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sharp and yield the classical asymptotic statements including the asymp-
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is exemplified with a single index model.
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1. Introduction

Many statistical tasks can be viewed as problems of semiparametric estimation
when the unknown data distribution is described by a high or infinite dimen-
sional parameter while the target is of low dimension. Typical examples are pro-
vided by functional estimation, estimation of a function at a point, or simply by
estimating a given subvector of the parameter vector. The classical statistical
theory provides a general solution to this problem: estimate the full parameter
vector by the maximum likelihood method and project the obtained estimate
onto the target subspace. This approach is known as profile maximum likelihood

and it appears to be semiparametrically efficient under some mild regularity
conditions. We refer to the papers [22, 23] and the book [18] for a detailed pre-
sentation of the modern state of the theory and further references. The famous
Wilks result claims that the likelihood ratio test statistic in the semiparametric
test problem is nearly chi-square with p degrees of freedom corresponding to
the dimension of the target parameter. Various extensions of this result can be
found e.g. in [9, 8, 6]; see also the references therein.

This study revisits the problem of profile semiparametric estimation and ad-
dresses some new issues. The most important difference between our approach
and the classical theory is a nonasymptotic character of our study. A finite
sample analysis is particularly challenging because most notions, methods and
tools in the classical theory are formulated in the asymptotic setup with grow-
ing sample size. Only few general finite sample results are available; see e.g. the
recent paper [6]. The results of this paper explicitly describes all “small” terms
in the expansion of the log-likelihood. This helps to carefully treat the ques-
tion of the applicability of the approach in different situations. A particularly
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important question concerns the critical dimension of the target p and the full
parameter dimension p∗ for which the main results are still accurate. Another
issue addressed in this paper is the model misspecification. In many practical
problems, it is unrealistic to expect that the model assumptions are exactly
fulfilled, even if some rich nonparametric models are used. This means that the
true data distribution P does not belong to the considered parametric family.
Applicability of the general semiparametric theory in such cases is questionable.
An important feature of the presented approach is that it equally applies under
a possible model misspecification.

Let Y denote the observed random data, and P denote the data distribution.
The parametric statistical model assumes that the unknown data distribution
P belongs to a given parametric family (Pυ):

Y ∼ P = Pυ∗ ∈ (Pυ, υ ∈ Υ ),

where Υ is some high dimensional or even infinite dimensional parameter space.
The maximum likelihood approach in the parametric estimation suggests to

estimate the whole parameter vector υ ∈ Υ by maximizing the corresponding
log-likelihood L(υ) = log dPυ

dµ
0

(Y ) for some dominating measure µ0:

υ̃
def
= argmax

υ∈Υ
L(υ). (1.1)

Our study admits a model misspecification P /∈ (Pυ,υ ∈ Υ ). Equivalently, one
can say that L(υ) is the quasi log-likelihood function on Υ . The “target” value
υ∗ of the parameter υ can be defined by

υ∗ = argmax
υ∈Υ

EL(υ). (1.2)

Under model misspecification, υ∗ defines the best parametric fit of the consid-
ered family to P.

In the semiparametric framework, the target of analysis is only a low dimen-
sional component θ ∈ Rp of the whole parameter υ. This means that the target
of estimation is

θ∗ = Πθυ
∗,

for some mapping Πθ : Υ → Rp, and p ∈ N stands for the dimension of the
target. Often the vector υ is represented as υ = (θ,η), where θ is the target
of analysis while η is the nuisance parameter. We refer to this situation as
(θ,η)-setup and our presentation follows this setting.

Define the profile likelihood

L̆(θ)
def
= max

υ∈Υ
Πθυ=θ

L(υ).
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The profile maximum likelihood approach defines the estimator of θ∗ by pro-
jecting the obtained MLE υ̃ on the target space:

θ̃
def
= Πθυ̃ = Πθ argmax

υ∈Υ
L(υ) = argmax

θ∈Θ
max
υ∈Υ

Πθυ=θ

L(υ)
def
= argmax

θ∈Θ
L̆(θ). (1.3)

The Gauss-Markov Theorem claims the efficiency of such procedures for linear
Gaussian models and a linear mapping Πθ, and the famous Fisher result ex-
tends it in the asymptotic sense to the general situation under some regularity
conditions. The Wilks phenomenon describes the limiting distribution of the
likelihood ratio test statistic T which is also called the semiparametric excess :

T
def
= 2

{
L̆(θ̃) − L̆(θ∗)

}
. It appears that the distribution of this test statistic is

nearly chi-square distributed with p ∈ N degrees if freedom as the samples size
grows, [33]:

T
def
= 2

{
max
υ∈Υ

L(υ)− max
υ∈Υ

Πθυ=θ∗

L(υ)
}
= 2
{
L̆(θ̃)− L̆(θ∗)

} w−→ χ2
p.

In particular, the limit distribution does not depend on the particular model
structure and on the full dimension of the parameter υ, only the dimension of
the target matters. The full parameter dimension can be even infinite under
some upper bounds on its total entropy.

The local asymptotic normality (LAN) approach by Le Cam leads to the
most general setup in which the Wilks and Fisher type results can be estab-
lished. However, the classical theory of semiparametric estimation faces serious
difficulties when the dimension of the nuisance parameter becomes large or infi-
nite. The LAN property yields a strong local approximation of the log-likelihood
of the full model by the log-likelihood of a linear Gaussian model, and this prop-
erty is only validated in a root-n neighborhood of the true point. The non- and
semiparametric cases require to consider larger neighborhoods where the LAN
approach is not applicable any more. A proper extension of the Wilks and Fisher
result to the case of a growing or infinite nuisance dimension is quite challenging
and involves special constructions like a pilot consistent estimator of the target,
a hardest parametric submodel as well as some power tools of the empirical
process theory; see [22] or [18] for a comprehensive presentation.

The recent paper [29] offers a new look at the classical LAN theory. The key
steps are a local quadratic bracketing for the log-likelihood process and some
concentration results for its stochastic component. The results can be stated for
finite samples and do not involve any asymptotic consideration. It is also shown
that many corollaries of the LAN property like Fisher and Wilks expansions
only rely on these two facts. The bracketing idea of [29] is to build two differ-
ent quadratic processes such that the original log-likelihood can be sandwiched
between them up to a small error. This paper offers another approach based
on the local linear approximation of the gradient of the log-likelihood process.
This allows to improve the error term of the Fisher and Wilks expansion by a
factor

√
p∗.
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For the further presentation we briefly outline the basic steps of the analysis.
Introduce for υ ∈ Υ and υ∗ ∈ Υ as defined in (1.2), the log-likelihood ratio
process

L(υ,υ∗) = L(υ)− L(υ∗).

An important step of our approach is a deviation bound for the MLE υ̃ ∈ Υ
from (1.1). Given some x > 0, we define a radius r0 = r0(x) > 0 that ensures
that

P(υ̃ ∈ Υ◦(r)) ≥ 1− e−x, (1.4)

where Υ◦(r) is a ball of radius r > 0 in the intrinsic semi-metric corresponding
to the process L(υ). We give conditions that ensure that the value r20(x) grows
almost linearly with x. See Section 2.3 for a precise formulation. The second key
step is to bound for r > 0 the approximation error

sup
υ∈Υ◦(r)

∥∥∥Y̆(υ)
∥∥∥ def

= sup
υ∈Υ◦(r)

∥∥∥D̆−1
{
∇̆L(υ)− ∇̆L(υ∗) + D̆2 (θ − θ∗)

}∥∥∥ , (1.5)

where D̆−2 = ΠθD
−2Π⊤

θ ∈ Rp×p with the full information matrix D2 =

−∇2EL(υ∗) and where the projected gradient ∇̆L is defined below in the next
section. Section B.2.1 provides the following bound on a set of probability of at
least 1− e−x:

sup
υ∈Υ◦(r)

‖Y̆(υ)‖ ≤ ♦̆(r, x),

where ♦̆(r, x) is a small error. In combination with the deviation bound (1.4)
and the identity ∇L(υ̃) = 0, this allows to derive the following Fisher and Wilks
type expansions: with probability greater 1− 2e−x

∥∥D̆
(
θ̃ − θ

∗)− ξ̆
∥∥ ≤ ♦̆(r0, x), (1.6)

∣∣L̆(θ̃)− L̆(θ∗)− ‖ξ̆‖2/2
∣∣ ≤ C

√
p+ x ♦̆(r0, x). (1.7)

In the case of correctly specified i.i.d models D̆2 is the covariance matrix of the
efficient influence function; see [18]. The random vector ξ̆ satisfies Eξ̆ = 0 and

E‖ξ̆‖2 ≍ p and C > 0 is a constant independent of x > 0 and full dimension p∗.
The precise definitions of the random p-vector ξ̆ is also given in the next section.
Moreover, general deviation bounds for quadratic forms from [29] apply to ‖ξ̆‖2
(see Section A for details). In the case of a correct model specification the tails of

‖ξ̆‖2 behave like those of a chi-square random variable with p degrees of freedom,
and the result (1.6) can be viewed as an extension of the Wilks phenomenon.
Under general identifiability conditions, the radius r0 can be fixed by r20 =
C1(p

∗ + x) for a fixed constant C1 to ensure the concentration property (1.4).
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With this choice of r, in the important i.i.d. case, the error term ♦̆(r0, x) can be
bounded by C(p∗ + x)/

√
n. The results (1.6) and (1.7) are nonasymptotic and

hold true even under model misspecification.
It is important to grasp the implications of (1.6) and (1.7). The central contri-

bution of this work is to bound the term in (1.5). It appears in this or a similar
form also in the asymptotic approaches (see [22]) but is shown to be a zero
sequence in the sample size under certain complexity and smoothness assump-
tions on the set of scores {∇̆L(υ), υ ∈ Υ}. We manage to quantify for finite
samples upper bounds for this term as functions of the radius r0 and the full
dimension p∗. This allows for example to address the error when constructing
confidence sets. For this assume that the quantiles of ‖ξ̆‖ are available or that
they can be given up to small error based on the Berry Esseen theorem (see [4])
or Edgeworth expansions (see [13]). Then (1.6) and (1.7) allow the construction
of “approximate” confidence sets that address the finite sample error term (1.5),
see Remark 2.13. The obtained sets are more conservative, i.e. larger than the
asymptotic ones, but guarantee that the desired confidence level is attained.
The possible error made when neglecting the error term (1.5) is illustrated in
an example in Remark 2.20. Note however that on this level the contribution
is rather theoretical: as in the case of the asymptotic results in [22], crucial ob-
jects as the matrix D̆2 are unknown and would have to be estimated as well. An
honest real data application of these results, where all model specific constants
are unknown, is not possible yet and would be well beyond the scope of this
work.

The proposed approach does not assume that the profile is consistent but
gives conditions that ensure the right concentration behavior. Simply assuming
that the profile is consistent can be even misleading in our setup because this
would separate local and global considerations. This paper attempts to figure
out a list of conditions ensuring global concentration and local expansion at the
same time. This particularly allows to address the crucial question of the largest
dimension of the nuisance parameter for which the Wilks and Fisher expansions
still hold. In the smooth semiparametric problem with a fixed dimension of the
target parameter, both Fisher and Wilks results apply up to an error p∗/n1/2.
In particular, we obtain that the error term in the Fisher expansion can be by a
factor

√
p smaller than the similar error term in the Wilks Theorem. This ratio

p∗/n1/2 is the critical bound for the quality of the Fisher and Wilks expansions
under the imposed conditions which is confirmed by a specific counter-example.
It is of interest to compare our statements with the existing literature on the
growing parameter asymptotics. We particularly mention [19, 20, 21] and a
series of papers by S. Portnoy, see e.g. [26, 25, 27]. The typical dimensional
asymptotic is p∗ = o(n1/2), which corresponds to our results. For some particular
special problems and examples the condition on the parameter dimension can
be relaxed to p = o(n3/2); see [25]. However, the results are mainly limited to
linear or generalized linear regression with independent observations and heavily
use the model structure. To the contrary, our results apply in a rather general
situation and deliver some useful information even in the case when the model
is misspecified.
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We begin by developing the results for the case that the full parameter space
Υ is a subset of the Euclidean space of dimension p∗ ∈ N. In Section 2.6 we
will exemplify how to extend our approach to the case when υ is a functional
parameter using the so called sieve approach; see e.g. [28]. The present paper
combines the sieve approximation idea and the finite sample Fisher and Wilks
results under a possibly misspecified model.

The paper is organized as follows. Section 2.1 contains the conditions that
we impose for the approach. Section 2.2 introduces the objects and tools of
the analysis and collects the main results including an extension of the Wilks
Theorem, concentration properties of the profile estimator and the construction
of confidence sets for the “true” parameter θ∗. Section 2.3 explains how to
control the large deviations of υ̃ from (1.1) and how to improve the accuracy
of the main results. Section 2.4 explains how the results translate to the case
of i.i.d. samples and how the approach allows to obtain asymptotic efficiency
of the profile estimator in this setting. Section 2.5 presents an example that
shows that the ratio p∗2/n → 0 is critical to obtain the Wilks phenomenon
and the Fisher expansion on the class of models that satisfy the conditions
of Section 2.1. Section 2.6 discusses how the results can be extended to the
case with the infinite full dimension via the sieve approach. We present further
conditions on the correlation structure of the full gradient ∇L(υ∗) ∈ X to also
treat the bias. Section 2.9 briefly outlines how the approach can be employed to
derive the main results in the context of single index modeling and which ratio
of full dimension to sample size is sufficient in that context. The details of this
section can be found in [1]. The appendix collects the proofs of the main results.

2. Main results

This section presents our main results on the semiparametric profile estimator
which include the Wilks expansion of the profile maximum likelihood L̆(θ̃) −
L̆(θ∗) ∈ R and the Fisher expansion of the profile MLE θ̃ ∈ Rp.

Most of the results are stated in a finite sample setup for just one fixed sample.
As we are also interested in understanding what happens if the full dimension

p∗ becomes large we also consider a specification of the general finite sample
results to an asymptotic setup with p∗ = pn, where n denotes the asymptotic
parameter, e.g. the sample size with n→ ∞. Our results apply also if the target
parameter θ ∈ Rp is also of growing dimension. The dimension p can be of order
p∗. Even the case with a full dimensional target and low dimensional nuisance
is included.

