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Causal Diagrams for Interference
Elizabeth L. Ogburn and Tyler J. VanderWeele

Abstract. The term “interference” has been used to describe any setting in
which one subject’s exposure may affect another subject’s outcome. We use
causal diagrams to distinguish among three causal mechanisms that give rise
to interference. The first causal mechanism by which interference can op-
erate is a direct causal effect of one individual’s treatment on another indi-
vidual’s outcome; we call this direct interference. Interference by contagion
is present when one individual’s outcome may affect the outcomes of other
individuals with whom he comes into contact. Then giving treatment to the
first individual could have an indirect effect on others through the treated in-
dividual’s outcome. The third pathway by which interference may operate
is allocational interference. Treatment in this case allocates individuals to
groups; through interactions within a group, individuals may affect one an-
other’s outcomes in any number of ways. In many settings, more than one
type of interference will be present simultaneously. The causal effects of in-
terest differ according to which types of interference are present, as do the
conditions under which causal effects are identifiable. Using causal diagrams
for interference, we describe these differences, give criteria for the identi-
fication of important causal effects, and discuss applications to infectious
diseases.

Key words and phrases: Causal diagrams, causal inference, contagion,
DAGs, graphical models, infectiousness, interference, nonparametric iden-
tification, social networks, spillover effects.

Traditionally, causal inference has relied on the
assumption of no interference, that is, the assump-
tion that any subject’s outcome depends only on
his own treatment and not on the treatment of any
other subject. This assumption is often implausi-
ble; for example, it is violated when the outcome
is an infectious disease and treating one individual
may have a protective effect on others in the popu-
lation. Recent work in statistics has focused on re-
laxing the assumption of no interference (Graham,
Imbens and Ridder, 2010; Halloran and Struchiner,
1995; Hudgens and Halloran, 2008; Manski, 2013;
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Rosenbaum, 2007; Tchetgen Tchetgen and Vander-
Weele, 2012; Vansteelandt, 2007). Much of this work
has been motivated by the study of infectious dis-
eases (Halloran and Struchiner, 1995; Tchetgen Tch-
etgen and VanderWeele, 2012; VanderWeele and Tch-
etgen Tchetgen, 2011a, 2011b; Halloran and Hudgens,
2012). Researchers have also explored the implica-
tions of interference on residents of neighborhoods
when some residents are given housing vouchers to
move (Sobel, 2006) or when new resources are in-
troduced to the neighborhood (VanderWeele, 2010).
Others have written about the interference that arises
from assigning children to classrooms and assigning
classrooms to educational interventions (Graham, Im-
bens and Ridder, 2010; Hong and Raudenbush, 2008;
VanderWeele et al., 2013). The rising prominence of
social networks in public health research underscores
the need for methods that take into account the inter-
connections among individuals’ treatments and out-
comes (Christakis and Fowler, 2007; Cohen-Cole and
Fletcher, 2008; Mulvaney-Day and Womack, 2009).
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Graphical models have shed light on the identifica-
tion of causal effects in many settings (Dahlhaus and
Eichler, 2003; Didelez, Kreiner and Keiding, 2010;
Freedman, 2004; Greenland, Pearl and Robins, 1999;
Pearl, 1995, 1997, 2000; Robins, 2003; Tian and Pearl,
2002a; Vansteelandt, 2007) but have not yet been ap-
plied to settings with interference. In this paper, we de-
scribe how to draw causal diagrams representing the
complex interdependencies among individuals in the
presence of interference, and how to use those dia-
grams to determine what variables must be measured
in order to identify different causal effects of inter-
est. We review the literature on causal diagrams and
identification of causal effects in the absence of inter-
ference in Section 1, and recent work on the estima-
tion of causal effects in the presence of interference
in Section 2. In Section 3, we discuss which covari-
ates must be measured and controlled for in order to
identify causal effects in the presence of interference.
Section 4 introduces the three distinct types of interfer-
ence, provides causal diagrams to help explicate their
structure, and describes some of the causal effects we
would wish to estimate and the assumptions required
to identify them. In Section 5, we use the concepts in-
troduced in Section 4 to elucidate the nature of interfer-
ence in social networks. Section 6 concludes the paper.

1. REVIEW OF IDENTIFICATION OF CAUSAL
EFFECTS IN THE ABSENCE OF INTERFERENCE

Suppose that we wish to estimate the average causal
effect of a treatment A on an outcome Y from ob-
servational data on n individuals for whom we have
also measured a vector of confounders C. For simplic-
ity, we will assume in this section and the next that
A is binary and Y is continuous, but our remarks ap-
ply equally to A and Y discrete or continuous. Under
the assumptions of no interference and a single version
of treatment (we will not discuss the latter assumption
here; see VanderWeele and Hernan, 2013, for discus-
sion), Yi(a), a = 0,1 is defined as the counterfactual
outcome we would have observed if, possibly contrary
to fact, subject i had received treatment a. The average
causal effect of A on Y is equal to E[Y(1)]−E[Y(0)],
and it is identified under the three additional assump-
tions of consistency,

Yi(a) = Yi if Ai = a,(1)

conditional exchangeability,

Yi(a) � Ai |Ci,(2)

and positivity,

P(Ai = a|Ci = c) > 0

for all a in the support of A and for all c(3)

in the support of C such that P(C = c) > 0.

We refer the reader to Hernán and Robins (2006) for
discussion of these assumptions.

The conditional exchangeability assumption is some-
times referred to as the “no unmeasured confounding
assumption.” Identifying the variables that must be in-
cluded in C can be assessed with the aid of causal di-
agrams (e.g., Greenland and Robins, 1986; Greenland,
Pearl and Robins, 1999; Pearl, 2003).

Causal diagrams, or causal directed acyclic graphs
(DAGs) consist of nodes, representing the variables in
a study, and arrows, representing causal effects. In a
slight abuse of terminology, we will not distinguish be-
tween nodes on a DAG and the variables they repre-
sent. A DAG is a collection of nodes and arrows in
which no variable is connected to itself by a sequence
of arrows aligned head-to-tail. A causal DAG is a DAG
on which arrows represent causal effects and that in-
cludes all common causes of any pair of variables on
the graph. The causal DAG in Figure 1 represents the
scenario in which the effect of A on Y is confounded
by a single confounder C. The three arrows encode the
causal effects of C on A, C on Y , and A on Y . We
briefly introduce terminology and results for DAGs but
refer the reader to Pearl (2000, 2003) for details and
discussion. Recently, Richardson and Robins (2013)
introduced a new class of causal diagrams called single
world intervention graphs (SWIGs). This work can be
immediately and fruitfully applied to the interference
settings we discuss below; however, in the interest of
space we restrict our attention to DAGs.

A path on a DAG is any unbroken, nonrepeating se-
quence of arrows connecting one variable to another.
A directed path (or a causal path on a causal DAG)
is a path that follows arrows from tail to head. A vari-
able X is an ancestor (or cause, if the DAG is causal)
of Z if there is a directed path from X to Z. Equiv-
alently, Z is a descendent of X. If the directed path
from X to Z consists of a single arrow, then X is a par-
ent of Z and Z is a child of X. On a causal DAG, we
would say that X has a direct effect on Z. If a path

FIG. 1.
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includes X, W and Z and if there are arrows from
both X and Z into W , then W is a collider on the
path. A collider is a path-specific concept. For exam-
ple, in Figure 1, Y is a collider on one path from C

to A (the path C → Y ← A) but not on another (the
path C → A → Y ). A path can be unblocked, mean-
ing roughly that information can flow from one end to
the other, or blocked, meaning roughly that the flow
of information is interrupted at some point along the
path. If all paths between two variables are blocked,
then the variables are d-separated, and if two variables
are d-separated on a causal DAG then they are statisti-
cally independent. A path is blocked if there is a col-
lider on the path such that neither the collider itself nor
any of its descendants is conditioned on. An unblocked
path can be blocked by conditioning on any noncol-
lider along the path. Two variables are d-separated by
a set of variables if conditioning on the variables in the
set suffices to block all paths between them, and if two
variables are d-separated by a third variable or a set of
variables then they are independent conditional on the
third variable or set of variables (Pearl, 1995, 2000).

A backdoor path from X to Z is one that begins with
an arrow pointing into, rather than out of, X. For ex-
ample, the path A ← C → Y in Figure 1 is a back-
door path from A to Y . Pearl (1995) proved that condi-
tioning on a set of nondescendants of A that block all
backdoor paths from A to Y suffices for exchangeabil-
ity to hold for the effect of A on Y . This set need not
be unique.

