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MODERATE DEVIATIONS FOR RECURSIVE

STOCHASTIC ALGORITHMS

By Paul Dupuis∗ and Dane Johnson†

Brown University

We prove a moderate deviation principle for the continuous time
interpolation of discrete time recursive stochastic processes. The meth-
ods of proof are somewhat different from the corresponding large de-
viation result, and in particular the proof of the upper bound is more
complicated.

1. Introduction. In this paper we consider R
d-valued discrete time

processes of the form

Xn
i+1 = Xn

i +
1

n
b(Xn

i ) +
1

n
υi(X

n
i ), X

n
0

.
= x0,

where {υi(·)}i∈N0 are zero mean random independent and identically dis-
tributed (iid) vector fields, and focus on their continuous time piecewise
linear interpolations {Xn(t)}0≤t≤T with Xn(i/n) = Xn

i (see (2.5) for the
precise definition). Under certain conditions there is a law of large number
limit X0 ∈ C([0, T ] : Rd), and the large deviations of Xn from this limit
have been studied extensively (see, e.g., [1, 10, 12, 15]). Here we introduce a
scaling a(n) satisfying a(n) → 0 and a(n)

√
n → ∞, and study the amplified

difference between Xn and its noiseless version Xn,0 (see Section 2 for the
definition of Xn,0):

Y n = a(n)
√
n(Xn −Xn,0).

Under Condition 2.1 stated below supt∈[0,T ]

∥

∥X0(t)−Xn,0(t)
∥

∥ ∼ O(1/n),

and hence Y n will behave the same asymptotically as a(n)
√
n(Xn − X0).

We demonstrate, under weaker conditions on the noise υi(·) than are nec-
essary when considering Xn, that Y n satisfies the large deviation principle
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on C([0, T ] : Rd) with a “Gaussian” type rate function. As is customary for
this type of scaling, we refer to this as moderate deviations.

To demonstrate this result we prove the equivalent Laplace principle,
which involves evaluating limits of quantities of the form

a(n)2 logE

[

exp

{

− 1

a(n)2
F (Y n)

}]

when F is bounded and continuous. This is done by representing each of
these quantities in terms of a stochastic control problem, and then using
weak convergence methods as in [12]. Key results needed in this approach are
establishing tightness of controls and controlled processes, and identifying
their limits.

While one might expect the proof of this moderate deviations result to be
similar to the corresponding large deviations result, there are important dif-
ferences. For example, the tightness proof is significantly more complicated
in the case of moderate deviations than it is in the case of large deviations.
For large deviations one is able to establish an a priori bound on certain
relative entropy costs associated with any sequence of nearly minimizing
controls, and under this boundedness of the relative entropy costs, the em-
pirical measures of the controlled driving noises as well as the controlled
processes are tight. However, owing to the scaling in moderate deviations,
even with the information that the analogous relative entropy costs decay
like O(1/a(n)2n), tightness of the empirical measures of the noises does not
hold. Instead, one must consider empirical measures of the conditional means
of the noises, and additional effort is required for a law of large numbers type
result that shows that the conditional means are adequate to determine the
limit. This extra difficulty arises for moderate deviations (even with the van-
ishing relative entropy costs), because with this scaling the noise is amplified
by a term of the form a(n)

√
n.

A second way in which the proofs for large and moderate deviations differ
is in their treatment of degenerate noise, i.e., problems where the support
of υi(·) is not all of R

d. This leads to significant difficulties in the proof
of the large deviation lower bound, and requires a delicate and involved
mollification argument. In contrast, the proof in the setting of moderate
deviations, though more involved than the nondegenerate case, is much more
straightforward.

As a potential application of these results we mention their usefulness
in the design and analysis of Monte Carlo schemes. It is well known that
accelerated Monte Carlo schemes (e.g., importance sampling and splitting)
benefit by using information contained in the large deviation rate function
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as part of the algorithm design (e.g., [3, 8, 13, 14]). In a situation where
one considers events of small but not too small probability one may find
the moderate deviation approximation both adequate and relatively easy
to apply, since moderate deviations lead to situations where the objects
needed to design an efficient scheme can be explicitly constructed in terms
of solutions to the linear-quadratic regulator. These issues will be explored
elsewhere.

The existing literature on moderate deviations considers various settings.
Baldi [2] considers the same scaling used here but with no state dependence.
For the empirical measure of a Markov chain, de Acosta [7] and de Acosta
and Chen [6] prove lower and upper bounds, respectively. Guillin [17] consid-
ers inhomogeneous functionals of a “fast” continuous time ergodic Markov
chain, and in [18] this is extended to a small noise diffusion whose coefficients
depend on the “fast” Markov chain. There are also results for martingale
differences such as Dembo [9], Gao [16], and Djellout [11]. For various rea-
sons, the issues previously mentioned regarding the difficulties in the proof
of the upper bound and the simplification in the lower bound for degener-
ate noise do not play a role in these papers. For instance, proving tightness
in a moderate deviations setting for continuous time processes such as dif-
fusions is typically much easier. This is because measures on path space
that have bounded relative entropy with respect to Wiener measure have
significantly less variability than those with bounded relative entropy with
respect to a discrete time process. In particular, bounded relative entropy
automatically restricts to what one could consider to be “exponential tilts”
of the original distribution in continuous time, which does not happen in
discrete time, and is the reason more effort must be put into the proof of
tightness. This is illustrated by the convenient alternative formulations of
the relative entropy representation for some continuous time processes (see
[4] for Brownian motion and [5] for Poisson random measures).

The paper is organized as follows. Section 2 gives the statement of the
problem and notation. Section 3 contains the proof of tightness and the
characterization of limits, which account for most of the mathematical diffi-
culties, and are also the main results needed to prove the Laplace principle.
Sections 4 and 5 give the proofs of the upper and lower Laplace bounds.
Although all proofs are given for the time interval [0, 1], they extend with
only notational differences to [0, T ] for any T ∈ (0,∞).

Aknowledgement. The authors thank the referees for several suggestions
that improved the paper.
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2. Background and Notation. Let

Xn
i+1 = Xn

i +
1

n
b(Xn

i ) +
1

n
υi(X

n
i ), X

n
0

.
= x0

where the {υi(·)}i∈N0 are zero mean iid vector fields with distribution given
by the stochastic kernel µx. Thus if B(Rd) is the Borel σ-algebra on R

d,
then x → µx(B) is measurable for all B ∈ B(Rd), µx(·) is a probability
measure on B(Rd) for all x ∈ R

d, and P (υi(x) ∈ B) = µx(B) for all x ∈ R
d,

B ∈ B(Rd) and i ∈ N0. Define

Hc(x, α)
.
= log

(
∫

Rd

e〈y,α〉µx(dy)

)

for α ∈ R
d. The subscript c reflects the fact that this log moment generating

function uses the centered distribution µx, rather than the usual H(x, α) =
Hc(x, α) + 〈α, b(x)〉. We will use the following.

Condition 2.1.

• There exists λ > 0 and Kmgf < ∞ such that

(2.1) sup
x∈Rd

sup
‖α‖≤λ

Hc(x, α) ≤ Kmgf.

• x → µx(dy) is continuous with respect to the topology of weak conver-
gence.

• b(x) is continuously differentiable, and the norm of both b(x) and its
derivative are uniformly bounded by some constant Kb < ∞.

Throughout this paper we let ‖α‖2A = 〈α,Aα〉 for any α ∈ R
d and sym-

metric, nonnegative definite matrix A. Define

Aij(x)
.
=

∫

Rd

yiyjµx(dy),

and note that the weak continuity of µx with respect to x and (2.1) ensure
that A (x) is continuous in x and its norm is uniformly bounded by some
constant KA. Note that

∂Hc(x, 0)

∂αi
=

∫

Rd

yiµx(dy) = 0

and
∂2Hc(x, 0)

∂αi∂αj
=

∫

Rd

yiyjµx(dy) = Aij(x)
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for all i, j ∈ {1, . . . , d} and x ∈ R
d, and that A(x) is nonnegative-definite

and symmetric. For x ∈ R
d we can therefore write

A(x) = Q(x)Λ(x)QT (x),

where Q(x) is an orthogonal matrix whose columns are the eigenvectors of
A(x) and Λ(x) is the diagonal matrix consisting of the eigenvalues of A(x) in
descending order. In what follows we define Λ−1(x) to be the diagonal matrix
with diagonal entries equal to the inverse of the corresponding eigenvalue
for the positive eigenvalues, and equal to ∞ for the zero eigenvalues. Then
when we write

(2.2) ‖α‖2A−1(x) = ‖α‖2Q(x)Λ−1(x)QT (x) ,

we mean a value of ∞ for α ∈ R
d not in the linear span of the eigenvectors

corresponding to the positive eigenvalues, and the standard value for vectors
α ∈ R

d in that linear span. (Note that even if the definition of A−1(x) is
ambiguous, in that for α in the range of A(x) there may be more than one v
such that A(x)v = α, the value of ‖α‖2A−1(x) is not ambiguous. Indeed, since
the eigenvectors can be assumed orthogonal, for all such v 〈v, α〉 coincides
with 〈v̄, α〉, where v̄ is the solution in the span of eigenvectors corresponding
to positive eigenvalues.) Assumption (2.1) implies there exists some KDA <
∞ and λDA ∈ (0, λ] (independent of x) such that

(2.3) sup
x∈Rd

sup
‖α‖≤λDA

max
i,j,k

∣

∣

∣

∣

∂3Hc(x, α)

∂αi∂αj∂αk

∣

∣

∣

∣

≤ KDA

d3
,

and consequently for all ‖α‖ ≤ λDA and all x ∈ R
d

(2.4)
1

2
‖α‖2A(x) − ‖α‖3KDA ≤ Hc(x, α) ≤

1

2
‖α‖2A(x) + ‖α‖3KDA.