2.1. Conditions

This section collects the conditions imposed on the model. Let the full dimension
of the problem be finite, i.e. p∗ < ∞. Our conditions involve the symmetric
positive definite information matrix D2 ∈ Rp∗×p∗

and a central point υ◦ ∈ Rp∗

.
In typical situations for p∗ < ∞, one can set υ◦ = υ∗ where υ∗ is the “true
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point” from (1.2). The matrix D2 ∈ Rp∗×p∗

can be defined as follows:

D2 = −∇2EL(υ◦).

It is worth mentioning that −∇2EL(υ◦) = Cov(∇L(υ∗)) if the model Y ∼
Pυ∗ ∈ (Pυ) is correctly specified and sufficiently regular; see e.g. [15].

Remark 2.1. This is not the only possible choice for D2 and υ◦. Another
candidate is to use D2 = −∇2EL(υ∗) while υ◦ = υ∗

m, where υ∗
m approximates

υ∗ with growingm ∈ N, as in [1]. In general there is no restriction for the choice
of D2, as long as the following list of conditions can be satisfied. The same holds
for the matrix V2 ∈ Rp∗×p∗

that we introduce below.

In the context of semiparametric estimation, it is convenient to represent the
information matrix in block form:

D2 =

(
D2 A
A⊤ H2

)
.

First we state an identifiability condition.

(I) It holds for some ρ < 1

‖H−1A⊤D−1‖ ≤ ρ.

Remark 2.2. The condition (I) allows to define the important p× p efficient
information matrix D̆2 which is defined as the inverse of the θ-block of the
inverse of the full dimensional matrix D2. The exact formula is given by

D̆2 def
=
(
ΠθD

−2Π⊤
θ

)−1
= D2 −AH−2A⊤,

and (I) ensures that the matrix D̆2 is well posed, see for instance [5], Chap-
ter 2.4.

Using the matrix D2 and the central point υ◦ ∈ Rp∗

, we define the local set
Υ◦(r) ⊂ Υ ⊆ Rp∗

with some r ≥ 0:

Υ◦(r)
def
=
{
υ = (θ,η) ∈ Υ : ‖D(υ − υ◦)‖ ≤ r

}
. (2.1)

Remark 2.3. For readers familiar with [29] we remark that the use of D instead
of V in the above definition has no deeper reason but is a choice of convenience.

We introduce υ̃θ∗ ∈ Υ , which maximizes L(υ,υ∗) subject to Πθυ = θ∗:

υ̃θ∗

def
= (θ∗, η̃θ∗)

def
= argmax

υ∈Υ
Πθυ=θ∗

L(υ,υ∗),

and remeber the definition of the radius r0 > 0

r0(x)
def
= inf

r>0

{
P(υ̃, υ̃θ∗ ∈ Υ◦(r)) ≥ 1− e−x

}
, (2.2)
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which we set to infinity if υ̃ = { } or υ̃θ∗ = { }. Under the conditions (Lr) and
(Er) Theorem 2.3 in Section 2.3 states that r0 = r0(x) ≈ C

√
x+ p∗ > 0.

Here and in what follows we implicitly assume that the log-likelihood func-
tion L(υ) : Rp∗ → R is sufficiently smooth in υ ∈ Rp∗

, ∇L(υ) ∈ Rp∗

stands
for the gradient and ∇2EL(υ) ∈ Rp∗×p∗

for the Hessian of the expectation
EL : Rp∗ → R at υ ∈ Rp∗

. By smooth enough we mean that all appearing
derivatives exist and that we can interchange ∇EL(υ) = E∇L(υ) on Υ◦(r0),
where r0 > 0 is defined in Equation (2.2) and Υ◦(r) in equation (2.1). The
following two conditions further quantify the smoothness properties on Υ◦(r)
of the expected log-likelihood EL(υ) and of the stochastic component ζ(υ) =
L(υ)− EL(υ).

(L̆0) For each r ≤ 4r0, there is a constant δ(r) such that it holds on the set
Υ◦(r):

‖D−1D2(υ)D−1 − Ip‖ ≤ δ̆(r),

‖D−1(A(υ)−A)H−1‖ ≤ δ̆(r),
∥∥D−1AH−1

(
Im −H−1H2(υ)H−1

)∥∥ ≤ δ̆(r),

where

D(υ)2
def
= −∇2EL(υ), D(υ) =

(
D2(υ) A(υ)
A⊤(υ) H2(υ)

)
.

Remark 2.4. This condition describes the local smoothness properties of the
function EL(υ). In particular, it allows to bound the error of local linear ap-
proximation of the gradient ∇̆θEL(υ) where

∇̆θ = ∇θ −AH−2∇η.

Under condition (L̆0) it follows from the second order Taylor expansion for any
υ,υ′ ∈ Υ◦(r) (see Lemma B.1)

‖D̆−1
(
∇̆EL(υ)− ∇̆EL(υ∗)

)
+ D̆(θ − θ∗)‖ ≤ Cδ̆(r)r. (2.3)

In the proofs we actually only need the inequality (2.3) which in some cases

can be weaker than (L̆0). For readers familiar with the classical theory (for in-

stance [22]) we remark that (L̆0) is related to the condition that t 7→ l(t,ηt(θ,η))

is twice continuously differentiable where δ̆(r) quantifies how smooth the sec-
ond derivative is. We impose such a qualified smoothness in order to give finite
sample deviation bounds as a function of the radius of the local set Υ◦(r).

The next condition concerns the regularity of the stochastic component ζ(υ)
def
= L(υ)− EL(υ).
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(ĔD1) ζ(υ) → ζ(υ′) as υ → υ′. Further for all 0 < r < 4r0, there exists a
constant ω ≤ 1/2 such that for all |µ| ≤ ğ and υ,υ′ ∈ Υ◦(r)

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖≤1

logE exp

{
µ

ω̆

γ⊤D̆−1
{
∇̆θζ(υ)− ∇̆θζ(υ

′)
}

‖D(υ − υ′)‖

}
≤ ν̆21µ

2

2
.

Remark 2.5. The above condition is strongly related to the assumption of
Donsker- and and Glivenko-Cantelli properties in [22] in order to ensure that
the error in the local linear approximation of ∇̆L(υ)− ∇̆L(υ∗) disappears. We

replace these conditions with the more specific assumption (ĔD1), which in
combination with the entropy of Υ◦(r) yields the desired error bounds. Note
that in linear models or regressions with bounded regressors this condition is
automatically satisfied. In the single index example this condition becomes a
condition on the smoothness of the employed basis functions ek : R → R and
a sub exponential moment bound on the additive noise ε ∈ R, see condition
(Condε) in Section 2.9.

The above conditions suffice for our main results. But we include another
condition that allows to control the deviation behavior of ‖D̆−1∇̆ζ(υ∗)‖.
(ĔD0) There exist a matrix V̆ 2 ∈ Rp×p, constants ν0 > 0 and ğ > 0 such that

for all |µ| ≤ ğ

sup
γ∈Rp

logE exp

{
µ
〈∇̆θζ(υ

◦),γ〉
‖V̆ γ‖

}
≤ ν̆20µ

2

2
.

Remark 2.6. One possible and natural choice for the matrices V̆ 2 ∈ Rp×p and
V2 ∈ Rp∗×p∗

(see (ED0) below) is

V2 def
= Var

{
∇L(υ◦)

}
, V̆ 2 = Cov(∇̆θζ(υ

◦)),

but also other matrices could be used as long as (ĔD0) or (ED0) can be satisfied.

In many situations the following, stronger conditions, are easier to check and
allow a further improvement of the results of Theorem 2.2 with the help of
Proposition 2.4:

(L0) For each r ≤ r0, there is a constant δ(r) such that it holds on the set
Υ◦(r):

∥∥D−1
{
∇2EL(υ)

}
D−1 − Ip∗

∥∥ ≤ δ(r).

(ED1) There exists a constant ω ≤ 1/2, such that for all |µ| ≤ g and all
0 < r < r0

sup
υ,υ′∈Υ◦(r)

sup
‖γ‖=1

logE exp

{
µγ⊤D−1

{
∇ζ(υ)−∇ζ(υ′)

}

ω ‖D(υ − υ′)‖

}
≤ ν21µ

2

2
.
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(ED0) There exist a matrix V2 ∈ Rp∗×p∗

, constants ν0 > 0 and g > 0 such
that for all |µ| ≤ g

sup
γ∈Rp∗

logE exp

{
µ
〈∇ζ(υ◦),γ〉

‖Vγ‖

}
≤ ν20µ

2

2
.

The following lemma shows, that these conditions imply the weaker ones from
above:

Lemma 2.1. Assume (I). Then (ED1) implies (ĔD1), (L0) implies (L̆0), and

(ED0) implies (ĔD0) with

ğ =

√
1− ρ2

(1 + ρ)
√
1 + ρ2

g, ν̆i =
(1 + ρ)

√
1 + ρ2√

1− ρ2
νi, δ̆(r) = δ(r), and ω̆ = ω.

Remark 2.7. Note that with (L̆0), (ĔD0) and (ĔD1) the smoothness and mo-
ment conditions do not have to be satisfied for the full gradient ∇L(·) but only
for the projected one (∇θ +AH−1∇η)L(·). This can make a tremendous differ-
ence to (L0), (ED0) and (ED1) if A(·) ∈ Rp×m is small while ∇ηL(·) is rather
rough or possesses bad moment properties. In that case (ED0) and (ED1) might

not be satisfied or δ̆(r), ω̆ and ν̆1 would be considerably smaller than their
counterparts δ(r), ω and ν1. This is particularly obvious if A(·) ≡ 0.

Finally we present two conditions that allow a specific approach to determine
a radius r0(x) > 0 such that P(υ̃ ∈ Υ (r0)) ≥ 1 − ex (see Section 2.3). These
conditions have to be satisfied on the whole set Υ ⊆ Rp∗

. Note, however, that
the conditions (Lr) and (Er) can be substituted with any other set of conditions
that allow to determine a value r0 ensuring P(υ̃ ∈ Υ (r0)) ≥ 1− ex.

(Lr) For any r > r0 there exists a value b(r) > 0, such that

−EL(υ,υ◦)

‖D(υ − υ◦)‖2 ≥ b(r), υ ∈ Υ◦(r).

(Er) For any r ≥ r0 there exists a constant g(r) > 0 such that

sup
υ∈Υ◦(r)

sup
µ≤g(r)

sup
γ∈Rp∗

logE exp

{
µ
〈∇ζ(υ),γ〉

‖Dγ‖

}
≤ ν2rµ

2

2
.

Remark 2.8. These two conditions serve a qualified apriori concentration result
for the full estimator υ̃, of the type P{υ̃ ∈ Υ◦(r0(x))} ≥ 1−e−x. Condition (Lr)
is satisfied for many estimators that employ some least square functional as we
do for the single index model in Section 2.9. In a more general setting it could
be combined with yet another even rougher a priori consistency result P(υ̃ ∈
U(υ∗)) for some open neighborhood U(υ∗) ⊂ Υ . Then (Lr) is automatically
satisfied as smooth functions are quadratic around their maximum, in this case
EL around υ∗. Further the condition can be relaxed to −EL(υ,υ◦) growing with
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super linear speed in the distance ‖D(υ−υ∗)‖, see Theorem 2.1 in [30]. In this
case the calculations become technically more involved which is why we focus on
(Lr) for the sake of readability. (Er) is a global exponential moment condition
and ensures that the norm of the stochastic component ∇ζ(υ) ∈ Rp∗

is bounded
with high probability. For example in the least square setting with additive noise
this is satisfied with g(r) = ∞ if the additive noise is sub Gaussian.

Remark 2.9. We briefly comment how restrictive the imposed conditions are.
Our conditions on the regularity and smoothness of the log-likelihood process
L(υ) in terms of the second or even third derivative are stronger than usually
required; cf. Chapters 1, 2 in [15]. But we aim not only for vanishing approxima-
tion error terms but for expressions that reveal the interplay of full dimension,
smoothness of the functional L and moments of the score. A quantification
seems unavoidable of “how much smoother than twice differentiable” the func-
tion EL(·) is (i.e. condition (L0)), and of “how much smoother than once differ-
entiable and well bounded in exponential moment terms” is ∇ζ(·) (i.e. condition
(ED1)). Note further, that we do not require that L(υ) is the true log-likelihood.
It comes from a parametric family chosen by a statistician. For typical examples,
such a family possesses the required regularity. In particular, [29], Section 5.1,
considered in details the i.i.d. case and presented some mild sufficient conditions
on the parametric family which imply the above general conditions.

Concerning moments the conditions (ĔD1), (ĔD0), (ED1), (ED0) and (Er)
require sub exponential moments of the observations (errors). Usually one only
assumes finite second or third moments of the errors; cf. [15], Chapter 2. Our
condition is a bit more restrictive but it allows to obtain finite sample bounds
of the kind that with some small ǫ > 0

P

{∥∥D̆
(
θ̃ − θ

∗)− ξ̆
∥∥ ≥ ǫ(p∗ + x)

}
≥ e−x,

i.e. the bounds depend linearly on the exponent x. Without comparable moment
bounds these results do not seem to be attainable in such a general setting.
Consider for instance the simple model

y =
√
υ∗ + ε ∈ R, υ̃ = argmax

υ∈R

(y −√
υ)2/2,

with υ∗ 6= 0,
√
x

def
= sign(x)

√
|x|, Eε = 0 and Cov(ε) = 1. Then up to the

exponential moments all conditions from above are met with D̆2 = D2 = 1
4υ∗

and ξ̆ = ε. We find

|D̆(υ̃ − υ∗)− ξ̆| =
∣∣∣∣

1

2
√
υ∗
(
y2 − υ∗

)
− ε

∣∣∣∣ =
∣∣∣∣
(
2
√
υ∗ + ε

2
√
υ∗

− 1

)
ε

∣∣∣∣ =
ε2

2
√
υ∗
.

Now if logE[exp(λε)] < λ2/2 we can derive

P(|D̆(υ̃ − υ∗)− ξ̆| ≥ 8
√
υ∗x) ≤ e−x,
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while obviously without comparable moment criteria such a result – a linear
relation between the exponent on the right hand side and the bound on the left
hand side – could not be attained.

