ′,F

)∣∣∣∣
= ∑

F∈Gn

∣∣∣∣ ∑
F ′∈Gn

Ds(F )Q
(n)
s,t

(
F,F ′) − Ds

(
F ′)Q(n)

s,t

(
F ′,F

)∣∣∣∣
≤ ∑

F∈Gn

∑
F ′∈Gn:F ′ �=F

∣∣Ds(F )Q
(n)
s,t

(
F,F ′) − Ds

(
F ′)Q(n)

s,t

(
F ′,F

)∣∣
≤ 2

∑
F,F ′∈Gn:F �=F ′

Ds(F )Q
(n)
s,t

(
F,F ′).



714 H. CRANE

The second inequality in (26) follows from Chapman–Kolmogorov. �

We write T[a,b] := (Ts,t )a≤s≤t≤b to be the section of the density flow restricted
to the interval [a, b] ⊆ [0,1]. We then define the total variation of T[a,b] by

‖T[a,b]‖TV := sup
n−1∑
i=0

Tsi,si+1,

where the supremum is taken over all partitions of [a, b] into finitely many subin-
tervals with endpoints a = s0 < s1 < · · · < sK = b. Similarly, we define the total
variation of D on [a, b] ⊆ [0,1], respectively, D(n), for n ≥ 1, by

‖D[a,b]‖TV := sup
K−1∑
j=0

Vsj ,sj+1,

respectively,

∥∥D(n)
[a,b]

∥∥
TV := sup

K−1∑
j=0

V (n)
sj ,sj+1

,

where the supremum is taken over all partitions of [a, b] into finitely many subin-
tervals with endpoints a ≤ s0 < s1 < · · · < sK−1 < sK = b.

DEFINITION 5.7 (Locally bounded variation). For n ≥ 1, we say the n-sector
D(n) := (D

(n)
t )t∈[0,1] has locally bounded variation if∥∥D(n)

[a,b]
∥∥

TV < ∞ for all 0 ≤ a < b ≤ 1.(27)

A path D := (Dt)t∈[0,1] in D∗ has finite-dimensional locally bounded variation
if (27) holds for each of its n-sectors.

THEOREM 5.8. For each n ≥ 1, the density flow (T
(n)
s,t )0≤s≤t has locally

bounded variation almost surely. That is, with probability one, for all 0 ≤ a <

b < ∞, ∥∥T (n)
[a,b]

∥∥
TV < ∞ a.s.(28)

Before proving Theorem 5.8, we sketch the intuition. Under the assumption of
càdlàg sample paths, the finite space sample paths of � can jump only a finite
number of times in any bounded time interval. On the other hand, the projection
of � into the space of graph limits has infinite variation if and only if there is a
constant flow of mass into and out of every possible finite state. These two events
are incompatible: a constant flow of mass in the space of graph limits forces the
finite space paths of � to jump infinitely often with positive probability.
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The following technical argument can obscure the above intuition. To reduce
further technicalities, we prove the theorem in the special case when � is time-
homogeneous, which allows us to restrict attention to its behavior on the unit in-
terval.

PROOF OF THEOREM 5.8. Under the assumption that the covering process �

is time-homogeneous, it is sufficient to show that (28) holds on [0,1], from which
the case for arbitrary bounded intervals follows by scaling and shifting.

To summarize the argument: if (28) fails, then there must be a positive proba-
bility that the restriction �

[n]
[0,1] of �[0,1] to Gn does not have càdlàg sample paths.

Since we have endowed G∞ with the product-discrete topology, the covering pro-
cess � has càdlàg paths if and only if each of its component processes �[n] does.
In order for (28) to fail, there must be a constant flow of density in the component
process D(n), which implies that �

[n]
[0,1] has at least M discontinuities on [0,1] for

every M ≥ 1, contradicting the assumption that � has càdlàg paths.
To begin, we fix n ≥ 1 and assume that there is a positive probability that

‖T (n)
[0,1]‖TV = ∞, that is, for every L ≥ 1, there is positive probability that

‖T (n)
[0,1]‖TV ≥ L. Thus, there must exist a partition of [0,1] into subintervals

J1, . . . , JK so that the total variation on each subinterval exceeds L. In particu-
lar, for M ≥ 1 and L = M226(n

2), there is a sequence of times 0 = s0 < s1 < · · · <
sK = 1 so that

K−1∑
i=0

T (n)
si ,si+1

≥ M226(n
2).