Define the continuous time linear interpolation of Xn
i by Xn(i/n) = Xn

i

for i = 0, . . . , n and

(2.5) Xn(t) = (i+ 1− nt)Xn
i + (nt− i)Xn

i+1

for t ∈ (i/n, i/n + 1/n). In addition, define

Xn,0
i+1 = Xn,0

i +
1

n
b
(

Xn,0
i

)

, Xn,0
0 = x0

and let Xn,0(t) be the analogous continuous time linear interpolation given
by Xn,0(i/n) = Xn,0

i for i = 0, . . . , n and

Xn,0(t) = (i+ 1− nt)Xn,0
i + (nt− i)Xn,0

i+1
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for t ∈ (i/n, i/n + 1/n). Clearly Xn,0(t) → X0(t) in C([0, 1] : Rd), where

X0(t) =

∫ t

0
b(X0(s))ds + x0.

Since Eυi(x) = 0 for all x ∈ R
d, we know that Xn(t) → X0(t) in C([0, 1] :

R
d) in probability. One can estimate probabilities for events involving paths

outside the law of large numbers limit X0 by proving a large deviation
principle and finding the corresponding rate function.

Definition 2.2. Let {Zn, n ∈ N} be a sequence of random variables
defined on a probability space (Ω,F , P ) and taking values in a Polish space
Z. A function I : Z → [0,∞] is called a rate function if for any M < ∞
the set {x : I(x) ≤ M} is compact in Z. The sequence {Zn} satisfies the
large deviation principle on Z with rate function I and sequence r(n) if the
following two conditions hold.

• Large Deviation Upper Bound: for each closed subset F of Z

lim sup
n→∞

r(n) logP (Zn ∈ F ) ≤ − inf
z∈F

I(z).

• Large Deviation Lower Bound: for each open subset G of Z

lim inf
n→∞

r(n) log P (Zn ∈ G) ≥ − inf
z∈G

I(z).

Under significantly stronger assumptions, including the assumption that

sup
x∈Rd

Hc(x, α) < ∞

for all α ∈ R
d, it has been shown that Xn(t) satisfies the large deviation

principle on C([0, 1] : Rd) with sequence r(n) = 1/n and rate function

IL(φ) = inf

{
∫ 1

0
Lc(φ(s), u(s))ds : φ (t) = x0 +

∫ t

0
b(φ(s))ds

+

∫ t

0
u(s)ds, t ∈ [0, 1]

}

,

where
Lc(x, β) = sup

α∈Rd

{〈α, β〉 −Hc(x, α)}

is the Legendre transform of Hc(x, α) [12, 20, 21, 22, 23].
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Assume a(n) satisfies

(2.6) a(n) → 0 and a(n)
√
n → ∞.

We define the rescaled difference

Y n(t) = a(n)
√
n(Xn(t)−Xn,0(t)).

As noted in the introduction, the result stated below also holds with the
interval [0, 1] replaced by [0, T ], T ∈ (0,∞). Let D denote the gradient
operator.

Theorem 2.3. Assume Condition 2.1. Then {Y n}n∈N satisfies the large
deviation principle on C([0, 1] : Rd) with sequence a(n)2 and rate function

IM (φ) = inf

{

1

2

∫ 1

0
‖u(t)‖2 dt : φ(t) =

∫ t

0
Db(X0(s))φ(s)ds

+

∫ t

0
A1/2(X0(s))u(s)ds, t ∈ [0, 1]

}

.

IM is essentially the same as what one would obtain by using a linear
approximation around the law of large numbers limit X0 of the dynamics
and a quadratic approximation of the costs in IL. To prove the LDP, it
suffices to show the Laplace principle [12, Theorem 1.2.3]

lim
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

= inf
u∈L2([0,1]:Rd)

{

1

2

∫ 1

0
‖u(s)‖2 ds+ F

(

φA1/2(X0)u
)

}

,(2.7)

where

(2.8) φu (t) =

∫ t

0
Db(X0(s))φu(s)ds+

∫ t

0
u(s)ds.

Note that

Y n
i+1 = Y n

i +
a(n)√

n

(

b(Xn
i )− b(Xn,0

i )
)

+
a(n)√

n
υi(X

n
i ), Y n

0 = 0.

For η, µ ∈ P(Rd) [the set of probability measures on B(Rd)] , the relative
entropy of η with respect to µ is defined by

R(η‖µ) .
=

∫

Rd

log

(

dη

dµ
(x)

)

η(dx) ∈ [0,∞]
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if η is absolutely continuous with respect to µ, and R(η‖µ) .
= ∞ otherwise.

For general properties of relative entropy we refer to [12, Section 1.4]. The
variational formula [12, Proposition 1.4.2(a)] and chain rule [12, Theorem
C.3.1] imply that
(2.9)

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

= inf
η
E

[

n−1
∑

i=0

a(n)2R(ηi‖µX̄n
i
) + F (Ȳ n)

]

for any bounded, continuous F : C([0, 1] : Rd) → R. Here η ∈ P((Rd)n) is
the joint distribution of (ῡ0, . . . , ῡn−1), ηi(·) is the conditional distribution
on ῡi given (ῡ0, . . . , ῡi−1),

(2.10) X̄n
i+1 = X̄n

i +
1

n
b(X̄n

i ) +
1

n
ῡi, X̄n

0 = x0,

(2.11) Ȳ n
i+1 = Ȳ n

i +
a(n)√

n

(

b(X̄n
i )− b(Xn,0

i )
)

+
a(n)√

n
ῡi, Ȳ n

0 = 0

and, similar to (2.5), X̄n(t) and Ȳ n(t) are the continuous time linear in-
terpolations of {X̄n

i }i=0,...,n and {Ȳ n
i }i=0,...,n. Note that ηi depends on past

values of the noise, but we suppress this dependence in the notation. We
will prove (2.7) by proving the lower bound

lim inf
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

≥ inf
u∈L2([0,1]:Rd)

{

1

2

∫ 1

0
‖u(s)‖2 ds + F

(

φA1/2(X0)u
)

}

(2.12)

and the upper bound

lim sup
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

≤ inf
u∈L2([0,1]:Rd)

{

1

2

∫ 1

0
‖u(s)‖2 ds+ F

(

φA1/2(X0)u
)

}

.(2.13)

We will use a tightness and weak convergence result in the proofs of both of
these bounds, but first establish notation used in the rest of the paper.

Construction 2.4. Given a sequence of measures { ηn}n∈N with each
ηn ∈ P((Rd)n), define the following. Let (ῡn0 , . . . , ῡ

n
n−1) be random variables
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with distribution ηn, and define {X̄n
i }i=0,...,n and {Ȳ n

i }i=0,...,n by (2.10) and
(2.11). Let

X̄n(t)
.
= (i+ 1− nt)X̄n

i + (nt− i)X̄n
i+1

and
Ȳ n(t)

.
= (i+ 1− nt)Ȳ n

i + (nt− i)Ȳ n
i+1

for t ∈ [i/n, i/n + 1/n], i = 0, . . . n − 1 be their continuous time linear
interpolations. Define the conditional means of the noises

wn(t)
.
=

∫

Rd

yηni (dy) for t ∈
[

i

n
,
i+ 1

n

)

,

the amplified conditional means

ŵn(t)
.
= a(n)

√
nwn(t),

and random measures on R
d × [0, 1] by

η̂n(dy × dt)
.
= δŵn(t)(dy)dt = δa(n)

√
nwn(t)(dy)dt.