Identification of effects, other than total effects, often
requires assumptions beyond (1), (2), and (3). Path-
specific effects quantify the causal effect of one vari-
able on another via specific causal pathways. Consider
the DAG in Figure 2, which adds a mediator M to the
path from A to Y . Now there are two different causal
pathways from A to Y , namely A → Y and A → M →
Y . Causal effects of the form E[Y(a)]−E[Y(a′)] cap-
ture all causal pathways from A to Y without dis-
tinguishing among them, but we may be interested
specifically in direct effects, which bypass the medi-
ator, and indirect effects, which go through the me-
diator. Define Mi(a) to be the counterfactual value

FIG. 2.

we would have observed for Mi if Ai had been set
to a, and Yi(a,m) to be the counterfactual value of
Yi that we would have observed if Mi had been set
to m and Ai to a. We make the additional consis-
tency assumptions that Mi(a) = Mi when Ai = a, that
Yi(a,m) = Yi when Ai = a and Mi = m, and that
Yi(a,Mi(a)) = Yi(a). Then the natural direct effect is
defined as E[Y (a,M(a))] − E[Y(a′,M(a))]; it mea-
sures the expected change in Y due to a change in A,
holding M fixed at M(a). A direct path from X to Z

is said to be deactivated in a particular causal contrast
if X is set to the same value in the counterfactual for
Z in both terms of the contrast. A path is deactivated
if any arrow on the path is deactivated. In the natural
direct effect, A is set to the same value in the counter-
factual for M in both terms of the contrast; therefore
the natural direct effect can be conceptualized as the
effect of A on Y with the path A → M deactivated
(Pearl, 2001). The natural indirect effect, defined as
E[Y(a′,M(a))] − E[Y(a′,M(a′))], measures the ex-
pected change in Y when A is held fixed but M changes
from M(a) to M(a′). This is the effect of A on Y with
the arrow from A to Y deactivated (A is set to a′ in the
counterfactual for Y in both terms of the contrast). The
natural direct and indirect effects sum to the total effect
of A on Y : E[Y(a)] − E[Y(a′)] = E[Y (a,M(a))] −
E[Y(a′,M(a′)] = {E[Y (a,M(a))] − E[Y(a′,
M(a))]} + {E[Y(a′,M(a))] − E[Y(a′,M(a′))]}.
The controlled direct effect of A on Y , given by
E[Y(a,m)] − E[Y(a′,m)] fixes M at a specific value
m and compares the counterfactual outcomes under
two different values of A. This is the effect of A on
Y with the path M → Y deactivated.

In order to identify the controlled direct effect, the
following assumptions are sufficient:

Yi(a,m) � Ai |Ci(4)

and

Yi(a,m) � Mi |Ai,Ci.(5)

These correspond respectively to the absence of un-
blocked backdoor paths from Ai to Yi (except possibly
through Mi ) conditional on Ci and from Mi to Yi con-
ditional on Ai and Ci . Avin, Shpitser and Pearl (2005)
proved that in most settings the following is a neces-
sary assumption for the identification of the average
natural direct and indirect effects of Ai on Yi medi-
ated by Mi : there is no variable Wi such that (i) there
is an activated directed path from Ai to Wi , (ii) there is
a deactivated directed path from Wi to Yi and (iii) there
is an activated directed path from Wi to Yi . A variable
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that satisfies conditions (i), (ii) and (iii) is known as
a recanting witness, and we call the assumption of no
variable satisfying these conditions the recanting wit-
ness criterion. In the context of natural direct and in-
direct effects, the recanting witness criterion is met if
there is no confounder of the mediator–outcome rela-
tion that is caused by treatment, or (Pearl, 2001)

Yi(a,m) � Mi

(
a′)|Ci.(6)

Assumptions (5), (4), (6) and

Mi(a) � Ai |Ci,(7)

that is, the absence of unblocked backdoor paths from
Ai to Mi conditional on Ci , suffice to identify the nat-
ural direct and indirect effects.

2. REVIEW OF IDENTIFICATION OF CAUSAL
EFFECTS IN THE PRESENCE OF INTERFERENCE

Interference is present when one subject’s outcome
may depend on other subjects’ treatments (Rosenbaum,
2007). It is often reasonable to make a partial in-
terference assumption that interference can only oc-
cur within subgroups or blocks of subjects. This may
be justified if the blocks are separated by time or
space (Hudgens and Halloran, 2008; Sobel, 2006;
Tchetgen Tchetgen and VanderWeele, 2012;
Rosenbaum, 2007). Under interference, Yi(a) is not
well-defined, since the value of Y that would have
been observed for subject i had he received treat-
ment a may depend on the treatments received by
other subjects. We define counterfactual notation for
interference following Hudgens and Halloran (2008),
Tchetgen Tchetgen and VanderWeele (2012), Rubin
(1990) and Halloran and Struchiner (1995). Suppose
that n individuals fall into N blocks, indexed by k,
with m = n/N individuals in each block. If N = 1, so
that interference may occur between any two subjects
in the population, then we say that there is full inter-
ference. If N = n, then an individual’s treatment can
only affect his own outcome and there is no interfer-
ence. Let Ak ≡ (Ak1, . . . ,Akm) be the vector of treat-
ment assignments for individuals in block k and let ak

denote an m-dimensional vector in the support of Ak .
Let Yk ≡ (Yk1, . . . , Ykm) and Ck ≡ (Ck1, . . . ,Ckm) be
the vector of outcomes and array of covariates, respec-
tively, for individuals in block k. In what follows, we
reserve boldface letters for vectors or arrays of length
m in which the ith entry corresponds to the ith individ-
ual in block k, and we omit the subscript k when tak-
ing expectations over blocks. Define Yki(ak) to be the

counterfactual outcome that we would have observed
for individual i in block k under an intervention that
set Ak to ak . Following Tchetgen Tchetgen and Van-
derWeele (2012) we replace assumption (1) above with
a new assumption of consistency under interference:

Yki(ak) = Yki when Ak = ak.(8)

We also require modified positivity and exchangeabil-
ity assumptions in order to identify causal effects under
interference: we assume that we have measured a set of
pretreatment covariates C for each individual such that
(Tchetgen Tchetgen and VanderWeele, 2012)

Yki(ak) � Ak|Ck(9)

and

P(Ak = ak|Ck = ck) > 0

for all ak in the support of Ak(10)

and for all ck in the support of Ck.

These assumptions suffice to identify the expecta-
tions of counterfactuals of the form Yki(ak) whenever
ak is an instance of a well-defined intervention a and,
therefore, to identify causal effects that are contrasts of
such expectations. An intervention will be well-defined
if it uniquely determines which subjects in block re-
ceive treatment. Well-defined interventions are possi-
ble, for example, if all blocks are of the same size, if the
individuals in each block are distinguishable from one
another, and if the individuals are ordered in the same
way across blocks. Suppose interference occurs within
blocks comprised of a father (subject 1), a mother (sub-
ject 2) and a child (subject 3). Then an intervention
(1,0,1) indicates that the father and child receive treat-
ment but the mother does not. If the blocks are of dif-
ferent sizes or if there is no natural way to distinguish
among the individuals in each block, some interven-
tions may be well-defined under assumptions that the
effects of treatment are the same for different members
of the block and do not depend on the size of the block,
for example, the intervention that assigns treatment to
every individual in every block. We assume through-
out that all interventions are well-defined. For simplic-
ity, we assume that the blocks are of the same size and
that there is a natural ordering of the subjects in each
block, but most of our comments and results extend to
more general settings. (In the absence of well-defined
interventions, some causal effects can still be defined,
identified and estimated under two-stage randomiza-
tion; see Hudgens and Halloran, 2008; Vanderweele,
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Tchetgen and Halloran, 2012; VanderWeele and Tch-
etgen Tchetgen, 2011b; Halloran and Hudgens, 2012.)

In Section 3, we use graphical models to determine
which variables must be included in the conditioning
set in order for exchangeability to hold. This gives the
identification criteria under interference for causal ef-
fects that are contrasts of expectations of counterfac-
tuals of the form Yki(ak). Sometimes we may wish to
identify path-specific effects; these require additional
assumptions for identification that we discuss below.

In this paper, we focus on identification, rather than
estimation, of causal effects. We merely note here that,
for the purposes of estimation and inference, the effec-
tive sample size is N and thus observation of multiple
blocks may be required.

2.1 Causal Effects of A on Y

Although recognition of the fact that interference
may occur in certain settings dates at least as far back
as Ross (1916), it is only recently that progress has
been made on identifying causal effects in the presence
of interference. Halloran and Struchiner (1995) defined
four effects that do not depend on understanding the
mechanisms underlying interference and that are iden-
tifiable under assumptions (8), (9) and (10).