To list some settings in which the conditions can be satisfied we name the
regression and generalized regression models; cf. [10, 11] or [17]. [29], Section 5.2,
argued that (ED1) is automatically fulfilled for a generalized linear model, while
(ED0) requires that regression errors have to fulfill some exponential moments
conditions. If this condition is too restrictive and a more stable (robust) esti-
mation procedure is desirable, one can apply the LAD-type contrast leading to
median regression. [29], Section 5.3, showed for the case of linear median regres-
sion that all the required conditions are fulfilled automatically if the sample size
n exceeds Cp∗ for a fixed constant C. [31] applied this approach for local polyno-
mial quantile regression. [34] applied the approach to the problem of regression
with Gaussian process where the unknown parameters enter in the likelihood in
a rather complicated way. Further in this work we show how to satisfy them in
a general i.i.d. setting and in the single index model, see Sections 2.4 and 2.9.

Remark 2.10. Another indication that the conditions are not too strong is
served by an example in [2], where the error term ♦̆ in our main result 2.2 is
increased by a factor

√
p∗ if the condition (L0) is slightly relaxed to read

(L0)
′ There exists a symmetric p∗ × p∗-matrix D2 such that such that it holds
on the set Υ◦(r0) for all r ≤ r0

∣∣∣∣
EL(υ,υ∗)− ‖D(υ − υ∗)‖2

‖D(υ − υ∗)‖2
∣∣∣∣ ≤ δ(r).

which appears in [29] under the label (L0).

2.2. Wilks and Fisher expansions

This section states the main results in a finite dimensional framework.
First we introduce the main elements of the approach. Let the information

matrix D2 ∈ Rp∗×p∗

be from the condition in Section 2.1, For the semiparamet-

ric (θ,η)-setup, we consider the block representation of the vector∇ def
= ∇L(υ∗)

and of the matrix D2

∇ =

(
∇θ

∇η

)
, D2 =

(
D2 A
A⊤ H2

)
.

We repeat also the definition of the p× p matrix D̆2

D̆2 = D2 −AH−2A⊤,

and p-vectors ∇̆θ and ξ̆ ∈ Rp

∇̆θ
def
= ∇θζ(υ

∗)−AH−2∇ηζ(υ
∗), ξ̆

def
= D̆−1∇̆θ.
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The random variable ∇̆θ ∈ Rp is related to the efficient influence function in
semiparametric estimation and the matrix D̆2 ∈ Rp×p equals its covariance in
the case of correct specification.

Remark 2.11. It seems worthy to point our that D̆−2∇̆θ = ΠθD
−2∇, see

again [5], Chapter 2.4.

Define the semiparametric spread ♦̆(r, x) > 0 as

♦̆(r, x)
def
= 4

(
4

(1− ρ2)2
δ̆(4r) + 6ν1ω̆z(x, 2p

∗ + 2p)

)
r, (2.4)

where δ̆(r) is shown in the condition (L̆0) and the constants ω̆, ν1 are from

condition (ĔD1) in Section 2.1. The value z(x, 2p∗+2p) is related to the entropy

of the unit ball in a Rp∗+p-dimensional Euclidean space with g > 0 from (ĔD1)
it is defined as

z(x,Q)
def
=

{√
2(x+Q) if

√
2(x+Q) ≤ g,

g−1(x+Q) + g/2 otherwise,
(2.5)

and one can apply z(x, p∗) ∼= √
x + p∗ for moderate choice of x > 0; see Ap-

pendix C. The semiparametric spread ♦̆(r, x) measures the quality of a lin-
ear approximation to ∇̆L(υ) − ∇̆L(υ∗) in the local vicinity the local vicinity
Υ◦(r) =

{
υ ∈ Υ : ‖D(υ − υ◦)‖ ≤ r

}
. Our results become accurate if ♦(r0, x) is

small. The spread will be evaluated in the i.i.d. case in Section 2.4 below.

Theorem 2.2. Assume (ĔD1), (L̆0), and (I) with a central point υ◦ = υ∗ and

some matrix D2. Further assume that the sets of maximizers υ̃, υ̃θ∗ are not

empty. Then it holds on a set Ω(x) ⊆ Ω of probability greater 1 − 2e−x for the

profile MLE θ̃ from (1.3)

∥∥D̆
(
θ̃ − θ∗)− ξ̆

∥∥ ≤ ♦̆(r0, x), (2.6)

∣∣2L̆(θ̃, θ∗)− ‖ξ̆‖2
∣∣ ≤ 4

(
‖ξ̆‖+ ♦̆(r0, x)

)
♦̆(r0, x) + ♦̆(r0, x)

2, (2.7)

where the spread ♦̆(r0, x) is defined in (2.4) and where r0 > 0 is defined in (2.2).

Remark 2.12. The Wilks expansion claims that the profile maximum likeli-

hood L̆(θ̃, θ∗)
def
= L̆(θ̃)−L̆(θ∗) can be approximated by a quadratic form ‖ξ̆‖2/2

with ξ̆ = D̆−1∇̆θ. In the correctly specified i.i.d setting the vector ξ̆ is asymp-
totically standard normal and the quadratic form ‖ξ̆‖2 = ‖D̆−1∇̆θ‖2 weakly
converges to a chi-square random variable with p ∈ N degrees of freedom, which
follows from the central limit theorem and the fact that then Cov(ξ̆) = Ip. In

the general case, the behavior of the quadratic form ‖ξ̆‖2 depends on the char-

acteristics of the matrix B̆
def
= D̆−1V̆ 2D̆−1 where V̆ 2 =∈ Rp×p is from (ĔD0)



Critical dimension in profile semiparametric estimation 3091

and in many cases equals V̆ 2 = Cov(∇̆θ). More precisely one can find an upper
quantile function z(x, B̆) of this quadratic form ensuring

P
(
‖ξ̆‖ > z(x, B̆)

)
≤ 2e−x;

see Proposition A.1. One can use the bound z
2(x, B̆) ≤ C(p+ x) in most situa-

tions. We call B̆ ∈ Rp×p semiparametric misspecification matrix as it is related
to the misspecification matrix introduced in [14]. B̆ is equal to the identity
matrix if a correctly specified log likelihood is used.

Remark 2.13. One can use the expansion (2.6) for the construction of elliptic
confidence sets

E(z) =
{
θ : ‖D̆(θ̃ − θ)‖ ≤ z

}
;

for some z(x) > 0. More precisely let qα > 0 be the α−level quantile of ‖ξ̆‖.
Then we find with the triangular inequality and (2.6)

P

{
θ∗ /∈ E

(
qα + ♦̆(r0, x)

)}
= P

{
‖D̆(θ̃ − θ∗)‖ ≥ qα + ♦̆(r0, x)

}

≤ P

{
‖ξ̆‖ ≥ qα

}
+ 2e−x = 1−

(
α− 2e−x

)
,

and

P

{
θ∗ ∈ E

(
qα − ♦̆(r0, x)

)}
= P

{
‖D̆(θ̃ − θ∗)‖ ≤ qα − ♦̆(r0, x)

}

≤ P

{
‖ξ̆‖ ≤ qα

}
+ 2e−x = α+ 2e−x.

So up to ♦̆(r0, x) and 2e−x the set E(qα) serves as a confidence set. The choice

of x determines the trade off between the closeness of qα ± ♦̆(r0, x) to qα and
the probability level α+ 2e−x to α.

Remark 2.14. The profile maximum likelihood process L̆(θ) can be used for
defining the likelihood-based confidence sets of the form

E(z) = {θ : L̆(θ̃, θ) ≤ z}

The bound (2.7) helps to evaluate the coverage probability P
(
θ
∗ /∈ E(z)

)
in

terms of deviation probability for the quadratic form ‖ξ̆‖2 and in term; cf.
Corollary 3.2 in [29].

Remark 2.15. In the classical finite dimensional case, a usual choice for the
central point υ◦ is υ◦ = υ∗ = argmaxυ∈Υ EL(υ) and one can define the ma-
trix D2 as D2 = −∇2EL(υ∗). However, for the sieve semiparametric problem
in Section 2.6, we use another definition related to the infinite dimensional
model.



3092 A. Andresen and V. Spokoiny

2.3. Large deviation bounds

In this section we want to present a way to determine a value r0 > 0 such that
the full MLE υ̃ ∈ Rp∗

belongs to the local vicinity Υ◦(r0) ⊂ Rp∗

with high
probability. As a first step we adopt the upper function approach from [29];
cf. Theorem 4.2 therein. It is important to note that Corollary 4.4 is one par-
ticular approach which could be replaced by any other proper technique. For
instance, in the model with i.i.d. observations, Theorem 5.3 of [15] might serve
as a tool. The required conditions can be substantially weakened to upper and
lower bounds on the Hellinger distance between models for distinct parameters.
We follow the general way of [29] because it allows to address possible model
misspecification and finite samples.

A close look at the proof of Theorem 4.2 of [29] shows that it actually yields
the following modified version:

Theorem 2.3 ([29], Theorem 4.2). Suppose (Er) and (Lr) with b(r) ≡ b.

Further define the following random set

Υ (K)
def
= {υ ∈ Υ : L(υ,υ∗) ≥ −K}.

If for a fixed r0 and any r ≥ r0, the following conditions are fulfilled:

1 +
√
x+ 2p∗ ≤ 3ν2rg(r)/b,

6νr

√
x+ 2p∗ +

b

9ν2r
K ≤ rb, (2.8)

then

P(Υ (K) ⊆ Υ◦(r0)) ≥ 1− e−x. (2.9)

Remark 2.16. Note that this Theorem also ensures that the maximum of
L : Rp∗ → R is actually attained. Clearly υ∗ ∈ Υ (0) such that it is nonempty.
Further

P (Υ (0) ⊆ Υ◦(r0)) ≥ 1− e−x,

such that Υ (0) ⊆ Υ◦(r0) ⊂ Rp∗

is compact and thus L attains its maximum on
Υ (0), which will be the global maximum υ̃. The same holds for υ̃θ∗ ∈ Rp∗

.

Remark 2.17. The condition (2.8) helps to understand which r0 > 0 ensures
prescribed concentration properties of υ̃ ∈ Rp∗

and υ̃θ∗ ∈ Rp∗

because by
definition both are in the set Υ (0). Consequently, if g(r) > 0 is large enough,
(2.8) follows from the bound

r0 ≥ 6b−1νr
√
x + p∗. (2.10)
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The upper function approach in Theorem 2.3 of showing the consistency for
an M-estimator can be rather rough and the bound (2.10) could lead to quite
large values of r0 > 0. As the obtained value r0 > 0 enters into the error term
♦̆(r0, x) > 0 of Theorem 2.2 it is desirable to obtain a general refined bound for
r1 ≤ r0 that still ensures that P(υ̃ ∈ Υ◦(r1)) ≥ 1 − Ce−x with a small constant
C > 0. Such an improvement is possible as the following proposition shows.
Define the parametric spread :

♦(r, x)
def
= {δ(r) + 6 ν1 z(x, 4p

∗)ω} r, (2.11)

where z(x,Q) is defined in (2.5). Further with V2 ∈ Rp∗×p∗

from condition (ED0)
introduce the misspecification matrix B ∈ Rp∗×p∗

given by the famous sandwich
formula; see [14]:

B = D−1V2D−1.

In the case of correct model specification with D2 = V2, the sandwich matrix

B becomes the identity: B = Ip∗ . Theorem A.1 tells us that

P
{
‖D−1∇L(υ∗)‖ ≥ z(x, B)

}
≤ 2e−x,

where z(x, B) ≤ C
√
tr(B2) + x for moderate choice of x > 0, see (A.2).

Proposition 2.4. Assume the conditions of Theorem 2.2 and additionally as-

sume (ED1), (L0) and (ED0) with V2 ∈ Rp∗×p∗

. Let r0 > 0 be such that (2.9)
holds and define the radius

r1
def
= z(x, B) +♦(r0, x) ∧ r0 ≤ r0.

Then the result of Theorem 2.2 applies with the error term ♦̆(r1, x) in place of

♦̆(r0, x) and with probability greater 1− 5e−x.

2.4. The i.i.d. case

In this section we want to illustrate the results for the case of a smooth i.i.d.
model. This means that given i.i.d. (Y 1, . . . ,Y n) ∈ ⊗n

i=1Y we use

L(Y,υ) =
1

n

n∑

i=1

ℓ(Y i,υ), EPL(υ) = EPY
ℓ(Y 1,υ),

where ℓ : Y × Υ → R is a suitable functional. As above we omit the data in the

following and write ℓi(υ)
def
= ℓ(Y i,υ). Note that

υ∗ def
= argmax

υ∈Υ
EL(υ) = argmax

υ∈Υ
Eℓ(υ),
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D2 def
= ∇2EL(υ∗) = nd2

def
= n∇2Eℓ(υ∗),

V2 def
= Cov(∇ζ(υ∗) = nv2

def
= nCov(∇(ℓ − Eℓ)(υ∗)).

To check the conditions of section 2.1 in principle we only have to assume that
they are met with L,D replaced by ℓ, d with some ν∗0 , ω

∗
1 , δ(r) = δ∗r, b(r) = b∗

and g = g1. Under these conditions, one can easily check the conditions in
Section 2.1 for the full log-likelihood L(υ) =

∑n
i=1 ℓ(yi,υ) with ω = ω1n

−1/2,
δ(r) = δ∗rn−1/2, b(r) = b∗, and g = g1n

1/2; cf. Lemma 5.1 in [29]. To gain a bit
more intuition let us consider the following stronger sufficient list of assumptions:

(ℓ0) The matrix valued function ∇2E[ℓ(·)] : Υ → Rp∗×p∗

is locally Lipschitz
continuous with Lipschitz constant δ∗ in an open neighborhood U ∋ υ∗.

(ed1) There are constants ν∗0 , g
∗ > 0 and an open neighborhood U ∋ υ∗ such

that for all υ ∈ U the random matrix valued function ∇2(ℓ−Eℓ)(·,Y )Υ →
Rp∗×p∗

satisfies for all |λ| ≤ g∗

sup
γ

1
,γ

2
∈R

p∗

‖γ
1
‖=‖γ

2
‖=1

logE exp
{
λγ⊤

1 d
−1∇2(ℓ− Eℓ)(υ)d−1γ2

}
≤ ν∗0λ

2/2.

(ed0) The random vector valued function ∇(ℓ − Eℓ)(·,Y )Υ → Rp∗×p∗

satisfies
for all |λ| ≤ g∗ and all υ ∈ Υ

sup
γRp∗

‖γ‖=1

logE exp
{
λγ⊤d−1∇(ℓ− Eℓ)(υ)

}
≤ ν∗0λ

2/2.