We will refer to this construction when given ηn to identify the associ-
ated X̄n, Ȳ n, ŵn and η̂n. Given ν ∈ P(E1 × E2), with each Ei, i = 1, 2 a
Polish space, let ν2 denote the second marginal of ν, and let ν1|2 denote the
conditional distribution on E1 given a point in E2.

Theorem 2.5. Let {ηn} be a sequence of measures, with each ηn ∈
P((Rd)n), and define the corresponding random variables as in Construction
2.4. Assume that for some KE < ∞

(2.14) sup
n∈N

{

a(n)2nE

[

1

n

n−1
∑

i=0

R(ηni ‖µX̄n
i
)

]}

≤ KE.

Then {(η̂n, Ȳ n)}n∈N is tight in P(Rd × [0, 1]) × C([0, 1] : Rd). Consider a
subsequence (keeping the index n for convenience) such that {(η̂n, Ȳ n)} con-
verges weakly to (η̂, Ŷ ). Then with probability 1 η̂2(dt) is Lebesgue measure
and

(2.15) Ŷ (t) =

∫ t

0
Db(X0(s))Ŷ (s)ds +

∫ t

0
ŵ(s)ds,

where

ŵ(t) =

∫

Rd

yη̂1|2(dy |t).
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In addition,
(2.16)

lim inf
n→∞

a(n)2nE

[

1

n

n−1
∑

i=0

R(ηni ‖µX̄n
i
)

]

≥ E

[
∫ 1

0

1

2
‖ŵ(s)‖2A−1(X0(s)) ds

]

.

3. Proof of Theorem 2.5. Assume that the bound (2.14) holds. We
will show tightness of the {η̂n} measures using the following lemma.

Lemma 3.1. Assume Condition 2.1 and let

(3.1) Lc(x, β) = sup
α∈Rd

{〈α, β〉 −Hc(x, α)}

be the Legendre transform of Hc(x, ·). Then for any x ∈ R
d and η ∈ P(Rd)

R(η‖µx) ≥ Lc

(

x,

∫

Rd

yη(dy)

)

.

Proof. While the result is likely known we could not locate a proof (see
[12, Lemma 6.2.3(f)] for a proof when Hc(x, α) is finite for all α ∈ R

d), and
so for completeness the details are provided. If R(η‖µx) = ∞ the lemma is
automatically true, so we assume R(η‖µx) < ∞. Define ℓ(b) = b log b−b+1
and note that for a, b ≥ 0

(3.2) ab ≤ ea + ℓ(b).

From (2.1) we have

∫

Rd

e
λ

2d
‖y‖

µx(dy) ≤ 2dedKmgf < ∞.

Therefore
∫

Rd

λ

2d
‖y‖ dη

dµx
(y)µx(dy)

≤
∫

Rd

e
λ

2d
‖y‖

µx(dy) +

∫

Rd

ℓ

(

dη

dµ
(y)

)

µx(dy)

≤ 2dedKmgf +R(η‖µx),

and consequently for any α ∈ R
d

(3.3)

∫

Rd

‖α‖ ‖y‖ dη

dµx
(y)µx(dy) ≤

2d ‖α‖
λ

(

2dedKmgf +R(η‖µx)
)

< ∞.
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Define the bounded, continuous function

FK(y, α) =

{

〈α, y〉 if |〈α, y〉| ≤ K
K〈α,y〉
|〈α,y〉| otherwise,

and note that (3.3) and dominated convergence give

lim
K→∞

∫

Rd

FK(y, α)η(dy) =

〈

α,

∫

Rd

yη(dy)

〉

.

In addition, dominated convergence gives

lim
K→∞

∫

{y:〈α,y〉<0}
eFK(y,α)µx(dy) =

∫

{y:〈α,y〉<0}
e〈α,y〉µx(dy)

and monotone convergence gives

lim
K→∞

∫

{y:〈α,y〉≥0}
eFK(y,α)µx (dy) =

∫

{y:〈α,y〉≥0}
e〈α,y〉µx (dy) ,

so

lim
K→∞

log

(
∫

Rd

eFK(y,α)µx (dy)

)

= Hc(x, α).

By the Donsker-Varadhan variational formula [12, Lemma 1.4.3(a)]

R(η‖µx) ≥
∫

Rd

FK(y, α)η(dy) − log

(
∫

Rd

eFK(y,α)µx(dy)

)

for all K < ∞ and α ∈ R
d, and so

R(η‖µx) ≥ sup
α∈Rd

{〈

α,

∫

Rd

yη(dy)

〉

−Hc(x, α)

}

= Lc

(

x,

∫

Rd

yη(dy)

)

,

which completes the proof of the lemma.

The lemma implies the following theorem, which in turn will give tightness
of {η̂n}.

Theorem 3.2. Assume Condition 2.1 and (2.14). For the processes
{wn} obtained in Construction 2.4

sup
n∈N

E

[
∫ 1

0
a(n)

√
n ‖wn(s)‖ ds

]

< ∞.

In addition, {a(n)√nwn(·)}n∈N is uniformly integrable in the sense that

lim
C→∞

lim sup
n→∞

E

[
∫ 1

0
1{a(n)√n‖wn(s)‖>C}a(n)

√
n ‖wn(s)‖ ds

]

= 0.
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Proof. We use the following inequality. LetG
.
= (λDA minn∈N{a(n)

√
n})2

[recall (2.6)], so that λDA ≥
√
G/a(n)

√
n for all n. Define Lc by (3.1). Let

K̄
.
= λDAKDA +KA/2. Then with ei denoting the standard unit vectors

a(n)2nLc(x, β)

= sup
α∈Rd

[

a(n)
√
n
〈

α, a(n)
√
nβ
〉

− a(n)2nHc(x, α)
]

≥ ±a(n)
√
n

〈 √
G

a(n)
√
n
ei, a(n)

√
nβ

〉

− a(n)2nHc

(

x,±
√
G

a(n)
√
n
ei

)

≥ ±
√
Ga(n)

√
nβi −

1

2
G ‖A(x)‖ −GλDAKDA

≥ ±
√
Ga(n)

√
nβi −GK̄,

where the first inequality follows from making a specific choice of α and the
second uses (2.4). Therefore

(3.4) da(n)2nLc(x, β) + dGK̄ ≥
√
Ga(n)

√
n ‖β‖ .

Using the bound on Lc from Lemma 3.1 together with (2.14) and the last
display,

d

(

KE√
G

+
√
GK̄

)

≥ da(n)2n√
G

E

[
∫ 1

0
Lc

(

X̄n

(⌊ns⌋
n

)

, wn(s)

)

ds

]

+ d
√
GK̄(3.5)

≥ E

[
∫ 1

0
a(n)

√
n ‖wn(s)‖ ds

]

.

For the uniform integrability, let C ∈ (1,∞) be arbitrary and consider n
large enough that

min{λDA, 1} ≥
√
C

a(n)
√
n
.

Since λDA ≥ 1/a(n)
√
n the derivation leading (3.5) holds for G = 1, and

therefore

E

[
∫ 1

0
a(n)

√
n ‖wn(s)‖ ds

]

≤ K∗ .
= d

(

KE +
1

2
KA + λDAKDA

)

,

which implies

E

[
∫ 1

0
1{a(n)√n‖wn(s)‖>C}ds

]

≤ K∗

C
.
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Since λDA ≥
√
C/a(n)

√
n the estimate (3.4) holds with G replaced by C,

and then the last display and (3.5) give

√
CE

[
∫ 1

0
1{a(n)√n‖wn(s)‖>C}a(n)

√
n ‖wn(s)‖ ds

]

≤ da(n)2nE

[
∫ 1

0
Lc

(

X̄n

(⌊ns⌋
n

)

, wn(s)

)

ds

]

+ CdK̄E

[
∫ 1

0
1{a(n)√n‖wn(s)‖>C}ds

]

≤ K∗d
(

1 + K̄
)

.

We conclude that

lim
C→∞

lim sup
n→∞

E

[
∫ 1

0
1{a(n)√n‖wn(s)‖>C}a(n)

√
n ‖wn(s)‖ ds

]

= 0,

which is the claimed uniform integrability.