The overall effect of intervention a compared to in-
tervention a′ on subject i is defined as OEi (a,a′) ≡
E[Yi(a)] − E[Yi(a′)]. We use the index i to indicate
that the expectations do not average over individuals
within a block but rather over blocks for a particular
individual i. For example, if the blocks are comprised
of a father (subject 1), a mother (subject 2) and a child
(subject 3), then OE3(a,a′) = E[Y3(a)] − E[Y3(a′)]
is the overall effect on a child of intervention a com-
pared to intervention a′. The average overall effect
OE(a,a′) ≡ E[Y(a)] − E[Y(a′)], where E[Y(a)] ≡
1
m

∑m
i=1 E[Yi(a)], averages over the empirical mean of

the counterfactual outcomes for each block. The unit-
level effect of treatment on subject i fixes the treatment
assignments for all subjects in each block except i,
and compares the counterfactual outcomes for sub-
ject i under two different treatment assignments. Let
ak,−i = (ak,1, . . . , ak,i−1, ak,i+1, . . . , ak,m) be a vector
of length m − 1 of treatment values for all subjects
in block k except for subject i. Then UEi (a; ã, ā) ≡
E[Yi(a−i , ã)] − E[Yi(a−i , ā)], where Yki(ak,−i , ã) is
subject i’s counterfactual outcome under the interven-
tion in which the subjects in block k except for sub-
ject i receive treatments ak,−i and subject i receives
treatment ã. The spillover effect of intervention a com-
pared to intervention a′ on subject i fixes i’s treatment

level and compares his counterfactual outcomes under
the two different interventions. That is, SEi (a,a′; ã) ≡
E[Yi(a−i , ã)] − E[Yi(a′−i , ã)]. (The unit-level effect
is often referred to as the direct effect and the spillover
effect as the indirect effect of an intervention, but in or-
der to avoid confusion with the direct effect for DAGs
defined in Section 2 and the natural direct and indi-
rect effects defined in Section 2.2, we will use differ-
ent terminology. See Tchetgen Tchetgen and Vander-
Weele, 2012, and Vanderweele, Tchetgen and Hallo-
ran, 2012, for further discussion of terminology.) We
can also average these effects over individuals within
a block. The average unit-level effect is UE(a; ã, ā) ≡
E[Y(a−, ã)] − E[Y(a−, ā)] and the average spillover
effect is SE(a,a′; ã) ≡ E[Y(a−, ã)] − E[Y(a′−, ã)],
where E[Y(a−, ã)] ≡ 1

m

∑m
i=1 E[Yi(a−i , ã)]. The to-

tal effect compares an individual’s counterfactual at
one treatment level in a block that receives one inter-
vention to his counterfactual at a different treatment
level in a block that receives the another interven-
tion: TEi (a,a′; ã, ā) ≡ E[Yi(a−i , ã)] − E[Yi(a′−i , ā)].
The average total effect is defined analogously to the
other average effects above. Hudgens and Halloran
(2008) showed that the total effect can be decom-
posed into a sum of unit-level and spillover effects:
TEi (a,a′; ã, ā) = E[Yi(a−i , ã)] − E[Yi(a−i , ā)] +
E[Yi(a−i , ā)] − E[Yi(a′−i , ā)] = DEi (a; ã, ā) +
IEi (a,a′; ā).

Sobel (2006), Hudgens and Halloran (2008),
VanderWeele and Tchetgen Tchetgen (2011b) and
Tchetgen Tchetgen and VanderWeele (2012) proposed
ways to estimate and extend unit-level, spillover, total
and overall effects. We will not discuss these exten-
sions here except to note that they require the same
three identifying assumptions (8), (9) and (10).

2.2 Path Specific Effects of A on Y

In Sections 4.2 and 4.3, we describe path-specific
effects that may be of interest in certain interference
contexts; here we review and extend the literature
on path-specific effects under interference. Let Mk ≡
(Mk1, . . . ,Mkm) be a vector of variables that may lie
on a causal pathway from Ak to Yki . VanderWeele
(2010) provided identifying assumptions and expres-
sions for mediated effects with cluster-level treatments.
These effects are applicable to the context of partial
interference where there is interference by the media-
tor but not by the treatment (Mki may have an effect
on Ykj for i �= j , but Ak is set at the cluster level,
and thus is the same for all individuals in block k).
We adapt them here to accommodate interference by
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the treatment in addition to the mediator. We make
the consistency assumptions that Mk(ak) = Mk when
Ak = ak , that Ykj (ak,mk) = Ykj when Ak = ak and
Mk = mk , and that Ykj (ak,Mk(ak)) = Ykj (ak). The ex-
pected controlled direct effect of a block-level treat-
ment Ak on individual i’s outcome, not through Mk , is
defined as E[Yi(a,m)]−E[Yi(a′,m)]; it measures the
expected change in Yki due to a change in Ak , inter-
vening to set Mk to mk . The expected natural direct
effect is E[Yi(a,M(a))] − E[Yi(a′,M(a))]; it mea-
sures the expected change in Yki due to a change in
Ak , holding Mk fixed at Mk(ak). The expected natu-
ral indirect effect of Ak on Yki through Mk , given by
E[Yi(a′,M(a))] − E[Yi(a′,M(a′))], measures the ex-
pected change in Yki when Ak is fixed but Mk changes
from Mk(ak) to Mk(a′

k). Average controlled direct,
natural direct, and natural indirect effects are defined
similarly to the average effects in Section 2.1: we aver-
age the counterfactuals within each block before taking
the expectations over blocks. These natural direct and
indirect effects are identifiable under the following four
assumptions:

Yki(ak,mk) � Ak|Ck,(11)

Yki(ak,mk) � Mk|Ak,Ck,(12)

Mk(ak) � Ak|Ck(13)

and

Yki(ak,mk) � Mk

(
a′
k

)|Ck.(14)

Assumptions (11), (12) and (13) correspond, respec-
tively, to the absence of unblocked backdoor paths
from Ak to Yki (except possibly through Mk) condi-
tional on Ck , from Mk to Yki conditional on Ak and
Ck , and from Ak to Mk conditional on Ck . Assumption
(14), similar to (6), corresponds to the recanting wit-
ness criterion. Under these assumptions, counterfactual
expectations of the form E[Yi(a′,M(a))] are identified
and, therefore, so are the natural direct and indirect ef-
fects, which are contrasts of such expectations. Specif-
ically, E[Yi(a′,M(a))] is identified by

∑

c

∑

m
E

[
Yi |A = a′,M = m,C = c

]

· P(M = m|A = a,C = c)P (C = c).

Assumptions (11) and (12) suffice to identify the con-
trolled direct effect.

FIG. 3.

3. COVARIATE CONTROL

Although the subscripts are usually suppressed, un-
der the assumption of no interference the standard
DAG for the effect of a treatment A on an outcome Y

with confounders C is drawn to show the relationships
among Yi , Ai and Ci for subject i. Under interference,
however, it is not sufficient to consider causal pathways
at the individual level; a causal DAG must depict an
entire block. For simplicity, we will focus on blocks of
the smallest size that preserves the essential structure
of interference, which for our purposes will be two or
three. The principles extend to groups of any size, but
the DAGs become considerably more complex as the
blocks grow. The DAG for the effect of A on Y in a
group of size two with no interference is depicted in
Figure 3. In what follows, we represent a single block
of subjects on each DAG, and we therefore suppress
the subscript k indicating membership in block k.

Interference can be represented by a DAG like the
one given in Figure 4. The arrows from Ai to Yj for
i �= j represent the effect that one individual’s treat-
ment has on another’s outcome. This representation
suffices whenever contrasts of counterfactuals of the
form Y(a), such as the effects described in Section 2.1,
are the only effects of interest. However, as we will
see below, when contagion or allocational interference
are present, such a diagram does not represent infor-
mation about how the effect of Ai on Yj operates. In
Section 4, we describe how to represent this additional

FIG. 4.
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(a) (b) (c)

(d) (e) (f)

(g)

FIG. 5.

information on a DAG. We describe covariate control
in the general cases depicted in the DAGs in Figures 4
and 5 before moving on in Section 4 to tease apart the
structures that make direct interference, interference by
contagion, and allocational interference distinct. The
principles of covariate control in the presence of in-
terference are straightforward: like in the case of no
interference, they follow from the fact that all back-
door paths from treatment to outcome must be blocked
by a measured set of covariates. However, without tak-
ing the time to draw the operative causal DAG with in-
terference it is easy to make mistakes, like controlling
only for individual-level covariates when block-level
covariates are necessary to identify the causal effect of
interest. Below we will consider a number of differ-
ent settings and causal structures, and discuss in each
whether control for only an individual’s covariates suf-
fices to identify causal effects or whether control for
the covariates of the entire block (or of some summary)
is needed.