(ℓr) There is a constant b∗ > 0 such that

E [ℓ(υ)− ℓ(υ∗)] ≥ b∗‖d(υ − υ∗)‖2.

(ι) There is a constant cd > 0 such that the matrix d2
def
= ∇2Eℓ(υ∗) satisfies

γ⊤d2γ ≥ cd‖γ‖2 for all γ ∈ Rp∗

.

Lemma 2.5. Assume that n ∈ N is large enough to ensure that the local neigh-

borhood U ⊂ Υ of υ∗ from conditions (ℓ0) and (ed1) satisfies

Υ◦(r
∗)

def
= {υ ∈ Υ : ‖D(υ − υ∗)‖ ≤ r∗}

=
1√
n
{υ ∈ Υ : ‖d(υ − υ∗)‖ ≤ r∗} ⊆ U.

Then the conditions (ℓ0), (ed1), (ed0), (ℓr) and (ι) imply (L0), (ED1), (ED0),
(EDr), (L0) and (I) with δ(r) = δ∗√

nc3
d

r, ω = 1√
n
, g =

√
ng∗, ν1 = ν0 = ν∗0 ,

g(r) =
√
ng∗, b = b∗ for all r ≤ r∗. Further ρ2 ≥ 1 − cd

‖d2

θ
‖∨‖h2‖ where d2θ =

Π⊤
θ dΠθ ∈ Rp×p and h2 = Π⊤

η dΠη ∈ Rm×m.
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Remark 2.18. To keep things simple we do not elaborate on how to check
(L̆0), (ĔD1), (ĔD0) but refer to Lemma 2.1.

Noting that L(υ̃,υ∗) ≥ 0 and L(υ̃θ∗ ,υ∗) ≥ 0 Theorem 2.3 yields that

P (υ̃, υ̃θ∗ ∈ Υ◦(r0)) ≥ 1− e−x, with r0(x) = 6
ν∗0
b∗
√
2p∗ + x.

Theorem 2.2 applies with D2 = n∇2Eℓ(υ∗) and υ◦ = υ∗. We immediately
obtain the following result.

Corollary 2.6. Let Y1, . . . , Yn be i.i.d. and let the conditions (ℓ0), (ed1), (ed0),

(ℓr) and (ι) be met. Assume that r0(x) = 6
ν∗

0

b∗

√
2p∗ + x ≤ r∗. Then we get the

Fisher and Wilks results of Theorem 2.2 for x ≪ √
ng∗ with

♦̆(r0, x) ≤
36ν∗0√
nb∗

(
4

(1− ρ2)2
δ∗

c3d

ν0
b∗

(x + 2p∗) + ν0z(x, 2p
∗ + 2p)

√
x+ 2p∗

)
.

Remark 2.19. The definition of z(x, 2p∗ + 2p) in (C.2) implies for moderate
values of x > 0 that

♦̆(r0, x) ≤ C♦(x+ p∗)/
√
n,

with some fixed constant C♦. The Fisher result (2.6) is meaningful if ♦̆(r0, x)
is small yielding the constraint p∗ ≪ n1/2. If the target dimension p is fixed,
the same condition is sufficient for the Wilks expansion in (2.7). However, if the
target dimension p is of order p∗, the constraint for the Wilks theorem becomes
p∗ = o(n1/3). See [2] for an example that shows, that this difference actually
occurs in certain examples.

2.5. Critical dimension

This section discusses the issue of critical parameter dimensions when the full
dimension p∗ grows with the sample size n. We write p∗ = pn. The results
of Theorem 2.2 refined by Proposition 2.4 are accurate if the spread function
♦(r, x) from (2.11) fulfills ♦(r0, x) ≤ z(x, B) and ♦̆(r1, x) is small, with r1 =
2z(x, B). Usually z(x, B) ≤ C

√
x+ p∗ leading to

♦̆(r1, x) ≍ δ̆(r1)r1 + ω̆r21 is small for r21 ≍ p∗. (2.12)

The critical size of p∗ then depends on the exact bounds for δ̆(·), ω̆. If δ̆(r)/r ≍
ω̆ ≍ 1/

√
n (as in Corrolary 2.6) the condition (2.12) reads “♦̆(r1, x) ≍ p∗/

√
n is

small”. This means that one needs that “p∗2/n is small” to obtain an accurate
non asymptotic version of the Wilks phenomenon and the Fisher Theorem.
Similar conclusions were obtained by Portnoy in series of papers on growing
dimension in generalized linear models and for natural exponential families, see
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e.g. [26, 25, 27]. Our results are non-asymptotic and apply to general statistical
models under the conditions of Section 2.1. The following example shows that
the constraint “p∗2/n is small” is critical.

Consider single observation model

Y = f(υ) + ε,

f(υ) = f(θ,η)
def
=




θ
η1
...
ηpn−1


 +




‖η‖2
0
...
0


 ∈ Rpn ,

with ε ∼ N (0, 1
nIpn

) and υ = (θ,η) ∈ R × Rpn−1. This model is equivalent
to the i.i.d. observations in the same model with the errors εi ∼ N (0, Ipn

).
Assume that the parameter of interest is θ ∈ R and that the true point satisfies
υ∗ = 0 ∈ Rp∗

.

Proposition 2.7. Under pn/
√
n→ 0, the Fisher expansion is accurate and the

profile MLE asymptotically standard normal. If pn/
√
n 6→ 0 the profile MLE in

the above model is not root-n consistent. For
√
n = o(pn) the root-n bias tends

to infinity almost surely. Finally, the Wilks phenomenon occurs if and only if

pn = o(
√
n).

Remark 2.20. The above example can also be used to illustrate the differ-
ence between a finite sample approach and using asymptotic normality for the
construction of confidence sets. For fixed dimension the profile MLE is asymp-
totically standard normal, i.e. with qα > 0 denoting the α-level quantile of a
chi-square distribution with one degree of freedom

P

(
θ∗ ∈

{
|θ̃ − θ|2 ≤ qα/n

})
→ α. (2.13)

But the proof of Proposition 2.7 gives

|θ̃ − θ∗| =
∣∣εθ − ‖εη‖2

∣∣ ,

where n‖εη‖2 ∼ χ2
pn−1 and εθ ∼ N(0, 1/n). It is known that the median of a

chi-square distribution converges to its number of degrees of freedom when the
degrees of freedom tend to infinity. This means that for any 0 < ǫ < 1 the set

C
def
=
{
n‖εη‖2 ≥ (1 − ǫ)pn

}
,

is of probability greater 1/2 for n, pn ∈ N large enough. Let fχ2

pn−1

: [0,∞) →
R denote the Lebesgue density of a χ2

pn−1 random variable. We can use the
independence of ‖εη‖ and εθ and Fubini’s Theorem to estimate

P

(
θ∗ ∈

{
|θ̃ − θ|2 ≤ qα/n

})
=

∫ ∞

0

P

(
|εθ − z/n|2 ≤ qα/n

)
fχ2

m
(z)dz
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=

∫ ∞

0

[
Φ

(
z√
n
+
√
qα

)
− Φ

(
z√
n
−√

qα

)]
fχ2

m
(z)dz

<
1

2

[
α+ Φ

(
(1− ǫ)pn√

n
+
√
qα

)
− Φ

(
(1− ǫ)

pn√
n
−√

qα

)]
,

where Φ : R → [0, 1] denotes the distribution function of a standard normal
random variable. If pn/

√
n is significantly larger than 0, the value

Φ

(
(1− ǫ)pn√

n
+
√
qα

)
− Φ

(
(1 − ǫ)pn√

n
−√

qα

)
,

is distinctively smaller α. For example for α = 0.95 and (1 − ǫ)pn/
√
n = 11/12

we get

P

(
θ∗ ∈

{
|θ̃ − θ|2 ≤ q0.95/n

})
< 0.9.

In other words the asymptotic confidence statement in (2.13) is way off in the
finite sample case because the error term in the local linear approximation is
not addressed. This is exactly where a large full dimension has an impact on
the behavior of the estimator. Our results in Theorem 2.2 quantify the size of
these terms for a large set of models and give a guideline for how to correct
confidence sets to address this effect. The price are more conservative sets, but
their coverage property is ensured.

Remark 2.21. There is an interesting connection of the condition p∗/
√
n→ 0

with the general theory on semiparametric M-estimators. In the common asymp-
totic approach to semiparametric M estimators one assumes apriori consistency
of the estimator υ̃ = (θ̃, η̃), more precisely in the case that the functional ∇̆L(·)
is smooth enough one assumes that ‖θ̃−θ∗‖ = oP(1) and ‖η̃−η∗‖ = OP(n

−1/4),
see [18] Section 21.1.4. On the other hand the results of Theorem 2.2 are ac-

curate if ♦̆(r0, x) is small. As explained above this means in the i.i.d setting

that ♦̆(r0, x) = o(1). Neglecting the contribution of ‖θ̃ − θ∗‖ to r0 this can be
ensured if

♦̆(r0, x) ≤ C(p∗ + r20)/
√
n ≤ o(1) + C

√
n‖η̃ − η∗‖2 → 0,

i.e. if ‖η̃−η∗‖ = o(n−1/4). But consider the radius r1 > 0 from Proposition 2.4.
It is of order

√
p∗ +m if ♦(r0) = O(

√
p∗ + x). In that case in the i.i.d. setting

the constraint on the apriori deviation bound becomes ♦(r0, x) = O(
√
p∗ + x)

which can be ensured if

♦(r0, x) ≤ C(p∗ + r20)/
√
n ≤ o(1) + C

√
n‖η̃ − η∗‖2 = O(

√
p∗ + x),

which means if p∗+x = o(
√
n) that ‖η̃−η∗‖ = o(n−1/8), which is a considerably

weaker constraint. These bounds only concern the finite dimensional case. In the
infinite dimensional setting, treated in Section 2.8 we have to impose conditions
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that ensure that the bias induced by the sieve approach is small enough. [3] serve
such conditions for the Hilbertspace setting. One of these conditions reads that
‖H(η∗ − Πmη∗)‖2 ≤ Cm, i.e. the true nuisance component η∗ ∈ X is well
approximated by its projection into the span of the first m ∈ N basis elements
(ek) ⊂ X. If we represent with some α > 0

η∗ =

m∑

k=1

η∗kek,
m∑

k=1

η∗k
2k2α <∞,

we obtain the constraint m ≤ n1/(2α+1), which means that we need α > 1/2 to
get m = o(n1/2) and in that case η∗ ∈ X is nonparametrically estimable with
rate n−1/4.

Remark 2.22. Concerning the difference between the critical dimensions in
the Wilks (2.7) and the Fisher expansion (2.6) we remark that [2] presents
an example where p = p∗/2, where all conditions of Section 2.1 are met with

δ̆(r)/r ≍ ω̆ ≍ 1/
√
n and where the Wilks phenomenon occurs iff p∗3/n → 0

while for the Fisher expansion p∗2/n suffices.

2.6. Infinite dimensional nuisance

This section discusses how the approach can be extended to the infinite dimen-
sional case. First the basic idea of projecting the infinite dimensional problem
down to a finite dimensional one is explained. Then we prove under bias con-
straints that the projected sieve estimator is nearly normal and efficient. To
avoid further technical distractions (or obstacles) we present the case of a sep-
arable Hilbert space. The ideas can be modified to treat the case when the
nuisance parameter belongs to a Banach space.

2.7. Sieve approach

Consider the (θ,f )-setup with θ ∈ Θ ⊆ Rp and f ∈ X, where X is an infinite
dimensional separable Hilbert space. The target parameter θ∗ can be defined as

θ∗ = argmax
θ

sup
f∈X

EL(θ,f). (2.14)

As the Hilbert space X is assumed to be separable it possesses a countable
orthonormal basis {e1, e2, . . .} ⊂ X. Any vector f ∈ X admits a unique decom-
position in the form

f =

∞∑

j=1

ηjej ,

where ηj =
〈
f , ej

〉
is the usual Fourier coefficient. In the sieve approach one

assumes that for any m ∈ N a finite set e1, . . . , em of elements in X is fixed
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and the vector f can be approximated by a finite linear combination fm(η) of
the ej ’s:

fm(η)
def
=

m∑

j=1

ηjej .

We denote the parameter by υ = (θ,η) ∈ Rp × l2. In the following we will need
to quantify the accuracy of approximating f by fm as m grows; see condition
(bias) below.

Let L(θ,f) be the log-likelihood in the original model. Define by abuse of
notation

L(υ)
def
= L


θ,

∞∑

j=1

ηjej




υ∗ def
= argmax

(θ,η)∈l2
E

[
L

(
θ,

∞∑

k=1

ηjej

)]
,

and the m-dimensional sieve approximation Lm(υ) of L(υ) by

Lm(θ,η)
def
= L(θ,fm(η)),

(θ,η) ∈ Υm
def
= {υ = (θ,η) ∈ Rp∗

: (θ,fm(η)) ∈ Υ}.

The corresponding sieve profile estimator θ̃m and its target θ∗
m for this para-

metric m-submodel are defined in the usual way:

θ̃m
def
= Πθυ̃m

def
= Πθ argmax

υ∈Υm

Lm(θ,η), (2.15)

θ∗
m

def
= Πθυ

∗
m

def
= Πθ argmax

υ∈Υm

ELm(θ,η).

The question we are interested in can be formulated as follows: is θ̃m a good
(efficient) estimator of θ∗ from (2.14) under a proper choice of m?

2.8. Bias constraints and efficiency

The parametric results obtained in Section 2 claim that θ̃m ∈ Rp estimates
well θ∗

m ∈ Rp if the spread ♦̆(r0, x) > 0 is small. More precisely we have the
following: Define for fixed x > 0 the value r0 > 0 by

r0(x)
def
= inf

r≥0

{
P
{
υ̃m, υ̃θ∗

m,m ∈ Υ0,m(r)
}
≥ 1− e−x

}
,

Υ0,m(r)
def
= {υ ∈ Υm, ‖Dm(υ − υ∗

m)‖ ≤ r} .
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where υ∗
m = (θ∗

m,η
∗
m) = argmaxυ ELm(υ) and

υ̃θ,m
def
= argmax

υ∈Υm

Πθυ=θ

Lm(υ,υ∗).