We can, therefore, specify a collection J1, . . . , JM23(n2)
of M23(n

2) subintervals so

that the total variation on each subinterval Jl exceeds M23(n
2). Each Jl admits a

further subpartition Jl1, . . . , Jl2(n2)
so that the total variation within each Jli exceeds

M22(n
2). We denote the endpoints of each subinterval Jl by sl < tl . For each l =

1, . . . ,M23(n
2), there must be at least one pair (Fl,F

′
l ), Fl �= F ′

l , for which

2(n2)∑
j=1

D(n)
slj

(Fl)Q
(n)
slj ,tlj

(
Fl,F

′
l

) ≥ M.(29)

As there are M23(n
2) subintervals Jl , each with at least one pair (Fl,F

′
l ) for which

(29) holds, there must be some pair (F,F ′), F �= F ′, that occurs as (Fl,F
′
l ) at

least M2(n
2) times. We write s∗

1 < s∗
2 < · · · s∗

M2(n2)
and t∗1 < · · · < t∗

M2(n2)
to be the

left and right endpoints of the respective subintervals. For each i = 1, . . . ,M2(n
2),

there must be some state, or set of states, F0i for which D
(n)
0 (F0i ) > 0 and
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Q
(n)

0,s∗
i
(F0i , F ) > 0; thus,

P
{
�[n] has no discontinuity in

[
s∗
i , t∗i

]|E[0,1],�[n]
0 = F0i

}

≤
2(n2)∏
j=1

(
1 − Q

(n)

0,s∗
ij
(F0i , F )Q

(n)

s∗
ij ,t∗ij

(
F,F ′))

≤ e−M.

By the pigeonhole principle, there must be some F0i , i = 1, . . . ,M2(n
2), that occurs

at least M times. Writing F0 to denote any such choice and [s∗
j , t∗j ] to denote a

collection of M subintervals for which F0j = F0, we have

P
{
�

[n]
[0,1] has fewer than M discontinuities |E[0,1],�[n]

0 = F0
}

≤ P

{
M⋃

j=1

{
�

[n]
[0,1] has no discontinuity in

[
s∗
j , t∗j

]}|E[0,1],�[n]
0 = F0

}

≤
M∑

j=1

P
{
�

[n]
[0,1] has no discontinuity in

[
s∗
j , t∗j

]|E[0,1],�[n]
0 = F0

}

≤ Me−M.

We conclude that the conditional probability that �
[n]
[0,1] has at least M discon-

tinuities, given E[0,1] and �
[n]
0 = F0, must exceed 1 − Me−M for every M ≥ 1;

whence, there is positive probability that �
[n]
[0,1] has more than M discontinuities,

for every M ≥ 1, and a positive probability that �
[n]
[0,1] does not have càdlàg paths,

a contradiction. �

COROLLARY 5.9. For every n ≥ 1, D(n) has finite-dimensional locally
bounded variation.

PROOF. Follows by combining Proposition 5.6 and Theorem 5.8. �

Theorem 3.3 now follows from Theorems 5.5 and 5.8.

PROOF OF THEOREM 3.3. The existence of the graph limits for all t ≥ 0 is
immediate from Theorem 5.5 and Aldous–Hoover. The Markov property of |�|
follows from Proposition 4.2. Finally, the sample paths of |�| are càdlàg since, by
Theorem 5.5, (|�t |)t≥0 is continuous at every t /∈ S := ⋃

ε>0 Sε almost surely and
S is an at most countable, nonrandom subset of [0,1]. By Theorem 5.8, the paths
of |�| have finite-dimensional locally bounded variation almost surely. �
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5.4. Construction of � from its projection to D∗. In this section, we prove
Theorem 3.10, which establishes that any Markov process D on D∗ whose paths
are càdlàg and have locally bounded variation can be associated to an exchangeable
Markov process on G∞ with càdlàg sample paths.