We continue with the proof of Theorem 2.5. Note that g(y, t) = ‖y‖ is a
tightness function on R

d × [0, 1], so by [12, Theorem A.3.17]

G(η) =

∫

Rd×[0,1]
‖y‖ η(dy × dt)

is a tightness function on P(Rd × [0, 1]) and

Ḡ(γ) =

∫

P(Rd×[0,1])

∫

Rd×[0,1]
‖y‖ η(dy × dt)γ(dη)

is a tightness function on P(P(Rd × [0, 1])). Since

sup
n∈N

EG(η̂n) = sup
n∈N

E

[
∫

‖y‖ η̂n(dy × dt)

]

= sup
n∈N

E

[
∫ 1

0
a(n)

√
n ‖wn(s)‖ ds

]

< ∞,

{η̂n} is tight and consequently there is a subsequence of {η̂n} which con-
verges weakly. To simplify notation we retain n as the index of this conver-
gent subsequence, and denote the weak limit of {η̂n} by η̂. Note that for all
n the second marginal of η̂n(dy×dt), which we denote by η̂n2 (dt), is Lebesgue
measure, and therefore η̂2(dt) is Lebesgue measure with probability 1.
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Our aim is to show that Ȳ n(t) → Ŷ (t) weakly in C([0, 1] : Rd), where Ŷ (t)
is given by (2.15) in terms of the weak limit η̂. To achieve this we introduce
the following processes which serve as intermediate steps. Let Y̌ n

0 = 0 and

Y̌ n
i+1 = Y̌ n

i +
a(n)√

n

(

b

(

Xn,0
i +

1

a(n)
√
n
Y̌ n
i

)

− b
(

Xn,0
i

)

)

+
a(n)√

n
wn

(

i

n

)

,

together with its continuous time linear interpolation defined for t ∈ [i/n, i/n+
1/n] by

Y̌ n(t) = (i+ 1− nt)Y̌ n
i + (nt− i)Y̌ n

i+1.

Also let

(3.6) Ŷ n(t) =

∫ t

0
Db
(

X0(s)
)

Ŷ n(s)ds+

∫ t

0
ŵn(s)ds

where

ŵn(t) =

∫

Rd

yη̂n1|2(dy |t)

as in Construction 2.4. These are both random variables taking values in
C([0, 1] : Rd). Note that Ȳ n differs from Y̌ n because Ȳ n is driven by the
actual noises and Y̌ n is driven by their conditional means. While the driving
terms of Ŷ n and Y̌ n are the same [recall that a(n)

√
nwn(t) = ŵn(t)], they

differ in that Y̌ n is still a linear interpolation of a discrete time process
whereas Ŷ n satisfies an ODE. The goal is to show that along the subsequence
where η̂n → η̂ weakly

Ȳ n − Y̌ n → 0, Y̌ n − Ŷ n → 0, and Ŷ n → Ŷ

in C([0, 1] : Rd), all in distribution. To show Ŷ n → Ŷ we show that {Ŷ n}
is tight in C([0, 1] : Rd) and use the mapping defined by (3.6) from

∫ ·
0 ŵ

n

to Ŷ n. Recall that supx∈Rd ‖Db(x)‖ ≤ Kb. The following lemma is an easy
consequence of Gronwall’s inequality.

Lemma 3.3. Let u ∈ L1([0, 1] : Rd) be arbitrary and φu be defined as in
(2.8). Then for 0 ≤ s ≤ t ≤ 1

‖φu(t)− φu(s)‖ ≤ (t− s)Kbe
Kb

∫ 1

0
‖u(r)‖ dr +

∫ t

s
‖u(r)‖ dr.

With this lemma and the uniform integrability of {η̂n} given in Theo-
rem 3.2, tightness follows.
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Lemma 3.4. Assume Condition 2.1 and (2.14). The sequence {Ŷ n} de-
fined in (3.6) in terms of the measures {ηn} via Construction 2.4 is tight in
C([0, 1] : Rd), as is {

∫ ·
0 ŵ

nds}.

Proof. It suffices to show that for any ε > 0 there is δ > 0 such that

lim sup
n→∞

P

(

sup
|s−t|≤δ

∥

∥

∥
Ŷ n(t)− Ŷ n(s)

∥

∥

∥
> ε

)

< ε.

Since η̂n is a measure with a point mass located at ŵn(t) ,

T (C)
.
= lim sup

n→∞
E

[
∫ 1

0
1{‖ŵn(t)‖>C} ‖ŵn(t)‖ dt

]

= lim sup
n→∞

E

[

∫

{‖y‖>C}
‖y‖ η̂n(dy × dt)

]

.

By Theorem 3.2 T (C) → 0 as C → ∞. Let Kη = supn∈NE
∫ 1
0 ‖ŵn(t)‖ dt,

which is finite by Theorem 3.2, and let ε > 0 be arbitrary. Then for any
s < t satisfying t− s ≤ δ Lemma 3.3 implies

∥

∥

∥
Ŷ n(t)− Ŷ n(s)

∥

∥

∥
≤ δKbe

Kb

∫ 1

0
‖ŵn(r)‖ dr +

∫ t

s
‖ŵn(r)‖ dr.

Since
∫ t

s
‖ŵn(r)‖ dr ≤ Cδ +

∫ 1

0
1{‖ŵn(r)‖>C} ‖ŵn(r)‖ dr,

it follows that

∥

∥

∥
Ŷ n(t)− Ŷ n(s)

∥

∥

∥
≤ δ

(

C +Kbe
Kb

∫ 1

0
‖ŵn(r)‖ dr

)

+

∫ 1

0
1{‖ŵn(r)‖>C} ‖ŵn(r)‖ dr.

Hence by Markov’s inequality

lim sup
n→∞

P

(

sup
|s−t|≤δ

∥

∥

∥
Ŷ n(t)− Ŷ n(s)

∥

∥

∥
> ε

)

≤ δ

ε
lim sup
n→∞

E

[(

C +Kbe
Kb

∫ 1

0
‖ŵn(r)‖ dr

)]

+
1

ε
lim sup
n→∞

E

[
∫ 1

0
1{‖ŵn(r)‖>C} ‖ŵn(r)‖ dr

]
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≤ δ

ε
(C +Kbe

KbKη) +
1

ε
T (C).

Choose C < ∞ such that T (C) < ε2/2 and then choose δ > 0 so that the
δ(C + Kbe

KbKη) < ε2/2. This shows the tightness of {Ŷ n}. The tightness
of {

∫ ·
0 ŵ

nds} is simpler, and follows from the bound

lim sup
n→∞

P

(

sup
|s−t|≤δ

∫ t

s
‖ŵn(r)‖ dr > ε

)

≤ δ
C

ε
+

1

ε
T (C).

We still need to show that Ŷ n converges to Ŷ . This also relies on the
uniform integrability given by Theorem 3.2.

Lemma 3.5. Assume Condition 2.1 and (2.14). Let the sequence {Ŷ n (t)}
be defined by (3.6), consider a convergent subsequence {(Ŷ n, η̂n)} with limit
(Ŷ ∗, η̂), and let Ŷ (t) be defined by (2.15). Then w.p.1 Ŷ ∗ = Ŷ .

Proof. We can write

Ŷ n(t) =

∫ t

0
Db(X0(s))Ŷ n(s)ds+

∫ t

0

∫

Rd

yη̂n(dy × ds).

Using the uniform integrability proved in Theorem 3.2 and that η̂2 is Lebesgue
measure w.p.1, sending n → ∞ and using the definition of ŵ gives

Ŷ ∗(t) =

∫ t

0
Db(X0(s))Ŷ ∗(s)ds+

∫ t

0

∫

Rd

yη̂(dy × ds)

=

∫ t

0
Db(X0(s))Ŷ ∗(s)ds+

∫ t

0
ŵ(s)ds.

By uniqueness of the solution, Ŷ ∗ = Ŷ follows.

It remains to show Ȳ n − Y̌ n → 0 and Y̌ n − Ŷ n → 0. We begin with
Ȳ n− Y̌ n → 0. Recall that the difference between Ȳ n and Y̌ n is that the first
is driven by the actual noises and the second is driven by their conditional
means. The following theorem is a law of large numbers type result for the
difference between the noises and their conditional means, and is the most
complicated part of the analysis.
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Theorem 3.6. Assume Condition 2.1 and (2.14). Consider the sequence
{ῡni }i=0,...,n−1 of controlled noises and {wn(i/n)}i=0,...,n−1 of means of the
controlled noises as in Construction 2.4. For i ∈ {1, . . . , n} let

W n
i

.
=

1

n

i−1
∑

j=0

a(n)
√
n (ῡni − wn (i/n)) .

Then for any δ > 0

lim
n→∞

P

[

max
i∈{1,...,n}

‖W n
i ‖ ≥ δ

]

= 0.

Proof. According to (2.14)

1

n

n−1
∑

i=0

E[R(ηni ‖µX̄n
i
)] ≤ KE

a2(n)n
.