Further the matrix D̆2
m is defined as

D̆2
m(υ∗

m)
def
=
(
ΠθD

−2
m Π⊤

θ

)−1 ∈ Rp×p, D2
m

def
= ∇2

p+mE[L(υ∗
m)] ∈ Rp∗×p∗

,

i.e. the derivatives of E[L] are only taken with respect to the first p +m ∈ N

coordinates of υ ∈ l2 and the Hessian is evaluated in υ∗
m ∈ Rp∗

. Applying

Theorem 2.2 to θ̃m from (2.15) we find that with probability greater 1− 2e−x

‖D̆m

(
θ̃m − θ∗

m

)
− ξ̆m(υ∗

m)‖ ≤ ♦̆(r0, x), (2.16)

The result (2.16) involves two kinds of bias, one that concerns the difference
θ∗
m − θ∗ and the other the difference between D̆m ∈ Rp×p and D̆ ∈ Rp×p where

D̆2 def
=
(
Πθ∇2E[L(υ∗)]−1Π⊤

θ

)−1 ∈ Rp×p,

i.e. the derivatives of E[L] are taken with respect to all coordinates of υ ∈ l2

and the Hessian is calculated in the “true point” υ∗ ∈ l2. The second bias – i.e.
bounds for ‖I− D̆−1

m (υ∗
m)D̆2(υ∗)D̆−1

m (υ∗
m)‖ – will be neglected for now, as only

the operator D̆2
m(υ∗

m) ∈ Rp×p is available in practice. We will come back to it,

when we derive efficiency for the sieve profile estimator θ̃m ∈ Rp.

Remark 2.23. To be more precise we assume that EL : Υ → R is Fréchet
differentiable and that each element of the gradient 〈∇EL, ek〉 again is Fréchet
differentiable aswell. We denote the resulting operator by D2 = ∇2E[L(υ∗)] :
spanΥ → spanΥ .

For the first type of bias we impose the following condition:

(bias) There exists a function α : N → R+ such that

‖D̆m(υ∗
m)(θ∗

m − θ∗)‖ ≤ α(m), α(m) → 0, as m→ ∞.

Remark 2.24. For now we focus on the result 2.2 and thus we do not elaborate
on approximation theory. But [3] presents conditions on the structure ofD : l2 →
l2 and on the sequence η∗ ∈ l2 that yield (bias).

We represent

D2
m(υ∗

m) =

(
D2(υ∗

m) A⊤
m(υ∗

m)

Am(υ∗
m) H2

m(υ∗
m)

)
∈ R(p+m)×(p+m).

With Theorem 2.2 and (bias) we directly get the following corollary:
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Corollary 2.8. Assume (bias) and that the conditions (ĔD), (ĔD1) and (L̆0)
from Section 2.1 are satisfied for all m ≥ m0 for some m0 ∈ N and with

D2 = ∇2
p+mELm(υ∗

m) ∈ Rp∗×p∗

, V2 = Cov[∇p+mLm(υ∗
m)] ∈ Rp∗×p∗

and

υ◦ = υ∗
m ∈ Rp∗

. Assume that υ̃m 6= { } and υ̃θ∗

m
6= { }. Choose r0(x) > 0

such that P(υ̃m, υ̃θ∗

m,m ∈ Υ0,m(r0(x))) ≥ 1−e−x. Then it holds for any m ≥ m0

with probability greater 1− 2e−xn

∥∥D̆m(υ∗
m)
(
θ̃m − θ∗)− ξ̆m(υ∗

m)
∥∥ ≤ ♦̆(r0, x) + α(m),

where

ξ̆m(υ∗
m)

def
= D̆−1

m (∇θ −AmH
−1
m ∇η)Lm(υ∗

m).

Define

L̆(θ)
def
= max

η∈Rm
Lm(θ,η),

where it is important to note that the maximization is restricted to the finite

dimensional space Rm. As above abbreviate L̆(θ, θ∗)
def
= L̆(θ) − L̆(θ∗). For the

bias in the Wilks result a bit more work is needed. We can show the following:

Theorem 2.9. Assume the same as in Corollary 2.8. Pick a radius 0 < r◦0 such

that

P
({

υ̃m, υ̃θ∗

m,m, υ̃θ∗,m ∈ Υ0,m(r◦0)
})

> 1− e−x,

Then we get with probability greater 1− 2e−x

∣∣2L̆(θ̃m, θ
∗)− ‖ξ̆m(υ∗

m)‖2
∣∣

≤ 8
(
‖ξ̆m(υ∗

m)‖+ ♦̆(r◦0, x)
)
♦̆(2(1 + ρ)r◦0, x) + ♦̆(r◦0, x)

2

+ α(m)
(
2‖ξ̆m(υ∗

m)‖ + α(m) + 2♦̆(2(1 + ρ)r◦0, x)
)

Remark 2.25. With condition (ĔD0) we can use Theorem A.1 to obtain

P

(
‖ξ̆m(υ∗

m)‖ ≥ z(x, B̆)
)
≤ e−x.

Remark 2.26. The radius r◦0 ∈ R can be determined again using the tools of
Section 2.3. Clearly Theorem 2.3 can be applied to find some r0 ≤ r◦0 such that

P
(
υ̃m, υ̃θ∗

m,m ∈ Υ0,m(r0)
)
> 1− e−x.

Further note that by the mean value theorem

Lm(θ∗, η̃θ∗,m)− Lm(υ∗
m) ≥ Lm(θ∗,η∗

m)− Lm(υ∗
m)

≥ −(1 + ρ)α(m) sup
υ∈Υ◦((1+ρ)α(m))

‖D−1∇θLm(υ)‖.
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With condition (ĔD0) and (ĔD1) the right hand side can be bounded by some
constant −α(m)C(p∗ + x) ∈ R with probability greater 1− 2e−x using the tools
of Section 2.3. Combining this with Theorem 2.3 gives that with

r◦0 = 6b−1νr

√
x+ log(4) + p∗ +

b

9ν2r
α(m)C(p∗ + x),

it holds that

P
({

υ̃m, υ̃θ∗

m,m ∈ Υ0,m(r0)
}
∩ {υ̃θ∗,m ∈ Υ0,m(r◦0)}

)
> 1− 4e−x−log(4)

= 1− e−x.

This means that r◦0 ≈ r0 as long as α(m) → 0.

Now we want to show how this approach allows to prove the classical weak
convergence statements for the sieve profile ME and efficiency of the sieve profile
MLE θ̃m ∈ Rp. From this point on we focus on the i.i.d. model in which n denotes
the sample size and the functional is of the form L =

∑n
i=1 ℓ(θ,η,Y i). As in

Section 2.4 this gives that D2
m = ndm, D̆2

m = nd̆m and D̆2 = nd̆. As the efficient
covariance is derived for the score evaluated in the true full target υ∗ ∈ l2 we
need further assumptions on the bias:

(bias′) With ‖·‖ denoting the spectral norm and with some function β(m) → 0
as m→ ∞

‖I − D̆m(υ∗)−1D̆(υ∗)2D̆m(υ∗)−1‖ ≤ β(m),

‖I − D̆m(υ∗
m)−1D̆m(υ∗)2D̆m(υ∗

m)−1‖ ≤ β(m).

Remark 2.27. This paper focuses on the result 2.2 and thus we do not elaborate
on approximation theory. But [3] presents conditions on the structure ofD : l2 →
l2 and on the sequence η∗ ∈ l2 that yield (bias′).

Further we need convergence of the covariance of the weighted score. For this
define

v̆2m,D(υ∗
m)

def
= Cov

(
∇θℓ1(υ

∗
m)−AmH

−2
m ∇ηℓ1(υ

∗
m)
)
,

v̆2(υ∗)
def
= Cov

(
∇θℓ1(υ

∗)−AH−2∇ηℓ1(υ
∗)
)
.

(bias′′) As m→ ∞ with ‖ · ‖ denoting the spectral norm

‖D̆−1
m (υ∗

m)V̆ 2
m,D(υ∗

m)D̆−1
m (υ∗

m)− d̆−1v̆2d̆−1‖ → 0.

Remark 2.28. This is a condition on how the covariance operator of
∇p+mL(υ) ∈ Rp+m is affected when it is evaluated in υ∗

m ∈ Rp+m instead
of υ∗ ∈ l2. In the single-index example we get (bias′′) due to the smoothness of
the functional.
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Corollary 2.8 and Theorem 2.9 allow to derive the following corollary which
yields the asymptotic efficiency of θ̃m and the classical Wilks phenomenon.

Corollary 2.10. Assume that we have iid observations from P = Pθ∗,η∗ and

that for some m0 ∈ N any m ≥ m0 the conditions of Theorem 2.8 and the

condition (ĔD0) are satisfied with υ◦ = υ∗
m. Further let the conditions (bias′)

and (bias′′) be satisfied. Assume that for any r > 0 that δ̆n(r) → 0 as n ∈ N

tends to infinity, that ω̆n → 0 and that r0(x) < ∞ for any x > 0, m,n ∈ N,

where r0(x) is chosen such that P(υ̃m, υ̃θ∗

m,m, υ̃θ∗,m ∈ Υ◦(r0)) ≥ 1− e−x. Then

there is a sequence mn → ∞ such that as n→ ∞

nd̆
(
θ̃m − θ∗)− ξ̆

P−→ 0,

nd̆
(
θ̃m − θ∗) w−→ N(0, d̆−1v̆2d̆−1),

2L̆(θ̃m, θ
∗)

w−→ L(‖ξ̆∞‖), ξ̆∞ ∼ N(0, d̆−1v̆2d̆−1).

Remark 2.29. On this level of generality we can not specify the right choice
of mn ∈ N that ensures the convergence. But in [1] it is shown that it equals
the optimal choice for a series estimator of the nuisance component η∗ ∈ l2 for
know θ

∗- as pointed out in [24] the best choice is m = n1/(2α+1), with α > 1/2
quantifying the ”smoothness” of η∗- is admissible.

Remark 2.30. For the case of the profile MLE ℓ(θ,η,Y i) is the log-likelihood

for a single observation. In that case assume that the linear operator F2
υ∗

def
=

Cov
{
∇ℓ(υ∗)

}
: l2 → Im(F2

υ∗) is invertible and that ∇ℓ(υ∗) ∈ Im(F2
υ∗). It is

known from the convolution theorem (see [32], Theorem 3.11.2 p. 414, setting
κ(Pυ) = θ) that the asymptotically optimal variance for regular estimators is
given by the inverse of the partial information matrix

F̆υ∗ =
(
Πθ Cov

{
∇ℓ(υ∗)

}−1
Π⊤

θ

)−1

,

where as above Πθ is the orthogonal projection onto the θ-components, and
Π⊤

θ its adjoint operator. In the case of correct specification we have that v̆2 =

d̆−1 = F̆θ,η, such that

d̆−1v̆2d̆−1 = Ip.

In that case Corollary 2.10 yields the efficiency of the sieve profile MLE and we
recover the Wilks phenomenon for that estimator.

2.9. Application to single index model

We illustrate how the results from Section 2 and the last statement can be
derived for Single Index modeling. We focus on the complete set of assumptions
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that allow to apply the results from above. For a detailed treatment of this
model see [1]. Consider the following model

Y i = f(X⊤
i θ

∗) + εi, i = 1, . . . , n,

for some f : R → R and θ
∗ ∈ Sp,+

1 ⊂ Rp, i.i.d errors εi ∈ R with Eεi = 0
and Var(εi) = σ2 and i.i.d random variables X i ∈ Rp with distribution denoted
by PX . The single-index model is widely applied in statistics. For example in
econometric studies it serves as a compromise between too restrictive parametric
models and flexible but hardly estimable purely nonparametric models. Usually
the statistical inference focuses on estimating the index vector θ∗. A lot of re-
search has already been done in this field. For instance, [7] show the asymptotic
efficiency of the general semiparametric maximum-likelihood estimator for par-
ticular examples and in [12] the right choice of bandwidth for the nonparametric
estimation of the link function is analyzed.

To ensure identifiability of θ∗ ∈ Rp we assume that it lies in the half sphere

Sp,+
1

def
= {θ ∈ Rp : ‖θ‖ = 1, θ1 > 0} ⊂ Rp. For simplicity we assume that the

support of the Xi ∈ Rp is contained in the ball of radius sX > 0. This allows
to approximate f ∈ {f : [−sX , sX ] 7→ R} by an orthonormal C2-Daubechies-

wavelet basis, i.e. for a suitable function e0
def
= ψ : [−sX , sX ] 7→ R we set for

k = (2jk − 1)13 + rk with jk ∈ N0 and rk ∈ {0, . . . , (2jk)13− 1}

ek(t) = 2jk/2ψ
(
2jk(t− 2rksX)

)
, k ∈ N.

Our aim is to analyze the properties of the profile MLE

θ̃m
def
= argmax

θ

max
η∈Rm

Lm(θ,η),

where

Lm(θ,η)
def
= −1

2

n∑

i=1

∣∣∣Y i −
m∑

k=0

ηkek(X
⊤
i θ)

∣∣∣
2

.

[16] analyzed a very similar estimator in a more general setting based on a
kernel estimation of E

[
Y
∣∣ f(θ⊤X)

]
instead of using a parametric sieve approx-

imation
∑m

k=0 ηkek. He showed
√
n-consistency and asymptotic normality of

the proposed estimator.
To apply the technique presented above we need a list of assumptions denoted

by (A):

(CondX) The measure PX is absolutely continuous with respect to the Lebesgue
measure. The Lebesgue density dX : Rp → R of PX is only positive on
the ball Bsx+h(0) ⊂ Rp with some small h > 0 and Lipschitz continu-
ous on Bsx(0) ⊂ Rp with Lipschitz constant LdX

∈ R+. Also the density
dX : Rp → R of the regressors satisfies cdX

≤ dX ≤ CdX
on Bsx(0) ⊂ Rp
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for constants 0 < cdX
≤ CdX

< ∞. Further we assume that for any
θ ⊥ θ∗ with ‖θ‖ = 1 we have Var(X⊤θ|X⊤θ∗) > σ2

X|θ∗ for some con-

stant σ2
X|θ∗ > 0 that does not depend on X⊤θ∗ ∈ R.

(Condf ) For some η∗ ∈ l2

f = fη∗ =

∞∑

k=1

η∗kek,

where with some α > 2 and a constant C‖η∗‖ > 0

∞∑

l=0

l2αη∗l
2 ≤ C2

‖η∗‖ <∞.