If the individuals in the block share no common
causes of A or Y , as in the DAG in Figure 4, then
Ci suffices to block the backdoor paths from Ai to Yi

and from Aj to Yi and, therefore, exchangeability for
the effect of A on Yi holds conditional on Ci . That is,
Yi(ai, aj ) � A|Ci for all i. If Cj is a direct cause of
Yi for i �= j , as in Figure 5(a), then exchangeability
for the effect of A on Yi necessitates block- and not
just individual-level covariates. Even if each individ-
ual’s treatment is randomized conditional on his own
covariates (this corresponds to the absence of arrows
Cj to Ai for i �= j on the DAG), there is still a back-
door path from Aj to Yi via Cj and, somewhat coun-
terintuitively, it is necessary to control for Cj in addi-
tion to Ci in any model for the effect of A on Yi . On
the other hand, if Cj directly affects Ai but not Yi for
i �= j , as in Figure 5(b), then for exchangeability for
the effect of A on Yi it suffices to condition only on
Ci . If, in addition to Ci , a function h(C) of the vec-
tor of covariates influences outcome (Figure 5(c); for
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example, the mean value of C for the block), then Ci

and either h(C) or Cj need to be conditioned on in or-
der to achieve exchangeability for the effect of A on
Yi . If h(C) only influences treatment assignment (Fig-
ure 5(d)), then only Ci must be conditioned on. If a
block-level characteristic D is a common cause of A

and Y (Figure 5(e)), then Ci and D must be condi-
tioned on in order to achieve exchangeability for the
effect of A on Yi . If Ci and Cj share a common cause
(Figure 5(f)), then exchangeability for the effect of A
on Yi holds conditional on Ci .

Even in the absence of interference for the effect of
A on Y, there are scenarios in which individual-level
covariates do not suffice to control for the effect of
an individual’s treatment on his own outcome. For ex-
ample, the DAG in Figure 5(g) depicts a scenario in
which one individual’s covariates affect another indi-
vidual’s treatment and outcome (represented by the ar-
rows Ci → Aj and Ci → Yj ), but there is no effect
of one individual’s treatment on another’s outcome (no
directed path from Ai to Yj ). In other words, there is
interference for the effect of C on Y but not for the ef-
fect of A on Y. Vansteelandt (2007) noted that in this
setting it is necessary to condition on C to achieve ex-
changeability for the effect of Ai on Yi .

Consider the DAG in Figure 4, but now suppose
that C is unobserved. As we discussed above, Ci is
a confounder of the effect of Ai on Yi , but in this
DAG the effect of Aj on Yi is unconfounded (there
is no backdoor path from Aj to Yi). If a researcher
hypothesizes that the DAG in Figure 4 represents the
underlying causal structure in a particular setting but
he does not have access to data on the confounders C,
then the effect of A on Yi is not identified. However,
the unconfounded effect of Aj on Yi is identified by
E[Yi |Aj = aj ]. This quantity has an interpretation in
the interference setting as the weighted average of ex-
pected counterfactuals within strata of C.

E[Yi |Aj = aj ]
= ∑

ai

∑

c

E[Yi |Ai = ai,Aj = aj ,Ci = c]

· P(Ai = ai |Ci = c)P (Ci = c)

= ∑

ai

∑

c

E
[
Yi(ai, aj )|Ai = ai,Aj = aj ,Ci = c

]

· P(Ai = ai |Ci = c)P (Ci = c)

= ∑

ai

∑

c

E
[
Yi(ai, aj )|Ci = c

]

· P(Ai = ai |Ci = c)P (Ci = c),

where the first equality relies on the facts that Ai �
Aj |Ci and Ci � Aj , the second relies on consistency,
and the third on conditional exchangeability. Alterna-
tively, this quantity has the interpretation of E[Yi(aj )]
in an experiment where Yi is considered to be the only
outcome, Aj is the treatment of interest and is inter-
vened on, and Ai is randomly assigned according to
the actual distribution P(Ai |Ci) in the population.

The hypothetical experiment described above points
toward a possible strategy for estimating the effect of
one component of A on Yi when the confounders of
the effect of A on Yi are not fully observed. The re-
searcher can analyze each block of subjects as a single
observation, with a single treatment and outcome. This
strategy discards data on others’ treatments and out-
comes but may allow for progress even if the full set of
covariates needed to identify Yi(a) are not observed.

In some of the DAGs in Figure 5, identification of
the effect of Aj on Yi requires fewer covariates than the
effect of A on Yi . In Figure 5(c), Cj suffices to control
for confounding of the effect of Aj on Yi even though it
does not suffice for the effect of A on Yi . For the DAG
in Figure 5(e), D suffices to control for confounding of
the effect of Aj on Yi .

In some cases, we can identify the effect of Ai on
Yi with fewer covariates than are required to identify
the effect of A on Yi . In Figures 5(a) and 5(c), we can
identify the effect of Ai on Yi if only Ci is observed,
even though we cannot identify the effect of A on Yi

without also observing Cj (or h(C)). In the Appendix,
we give the identifying expressions for these effects.

For the DAGs in Figures 5(b)–5(f), the entire vec-
tor C is not necessary to identify the effect of A on
Yi , though it would in general be necessary in order to
jointly identify the effects of A on Yi and on Yj (i.e.,
the effect of A on Y). This is because in order to iden-
tify the effect of A on Y we require conditional ex-
changeability to hold for all subjects. In these settings,
if C is not fully observed but certain components or
functions of C required to identify the effect of A on
Yi are, then we can proceed by considering Yi to be the
only outcome in each block. We can still consider the
full vector of treatments A, and therefore identify unit-
level, spillover, total and overall effects of A on Yi .

4. THREE DISTINCT TYPES OF INTERFERENCE

By understanding the causal mechanisms underly-
ing interference, we can more precisely target effects
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of interest. There are three distinct causal pathways by
which one individual’s treatment may affect another’s
outcome. All fall under the rubric of interference. The
distinction among them has generally not been made,
but they differ in causal structure, effects of interest and
requirements for identification of effects. Often more
than one type of interference will be present simulta-
neously.

The first pathway by which interference may operate
is a direct causal effect of one individual’s treatment on
another individual’s outcome, unmediated with respect
to the first individual’s outcome. We call this direct in-
terference. As an example, suppose that the outcome is
obesity and the treatment is dietary counseling from a
nutritionist. An individual who receives treatment can
in turn “treat” his associates by imparting to them the
information gained from the nutritionist; therefore, if
individual i receives treatment and individual j does
not, individual j may be nevertheless be exposed to the
treatment of individual i and his or her outcome will be
affected accordingly.

A second pathway by which one individual’s treat-
ment may affect another individual’s outcome is via
the first individual’s outcome. For example, if the out-
come is an infectious disease and the treatment is a pro-
phylactic measure designed to prevent disease, then the
treatment of individual i may affect the outcome of in-
dividual j by preventing individual i from contracting
the disease and thereby from passing it on. We call this
type of interference interference by contagion. It is dif-
ferentiated from direct interference by the fact that it
does not represent a direct causal pathway from the ex-
posed individual to another individual’s outcome, but
rather a pathway mediated by the outcome of the ex-
posed individual.

The third pathway for interference is allocational in-
terference. Treatment in this setting allocates individ-
uals to groups; through interactions within a group in-
dividuals’ characteristics may affect one another. An
example that often arises in the social science litera-
ture is the allocation of children to schools or of chil-
dren to classrooms within schools (Angrist and Lang,
2004; Graham, Imbens and Ridder, 2010; Hong and
Raudenbush, 2008). The performance and behavior of
student i may affect the performance and behavior of
student j in the same class, for example, by distracting
or motivating student j or by occupying the teacher’s
attention. Another example that can be seen as alloca-
tional interference is the effect of college enrollment
on wage differences for college- versus high-school-
educated workers, where the wage difference depends

on the proportion of workers in each education cate-
gory (Heckman, Lochner and Taber, 1998).

4.1 Direct Interference

Direct interference is present when there is a causal
pathway from one individual’s treatment to another in-
dividual’s outcome, not mediated by the first individ-
ual’s outcome. Interference can be direct with respect
to a particular outcome but not another. Consider two
individuals living in the same household, each ran-
domized to an intervention designed to prevent high
cholesterol. Suppose the intervention consists of cook-
ing classes, nutritional counseling and coupons that can
be redeemed for fresh produce, and consider a house-
hold in which one individual is treated and one un-
treated. The treated individual could bring fresh pro-
duce into the household, prepare healthy meals, and
talk about the nutritionist’s counsel, thereby exposing
the other individual to a healthier diet. If the outcome
of interest is a measure of blood cholesterol level, then
this is an example direct interference: the untreated
individual is exposed to the treated individual’s diet
and that exposure reduces the untreated individual’s
cholesterol. On the other hand, if the outcome is a
measure of healthy diet and behavior, then the same
story depicts contagion rather than direct interference:
the treated individual adopts a healthier diet which re-
sults in the untreated individual also adopting a health-
ier diet. Diet may spread by contagion; cholesterol pre-
sumably would not.

In many settings, direct interference and contagion
will be present simultaneously for the same outcome.
For example, suppose that in the story above the out-
come were weight change. Then it is possible that the
treated individual’s family member could lose weight
both because of exposure to healthier foods (direct
interference) and because he was motivated by the
weight loss of his relative (contagion).