Because of this the (random) Radon-Nikodym derivatives

fn
i (y) =

dηni
dµX̄n

i

(y)

are well defined and can be selected in a measurable way. We will control
the magnitude of the noise when the Radon-Nikodym derivative is large by
bounding

1

n

n−1
∑

i=0

E[1{fn
i (ῡn

i )≥r} ‖ῡni ‖]

for large r.
From the bound on the moment generating function (2.1),

(3.7) sup
x∈Rd

∫

Rd

e
λ

2d
‖y‖

µx(dy) ≤ 2dedKmgf .

Let

(3.8) σ = min{λ/2d+1, 1}

and recall the definition ℓ(b)
.
= b log b− b+ 1. Then

1

n

n−1
∑

i=0

E
[

1{fn
i (ῡn

i )≥r} ‖ῡni ‖
]

=
1

n

n−1
∑

i=0

E

[

∫

{y:fn
i (y)≥r}

‖y‖ fn
i (y)µX̄n

i
(dy)

]
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and the bound ab ≤ ea + ℓ(b) for a, b ≥ 0 with a = σ ‖y‖ and b = fn
i (y)

gives that for all i

E

[

∫

{y:fn
i (y)≥r}

‖y‖ fn
i (y)µX̄n

i
(dy)

]

≤ 1

σ
E

[

∫

{y:fn
i (y)≥r}

eσ‖y‖µX̄n
i
(dy)

]

+
1

σ
E

[

∫

{y:fn
i (y)≥r}

ℓ(fn
i (y))µX̄n

i
(dy)

]

.

Since ℓ(b) ≥ 0 for all b ≥ 0

E

[

∫

{y:fn
i (y)≥r}

ℓ (fn
i (y))µX̄n

i
(dy)

]

≤ E

[
∫

Rd

ℓ(fn
i (y))µX̄n

i
(dy)

]

= E[R(ηni ‖µX̄n
i
)],

and by Hölder’s inequality (recall (3.7) and (3.8))

E

[

∫

{y:fn
i (y)≥r}

eσ‖y‖µX̄n
i
(dy)

]

≤ E

[

(
∫

Rd

1{fn
i (y)≥r}µX̄n

i
(dy)

)
1
2
(
∫

Rd

e2σ‖y‖µX̄n
i
(dy)

)
1
2

]

≤ E
[

µX̄n
i
({y : fn

i (y) ≥ r}) 1
2

] (

2dedKmgf

)
1
2
.

In addition Markov’s inequality gives for r ≥ e−1

µX̄n
i
({y : fn

i (y) ≥ r}) ≤ 1

r log r

∫

log(fn
i (y))f

n
i (y)µX̄n

i
(dy) =

R(ηni ‖µX̄n
i
)

r log r
.

Therefore

1

n

n−1
∑

i=0

E

[

∫

{fn
i (y)≥r}

‖y‖ fn
i (y)µX̄n

i
(dy)

]

≤ 1

σ

(

2dedKmgf

)
1
2 1

n

n−1
∑

i=0

E





(

R(ηni ‖µX̄n
i
)

r log r

)
1
2



+
1

σ

1

n

n−1
∑

i=0

E[R(ηni ‖µX̄n
i
)].

Since by Jensen’s inequality

1

n

n−1
∑

i=0

E





(

R(ηni ‖µX̄n
i
)

r log r

)
1
2



 ≤
(

1

r log r

)
1
2

(

1

n

n−1
∑

i=0

E[R(ηni ‖µX̄n
i
)]

)

1
2

,
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we obtain the overall bound

1

n

n−1
∑

i=0

E
[

1{fn
i (ῡn

i )≥r} ‖ῡni ‖
]

≤ 1

σ

(

2dedKmgf

)
1
2

(

1

r log r

)
1
2

(

1

n

n−1
∑

i=0

E[R(ηni ‖µX̄n
i
)]

)

1
2

+
1

σ

1

n

n−1
∑

i=0

E[R(ηni ‖µX̄n
i
)]

≤ 1

σ

K
1
2
E

a(n)
√
n

(

2dedKmgf

)
1
2

(

1

r log r

)
1
2

+
1

σ

KE

a(n)2n
.(3.9)

Using this result we can complete the proof. Define

ξn,ri
.
=

{

v̄ni if fn
i (ῡ

n
i ) < r

0 otherwise.

For any for any δ > 0

P

{

max
k=0,...,n−1

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

ῡni − wn

(

i

n

))
∥

∥

∥

∥

≥ 3δ

}

≤ P

{

max
k=0,...,n−1

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n(ῡni − ξn,ri )

∥

∥

∥

∥

≥ δ

}

+ P

{

max
k=0,...,n−1

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

ξn,ri −
∫

{y:fn
i (y)<r}

yηni (dy)

)

∥

∥

∥

∥

≥ δ

}

+ P

{

max
k=0,...,n−1

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

wn

(

i

n

)

−
∫

{y:fn
i (y)<r}

yηni (dy)

)

∥

∥

∥

∥

≥ δ

}

.

The first term satisfies

P

{

max
k=0,...,n−1

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n(ῡni − ξn,ri )

∥

∥

∥

∥

≥ δ

}

≤ 1

δ
a(n)

√
n
1

n

n−1
∑

i=0

E [‖ῡni − ξn,ri ‖]

=
1

δ
a(n)

√
n
1

n

n−1
∑

i=0

E
[

1{fn
i (ῡn

i )≥r} ‖ῡni ‖
]

.

The second term involves a submartingale, and the first inequality in the
next display follows from Doob’s submartingale inequality. The second in-
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equality uses a conditioning argument and that for any integrable random
variable Z, E[Z − EZ]2 ≤ EZ2. We have

P

{

max
k=0,...,n−1

∥

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

ξn,ri −
∫

{y:fn
i (y)<r}

yηni (dy)

)
∥

∥

∥

∥

∥

≥ δ

}

≤ 1

δ2
E





∥

∥

∥

∥

∥

1

n

n−1
∑

i=0

a(n)
√
n

(

ξn,ri −
∫

{y:fn
i (y)<r}

yηni (dy)

)
∥

∥

∥

∥

∥

2




=
1

δ2
a(n)2

n

n−1
∑

i=0

E





∥

∥

∥

∥

∥

(

ξn,ki −
∫

{y:fn
i (y)<r}

yηni (dy)

)
∥

∥

∥

∥

∥

2




≤ 1

δ2
a(n)2

n

n−1
∑

i=0

E

[

∥

∥

∥
ξn,ki

∥

∥

∥

2
]

=
1

δ2
a(n)2

n

n−1
∑

i=0

E

[

∫

{y:fn
i (y)<r}

‖y‖2 fn
i (y)µX̄n

i
(dy)

]

≤ r

δ2
a(n)2

n

n−1
∑

i=0

E

[
∫

Rd

‖y‖2 µX̄n
i
(dy)

]

≤ r

δ2
a(n)2Kµ,2,

where

Kµ,2 = sup
x∈Rd

∫

Rd

‖y‖2 µx(dy) < ∞,

and the finiteness is due to (2.1). We can use Jensen’s inequality with the
third term and get the same bound that was shown for the first. We have

P

{

max
k=0,...,n−1

∥

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

wn

(

i

n

)

−
∫

{y:fn
i (y)<r}

yηni (dy)

)
∥

∥

∥

∥

∥

≥ δ

}

≤ 1

δ
a(n)

√
n
1

n

n−1
∑

i=0

E

[∥

∥

∥

∥

∥

(

wn

(

i

n

)

−
∫

{y:fn
i (y)<r}

yηni (dy)

)∥

∥

∥

∥

∥

]

=
1

δ
a(n)

√
n
1

n

n−1
∑

i=0

E

[
∥

∥

∥

∥

∥

∫

{y:fn
i (y)≥r}

yηni (dy)

∥

∥

∥

∥

∥

]

≤ 1

δ
a(n)

√
n
1

n

n−1
∑

i=0

E

[

∫

{y:fn
i (y)≥r}

‖y‖ ηni (dy)
]

=
1

δ
a(n)

√
n
1

n

n−1
∑

i=0

E
[

1{fn
i (ῡn

i )≥r} ‖ῡni ‖
]

.
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Combining the bounds for these three terms with (3.9) gives

P

{

max
k=0,...,n−1

∥

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

ῡni − wn

(

i

n

))

∥

∥

∥

∥

∥

≥ 3δ

}

≤ 2

δ
a(n)

√
n
1

n

n−1
∑

i=0

E
[

1{fn
i (ῡn

i )≥r] ‖ῡni ‖
]

+
r

δ2
a(n)2Kµ,2

≤ 2

σδ
K

1
2
E

(

2dedKmgf

)
1
2

(

1

r log r

)
1
2

+
2

σδ

KE

a(n)
√
n
+ a(n)2

r

δ2
Kµ,2.