PROPOSITION 5.10. Let D := (Dt)t≥0 be a càdlàg path of finite-dimensional
bounded variation in D∗. Then, for each n ≥ 1, there exists a two-parameter pro-
cess (Q

(n)
s,t )0≤s≤t≤a of transition probability measures on Gn such that for every

[c, d] ⊆ [0, a],

sup
c=s0≤s1≤···≤sn=d

n−1∑
i=0

T (n)
si ,si+1

= ∥∥D(n)
[c,d]

∥∥
TV,(30)

where ‖ · ‖TV denotes the total variation norm on D∗ and Ts,t is the density trans-
fer function. The mapping that sends D(n) to (Q

(n)
s,t ) is measurable and, for every

c < d , the section (Q
(n)
s,t )c≤s≤t≤d depends only on (D

(n)
t )c≤t≤d . Moreover, for each

m ≤ n, the two-parameter processes (Q
(m)
s,t )0≤s≤t and (Q

(n)
s,t )0≤s≤t are consistent

as in (14). It follows that there exists a two-parameter process (Qs,t )0≤s≤t of tran-
sition probability measures satisfying (22), (23) and (30).

PROOF. In Theorem 3.6, we characterized the discontinuities of D and showed
that with probability one D has at most countably many jumps, each of which oc-
curs at the times of type-(A) discontinuities. Since, for each n ≥ 1, the n-sector
D(n) is a projection of D, its discontinuities must be in a subset of the discontinu-
ities of D. As a result, we can first establish the proposition in the special case in
which D is continuously differentiable with respect to t on D∗. In this case, we put
d

(n)
t := dD

(n)
t /dt so that (d

(n)
t (F ))F∈Gn sums to 0. We further define

S
(n)
t := ∑

F∈Gn:d(n)
t (F )>0

d
(n)
t (F )

and

R
(n)
t

(
F,F ′) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d
(n)
t (F )d

(n)
t

(
F ′)/S(n)

t , d
(n)
t (F ) < 0, d

(n)
t

(
F ′) > 0,

d
(n)
t (F )d

(n)
t

(
F ′)/S(n)

t , d
(n)
t (F ) > 0, d

(n)
t

(
F ′) < 0,

d
(n)
t (F ), F = F ′,

0, otherwise,

for each F,F ′ ∈ Gn. We can define the transition probability measure on Gn by

Q
(n)
s,t

(
F,F ′) := exp

{∫ t

s
R(n)

u

(
F,F ′)du

}
, F,F ′ ∈ Gn.
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On Gn, (Q
(n)
s,t (F,F ′))F,F ′∈Gn

determines a stochastic matrix, because the rows of

R
(n)
u sum to zero. Since the total variation of any continuously differentiable func-

tion equals the integral of its absolute value, condition (30) holds.
Generalizing from the above case, we can now assume that D is continuous and

has finite-dimensional locally bounded variation. In this case, although D is almost
everywhere differentiable, the total variation of D between times s and t need not
equal the integral of its derivative over [s, t]. If instead we change time and define
D̂Tt = Dt , then D̂t has differentiable paths and the above argument gives the two-
parameter process (Q̂

(n)
s,t )s≤t . We can reverse the time change to obtain (Q

(n)
s,t )s≤t

associated to the original process D(n).
Finally, if D has jump discontinuities on a countable set S, then there must

be some N ∈ N such that D(n) has jump discontinuities for all n ≥ N . In this
case, we can make D(n) continuous by the usual process of stretching D(n) at each
discontinuity point. In particular, suppose D(n) is discontinuous at time t with a
jump of size 	Tt . Then we insert an interval of length 	Tt between times t− and
t and let D(n) evolve on (t−,	Tt + t−) by following a straight line path from
D

(n)
t− to D

(n)
t . The resulting path, denoted D̃(n), has locally bounded variation and

is continuous. Our previous argument gives a two-parameter process (Q̃
(n)
s,t )0≤s≤t .

We can then contract each of our stretched intervals to obtain the appropriate two-
parameter process (Q

(n)
s,t )0≤s≤t that satisfies (30).

Conditions (22) and (23) are satisfied by construction. Furthermore, since the n-
sectors (D(n))n≥1 are compatible, the consistency condition (14) is satisfied for the
finite-dimensional semigroups (Q

(n)
s,t )n≥1, from which the existence of (Qs,t )0≤s≤t

for the process D follows by standard measure theory; see, for example, [4]. �

We can now prove Theorem 3.10.