(CondXθ∗) It holds true that P(|f ′
η∗(X⊤θ∗)| > cf ′

η∗
) > cPf ′ for some cf ′

η∗
,

cPf ′ > 0.
(Condε) The errors (εi) ∈ R are i.i.d. with E[εi] = 0, Cov(εi) = σ2 and satisfy

for all |µ| ≤ g̃ for some g̃ > 0 and some ν̃r > 0

logE[exp {µε1}] ≤ ν̃2rµ
2/2.

(CondΥ ) Υ ⊆ Υ◦(
√
nr◦) ⊂ Rp+m with r◦ ∈ R, i.e. dΥ

def
= diam(Υ ) <∞.

If these conditions denoted by (A) are met we can proof the following results:

Proposition 2.11. Assume (A) with α = 2+ ǫ for some ǫ > 0 with p∗5/n→ 0
but p∗5+2ǫ/n → ∞. If n ∈ N is large enough it holds with probability greater

1− 4e−x − exp{−m3} − exp{−nc(Q)/4}

∥∥D̆m

(
θ̃m − θ∗

m

)
− ξ̆m(υ∗

m)
∥∥ ≤ C♦

(p∗ + x)5/2√
n

,

∣∣2L̆(θ̃m, θ
∗
m)− ‖ξ̆m(υ∗

m)‖2
∣∣ ≤

(√
p+ x+ C♦

(p∗ + x)5/2√
n

)
C♦

(p∗ + x)5/2√
n

.

where c(Q) > 0. Further as n→ ∞

∥∥D̆
(
θ̃m − θ∗)− ξ̆m(υ∗

m)
∥∥ P−→ 0,

D̆
(
θ̃m − θ∗) w−→ N(0, σ2Ip),

2L̆(θ̃m, θ
∗)

w−→ χ2
p.

Remark 2.31. The constant C♦ > 0 is a polynomial of ‖ψ‖∞, ‖ψ′‖∞, ‖ψ′′‖∞
and sX that is independent of x, n, p∗. The constant c(Q) > 0 is related to b

from (Lr) and also does not depend on x, n, p∗.
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Remark 2.32. The necessary size of n ∈ N is determined by the size of
p∗5/2/

√
n → 0 and m−2α−1n → 0. In the proof of Proposition 2.11 we impose

conditions on n ∈ N of the kind

p∗5/2/
√
n ≤ C−1

1 , m−2α−1n ≤ C−1
2 ,

for certain constants C1, C2 > 0 that are polynomials of ‖ψ‖∞, ‖ψ′‖∞, ‖ψ′′‖∞,
C‖f∗‖ and sX . These constants enter into the bound for C♦.

For details see [1].

Appendix A: Deviation bounds for quadratic forms

The following general results from the supplement of [29] help to control the
deviation for quadratic forms of type ‖Bξ‖2 for a given positive matrix B – i.e.
BB⊤ > 0 – and a random vector ξ. It will be used several times in our proofs.
Suppose that

logE exp
(
γ⊤ξ

)
≤ ‖γ‖2/2, γ ∈ Rp, ‖γ‖ ≤ g.

Remark A.1. In the setting of Section 2 we have either ξ = V̆ −1∇̆θζ(υ
∗) and

B = D̆−1V̆ or ξ = V−1∇ζ(υ∗) and B = D−1V.

For a matrix B, define

p = tr(BB⊤), v2 = 2 tr(BB⊤BB⊤), λB
def
= ‖BB⊤‖ def

= λmax(BB
⊤).

For ease of presentation, suppose that g2 ≥ 2pB. The other case only changes
the constants in the inequalities. Define µc = 2/3 and

gc
def
=
√
g2 − µcpB,

2(xc + 2)
def
= (g2/µc − pB)/λB + log det

(
Ip − µcB/λB

)
. (A.1)

Proposition A.1. Let (ED0) hold with ν0 = 1 and g2 ≥ 2pB. Then for each

x > 0

P
(
‖Bξ‖ ≥ z(x, BB⊤)

)
≤ 2e−x,

where z(x, BB⊤) is defined by

z
2(x, BB⊤) (A.2)

def
=





pB + 2vB(x + 1)1/2, x+ 1 ≤ vB/(18λB),

pB + 6λB(x+ 1), vB/(18λB) < x+ 1 ≤ xc + 2,∣∣yc + 2λB(x − xc + 1)/gc
∣∣2, x > xc + 1,

with y2c ≤ pB + 6λB(xc + 2).



Critical dimension in profile semiparametric estimation 3107

Depending on the value x, we observe three types of tail behavior of the
quadratic form ‖Bξ‖2. The sub-Gaussian regime for x+1 ≤ vB/(18λB) and the
Poissonian regime for x ≤ xc+1 are similar to the case of a Gaussian quadratic
form. The value xc from (A.1) is of order g2. In all our results we suppose that g2

and hence, xc is sufficiently large and the quadratic form ‖ξ‖2 can be bounded
with a dominating probability by pB+6λB(x+1) for a proper x. We refer to the
supplement of [29] for the proof of this and related results, further discussion
and references.

Appendix B: Proofs

This section collects the proofs of the results in chronological order.

B.1. Proof of Lemma 2.1

Proof. Take any γ ∈ Rp with ‖γ‖ = 1 then

γ⊤D̆−1∇̆θζ(υ) = γ⊤ ( D̆−1D D̆−1AH−1
)( D−1 0

0 H−1

)
∇ζ(υ)

def
= γ̂

⊤
D−1∇ζ(υ),

where

‖γ̂‖ ≤
∥∥( D̆−1D D̆−1AH−1

)∥∥
∥∥∥∥
(
D−1 0
0 H−1

)
D

∥∥∥∥ ≤ (1 + ρ)
√
1 + ρ2√

1− ρ2
.

This gives that (ED1) implies (ĔD1) and (ED0) implies (ĔD0) with

ğ =

√
1− ρ2

(1 + ρ)
√
1 + ρ2

g, ν̆ =
(1 + ρ)

√
1 + ρ2√

1− ρ2
ν.

Further for any υ ∈ Υ◦(r)

‖Ip −D−1D2(υ)D−1‖ = ‖D−1(D2 −D2(υ))D−1‖
= ‖D−1Πθ(D

2 −D2(υ))Π⊤
θ D

−1‖
= ‖D−1ΠθD(Ip∗ −D−1D2(υ)D−1)DΠ⊤

θ D
−1‖

≤ ‖D−1ΠθD‖2‖Ip∗ −D−1D2(υ)D−1‖ = δ(r).

Also

‖D−1(A(υ)−A)H−1‖ = ‖D−1Πθ(D
2(υ)−D2)Π⊤

η H
−1‖

= ‖D−1ΠθD(D−1D2(υ)D−1−)DΠ⊤
η H

−1‖
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≤ ‖D−1ΠθD‖‖H−1ΠηD‖‖Ip∗ −D−1D2(υ)D−1‖
≤ δ(r).

With the same arguments

∥∥D−1AH−1
(
Im −H−1H2(υ)H−1

)∥∥ ≤ ρδ(r).

B.2. Proof of Theorem 2.2

Remember the semiparametric spread

♦̆(r, x)
def
= 4

(
4

(1− ρ2)2
δ̆(4r) + 6ν1ω̆z(x, 2p

∗ + 2p)

)
r.

For ζ(υ) = L(υ)−EL(υ) define the semiparametric normalized stochastic gra-
dient gap

Y̆(υ) = D̆−1
(
∇̆θζ(υ)− ∇̆θζ(υ

∗)
)
. (B.1)

Fix the radius r0(x) > 0 that ensures P{υ̃, υ̃θ∗ ∈ Υ◦(r0)} ≥ 1 − e−x. Define
C(r0, x) ⊆ Ω as

C(r0, x)
def
=
{
υ̃, υ̃θ∗ ∈ Υ◦(r0)

}
∩
{

sup
υ∈Υ◦(4r0)

‖Y̆(υ)‖ ≤ 6ν1ω̆z(x,Q)4r0

}
.

In the following we will derive statements that hold true on this set C(r0, x) ⊆ Ω
which is of probability greater 1 − 2e−x because it follows right away from the
definition of r0 > 0 that

P
{
υ̃, υ̃θ∗ 6∈ Υ◦(r0)

}
≤ e−x,

and by Theorem C.1 which is applicable because (ĔD1) implies (C.1) with
‖ · ‖Y = ‖D(·)‖

P

(
sup

υ∈Υ◦(r0)

‖Y̆(υ)‖ ≤ 6ν1ω̆z(x, 2p
∗ + 2p)r0

)
≥ 1− e−x.

B.2.1. Proof of claim on C(r0, x) ⊆ Ω

Before we prove the claim we prove the following useful lemma:

Lemma B.1. Assume that the condition (L̆0) is fulfilled. Then

sup
υ∈Υ◦(r)

∥∥∥D̆−1
(
∇̆EL(υ)− ∇̆EL(υ∗)

)
+ D̆(θ − θ∗)

∥∥∥ ≤ 4

(1 − ρ2)2
rδ̆(r).
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Proof. We have with Taylor expansion and some υ̂ ∈ Υ◦(r)

∇EL(υ)−∇EL(υ∗) = ∇2EL(υ̂)(υ − υ∗)

def
= −D2(υ̂)(υ − υ∗)

= −
(

D2(υ̂) A(υ̂)

A⊤(υ̂) H2(υ̂)

)
(υ − υ∗).

This gives

−D̆−1
(
∇̆EL(υ)− ∇̆EL(υ∗)

)

= D̆−1
(
D2(υ̂)−AH−2A⊤(υ̂) A(υ̂)−AH−2H2(υ̂)

)
(υ − υ∗)

= D̆−1
(
D2(υ̂)−AH−2A⊤(υ̂)

)
D̆−1D̆(θ − θ∗)

+
(
D̆−1A(υ̂)− D̆−1AH−2H2(υ̂)

)
(η − η∗).

We estimate separately using (L̆0) and (I)

‖D̆−1
(
D2(υ̂)−AH−2A⊤(υ̂)

)
D̆−1 − Ip‖

=
∥∥∥D̆−1

(
D2(υ̂)−D2 −

{
AH−2(A⊤(υ̂)−A⊤)

})
D̆−1

∥∥∥

≤ ‖D̆−1D‖2
(
‖D−1D2(υ̂)D−1 − Ip‖

+ ‖D−1AH−1‖‖D−1(A(υ̂)− A)H−1‖
)

≤ 1 + ρ

1− ρ2
δ̆0(r),

and
∥∥∥
(
D̆−1A(υ̂)− D̆−1AH−2H2(υ̂)

)
(η − η∗)

∥∥∥

≤
∥∥∥D̆−1A(υ̂)H−1 − D̆−1AH−2H2(υ̂)H−1

∥∥∥ ‖H(η − η∗)‖

≤ ‖D̆−1D‖
{
‖D−1(A(υ̂)−A)H−1‖

+ ‖D−1AH−1
(
Im −H−1H2(υ̂)H−1

)
‖
}
‖H(η − η∗)‖

≤ 2√
1− ρ2

δ̆0(r)‖H(η − η∗)‖.

Further

‖D̆(θ − θ
∗)‖ ∨ ‖H(η − η∗)‖ ≤ 1√

1− ρ2
1√

1− ρ2
‖D(υ − υ∗)‖ ≤ 1

1− ρ2
r.
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Together this gives that

sup
υ∈Υ◦(r)

∥∥∥D̆−1
(
∇̆EL(υ)− ∇̆EL(υ∗)

)
+ D̆(θ − θ∗)

∥∥∥

≤
(

1 + ρ

1− ρ2
+

2√
1− ρ2

)
1

1− ρ2
rδ̆(r)

≤ 4

(1− ρ2)2
rδ̆(r).

The next Lemma already completes the proof of (2.6) and (2.7) on C(r0, x)⊂Ω:

Lemma B.2. Assume that the condition (L̆0) is fulfilled. Then on the set

C(r0, x) ⊂ Ω the approximations (2.6) and (2.7) are valid.

Proof. Using ∇̆θL(υ̃) = 0, that by assumption ∇̆EL = E∇̆L and the triangular
inequality we find

‖D̆(θ̃ − θ
∗)− ξ̆‖ =

∥∥∥D̆−1
{
∇̆L(υ̃)− ∇̆L(υ∗)

}
+ D̆(θ̃ − θ

∗)
∥∥∥

≤
∥∥∥D̆−1

(
∇̆EL(υ̃)− ∇̆EL(υ∗)

)
+ D̆(θ̃ − θ∗)

∥∥∥

+
∥∥∥D̆−1

{
∇̆θζ(υ̃)− ∇̆θζ(υ

∗)
}∥∥∥ .

Note that by condition (L̆0) we get with Lemma B.1 as we assume that υ̃ ∈
Υ◦(r0)

∥∥∥D̆−1
(
∇̆EL(υ̃)− ∇̆EL(υ∗)

)
+ D̆(θ̃ − θ

∗)
∥∥∥ ≤ 4

(1 − ρ2)2
r0δ̆(r0).

For the remainder we use that on C(r0, x) ⊂ Ω

∥∥∥D̆−1
{
∇̆θζ(υ̃)− ∇̆θζ(υ

∗)
}∥∥∥ ≤ sup

υ∈Υ◦(4r0)

‖Y̆(υ)‖ ≤ 6ν̆1ω̆z(x,Q)4r0.

This gives (2.6) on C(r0, x) ⊂ Ω. For (2.7) we will first show that on C(r0, x) ⊂ Ω

∣∣∣L̆(θ̃)− L̆(θ∗)−
(
∇̆ζ(υ∗)(θ̃ − θ∗)− ‖D̆(θ̃ − θ∗)‖2/2

)∣∣∣ (B.2)

≤
(
‖D̆−1∇̆‖+ ♦̆(r0, x)

)
♦̆(r0, x).

To show this we use some ideas of the proof of Theorem 1 of [22], that is we
define

l : Rp × Υ → R, (θ1, θ2,η) 7→ L(θ1,η +H−2A⊤(θ2 − θ1)). (B.3)
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Note that

∇θ1
l(θ1, θ2,η) = ∇̆θL(θ1,η +H−2A⊤(θ2 − θ1)),

i.e. ∇θ1
l(θ∗, θ∗,η∗) = ∇̆ζ(υ∗).