Choosing r = 1/a(n) and using a(n) → 0, a(n)
√
n → ∞ gives

P

{

max
k=0,...,n−1

∥

∥

∥

∥

∥

1

n

k
∑

i=0

a(n)
√
n

(

ῡni − wn

(

i

n

))

∥

∥

∥

∥

∥

≥ 3δ

}

→ 0

as n → ∞, which completes the proof.

This theorem, combined with the following discrete version of Gronwall’s
inequality, will allow us to prove Ȳ n − Y̌ n → 0.

Lemma 3.7. If {an}, {bn}, and {cn} are nonnegative sequences defined
for n = 0, 1, . . . and satisfying

an ≤ cn +

n−1
∑

k=0

bkak,

then

an ≤ cn +
n−1
∑

k=0

bkck exp

{

n−1
∑

i=k+1

bi

}

.

Theorem 3.8. Under the conditions of Theorem 3.6 Y̌ n − Ȳ n → 0 in
probability.

Proof. Recall that

Ȳ n
k =

k−1
∑

i=0

a(n)√
n

(

b

(

Xn,0
i +

1

a(n)
√
n
Ȳ n
i

)

− b
(

Xn,0
i

)

)

+

k−1
∑

i=0

a(n)√
n
ῡni

and

Y̌ n
k =

k−1
∑

i=0

a(n)√
n

(

b

(

Xn,0
i +

1

a(n)
√
n
Y̌ n
i

)

− b
(

Xn,0
i

)

)

+
k−1
∑

i=0

a(n)√
n
wn

(

i

n

)

,
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so with W n
k defined as in Theorem 3.6

∥

∥Ȳ n
k − Y̌ n

k

∥

∥ ≤ ‖W n
k ‖+

k−1
∑

i=0

Kb

n

∥

∥Ȳ n
i − Y̌ n

i

∥

∥ .

Using Lemma 3.7 gives

∥

∥Ȳ n
k − Y̌ n

k

∥

∥ ≤ ‖W n
k ‖+

k−1
∑

i=0

‖W n
i ‖

Kb

n
exp

{

Kb

n
(k − i− 1)

}

≤ (1 +Kbe
Kb) max

i∈{1,...,k}
{‖W n

i ‖}

so
max

i∈{1,...,n}

{∥

∥Ȳ n
i − Y̌ n

i

∥

∥

}

≤ (1 +Kbe
Kb) max

i∈{1,...,n}
{‖W n

i ‖}.

Since maxi∈{1,...,n}{‖W n
i ‖} → 0 in probability

max
i∈{1,...,n}

{
∥

∥Ȳ n
i − Y̌ n

i

∥

∥

}

→ 0 and hence sup
t∈[0,1]

∥

∥Ȳ n(t)− Y̌ n(t)
∥

∥→ 0

in probability.

To complete the proof of the convergence we need to show Y̌ n − Ŷ n → 0.
Recall that these two processes have the same driving terms but different
drifts, in that Ŷ n satisfies the ODE

Ŷ n(t) =

∫ t

0
Db(X0(s))Ŷ n(s)ds +

∫ t

0
ŵn(s)ds

while Y̌ n is the linear interpolation of the discrete time process defined by
Y̌ n
0 = 0 and

Y̌ n
i+1 = Y̌ n

i +
a(n)√

n

(

b

(

Xn,0
i +

1

a(n)
√
n
Y̌ n
i

)

− b
(

Xn,0
i

)

)

+
1

n
ŵn

(

i

n

)

.

However, essentially the same arguments as those used in Lemma 3.4 to
show tightness of {Ŷ n} can be used to prove tightness of {Y̌ n}, and then
it easily follows as in Lemma 3.5 that any limit will satisfy the same ODE
(2.15) as the limit of {Ŷ n}, and therefore Y̌ n − Ŷ n → 0 follows.

Combining Ȳ n − Y̌ n → 0, Y̌ n − Ŷ n → 0, and Ŷ n → Ŷ demonstrates
that along the subsequence where η̂n → η̂ weakly Ȳ n → Ŷ in distribution,
which implies that along this subsequence (η̂n, Ȳ n) → (η̂, Ŷ ) weakly. We
have already shown that with probability 1 η̂2(dt) is Lebesgue measure and

Ŷ (t) =

∫ t

0
Db(X0(s))Ŷ (s)ds+

∫ t

0

∫

Rd

yη̂1|2(dy |t)ds,

so the proof of convergence (i.e., the first part of Theorem 2.5) is complete.



MODERATE DEVIATIONS 109

To finish Theorem 2.5 we must lastly show the bound (2.16). Note that
the weak convergence of Ȳ n implies

(3.10) sup
t∈[0,1]

∥

∥X̄n(⌊nt⌋ /n)−X0(t)
∥

∥→ 0 in probability.

Define random measures on R
d × R

d × [0, 1] by

γn (dx× dy × dt) = δX̄n(⌊nt⌋/n) (dx) η̂
n (dy × dt) .

Note that the tightness of {γn} follows easily from (3.10) and from the
tightness of {η̂n}. Thus given any subsequence we can choose a further sub-
sequence (again we will retain n as the index for simplicity) along which
{γn} converges weakly to some limit γ on P

(

R
d × R

d × [0, 1]
)

with

γ2,3 (dy × dt) = η̂ (dy × dt) ,

where γ2,3 is the second and third marginal of γ. If we establish (2.16) for
this subsequence it follows for the full sequence using a standard argument
by contradiction. For σ > 0 let

GX0

σ =
{

(x, y, t) :
∥

∥x−X0 (t)
∥

∥ ≤ σ
}

be closed sets centered around X0 (t) in the x variable, and note that by
(3.10) and weak convergence, for all σ > 0

1 = lim sup
n→∞

E
[

γn
(

GX0

σ

)]

≤ E
[

γ
(

GX0

σ

)]

.

Thus
E
[

γ
(

∩n∈NG
X0

1/n

)]

= 1,

so with probability 1, γ puts all its mass on
{

(x, y, t) : x = X0 (t)
}

. Therefore
with probability 1, for a.e. (y, t) under γ2,3 (dy × dt),

γ1|2,3 (dx| y, t) = δX0(t) (dx) .

Combined with the fact that the second marginal of η̂ (dy × dt) is Lebesgue
measure, this gives

(3.11) γ (dx× dy × dt) = δX0(t) (dx) η̂ (dy| t) dt.

We will use the following Lemma to prove a lower bound on the relative
entropy cost.
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Lemma 3.9. Define

(3.12) L̄K (x, β)
.
= sup

α∈Rd

{

〈α, β〉 − 1

2
‖α‖2A(x) −

1

2K
‖α‖2

}

.

Then uniformly in x and compact sets of β

lim inf
n→∞

a(n)2nLc(x, β/a(n)
√
n) ≥ L̄K(x, β).

Proof. Given a compact set B there is C < ∞ such that ‖β‖ ≤ C for
β ∈ B. Given K < ∞, from the definition (3.12) there is MC < ∞ (which
also depends on K) such that for all x and all ‖β‖ ≤ C,

L̄K(x, β) = sup
‖α‖≤MC

{

〈α, β〉 − 1

2
‖α‖2A(x) −

1

2K
‖α‖2

}

.

Define
L̂n(x, β)

.
= a(n)2nLc(x, β/a(n)

√
n)

and
Ĥn(x, α)

.
= a(n)2nHc(x, α/a(n)

√
n),

and note that L̂n(x, β) is dual to Ĥn(x, α) in the sense that

L̂n(x, β) = sup
α∈Rd

{〈α, β〉 − Ĥn(x, α)}.

Then
L̂n(x, β) ≥ sup

‖α‖≤MC

{〈α, β〉 − Ĥn(x, α)},

and due to (2.4) there exists some NMC
such that for all x and all n ≥ NMC

sup
‖α‖≤MC

{〈α, β〉 − Ĥn(x, α)}

≥ sup
‖α‖≤MC

{

〈α, β〉 − 1

2
‖α‖2A(x) −

1

2K
‖α‖2

}

= L̄K(x, β).