Direct interference has the simplest causal structure
of the three types of interference. In addition to a direct
causal path from Ai to Yi , there is also a direct path
from Ai to Yj for all pairs (i, j) such that subjects i and
j are in the same block. Direct interference in a block
of size two is depicted in the DAGs in Figures 4 and 5,
with the exception of Figure 5(g). Because there is only
a single path from Ai to Yj for any pair i, j , differences
between counterfactuals of the form Yi(a) capture all
of the causal effects of A on Yi and, therefore, effects
like the total, unit-level, spillover and overall effects
described in Section 2.1 summarize the causal effects
of A on Yi .
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4.2 Interference by Contagion

Interference by contagion often has a complex causal
structure, because it can involve feedback among dif-
ferent individuals’ outcomes over time. The causal
structure of the effect of Ai on Yi is straightforward:
Ai has a direct protective effect on Yi , represented by
a direct arrow from Ai to Yi on the DAG. The effect of
Ai on Yj is considerably more complex. It is tempting
to represent the effect of Ai on Yj as a mediated ef-
fect through Yi , but this cannot be correct, as Yi and Yj

are contemporaneous and, therefore, one cannot cause
the other. The effect of Ai on Yj is mediated through
the evolution of the outcome of individual i; this com-
plicated structure is depicted in the DAG in Figure 6,
where Y t

i represents the outcome of individual i at time
t , T is the time of the end of follow-up, and the dashed
arrows represent times 4 through T − 1, which do not
fit on the DAG (but which we assume were observed).
The unit of time required to capture the causal structure
depends on the nature of transmission of the outcome;
it should be the case that the probability of one individ-
ual’s outcome affecting another’s is unaltered by differ-
ences in timing on a scale smaller than the units used.

In order to further explicate the structure, we con-
sider the case of an infectious disease like the flu. Infec-
tious diseases are paradigmatic examples of contagion.
Halloran and Struchiner (1995), Hudgens and Hallo-
ran (2008) and VanderWeele and Tchetgen Tchetgen
(2011a) have written about identification and estima-
tion of overall, unit-level, spillover and total effects for
vaccinations against infectious diseases, and we fol-
low up with this literature in Section 4.2.1. Although
we illustrate the principles of interference by contagion
through the lens of infectious diseases, this type of in-
terference can occur in many and diverse settings: an
educational intervention assigned to one student could
affect that student’s performance, which in turn might

FIG. 6.

affect the performance of her classmates; a get-out-the-
vote mailing could motivate its recipients to decide to
vote, and communicating that decision to friends could
change the friends’ voting behavior. The principles that
we discuss below apply to any of these settings.

Suppose that the flu vaccine has a protective effect
against the flu by preventing or shortening the duration
of episodes of the flu for some individuals. Let A be an
indicator of getting the flu vaccine before the start of a
six-month long flu season, and let Y be the total num-
ber of days spent infectious with the flu over the course
of the season. In the DAG in Figure 6, Y t

i represents the
flu status of individual i at time t (measured in days),
T ≡ 180 is the day of the end of flu season, and the
dashed arrows represent days 4 through T − 1, which
do not fit on the DAG (but which we assume were ob-
served). Let Y t

i be the total number of days spent in-
fectious up to and including day t . (Note that, when Y t

i

is observed for all t , this is equivalent to coding it as
an indicator of individual i being infectious at time t .)
In choosing days as the unit of time, we are making
the assumption that the probability of one individual
infecting another is not affected by a difference of a
fraction of a day in flu duration.

We will rarely have fine-grained information on the
evolution of the outcome over time. In the rest of
this section, we describe how to draw the appropriate
causal DAGs and how to identify causal effects in such
cases. Drawing a causal DAG using only a subset of
relevant variables has been extensively studied in the
graphical models literature and involves an operation
known as projection (Pearl and Verma, 1994; Tian and
Pearl, 2002b; Verma, 1993). Projection algorithms are
somewhat technical; below we provide an intuitive dis-
cussion of the construction of causal DAGs when not
all variables relevant to contagion are observed.

If we only observe the outcome (cumulative days
of the flu) at the end of the season, then, as in the
DAG in Figure 7, we replace the collection of all un-
observed variables (i.e., Y t

i for t < T ) with U . Without
additional assumptions, we cannot replace the two di-
agonal pathways through U with direct arrows from
A1 to YT

2 and from A2 to YT
1 ; that would imply that

FIG. 7.
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FIG. 8.

YT
1 � YT

2 |A1,A2, which is shown to be false by the
DAG in Figure 6. If we know who gets the flu first,
then the DAG in Figure 8 represents the causal rela-
tions among the observed variables, where T0 is the
time of the first case of the flu. The unmeasured vari-
able U cannot be omitted because YT

1 is not indepen-

dent of YT
2 conditional on {YT0

1 , Y
T0
2 }; YT

1 depends on
the number and timing of individual 2’s illnesses be-
tween time T0 and time T . It might seem as though Y

T0
1

should be independent of Y
T0
2 conditional on {A1,A2}

in this scenario, because there can be no contagion be-
fore the first case of the flu. But this is not the case:
Y

T0
i can be thought of as an indicator that individual i

gets the flu before or at the same time as individual j ,
and this is dependent on individual j remaining healthy
through time T0 − 1. On the other hand, conditioning
on the time of the first case of the flu renders Y

T0
1 and

Y
T0
2 independent, because conditioning on T0 is tanta-

mount to conditioning on both individuals remaining
healthy until the time of the first case, that is, on their
entire flu histories up to time T0.

Suppose information on the number but not dura-
tion of cases of the flu is available. Then we could de-
fine Y t to be the number of distinct cases initiated by
time t . However, this outcome fails to capture all of
the relevant information about an individual’s flu sta-
tus, because a case of the flu that lasts ten days may be
more contagious than one that lasts five days. There-
fore, there may be an effect of Ai on Y t

j that is not
mediated by Y s

j , s < t , being instead mediated by the
duration of individual i’s flu incidents. This is repre-
sented on the DAG in Figure 9 by an arrow from Ai

to Y t
j . These arrows encode the fact that Y t

j is depen-
dent on Y t

i even conditional on {Y s
i , Y s

j } for all s < t .
Similarly, if the outcome on the DAG in Figure 8 were
the total number of flu episodes by the end of the sea-
son instead of the cumulative days of flu we would add
arrows from Ai to Y

T0
j and to YT

j .

FIG. 9.

If there are common causes C of treatment and out-
come for each individual, as in the DAG in Figure 10,
then exchangeability for the effect of A on YT

i will
hold conditional on Ci . If there are common causes
of treatments for different individuals, or of treatments
and outcomes across individuals, then exchangeability
requires conditioning on them. The same conclusions
about exchangeability hold if we observe the outcome
only at select time points.

The overall, unit-level, spillover and total effects de-
fined in Section 2.1 do not distinguish among the multi-
ple distinct causal pathways from Ai to YT

j . We discuss
estimation of path-specific effects below.

4.2.1 Contagion and infectiousness. Recently,
Vanderweele, Tchetgen and Halloran (2012) described
the decomposition of the spillover effect, that is the ef-

FIG. 10.
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fect of Ai on Yj , into a “contagion effect” and an “in-
fectiousness effect.” The contagion effect is the pro-
tective effect that vaccinating one individual has on
another’s disease status by preventing the vaccinated
individual from getting the disease and thereby from
transmitting it, similar to the effect we discussed above.
In order to illustrate the infectiousness effect, consider
the following refinement to our example. Suppose that
a vaccine exists for the flu that prevents the disease
for some individuals and also makes some cases of the
disease among vaccinated individuals less likely to be
transmitted. Let A be an indicator of vaccination before
the start of flu season and let Y t be the total number of
episodes of flu up to and including day t . Then Ai may
have an effect on Y t

j even if it has no effect on Y t
i , that

is, even if individual i would get the flu whether vacci-
nated or not, by preventing individual i from transmit-
ting the flu to individual j . This infectiousness effect
represents a pathway that is distinct from the contagion
effect because it does not operate through the infection
status of the vaccinated individual. The infectiousness
effect has the structure of a direct effect by which in-
dividual i’s vaccination confers improved protection
against individual i’s flu on individual j ; it represents
a type of direct interference. This is similar to the ex-
ample above in which the duration of flu episodes was
unobserved: infectiousness, like flu duration, is a prop-
erty of the infected individual’s disease state, but if it
is not captured by the outcome measure then it has the
structure of a direct effect of Ai on Yj . The contagion
and infectiousness effects are not identifiable without
strong assumptions or carefully conceived data collec-
tion. When they are identifiable their sum (or product
if they are defined on the multiplicative scale) is equal
to the total spillover effect of Ai on Yj .