Remark B.1. If the model was correctly specified and L the true log likelihood
∇θ1

l(θ∗, θ∗,η∗) would be equal to
∑n

i=1 ψ̃P(Y i), with ψ̃P the efficient influence
function.

We can represent:

L̆(θ̃)− L̆(θ∗) = l(θ̃, θ̃, η̃)− l(θ∗, θ∗, η̃θ∗), η̃θ∗

def
= Πη argmax

υ∈Υ,
Πθυ=θ∗

L(υ).

This allows to bound from above

L̆(θ̃)− L̆(θ∗) ≤ l(θ̃, θ̃, η̃)− l(θ∗, θ̃, η̃)

= ∇θ1
l(θ∗, θ∗,η∗)(θ̃ − θ∗)− ‖D̆(θ̃ − θ∗)‖2/2 + ᾰ(θ̃, θ∗),

where

ᾰ(θ1, θ2)
def
= l(θ1, θ̃, η̃)− l(θ2, θ̃, η̃)−∇θ1

l(θ∗, θ∗,η∗)(θ1 − θ2)

+ ‖D̆(θ1 − θ2)‖2/2.

We will show

ᾰ(θ̃, θ∗) ≤
(
‖D̆−1∇̆‖+ ♦̆(r0, x)

)
♦̆(r0, x), (B.4)

which gives the upper bound of (B.2). Note that ᾰ(θ∗, θ∗) = 0 such that we get
with Taylor expansion

ᾰ(θ̃, θ∗) ≤ ‖D̆(θ̃ − θ
∗)‖ sup

θ∈ΠθΥ◦(r0)

|D̆−1∇θ1
ᾰ(θ, θ∗)|.

We find

∇θ1
ᾰ(θ, θ∗) = ∇θ1

l(θ, θ̃, η̃)−∇θ1
l(θ∗, θ∗,η∗) + D̆(θ − θ∗)

= ∇̆ζ(υ◦)− ∇̆ζ(υ∗) + E

[
∇̆L(υ◦)− ∇̆L(υ∗)

]
+ D̆(θ − θ∗),

where

υ◦ def
= (θ, η̃ +H−2A⊤(θ̃ − θ)),

‖D(υ◦ − υ∗)‖ ≤ ‖D(θ − θ∗)‖+ ‖H(η̃ − η∗)‖ + ρ‖D(θ̃ − θ)‖
≤ 2(1 + ρ)r0 < 4r0.
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Using Lemma B.1 and the definition of C(r0, x) we can bound

sup
θ∈ΠθΥ◦(r0)

|D̆−1∇θ1
ᾰ(θ, θ∗)| ≤ ♦̆(r0, x).

Using (2.6) we find on C(r0, x)

‖D̆(θ̃ − θ∗)‖ ≤ ‖D̆−1∇̆‖+ ♦̆(r0, x).

This gives (B.4). Similarily we can bound from below:

L̆(θ̃)− L̆(θ∗) ≥ l(θ̃, θ∗, η̃θ∗)− l(θ∗, θ∗, η̃θ∗),

and repeat the same arguments using that υ̃θ∗ ∈ Υ◦(r0) on C(r0, x) ⊂ Ω to
obtain the lower bound of (B.2). Plugging (2.6) into (B.2) this gives

∣∣∣2L̆(θ̃)− 2L̆(θ∗)− ‖D̆−1∇̆ζ(υ∗)‖2
∣∣∣ ≤ 4

(
‖D̆−1∇̆‖+ ♦̆(r0, x)

)
♦̆(r0, x)

+ ♦̆(r0, x)
2.

B.3. Proof of Proposition 2.4

We start with an auxiliary result. Define the parametric gradient gap

Y(υ) = D−1
(
∇ζ(υ)−∇ζ(υ∗)

)
.

Lemma B.3. Assume that the condition (L0) is fulfilled. Then for 0 ≤ r on

the set

M(r, x)
def
= {υ̃, υ̃θ∗ ∈ Υ◦(r)} ∩

{
sup

υ∈Υ◦(r)

‖Y(υ)‖ ≤ 6ν1ωz(x, 4p
∗)r

}
, (B.5)

we have

‖D(υ̃ − υ∗)−D−1∇L(υ∗)‖ ≤ ♦(r, x),

‖H(υ̃ − υ∗)−H−1∇ηL(υ
∗)‖ ≤ ♦(r, x).

Proof. Since ∇L(υ̃) = 0 we find with the triangular inequality

‖D(υ̃ − υ∗)−D−1∇L(υ∗)‖ ≤ ‖D−1
(
∇ζ(υ̃)−∇ζ(υ∗)

)
‖

+ ‖D−1E∇L(υ)−D−1E∇L(υ∗) +D (υ̃ − υ∗)‖.

In section 2.1 we assume that L : Rp∗ → R is smooth enough such that we can
interchange ∇EL(υ) = E∇L(υ) on Υ◦(r0). This gives by condition (L0) and
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Taylor expansion

sup
υ∈Υ◦(r)

‖D−1E∇L(υ)−D−1E∇L(υ∗) +D (υ − υ∗)‖

≤ sup
υ∈Υ◦(r)

‖D−1∇2EL(υ)D−1 + Ip∗‖r ≤ δ(r)r.

For the remainder we use the definition of M(r, x) in (B.5). This gives the
the first claim. For the second claim we repeat the same arguments with the

restriction to the set Υ◦,θ∗(r)
def
= {(θ,η) ∈ Υ◦(r) : θ = θ∗}. We bound on

Υ◦,θ∗(r)

‖H−1
{
∇ηL(υ)−∇ηL(υ

∗) +H2 (η − η∗)
}
‖ ≤ ‖H−1

{
∇ηL(υ)−∇ηL(υ

∗)
}
‖

+ ‖H−1
{
∇ηEL(υ)−∇ηEL(υ

∗) +H2 (η − η∗)
}
‖.

Take any γ ∈ Rm with ‖γ‖ = 1 then

γ⊤H−1∇ηL(υ) = (0, H−1γ)⊤∇υL(υ) = (0, H−1γ)⊤DD−1∇υL(υ).

Now note that ‖D(0, H−1γ)‖2 = ‖γ‖2 = 1 such that

‖H−1
{
∇ηζ(υ)−∇ηζ(υ

∗)
}
‖ = sup

γ∈R
m

‖γ‖=1

γ⊤H−1 {∇ηζ(υ)−∇ηζ(υ
∗)}

≤ sup
γ∈R

p∗

‖γ‖=1

γ⊤D−1 {∇υζ(υ)−∇υζ(υ
∗)}

= ‖D−1 {∇υζ(υ)−∇υζ(υ
∗)} ‖

≤ 6ν1ωz(x, 4p
∗)r.

As above we find with Taylor expansion

sup
υ∈Υ

◦,θ∗ (r)

‖H−1
{
∇ηEL(υ)−∇ηEL(υ

∗) +H2 (η − η∗)
}
‖

≤ sup
υ∈Υ

◦,θ∗ (r)

‖H−1H2(υ)H−1 − Im‖r.

We can bound using ‖D(0, H−1γ)‖2 = ‖γ‖2 and (L0)

‖H−1H2(υ)H−1 − Im‖ = sup
γ∈R

m

‖γ‖=1

(
H−1γ

)⊤ {
H2(υ)−H2

}
H−1γ

= sup
γ∈R

m

‖γ‖=1

(
0, H−1γ

)⊤ {
D2(υ)−D2

} (
0, H−1γ

)
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≤ sup
γ∈R

p

‖γ‖=1

γ
{
D−1D2(υ)D−1 − Ip∗

}
γ ≤ δ(r).

This gives the claim.

Now we can proof Proposition 2.4. Define

C′(r0, x)
def
=
{

υ̃, υ̃θ∗ ∈ Υ◦(r0), (B.6)

‖D−1∇‖ ≤ z(x, B), ‖H−1∇η‖ ≤ z(x, B),
}

∩
{

sup
υ∈Υ◦(r0)

‖Y(υ)‖ ≤ 6ν1ωz(x, 4p
∗)r0

}

∩
{

sup
υ∈Υ◦(4r1)

‖Y̆(υ)‖ ≤ 6ν1ω̆z(x, 2p
∗ + 2p)4r1

}
.

The desired result occurs on this set. First we show that P(C′(r0, x)) ≥ 1−5e−x.
Lemma B.4 yields

‖H−1∇η‖2 ≤ ‖D−1∇‖2,

which implies that

{‖D−1∇‖ ≤ z(x, B)} ⊆ {‖H−1∇η‖ ≤ z(x, B)}.

To control the probability P
(
‖D−1∇‖ > z(x, B)

)
we apply Proposition A.1 with

B = D−1V2D−1.

We obtain

P
(
‖D−1∇‖ > z(x, B)

)
≤ 2e−x.

By Theorem C.1 with p = p∗ we have

P

{
sup

υ∈Υ◦(r0)

‖Y(υ)‖ ≤ 6ν1ωz(x, 4p
∗)r0

}
≥ 1− e−x.

This gives that P(C′(r0, x)) ≥ 1 − 5e−x. Lemma B.3 gives that on the set
C′(r0, x) from (B.6) we have

‖D(υ̃ − υ∗)−D−1∇‖ ≤ ♦(r0, x).

With the triangular inequality this gives

‖D(υ̃ − υ∗)‖ ≤ ‖D−1∇‖+♦(r0, x).
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Now on C′(r0, x) we have ‖D−1∇‖ ≤ z(x, B), which implies

‖D(υ̃ − υ∗)‖ ≤ z(x, B) +♦(r0, x).

The same can be done for ‖D(υ̃θ∗ − υ∗)‖ which gives

C′(r0, x) ⊆ {υ̃, υ̃θ∗ ∈ Υ◦(r1)} ∩
{

sup
υ∈Υ◦(r1)

‖Y̆(υ)‖ ≤ 6ν1ω̆z(x, p
∗)r1

}

= C(r1, x) ⊂ Ω.

Now the claim follows as in the proof of Theorem 2.2 with r0 > 0 replaced with
r1 > 0.

Lemma B.4. Let D ∈ R(p+p)×(p+p) be invertible and

D2 =

(
D2 A
A⊤ H2

)
∈ R(p+p)×(p+p), D ∈ Rp×p, H ∈ Rm×m invertible.

Then for any υ = (θ,η) ∈ Rp+m we have ‖H−1η‖ ∨ ‖D−1θ‖ ≤ ‖D−1υ‖.
Proof. With υ = (θ,η) ∈ Rp+m

‖D−1θ‖ = ‖D−1ΠθDD−1υ‖ ≤ ‖D−1ΠθD‖‖D−1υ‖ = ‖D−1υ‖,

because

‖D−1ΠθD‖2 = sup
‖γ‖=1

γ⊤D−1ΠθD
2Π⊤

θ D
−1γ = ‖γ‖ = 1.

The same argument works for ‖H−1η‖.

B.4. Proof of Lemma 2.5

Proof. First note that due to (ι) we have

‖D−1‖ =
1√
n
‖d−1‖ ≤ 1√

ncd
. (B.7)

Now we prove the implications.

(L0) As by assumption Υ◦(r∗) ⊂ U we simply estimate using (B.7) and (ℓ0) for
any υ ∈ Υ◦(r∗)

‖I−D−1∇2EL(υ)D−1‖ ≤ 1

nc2d
‖D2 −∇2EL(υ)‖

=
1

c2d
‖∇2Eℓ(υ∗)−∇2Eℓ(υ)‖ ≤ δ∗√

nc3d
r.



3116 A. Andresen and V. Spokoiny

(ED1) Abbreviate ζi = (ℓi − Eℓi) and ζ = (L − EL). Take any γ ∈ Rp∗

and υ,υ′ ∈ Υ◦(r∗) ⊂ U and use the mean value theorem to find some
υ̂ ∈ conv(υ,υ′) ⊂ U

logE exp

{
µγ⊤D−1

{
∇ζ(υ)−∇ζ(υ′)

}

ω ‖D(υ − υ′)‖

}

= logE exp

{
µ

ωn
γ⊤d−1

{
n∑

i=1

∇2ζi(υ̂)

}
d−1 d(υ − υ′)

‖d(υ − υ′)‖

}
.

Using independence and (ed1) this gives with ω = 1√
n
and |µ| ≤ √

ng∗0

logE exp

{
µγ⊤D−1

{
∇ζ(υ)−∇ζ(υ′)

}

ω ‖D(υ − υ′)‖

}

≤
n∑

i=1

sup
γRp∗

‖γ‖=1

logE exp

{
µ√
n
γ⊤
1 d

−1∇2ζi(υ̂)d
−1γ2

}
≤ ν∗0µ

2/2.

Further (I) is a consequence of Lemma B.5 and (ι). The other claims can be
shown with the same argument or follow trivially from the setting.

Lemma B.5. For a positive definite symmetric matrix

D2 =

(
D2 A
A⊤ H2

)
,

with cD‖υ‖2 ≤ υ⊤Dυ for some cD > 0 we have that

‖D−1AH−2A⊤D−1‖ =: ρ2 ≤ 1− cD
‖D‖2 ∧ ‖H‖2 .

Proof. For any v = (θ,η) ∈ Rp+m we have

υ⊤D2υ = (θ⊤,η⊤)

(
D2 A
A⊤ H2

)(
θ

η

)

= (θ⊤D⊤,η⊤H⊤)

(
Ip D−1AH−1

H−1A⊤D−1 Im

)(
Dθ

Hη

)

= ‖Dθ‖2 + ‖Hη‖2 + 2〈Hη, H−1A⊤D−1θ〉.

Minimized with respect to η, i.e. with Hη = −H−1A⊤D−1Dθ we find

υ⊤D2υ = ‖Dθ‖2 − ‖H−1A⊤D−1Dθ‖2 = (Dθ)⊤(Ip −D−1AH−2A⊤D−1)Dθ,



Critical dimension in profile semiparametric estimation 3117

which gets minimal – i.e. equal to (1− ρ2)‖Dθ‖ - if

D−1AH−2A⊤D−1Dθ = ‖D−1AH−2A⊤D−1‖Dθ = ρ2Dθ,

i.e. if Dθ ∈ Rp is a maximal eigenvalue of D−1AH−2A⊤D−1 ∈ Rp×p. With the
assumption cD‖υ‖2 ≤ υ⊤Dυ this gives

cD‖υ‖2 ≤ υ⊤D2υ = (1 − ρ2)‖Dθ‖2, ‖υ‖2 = ‖θ‖2 + ‖H−2A⊤θ‖2,

such that

ρ2 ≤ 1− cD
‖θ‖2
‖Dθ‖2 ≤ 1− cD

‖D‖2 .