Consequently for all x and all β ∈ B

a(n)2nLc(x, β/a(n)
√
n) = L̂n(x, β) ≥ L̄K(x, β)

for all n ≥ NMC
.
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Let L̄K (x, β) be given by (3.12). Note that

L̄K (x, β) ↑ 1

2
‖β‖2A−1(x)

as K → ∞ for all (x, β) ∈ R
2d. Combining Lemma 3.9 with Lemma 3.1 and

using Fatou’s lemma for weak convergence,

lim inf
n→∞

a(n)2nE

[

n−1
∑

i=0

1

n
R(ηni ‖µX̄n

i
)

]

≥ lim inf
n→∞

E

[
∫

Rd×Rd×[0,1]
a(n)2nLc

(

x,
1

a(n)
√
n
y

)

γn (dx× dy × dt)

]

≥ E

[
∫

Rd×Rd×[0,1]
L̄K (x, y) γ (dx× dy × dt)

]

for all K. Then using the monotone convergence theorem, the decomposition
(3.11), and Jensen’s inequality in that order shows that

lim inf
n→∞

a(n)2nE

[

n−1
∑

i=0

1

n
R(ηni ‖µX̄n

i
)

]

≥ lim
K→∞

E

[
∫

Rd×Rd×[0,1]
L̄K (x, y) γ (dx× dy × dt)

]

= E

[
∫

Rd×Rd×[0,1]

1

2
‖y‖2A−1(x) γ (dx× dy × dt)

]

= E

[
∫ 1

0

∫

Rd

1

2
‖y‖2A−1(X0(t)) η̂ (dy| t) dt

]

≥ E

[

1

2

∫ 1

0
‖ŵ(t)‖2A−1(X0(t)) dt

]

,

which is (2.16).

4. Laplace Upper Bound. The goal of this section is to prove (2.12),
which due to the minus sign corresponds to the Laplace upper bound. Sup-
pose for each n that ηn comes within ε of achieving the infimum in (2.9), so
that

lim inf
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

+ ε

≥ lim inf
n→∞

E

[

n−1
∑

i=0

a(n)2R(ηni ‖µX̄n
i
) + F (Ȳ n)

]

.(4.1)
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Since supx∈Rd |F (x)| ≤ KF for some KF < ∞, we also have

sup
n

a(n)2nE

[

n−1
∑

i=0

1

n
R(ηni ‖µX̄n

i
)

]

≤ 2KF + ε.

Consequently we can choose a subsequence of {ηn} (we retain n as the
index for convenience) along which the conclusions of Theorem 2.5 hold.
Combining this with (4.1) gives

lim inf
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

+ ε

≥ lim inf
n→∞

E

[

n−1
∑

i=0

a(n)2R(ηni ‖µX̄n
i
) + F (Ȳ n)

]

≥ E

[
∫ 1

0

1

2
‖ŵ(s)‖2A−1(X0(s)) ds+ F (Ŷ )

]

.

Recalling

Ŷ (t) =

∫ t

0
Db(X0(s))Ŷ (s)ds +

∫ t

0
ŵ(s)ds,

it follows that

E

[
∫ 1

0

1

2
‖ŵ(s)‖2A−1(X0(s)) ds + F (Ŷ )

]

≥ inf
u∈L2([0,1]:Rd)

{
∫ 1

0

1

2
‖u(s)‖2A−1(X0(s)) ds + F (φu)

}

= inf
u∈L2([0,1]:Rd)

{
∫ 1

0

1

2
‖u(s)‖2 ds+ F

(

φA1/2(X0)u
)

}

,

with φu defined as in (2.8). Since ε > 0 is arbitrary, we have the lower bound
(2.12).

5. Laplace Lower Bound. The goal of this section is to prove (2.13).

Note that for u, v ∈ L2([0, 1] : Rd) and φA1/2(X0)u, φA1/2(X0)v given by (2.8)

φA1/2(X0)u(t)− φA1/2(X0)v(t)

=

∫ t

0
Db(X0(s))

(

φA1/2(X0)u(s)− φA1/2(X0)v(s)
)

ds

+

∫ t

0
A1/2(X0(s))(u(s)− v(s))ds.
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Thus by Gronwall’s inequality

sup
t∈[0,1]

∥

∥

∥
φA1/2(X0)u(t)− φA1/2(X0)v(t)

∥

∥

∥
(5.1)

≤ (1 +Kbe
Kb)

∫ 1

0

∥

∥

∥
A1/2(X0(s))u(s)−A1/2(X0(s))v(s)

∥

∥

∥
ds

≤ (1 +Kbe
Kb)K

1/2
A

(
∫ 1

0
‖u(s)− v(s)‖2 ds

)

1
2

.

Since C([0, 1] : Rd) is dense in L2([0, 1] : Rd), the proof of the Laplace lower
bound is reduced to showing that for an arbitrary u ∈ C([0, 1] : Rd)
(5.2)

lim sup
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

≤ 1

2

∫ 1

0
‖u(s)‖2 ds+ F

(

φA1/2(X0)u
)

.

The main difficulty is to deal with the possible degeneracy of the noise.
Recall the orthogonal decomposition of A−1(x) (2.2). Define

A−1
K (x) = Q(x)Λ−1

K (x)QT (x)

where Λ−1
K (x) is the diagonal matrix such that Λ−1

ii,K(x) = Λ−1
ii (x) when

Λ−1
ii (x) ≤ K2 and Λ−1

ii,K(x) = K2 when Λ−1
ii (x) > K2. Note that by [19,

Theorem 6.2.37] A1/2(x), A−1
K (x) and A

1/2
K (x) are continuous functions of

A(x), and consequently they are also continuous functions of x ∈ R
d. In

addition define

uK(s) =

{

u(s) for ‖u(s)‖ ≤ K
Ku(s)
‖u(s)‖ for ‖u(s)‖ > K

.

Let φu,K(t) = φA(X0)A
−1/2
K (X0)uK (t), and note that φu,K solves

φu,K(t) =

∫ t

0
Db(X0(s))φu,K(s)ds

+

∫ t

0
A(X0(s))A

−1/2
K (X0(s))uK(s)ds.(5.3)

To simplify notation we define sni
.
= i/n and sn(t) = ⌊nt⌋ /n, where ⌊a⌋

is the integer part of a. Note that sn(t) − t → 0 uniformly for t ∈ [0, 1] as
n → ∞. For n sufficiently large

max
0≤i≤n−1

{

1

a(n)
√
n

∥

∥

∥
A

−1/2
K

(

X0 (sni )
)

uK (sni )
∥

∥

∥

}

≤ 1

a(n)
√
n
K2 ≤ λDA
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and we can define the sequence {(X̄n,u,K , Ȳ n,u,K, ηn,u,K , η̂n,u,K)} as in Con-
struction 2.4 with

ηn,u,Ki (dy)

= exp

{〈

y,
1

a(n)
√
n
A

−1/2
K

(

X0 (sni )
)

uK (sni )

〉

−Hc

(

X̄n,u,K
i ,

1

a(n)
√
n
A

−1/2
K

(

X0 (sni )
)

uK (sni )

)}

µ
X̄n,u,K

i
(dy).

Using (2.3) and the fact that

∫

Rd

y exp{〈y, α〉 −Hc(x, α)}µx(dy) = DαHc(x, α),

we have for ‖α‖ ≤ λDA

(5.4)

∥

∥

∥

∥

∫

Rd

y exp{〈y, α〉 −Hc(x, α)}µx(dy)−A(x)α

∥

∥

∥

∥

≤ KDA ‖α‖2 .

The next result identifies the limit in probability of the controlled processes
and an asymptotic bound for the relative entropies.

Theorem 5.1. Let u ∈ C([0, 1] : Rd) and K < ∞ be given, construct
{(X̄n,u,K , Ȳ n,u,K, ηn,u,K , η̂n,u,K)} as in this section and define φu,K by (5.3).
Then

(5.5) Ȳ n,u,K → φu,K

in C([0, 1] : Rd) in probability, and

lim sup
n→∞

a2(n)nE

[

1

n

n−1
∑

i=0

R
(

ηn,u,Ki

∥

∥

∥
µ
X̄n,u,K

i

)

]

≤ 1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(s))uK(s)

∥

∥

∥

2

A(X0(s))
ds.(5.6)

Proof. Using (5.4) to bound the second term and (2.4) to bound the
third, for n satisfying 1

a(n)
√
n
K2 ≤ λDA

R
(

ηn,u,Ki

∥

∥

∥
µ
X̄n,u,K

i

)

=

∫

Rd

〈

y,
1

a(n)
√
n
A

−1/2
K

(

X0 (sni )
)

uK (sni )

〉

ηn,u,Ki (dy)
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−Hc

(

X̄n,u,K
i ,

1

a(n)
√
n
A

−1/2
K

(

X0 (sni )
)

uK (sni )

)

≤
〈

1

a(n)
√
n
A
(

X̄n,u,K
i

)

A
−1/2
K

(

X0 (sni )
)

uK (sni ) ,

1

a(n)
√
n
A

−1/2
K

(

X0 (sni )
)

uK (sni )

〉

− 1

2

〈

1

a(n)
√
n
A
(

X̄n,u,K
i

)

A
−1/2
K

(

X0 (sni )
)

uK (sni ) ,

1

a(n)
√
n
A

−1/2
K

(

X0 (sni )
)

uK (sni )

〉

+
2

a(n)3n3/2
KDAK

6

=
1

2a(n)2n

∥

∥

∥
A

−1/2
K

(

X0 (sni )
)

uK (sni )
∥

∥

∥

2

A(X̄n,u,K
i )

+
2

a(n)3n3/2
KDAK

6.