PROOF OF THEOREM 3.10. Assuming D := (Dt)t≥0 is a càdlàg Markov pro-
cess in D∗ whose sample paths have finite-dimensional locally bounded variation,
we know from Proposition 5.10 that there is a random collection (Qs,t )0≤s≤t such
that, for any c < d , the section (Qs,t )c≤s≤t≤d is measurable with respect to D[c,d].
Given (Qs,t )s≤t , we can construct a compatible collection (�(n))n≥1 of finite space
graph-valued time-inhomogeneous Markov processes from the consistent family
of finite-dimensional semigroups (Q

(n)
s,t )n≥1. Put another way, given (Qs,t )s≤t , we

construct a conditionally dissociated I∗-valued array corresponding to Qs,t .
For each n ≥ 1, �(n) := (�

(n)
t )t≥0 is exchangeable and has càdlàg sample

paths and the collection (�(n))n≥1 can be constructed to be compatible, that is,
�(m) = (�

(n)
t |[m])t≥0 for all m ≤ n, by the consistency condition (14). By (30) and

the assumption that each D(n) has bounded variation, � must have càdlàg paths.
Therefore, there exists an exchangeable process � on G∞ whose finite restrictions
are càdlàg and of locally bounded variation. By the Aldous–Hoover theorem, the
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projection of the limiting process � into D∗ is almost surely equal to D. In partic-
ular, for t ≥ 0 and F ∈ Gm,

t (F ;�t) = lim
n→∞

ind(F ;�t |[n])
n↓m

= lim
n→∞

1

n↓m

∑
F ′∈Gm

D0
(
F ′) ind

((
F ′,F

); (�0|[n],�t |[n])
)

= ∑
F ′∈Gm

D0
(
F ′)Q(m)

0,t

(
F ′,F

)

= Dt(F ).

This completes the proof. �

6. Concluding remarks and future directions. We have described the evo-
lution of dynamic random networks that satisfy the minimal assumptions of ex-
changeability and càdlàg sample paths. Under the further assumption of Marko-
vian dependence, we obtain a precise description of sample path properties. Our
main theorems are closely related to several current and future directions in the
study of large graphs.

6.1. Modeling sparse and/or scale-free networks. The assumptions of ex-
changeability and càdlàg paths impose no obviously unwanted restrictions on sam-
ple path and/or model properties; however, we must comment on an inherent dis-
crepancy between the statistical assumption of exchangeability and the empirical
observation of sparsity in real world networks. Many real world networks have few
edges relative to the number of vertices, which practitioners commonly interpret
to mean that real world networks are sparse, that is, the number of edges grows
on the order of the number of vertices as the size of the graph grows to infinity.
On the other hand, exchangeable networks are dense almost surely, that is, the
number of edges grows as the square of the number of vertices as the number of
vertices increases to infinity. Since sparsity is defined asymptotically, no amount
of finite data could ever contradict the exchangeability assumption. On the other
hand, sparsity is believed to be widespread and we would like a framework in
which exchangeable models can coexist with empirical observations. In concur-
rent work, we investigate these foundational questions more closely and devise a
general framework for network modeling [8]. We also provide a construction of
scale-free networks that are exchangeable with respect to labeling of its edges [7].

6.2. Limits of sparse graph sequences. The Lovász–Szegedy graph limit the-
ory only applies to dense graph sequences. Recently, Borgs et al. [2, 3] have an-
nounced an extension of the theory of graph limits to sparse graphs via the theory
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of Lp graphons; however, this notion is decidedly less natural than the Lovász–
Szegedy theory for dense graphs. In our preliminary analysis, we see no interpre-
tation of an Lp graphon in terms of a proper probability measure on countable
graphs. Finding such an interpretation, or developing a more natural graph limit
theory for sparse graphs, is a topic for future study.

6.3. Processes on dynamic networks. Our general results about exchangeable
graph-valued Markov processes should equip statisticians with some understand-
ing of what common sample paths assumptions imply about network behavior. In
the case we studied, the combination of exchangeability and càdlàg sample paths
seems relatively tame, and we suspect that specific classes of models can be devel-
oped to treat relevant problems in epidemiology and physics.

6.4. Hypergraphs. The above arguments apply, without change, to the anal-
ysis of exchangeable, càdlàg Markov processes on spaces of hypergraphs, asym-
metric arrays and finite-dimensional arrays valued in a finite space.
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