Vanderweele, Tchetgen and Halloran (2012) defined
the contagion and infectiousness effects as the nat-
ural indirect and direct effects, respectively, of A1

on YT
2 with Y

T0
1 as the mediator, where T0 is the

day of the first flu infection and T is the day of the
end of follow-up, for example, the last day of the
flu season. That is, the contagion effect is defined as
E[YT

2 (0, Y
T0
1 (1))] − E[YT

2 (0, Y
T0
1 (0))] and infectious-

ness by E[YT
2 (1, Y

T0
1 (1))] − E[YT

2 (0, Y
T0
1 (1))]. For

simplicity and consistency with the existing literature
we adopt the setting used in VanderWeele and Tch-
etgen Tchetgen (2011a), Vanderweele, Tchetgen and
Halloran (2012) and Halloran and Hudgens (2012):
each block is a group of size two who share a house-
hold, and in each pair individual 1 is randomized to

FIG. 11. This DAG corresponds to a household of size two in
which individual 2 is always unvaccinated and disease status is as-
sessed at the end of follow-up. U represents unmeasured variables.

vaccine while individual 2 is always unvaccinated. If,
as those authors assumed, disease status is observed
only at the end of follow-up, Figure 11 depicts the op-
erative DAG. Although there is an unmeasured vari-
able on the path from A1 to YT

2 , it is not a confounder
and we can identify the effect of A1 on YT

2 . How-
ever, we cannot identify the component contagion and
infectiousness effects without observing the mediator
Y

T0
1 . In order to circumvent the problem of the unob-

served mediator, Vanderweele, Tchetgen and Halloran
(2012) assumed that each individual can be infected
only once and that individual 2 can only be infected by
individual 1, as would be the case if individual 2 were
homebound. These assumptions dramatically simplify
the causal structure by ensuring that individual 1 is in-
fected first and that there is no feedback between the
time of first infection and the end of follow up. Then
YT

1 must be equal to Y
T0
1 , and thus Y

T0
1 is observed.

These assumptions are encoded by the DAG in Fig-
ure 12. Now the contagion and infectiousness effects
can be identified as the natural indirect and direct ef-
fects of A1 on YT

2 mediated by YT
1 = Y

T0
1 , as long as

assumptions (4) through (7) are met. Three of these
assumptions correspond to the absence of any unmea-
sured confounding of the relationships between A1 and
YT

1 , between YT
1 and YT

2 conditional on A1, and be-
tween A1 and YT

2 , respectively. These assumptions can
be made conditional on measured covariates C. As-
sumption (6) is the recanting witness criterion.

The simplifying assumption that the outcome can oc-
cur at most once may be reasonable for many infectious
diseases. More limiting is the assumption that individ-
ual 2 can only be infected by individual 1. Here, we

FIG. 12. This DAG corresponds to the same setting as Figure 11,
but under the assumptions that individual 2 can only be infected by
individual 1 and that only one event is possible per subject during
follow-up.
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FIG. 13. This DAG corresponds to the same setting as Figure 12,
but without the assumption that individual 2 can only be infected
by individual 1. The dashed arrow is present when T is defined as
the end of the flu season; it is absent when T is defined as T0 + s.

will describe settings in which it may be possible to re-
lax this assumption. Even if we observe the time and
identity of the first case of the flu in addition to the out-
come at the end of follow-up, relaxing this assumption
makes identification of the contagion and infectious-
ness effects impossible. In the DAG in Figure 13, YT0

1 is
an indicator of whether individual 1 was infected first.
Although it is not straightforward to imagine interven-
ing on T0, the time of the first infection, we include this
variable in the DAG in order to ensure that the DAG
encodes the true conditional independence statements.
The presence of the arrow from T0 to YT

2 makes T0 a
recanting witness for the contagion and infectiousness
effects: it is a confounder of the mediator–outcome re-
lation that is caused by treatment. This arrow is neces-
sitated by the fact that T0 predicts YT

2 even conditional

on A1 and Y
T0
1 . To see this, imagine two different pairs

in which individual 1 is vaccinated and gets sick first
(A1 = Y

T0
1 = 1). Suppose that in one pair, the vacci-

nated individual gets sick at the very end of the follow-
up period (T0 = T − 1). Then the probability that the
second individual gets the flu after time T0 but before
time T is very small. Suppose that in the other pair the
vaccinated individual gets sick on the first day of the
flu season (T0 = 1). The probability that we observe
the second individual in this pair to get sick before the
end of follow-up is much higher.

One possible solution to the recanting witness prob-
lem is to let T0 determine a new artificial end of follow-
up, so that the amount of time between T0 and T is
constant over different values of T0. In particular, if we
know that an infected individual is infectious for up to
s days after becoming symptomatic, then we can let
T = T0 + s and collect data on Y

T0
1 , Y

T0+s
1 and Y

T0+s
2 .

If neither individual in the pair is observed to get the
flu then T0 = T = the last day of the flu season. Setting
the artificial end of follow-up to lag behind the time of
first infection by s days ensures that we will observe

Y
T0
1 = Y

T0+s
2 = 1 for any pair in which individual 2

catches the flu from individual 1. We throw away data
on pairs for which the first infection occurs fewer than
s days before the end of the flu season, but if s is small
then it may be reasonable to assume that any resulting
bias is negligible.

One further assumption is required in order for
Y

T0+s
2 � T0|YT0

1 ,A1, which is the conditional inde-
pendence assumption that licenses the omission of
an arrow from T0 to Y

T0+s
2 . Suppose that cumula-

tive exposure to the flu virus makes people, on av-
erage, less susceptible to infection as the flu season
progresses due to acquired immunity. Then, for pairs
in which individual 1 is vaccinated and gets sick first,
individual 2 is less likely to catch individual 1’s flu
later in the season as compared to earlier (for larger
values T0 compared to smaller values). This violates
Y

T0+s
2 � T0|YT0

1 ,A1. If we assume that the probability
of individual 2 catching the flu if exposed on day t is
constant in t , then Y

T0+s
2 is independent of T0 condi-

tional on A1 and Y
T0
1 . Therefore, T0 is not a recanting

witness (it is still caused by treatment but is no longer
a confounder of the mediator–outcome relation). As-
suming that exchangeability assumptions (4), (5) and
(7) hold (see Vanderweele, Tchetgen and Halloran,
2012 for discussion of their plausibility in this con-
text), the contagion and infectiousness effects of A1 on
Y

T0+s
2 are identifiable. The contagion effect is given

by E[YT0+s
2 (0, Y

T0
1 (1))] − E[YT0+s

2 (0, Y
T0
1 (0))] and

infectiousness by E[YT0+s
2 (1, Y

T0
1 (1))] − E[YT0+s

2 (0,

Y
T0
1 (1))]. The spillover effect of A1 on Y

T0+s
2 on the

additive scale is the sum of the contagion and infec-
tiousness effects.

If both individuals are randomized to vaccination,
then A2 is a confounder of the relationship between
Y

T0
1 and Y

T0+s
2 . Assuming A2 is observed, this does not

pose a problem for identification of the contagion and
infectiousness effects. Generalizations of the contagion
and infectiousness effects to blocks of size greater than
two are also possible (Vanderweele, Tchetgen and Hal-
loran, 2012).

An alternative definition of an infectiousness ef-
fect, proposed by Vanderweele, Tchetgen and Hallo-
ran (2012), is the controlled direct effect of A1 on YT

2 ,

holding Y
T0
1 fixed at 1. Identification of this effect does

not require the recanting witness criterion to hold and,
therefore, it is identifiable when the end-of-follow up is
fixed and does not depend on T0. A disadvantage of this
controlled direct infectiousness effect is that it does not
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admit a decomposition of the indirect effect of A1 on
YT

2 . That is, if we subtract the controlled direct infec-
tiousness effect from the total effect of A1 on YT

2 , the
remainder cannot be interpreted as a contagion effect.

4.3 Allocational Interference

In allocational interference, an individual is allo-
cated to a group and his outcome is affected by which
individuals are allocated to the same group. In many
real settings, group allocation is not random, rather in-
dividuals select their own group or are assigned based
on previously observed characteristics. One example of
random group allocation is the assignment of college
freshman to dorms or dorm rooms (Carrell, Fullerton
and West, 2009; Sacerdote, 2000). We differentiate be-
tween allocational interference and other scenarios in
which individuals already in groups are assigned to re-
ceive individual or group-level treatments. In the for-
mer setting, an individual’s outcome depends on the
specific composition of his group, while in the latter
it depends on treatment assignments for his group but
not necessarily on group composition. Of course, these
two phenomena often occur in tandem, as they would if
children were assigned to classrooms which were then
assigned different educational interventions.