Consequently

lim sup
n→∞

a2(n)nE

[

1

n

n−1
∑

i=0

R
(

ηn,u,Ki

∥

∥

∥
µ
X̄n,u,K

i

)

]

(5.7)

≤ lim sup
n→∞

1

2
E

[

1

n

n−1
∑

i=0

∥

∥

∥
A

−1/2
K

(

X0 (sni )
)

uK (sni )
∥

∥

∥

2

A(X̄n,u,K
i )

]

,

where in fact

lim sup
n→∞

1

2
E

[

1

n

n−1
∑

i=0

∥

∥

∥
A

−1/2
K

(

X0 (sni )
)

uK (sni )
∥

∥

∥

2

A(X̄n,u,K
i )

]

≤ 1

2
K4KA.

Therefore (2.14) is satisfied by {ηn,u,K}, so we can apply Theorem 2.5 and
choose a subsequence (keeping n as the index for convenience) along which
{(η̂n,u,K , Ȳ n,u,K)} converges weakly to some limit (η̂u,K , Ŷ u,K), where η̂u,K2

is Lebesgue measure and

Ŷ u,K(t) =

∫ t

0
Db(X0(s))Ŷ u,K(s)ds+

∫ t

0

∫

Rd

yη̂u,K1|2 (dy |s)ds.

This implies

(5.8) sup
t∈[0,1]

∥

∥X̄n,u,K(t)−X0(t)
∥

∥→ 0

in probability. Because of this, the uniform bound on A1/2(x) and the con-
tinuity of A1/2(x), we have (recall that sn(t)

.
= ⌊nt⌋ /n)

sup
t∈[0,1]

∥

∥

∥
A1/2(X̄n,u,K(sn(t)))−A1/2(X0(sn(t)))

∥

∥

∥
→ 0

in probability. However, the continuity of A1/2(X0)A
−1/2
K (X0)uK gives
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sup
t∈[0,1]

∥

∥

∥
A1/2(X0(sn(t)))A

−1/2
K (X0(sn(t)))uK(sn(t))

−A1/2(X0(t))A
−1/2
K (X0(t))uK(t)

∥

∥

∥
→ 0.

Combining these limits, and using the fact that A
−1/2
K (X0)uK is uniformly

bounded, shows that

sup
t∈[0,1]

∥

∥

∥
A1/2(X̄n,u,K(sn(t)))A

−1/2
K (X0(sn(t)))uK(sn(t))(5.9)

−A1/2(X0(t))A
−1/2
K (X0(t))uK(t)

∥

∥

∥
→ 0

in probability. This combined with the uniform bound on A
−1/2
K (X0)uK and

dominated convergence gives

lim sup
n→∞

E

[

1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(sn(t)))uK(sn(t))

∥

∥

∥

2

A(X̄n,u,K(sn(t)))
dt

]

=
1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(t))uK(t)

∥

∥

∥

2

A(X0(t))
dt.

Combining this with (5.7) shows (5.6).
To prove (5.5) we will show that in fact

η̂u,K(dy × dt) = δ
A(X0(t))A

−1/2
K (X0(t))uK (t)

(dy)dt.

For all σ > 0 let

Gσ =
{

(z, t) ∈ R
d × [0, 1] :

∥

∥

∥
z −A(X0(t))A

−1/2
K (X0(t))uK(t)

∥

∥

∥
≤ σ

}

,

and note that by weak convergence lim supn→∞E[η̂n,u,K(Gσ)] ≤ E[η̂u,K(Gσ)].
Note also that

E[η̂n,u,K(Gσ)]

≥ P

[

sup
t∈[0,1]

∥

∥

∥

∥

a(n)
√
n

∫

Rd

yηn,u,K⌊nt⌋ (dy)−A(X0(t))A
− 1

2
K (X0(t))uK(t)

∥

∥

∥

∥

≤ σ

]

.

However, by (5.4) we can choose n large enough to make

sup
t∈[0,1]

∥

∥

∥

∥

a(n)
√
n

∫

Rd

yηn,u,K⌊nt⌋ (dy)

−A
(

X̄n,u,K
(

sn(t)
))

A
−1/2
K

(

X0
(

sn(t)
))

uK
(

sn(t)
)

∥

∥

∥

∥
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arbitrarily small, and the proof that

sup
t∈[0,1]

∥

∥

∥
A(X̄n,u,K(sn(t)))A

−1/2
K (X0(sn(t)))uK(sn(t))

−A(X0(t))A
−1/2
K (X0(t))uK(t)

∥

∥

∥
→ 0

in probability is identical to the proof of (5.9). Therefore for any σ > 0
lim supn→∞E[η̂u,K,n(Gσ)] = 1, and so E[η̂u,K(∩n∈NG1/n)] = 1. This implies
that with probability 1

η̂u,K1|2 (dy| t) = δ
A(X0(t))A

−1/2
K (X0(t))uK

(dy)

for a.e. t. It follows that

Ŷ u,K(t) =

∫ t

0
Db(X0(s))Ŷ u,K(s)ds +

∫ t

0
A(X0(s))A

−1/2
K (X0(s))uK(s)ds,

and therefore Ȳ n,u,K → φu,K weakly. This implies (5.5) and completes the
proof.

The second theorem in this section allows us to approximate F (φA1/2(X0)u)
by F (φu,K) and 1

2

∫ 1
0 ‖u(s)‖2 ds by

1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(s))uK(s)

∥

∥

∥

2

A(X0(s))
ds.

Theorem 5.2. Let u ∈ C([0, 1] : Rd) and define φA
1/2
K (X0)u by (2.8) and

φu,K by (5.3). Then as K → ∞

φu,K → φA1/2(X0)u

in C([0, 1] : Rd) and

sup
K∈(0,∞)

1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(s))uK(s)

∥

∥

∥

2

A(X0(s))
ds ≤ 1

2

∫ 1

0
‖u(s)‖2 ds.

Proof. Note that
∥

∥

∥
A1/2(X0(s))A

−1/2
K (X0(s))uK(s)

∥

∥

∥
≤ ‖u(s)‖

for all s ∈ [0, 1] and K ∈ (0,∞) so

sup
K∈(0,∞)

1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(s))uK(s)

∥

∥

∥

2

A(X0(s))
ds ≤ 1

2

∫ 1

0
‖u(s)‖2 ds.
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In addition,

A1/2(X0(s))A1/2(X0(s))A
−1/2
K (X0(s))uK(s) → A1/2(X0(s))u(s)

and
∥

∥

∥
A1/2(X0(s))A1/2(X0(s))A

−1/2
K (X0(s))uK(s)

∥

∥

∥
≤
∥

∥

∥
A1/2(X0(s))u(s)

∥

∥

∥

for all s ∈ [0, 1], so dominated convergence gives

A1/2(X0)A1/2(X0)A
−1/2
K (X0)uK → A1/2(X0)u

in L1([0, 1] : Rd). Combining this with the second line of (5.1) shows that

φu,K → φA1/2(X0)u

in C([0, 1] : Rd).

Using (2.9) and the fact that any given control is suboptimal,

− a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

≤ E

[

n−1
∑

i=0

a(n)2R
(

ηn,u,Ki

∥

∥

∥
µ
X̄n,u,K

i

)

+ F (Ȳ n,u,K)

]

.

Using Theorem 5.1, this implies

lim sup
n→∞

−a(n)2 logE

[

e
− 1

a(n)2
F (Y n)

]

≤ 1

2

∫ 1

0

∥

∥

∥
A

−1/2
K (X0(s))uK(s)

∥

∥

∥

2

A(X0(s))
ds+ F (φu,K).

Sending K → ∞ and using Theorem 5.2 gives (5.2), and hence completes
the proof of the lower bound (2.13).
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