Similarly, contagion is often present in conjunction
with allocational interference. For example, in the al-
location of children to classrooms there is likely to be
feedback among children who are in the same class-
room in terms of achievement, attitude and tendency to
act out. Therefore, any measure of behavior or achieve-
ment that can evolve over time would likely be sub-
ject to contagion. An outcome like end-of-the-year
test scores, on the other hand, would evince alloca-
tional interference without contagion as one student’s
test score cannot directly affect another’s (though we
would likely still envision contagion with respect to
knowledge or learning).

Allocational interference is perhaps the most com-
plicated of the three types of interference. We first de-
scribe how to represent basic allocational interference
on a DAG. Then we introduce a toy example and use
it to illustrate some additional DAG structures and to
briefly discuss causal effects that may be of interest
in the presence of allocational interference. This dis-
cussion is far from exhaustive, but we hope that this
section will serve as a guide for how to think about al-
locational interference.

Allocational interference assigns subjects to groups
within each block. Recall that blocks of individuals are
independent from one another, and that interference is

FIG. 14.

possible within but not between blocks. This is not the
case for groups; interference will generally be present
across groups within the same block. In the school ex-
ample, blocks might be different schools and groups
might be classrooms within each school. Suppose that
within each block there are L possible groups to which
an individual can be allocated. Then treatment is a cat-
egorical variable, A, which for each subject takes on
the value l ∈ (1, . . . ,L) of the group to which that in-
dividual was assigned. As in Section 2, we let k index
N blocks with m individuals in each block. Let Ak be
the vector of group assignments in block k.

Figure 14 provides a DAG for a scenario with allo-
cational interference and m = 3. Within each block, we
allocate the subjects into two distinct groups and each
individual’s outcome may be affected by who is in each
group. The DAG depicts a single block and we there-
fore suppress the subscript k. Let Yi be the outcome
for individual i and Zi be a vector of all baseline char-
acteristics that affect the outcome of individual i or the
outcomes of the other individuals with whom he comes
into contact. Define Z∗

i to be an (m − 1)-dimensional
array with j th element equal to Zj × I (Aj = Ai),
j �= i, that is, the baseline covariates of subject j mul-
tiplied by the indicator that individual j is assigned to
the same group as individual i. In addition to the in-
dividual level causal arrows from Zi and Z∗

i into Yi ,
we require arrows from Zi to Z∗

j and from Ai to Z∗
j

for all pairs (i, j), i �= j . This is because Z∗
j is by def-

inition a function of A and of Zi for all i �= j . Ran-
domized allocation corresponds to the absence of the
dashed arrows into A. Otherwise, an individual’s base-
line covariates Zi may affect his group assignment Ai .
For Zi to affect Ai and not Aj would entail an alloca-
tion rule that ignores balance across groups. In some
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settings, the vector of baseline covariates Z (or a func-
tion of Z, e.g., its mean) would affect the allocation
rule. This is represented by the presence of the dashed
arrows into A.

We now describe a toy example in which allocational
interference operates and informs causal effects of in-
terest. Suppose that runners enter a 5000 meter race,
but the track is not wide enough for all of the competi-
tors to race simultaneously. A race represents a single
interference block; in order to perform statistical infer-
ence on the effects discussed below we would likely
need to observe several independent races, indexed by
k. The runners in each race are divided into smaller
groups to race in successive heats. Number the sub-
jects according to some composite measure of their re-
cent performance, so that runner 1 is the fastest based
on the composite measure and runner m is the slow-
est. Let Yki be the time in which runner i in block k

finishes the race and Zki be a vector of all relevant
baseline characteristics. A runner’s speed will affect
his own outcome. Moreover, his speed, confidence and
sportsmanship may have an impact on the outcomes
of the runners with whom he is grouped. These char-
acteristics should all be included in Zki . The runners
are divided into three heats, so Aki ∈ {1,2,3}. For sim-
plicity, we assume that m is divisible by 3 and each
heat has m/3 runners, though heats of different sizes
are possible. Consider the following two allocations:
In allocation a, runners 1 through m/3 are assigned to
the first heat, runners (m/3) + 1 through 2m/3 to the
second heat and runners (2m/3) + 1 through m to the
third heat. In allocation a′, on the other hand, the first
heat is comprised of runners 1,4,7, . . . ,m−2; the sec-
ond of runners 2,5,8, . . . ,m − 1, and the third of the
remaining runners. Allocation a′ results in a more bal-
anced distribution of baseline speed across heats.

Are runners, on average, likely to run faster un-
der one of these two allocations? This is a question
about the overall causal effect E[Y(a)] − E[Y(a′)].
If the number of groups is the same under both al-
locations, as in our example, then the direct and in-
direct effects of allocations a and a′ may also be
of interest (see Section 2.1). The expected unit-level
effect UE1(a;3,1) ≡ E[Y1(a−1,3)] − E[Y1(a−1,1)]
is the expected effect on runner 1 of racing in the
fastest versus the slowest heat in allocation a. The ex-
pected spillover effect SE1(a,a′;1) ≡ E[Y1(a−1,1)]−
E[Y1(a′−1,1)] is the expected effect on runner 1 of run-
ning in the first heat when that heat is comprised of the
fastest runners versus running in the first heat when that
heat is comprised of runners with a mix of speeds. (In

both cases, the expectations are with respect to multi-
ple independent races.) This might matter if running in
the first heat was advantageous because the crowd was
more enthusiastic earlier on, a point to which we return
below.

As always, in order to identify expectations of coun-
terfactuals of the form Yki(ak) we require conditional
exchangeability for the effect of Ak on Yki . If Ak and
Zki share any common causes, as they would if, for
example, heats were assigned based on the identity of
the runners’ coaches, then those common causes must
be included in the conditioning set. If Aki depends on
any component of Zki then that component must be
included in the conditioning set in order to achieve ex-
changeability. Similarly, if Aki depends on a compo-
nent of Zk , that is, there are arrows from Zki and from
Zkj , j �= i, into Aki , then that component of Zk must
be included in the conditioning set. We note that con-
ditioning on a component of Zk may block part of the
effect of Ak on Yki ; because Z∗

ki is a deterministic func-
tion of Zk conditioning on the latter is effectively con-
ditioning on the former. Z∗

ki lies on the causal pathway
from Ak to Yki and, therefore, conditioning on it blocks
part of the causal effect of interest.

Let Tkli be a group-level property of group li in block
k, where li indexes the group to which individual i is
assigned, and define Tki ≡ Tkli to be the group-level
property to which individual i is exposed. If the order
in which the heats are run makes a difference, because
the weather changes throughout the day or because
runners are tired later in the day, then Tki could be the
time at which subject i’s heat is scheduled to race. This
is an example of a preallocation group-level covariate
that allows the groups to be distinguished from one
another without reference to their composition. Other
examples of this kind of group-level property are the
teacher in charge of each classroom, the curricula to
which classrooms are assigned, or different locations
in which heats are assigned to run.

For the purposes of our race example, let Tki be
a measure of the crowd enthusiasm when runner i

runs. The arrows from Ai into Ti on the DAG in Fig-
ure 15 are necessitated by the way we have defined
Tki , namely as a collection of properties of the group
to which individual i is assigned. Properties that de-
pend on group composition but are not captured by Z∗

ki ,
such as the number of runners in the heat, can also af-
fect Yki . Unlike the time at which each heat runs, these
properties arise after group allocation and, therefore,
do not distinguish the groups from one another a pri-
ori. If Tki is itself affected by group composition, be-
cause the size of the crowd is determined by who is in
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FIG. 15.

each heat, then we would also require arrows Aj → Ti ;
these are the dashed arrows in Figure 15. Suppose that
crowd enthusiasm is determined by the proportion of
runners in the heat who are in the fastest quartile of
all of the runners in the race, based on the baseline
composite measure. Then Tki is affected by Zk (which
includes a measure of each runner’s previous perfor-
mance), and we require arrows from each Zj into Ti ,
as on the DAG in Figure 16. If data on Tk is not col-
lected, or if it is not known whether any group-level
properties affect Yki , then we would add arrows from
each Ai into each Yj on the DAG in Figure 15, to repre-
sent the residual effect of Ak on Ykj due to unobserved
group properties.

We also may be interested in whether the effect of
an allocation is mediated by group attributes Tk . In or-
der to identify mediated effects through Tk it must be
hypothetically possible to intervene on Tk without ma-
nipulating any other variable that may cause Yki not

FIG. 16.

through Tk . For example, if Tki is the enthusiasm of the
crowd when i’s group runs the race, then we can imag-
ine intervening on Tk by changing the composition of
the crowd without changing the assignments of runners
to heats or their covariates. On the other hand, if Tki is
the number of runners in i’s group, then clearly any in-
tervention on Tk must operate because of Ak , which
causes Yki not through Tk . Natural direct, natural indi-
rect and controlled direct effects are not coherently de-
fined in this case. This is because counterfactuals of the
form Yki(ak,Tk(a′

k)) are not well-defined if we cannot
hypothetically simultaneously intervene on Ak , setting
it to ak , and on Tk , setting it to its counterfactual value
under allocation a′

k . If the only way to set Tk to its
counterfactual value under allocation a′

k is through an
intervention that sets Ak to a′

k , then this hypothetical
joint intervention is not possible. The effects of Ak on
Yki with Z∗

ki as a mediator are similarly incoherent, be-
cause it is impossible to imagine intervening on Z∗

ki

without manipulating Ak , Zk , or both. If we are inter-
ested in the role that Z∗

ki plays in the effect of group
allocation on the outcome, we can instead estimate the
effects of Z∗

ki on Yki .

5. A NOTE ON INTERFERENCE AND SOCIAL
NETWORKS

Our discussion thus far has focused on settings in
which individuals are clustered into blocks and in
which individuals in distinct blocks do not influence
each other. In some contexts, it may be the case that
there are no or few distinct independent blocks; social
networks constitute one such setting. A social network
is a collection of individuals and the social ties between
them, for example ties of friendship, kinship or physi-
cal proximity. Social networks are of public health in-
terest because certain health-related behaviors, beliefs
and outcomes may propagate socially (Christakis and
Fowler, 2007, 2008; Smith and Christakis, 2008), but
of course they are rife with interference, making causal
inference difficult.

Allocational interference essentially involves inter-
vening on the network structure itself, creating new
ties by assigning individuals to the same group, for
example, assigning children to the same classroom,
and possibly breaking old ties by assigning individuals
to different groups. An intervention on classroom as-
signments within a school could be seen as creating a
new network topology at the beginning of every school
year. Because the network itself is manipulated in al-
locational interference, it may be a useful lens through
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which to understand interventions on ties in social net-
work contexts.

Contagion and direct interference occur naturally
and widely in social networks. Direct interference may
be present whenever an exposure consists of ideas,
beliefs, knowledge or physical goods which can be
shared by an exposed individual with his associates.
Contagion in social networks has been written about
extensively in recent years (Christakis and Fowler,
2007, 2008; Mulvaney-Day and Womack, 2009; Smith
and Christakis, 2008). Infectious diseases are more
likely to spread between people closely connected in
a social network (e.g., because they live together or
spend time together), and in addition there is some
recent evidence that traits and behaviors like obesity
and smoking may be “socially contagious” (Christakis
and Fowler, 2007, 2008). The precise mechanisms for
these purported phenomena are unknown, but some re-
searchers have hypothesized that latent outcomes re-
lated to the observed outcomes may be transmitted
through social contact. For example, Christakis and
Fowler (2007, 2008) have suggested that beliefs about
the acceptability of different smoking behaviors and
body types may be contagious. If this is in fact the
mechanism underlying what appears to be contagion
of smoking behavior or obesity, then the true structure
is depicted by the DAG in Figure 17. Ot

i represents
the observed characteristic of subject i at time t , for
example his smoking behavior, and Bt

i represents his
beliefs, for example, about the acceptability of smok-
ing. We observe a phenomenon that resembles conta-
gion, namely that Ot

i appears to have a causal effect on
Ot+1

j . However, this apparent effect may not be due
to a causal pathway but rather to the backdoor path
Ot

i ← Bt−1
i → Bt

j → Ot+1
j as in Figure 17. Another

possible structure that would give rise to apparent con-
tagion is presented in Figure 18. Here, O is indeed
contagious, but the path by which contagion operates

FIG. 17.

FIG. 18.

is mediated by B . Distinguishing between these differ-
ent structures could have implications for interventions
and policies. If the DAG in Figure 17 represents the
true causal structure, then intervening on O or intro-
ducing a policy targeted at affecting O will not disrupt
the contagious process; we should attempt to intervene
on underlying beliefs instead. If the DAG in Figure 18
captures the true mechanisms at work, then intervening
on either O or B can disrupt the contagious process.

The discussion of contagion and direct interference
in Section 4 may be useful for clarifying aspects of
social network research. In many types of social net-
works and for many types of exposures and outcomes,
both contagion and direct interference will be present.
The results in Section 4.2.1 can sometimes be used
to differentiate between the two types of interference.
Contagion cannot be identified by cross-sectional net-
work data without very strong assumptions about tem-
poral and causal relationships, and some effects re-
lated to contagion require fine-grained information on
outcomes in the network over time. Conversely, so-
cial network data can be used to refine assumptions
about the structure of interference. We have assumed
that interference occurred between all individuals in a
block. This corresponds to a network in which each
individual has a tie to every other individual in the
same block. But if anything is known about the ac-
tual network topology, specifically about the absence
of ties between certain individuals, then this informa-
tion could be used to refine the causal structure of in-
terference represented on the DAGs given in Section 3
and, therefore, the conditions under which causal ef-
fects are identifiable.

6. CONCLUSION

It is of paramount importance to carefully consider
the specific causal structure whenever interference may
operate on the relation between one individual’s treat-
ment and another’s outcome. The possible structures
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are numerous and valid causal inference may require
different assumptions in each one, depending on the
effect of interest and the nature of confounding.

Also of great importance is the definition of the vari-
ables involved in the causal pathways under investiga-
tion. In some cases, the difference between interference
by contagion and direct interference is contextual: de-
pending on how we define the treatment and the out-
come, some causal relationships can be seen as either
one. Recall the example of direct interference that we
presented in Section 4.1: the outcome is weight change
and the treatment dietary counseling from a nutrition-
ist. Direct interference occurs when a treated individ-
ual “treats” his associates by imparting to them the in-
formation gained from the nutritionist, thereby directly
affecting their obesity status. Underlying this direct in-
terference is a contagious process by which the treated
individual transmits his understanding of how to adopt
and maintain a healthy diet to his associates; “catch-
ing” this understanding causes the associates to lose
weight. Defining variables precisely and narrowly is al-
ways a difficulty for causal inference; the challenge is
to conduct valid inference when we do not observe the
underlying causal mechanisms but instead have to base
our analyses on constructs like weight, symptomatic
flu, scholastic achievement, visits with a nutritionist,
etc.

This paper scratches the surface of the enormous
challenge of causal inference in the presence of inter-
ference. We have not, for example, touched upon esti-
mation of causal effects or on inference, areas where
some progress has been made in recent years (Aronow
and Samii, 2013; Bowers, Fredrickson and Panagopou-
los, 2013; Graham, Imbens and Ridder, 2010; Hudgens
and Halloran, 2008; Manski, 2013; Rosenbaum, 2007;
Tchetgen Tchetgen and VanderWeele, 2012) but much
more is needed.

APPENDIX

We describe the identification of the effects of Ai

on Yj for the DAGs in Figure 5 when C is not fully
observed.

In Figure 5(c), standardizing by Ci identifies the ef-
fect of Ai on Yj :

∑

ci

E[Yj |Ai = ai,Ci = ci]P(Ci = c)

= ∑

aj

∑

cj

∑

ci

E[Yj |Ai = ai,

Ci = ci,Aj = aj ,Cj = cj ]

· P(Aj = aj ,

Cj = cj |Ai = ai,Ci = ci)

· P(Ci = ci)

= ∑

aj

∑

cj

∑

ci

E
[
Yj (ai, aj )|Ai = ai,

Ci = ci,Aj = aj ,Cj = cj

]

· P(Aj = aj ,

Cj = cj |Ai = ai,Ci = ci)

· P(Ci = ci)

= ∑

aj

∑

cj

∑

ci

E
[
Yj (ai, aj )|Ci = ci,Cj = cj

]

· P(Aj = aj ,

Cj = cj |Ai = ai,Ci = ci)

· P(Ci = ci).

This is a weighted average of C-specific counterfac-
tuals Yj (a). [Replacing Ci with D in the expressions
above gives the identifying expression for the effect
of Ai on Yj in Figure 5(e).] Standardizing by Ci also
identifies the effect of Ai on Yi for the DAGs in Fig-
ures 5(a) and 5(c), similarly giving a weighted average
of C-specific counterfactuals:

∑

ci

E[Yi |Ai = ai,Ci = ci]P(Ci = c)

= ∑

aj

∑

cj

∑

ci

E[Yi |Ai = ai,

Ci = ci,Aj = aj ,Cj = cj ]
· P(Aj = aj ,

Cj = cj |Ai = ai,Ci = ci)

· P(Ci = ci)

= ∑

aj

∑

cj

∑

ci

E
[
Yi(ai, aj )|Ai = ai,

Ci = ci,Aj = aj ,Cj = cj

]

· P(Aj = aj ,

Cj = cj |Ai = ai,Ci = ci)

· P(Ci = ci)

= ∑

aj

∑

cj

∑

ci

E
[
Yi(ai, aj )|Ci = ci,Cj = cj

]

· P(Aj = aj ,

Cj = cj |Ai = ai,Ci = ci)

· P(Ci = ci).
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