With analogous arguments we can obtain

ρ2 ≤ 1− cD
‖η‖2
‖Hη‖2 ≤ 1− cD

‖H‖2 ,

which completes the proof.

B.5. Proof of Proposition 2.7

The profile MLE can be calculated easily

θ̃ = Πθf
−1 (Y ) = Πθf

−1 (f(υ∗) + εi) = θ
∗ + εθ − ‖εη‖2,

where ε = (εθ, εη) ∈ R × Rpn−1. It is straight forward to show, that the con-

ditions of Section 2.1 are satisfied with D2 = nE[∇f∇f⊤(υ∗)] = Idp∗ , D̆2 = n

and ξ̆ =
√
nεθ. But we immediately see that

√
n(θ̃ − θ

∗)−√
nεθ = −√

n‖εη‖2 ∼
−χ2

pn−1√
n

.

This means that if pn = O(n1/2) the estimator is not root-n consistent. For√
n = o(pn) the root-n bias goes to infinity almost surely. Clearly if pn = o(n1/2)

the Fisher expansion is accurate.
Concerning the Wilks phenomenon note that L(υ̃) = 0. On the other hand

−max
η

L(θ∗,η) = nmin
λ∈R

{(
yθ − λ2 ‖Y η‖2

)2
+ (1− λ)2‖Y η‖2

}

= nmin
λ∈R

{(
εθ − λ2 ‖εη‖2

)2
+ (1− λ)2‖εη‖2

}

= nmin
λ∈R

{
ε2θ + ‖εη‖2

(
λ4 ‖εη‖2 − λ2εθ + (1− λ)2

)}
,
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where Y = (yθ,Y η) ∈ R × Rpn−1 and ε = (εθ, εη) ∈ R × Rpn−1. Now clearly
‖εη‖2 = O(pn/n) → 0 a.s. and εθ → 0 a.s. such that the sequence of minimizers
satisfies λn → 1 a.s.. This gives for any τ > 0 and n ≥ nτ ∈ N large enough

−max
η

L(θ∗,η) ≥ nε2θ + (1− τ)n ‖εη‖4 − (1 + τ)nεθ ‖εη‖2 . (B.8)

Further we get setting λ = 1

−max
η

L(θ∗,η) ≤ nε2θ + n ‖εη‖4 − nεθ ‖εη‖2 . (B.9)

As L̆(θ̃, θ∗) = −maxη L(θ∗,η) the inequalities (B.8) and (B.9) combine to

nε2θ + n(1− τ) ‖εη‖4 − (1 + τ)nεθ ‖εη‖2 ≤ L̆(θ̃, θ∗)

≤ nε2θ + n ‖εη‖4 − nεθ ‖εη‖2 .

This gives the Wilks phenomenon if p2n/n → 0. Now if p2n/n → ∞ the right
hand side in (B.8) diverges since with τ = 1/2

nε2θ +
n

2
‖εη‖4 − 2nεθ ‖εη‖2 ∼ χ2

1 ∗ (χ4
pn−1/2n) ∗

{
−N(0, 1)(2χ2

pn−1/
√
n)
}

w−→ δ∞.

If p2n/n→ C then L̆(θ̃, θ∗) can not converge to a χ2-distribution with one degree
of freedom as one can let τ > 0 tend 0. This completes the proof.

B.6. Proof of Theorem 2.9

Remember the definition

υ̃θ∗

m,m = (θ∗
m, η̃θ∗

m
)
def
= argmax

υ∈Υ
Πθυ=θ∗

m

Lm(υ), υ̃θ∗,m = (θ∗
m, η̃θ∗)

def
= argmax

υ∈Υ
Πθυ=θ∗

Lm(υ).

Define for some 0 < r◦0

A(x, r◦0)
def
=
{
υ̃m, υ̃θ∗

m,m, υ̃θ∗,m ∈ Υ0,m(r◦0)
}

∩
{

sup
υ∈Υ◦(4r◦0)

‖Y̆(υ)‖ ≤ 6ν1ω̆z(x, 2p
∗ + 2p)4r◦0

}
⊂ Ω,

with Y̆(υ) ∈ Rp∗

from (B.1).
We prove this claim in a similar fashion as in Section B.2.1. With the function

lm : Rp × Υ → R defined as in (B.3) with L replaced by Lm we can represent:

L̆m(θ∗
m)− L̆m(θ∗) = lm(θ∗

m, θ
∗
m, η̃θ∗

m
)− lm(θ∗, θ∗, η̃θ∗),
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Repeating the same arguments as in Section B.2.1 we obtain

L̆m(θ∗
m)− L̆m(θ∗) ≤ lm(θ∗

m, θ
∗
m, η̃θ∗

m
)− lm(θ∗, θ∗

m, η̃θ∗

m
)

= ∇̆θLm(υ∗)(θ∗
m − θ∗)− ‖D̆m(θ∗

m − θ∗)‖2/2
+ ᾰ∗

m(θ∗
m, θ

∗),

where ᾰ∗
m(θ1, θ2) ∈ R is defined as

ᾰ∗
m(θ1, θ2)

def
= l(θ1, θ

∗
m, η̃θ∗

m
)− l(θ2, θ

∗
m, η̃θ∗

m
)

−∇θ1
l(θ∗, θ∗,η∗)(θ1 − θ2)− ‖D̆(θ1 − θ2)‖2/2.

and satisfies

ᾰ∗
m(θ∗

m, θ
∗) ≤ ‖D̆m(θ∗

m − θ∗)‖ sup
θ∈ΠθΥ◦(4r◦0)

|D̆−1
m ∇θ1

ᾰm(θ, θ∗)|

≤ α(m)♦̆(2(1 + ρ)4r◦0, x),

since A(x, r◦0) ⊆ {υ̃θ∗

m
, υ̃θ∗ ∈ Υ◦(r◦0)}. With similar arguments for the lower

bound this gives

2|L̆m(θ∗
m)− L̆m(θ∗)| ≤ α(m)

(
2‖D̆−1∇̆Lm(υ∗)‖+ α(m) + 2♦̆(r◦0, x)

)
.

The claim follows because the result (2.7) of Theorem 2.2 occurs on A(x, r◦0) ⊆
C(x, r◦0) ⊂ Ω. It remains to note that the set A(x, r◦0) ⊂ Ω is of probability
greater 1− 2e−x by the choice of r◦0 > 0.

B.7. Proof of Corollary 2.10

We will only prove the asymptotic normality as the the proof the Wilks phe-
nomenon is very similar. Define

V2
m(υ∗

m) = Cov
(
∇p+mLm(υ∗

m)
)
, Bm = D−1

m V2
mD−1

m ,

∇̆θ,m = ∇θ −AmH
−2
m ∇η, V̆

2
m = Cov(∇̆θζ(υ

∗
m)), B̆m = D̆−1

m V̆ 2
mD̆

−1
m .

Remember p∗ = p + m ∈ N and that the point υ∗
m ∈ Rp × Rm is defined

by maximizing the expected log-likelihood for the sieved functional models Lm

and the operators D2
m ∈ Rp∗×p∗

, D̆2
m ∈ Rp×p correspond to this point, i.e. we

abbreviate D2
m

def
= D2

m(υ∗
m), while D2 = D2(υ∗) and D̆2

m = D̆2
m(υ∗

m), D̆2 =
D̆2(υ∗), where υ∗ = argmaxυ∈Υ EL(υ), i.e. the true full maximizer.

We get with Theorem 2.2 applied to θ̃m from (2.15) that with probability
greater 1− 2e−x

‖D̆m

(
θ̃m − θ∗

m

)
− ξ̆m(υ∗

m)‖ ≤ ♦(r0, x). (B.10)
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We write

D̆
(
θ̃m − θ∗)− ξ̆m(υ∗

m)

= D̆m

(
θ̃m − θ

∗
m

)
− ξ̆m(υ∗

m) + (D̆m − D̆)
(
θ̃m − θ

∗
m

)
+ D̆m

(
θ
∗
m − θ

∗).

By (B.10) it suffices to bound ‖(D̆m−D̆)(θ̃m−θ∗
m)‖ and ‖D̆m(θ∗

m−θ∗)‖. With
assumption (bias) we get

‖D̆m(θ∗
m − θ∗)‖ ≤ α(m).

Further

‖(D̆m − D̆)
(
θ̃m − θ∗

m

)
‖

≤ ‖(D̆m − D̆m(υ∗))
(
θ̃m − θ∗

m

)
‖+ ‖(D̆m(υ∗)− D̆)

(
θ̃m − θ∗

m

)
‖

≤ ‖D̆m

(
θ̃m − θ∗

m

)
‖
(
‖I− D̆−1

m D̆2
m(υ∗)D̆−1

m ‖1/2

+ ‖I− D̆m(υ∗)−1D̆2(υ∗)D̆m(υ∗)−1‖1/2‖D̆m(υ∗)D̆−1
m ‖

)
.

Condition (ĔD) yields that P(‖ξ̆m(υ∗
m)‖ ≤ z(xn, B̆m)) ≥ 1 − 2exn (see Sec-

tion A). This gives with (B.10) that with probability greater 1− 4exn

‖D̆m(θ̃m − θ∗
m)‖ ≤ ‖ξ̆m(υ∗

m‖+♦(r0, x) ≤ z(x, B̆m) +♦(r0, x).

where z(x, B̆m) = O(
√
p+ x) Combining these bounds gives with (bias′)

‖D̆
(
θ̃m − θ∗)− ξ̆m(υ∗

m)‖ ≤ ♦(r0, x) + β(m)
(
z(x, B̆m) +♦(r0, x)

)
+ α(m),

where r0(x) is chosen such that P(υ̃n, υ̃θ∗

m,m ∈ Υ0,m(r0(x))) ≥ 1 − e−x. By

assumption r0(x) < ∞ for any x > 0, m,n ∈ N. Remember that ♦̆
(
r0, xn

)
≈

δ̆n(r0)r0+ ω̆n
√
x+ p+mnr0 where by assumption δ̆n(r) → 0 for any r > 0 and

ωn → 0. This implies that there exist sequences (mn) ⊂ N with mn → ∞ and
xn → ∞ with

♦(r0, x) + β(m)
(
z(x, B̆mn

) +♦(r0, x)
)
+ α(mn) → 0 (B.11)

as n → ∞. Fix such sequences mn → ∞ and xn → ∞. Then we have due to
(B.11) that for any ǫ > 0 there exists an n ∈ N such that

P(‖D̆(θ̃m − θ∗)− ξ̆m(υ∗
m)‖ ≥ ǫ) ≤ 4exn .

As xn → ∞ we get the claim by Slutsky’s Lemma once we showed that ξ̆m(υ∗
m)

is asymptotically N(0, d̆−1v̆2d̆−1)-distributed.
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For this observe

ξ̆m(υ∗
m) = D̆−1

m (∇θ −AmH
−2
m ∇η)L(υ

∗
m)

=
1√
n

n∑

i=1

(
1√
n
D̆m)−1(∇θℓi(υ

∗
m)−AmH

−2
m ∇ηℓi(υ

∗
m))

def
=

1√
n

n∑

i=1

Xi.

Due to assumptions (bias′′) we have Cov(Xi) → d̆−1v̆2d̆−1 ∈ Rp×p. Conse-
quently

ξ̆m(υ∗
m) =

1√
n

n∑

i=1

Xi,

where the random vectors Xi are i.i.d. with zero mean and covariance tending
to d̆−1v̆2d̆−1, such that by a slightly generalized central limit theorem

ξ̆m(υ∗
m)

w−→ N(0, d̆−1v̆2d̆−1).

Appendix C: A bound for the norm of a random process

We want to derive for a random process Y(υ) ∈ Rp and υ ∈ Υ◦(r) ⊂ Rp∗

a
bound of the kind

P

(
sup

υ∈Υ◦(r)

‖Y(υ)‖ ≥ Cz(x, 2p∗ + 2p)r

)
≤ e−x.

In the following we elaborate how to extend the results of the supplement of
[29] on empirical processes to this situation without substantial changes to the
bounds.

For this let Y(υ) be a smooth centered random vector process with values
in Rp.We aim at bounding the maximum of the norm ‖Y(υ)‖ over a vicinity

Υ◦(r)
def
= {‖υ−υ∗‖Y ≤ r} of υ∗ with some norm ‖·‖Y. Suppose that Y(υ) satisfies

for each 0 < r < r∗ and for all pairs υ,υ◦ ∈ Υ◦(r) =
{
υ ∈ Υ : ‖υ − υ∗‖Y ≤

r
}
⊂ Rp∗

and |λ| ≤ g

sup
‖u‖≤1

logE exp

{
λ
u⊤(Y(υ)− Y(υ◦)

)

ω‖υ − υ◦‖Y

}
≤ ν20λ

2

2
. (C.1)

Remark C.1. In the setting of Theorem 2.2 and Proposition 2.4 we have

Y(υ) = D̆−1
(
∇̆ζ(υ)− ∇̆ζ(υ∗)

)
, Y(υ) = D−1

(
∇ζ(υ)−∇ζ(υ∗)

)
,
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respectively and in both cases the norm becomes ‖υ−υ◦‖Y = ‖D(υ−υ◦)‖ and

condition (C.1) becomes (ĔD1) from Section 2.1.

Theorem C.1. Let a random p-vector process Y(υ) fulfill Y(υ∗) = 0 and the

condition (C.1) be satisfied. Then for each r > 0, on a set of probability greater

1− e−x

sup
υ∈Υ◦(r)

‖Y(υ)‖ ≤ 6ων1z(x, 2p
∗ + 2p)r,

where with g0 = ν0g and for some Q > 0

z(x,Q)
def
=

{√
2(x+Q) if

√
2(x+Q) ≤ g0,

g−1
0 (x+Q) + g0/2 otherwise.

(C.2)

Remark C.2. Note that the entropy of the original set is increased by adding
p ∈ N as the supremum is taken over Υ◦(r)×Br(0) ⊂ Rp∗ × Rp.

Proof. In what follows, we use the representation

‖Y(υ)‖ = sup
‖u‖≤r

1

r
u⊤Y(υ).

This implies

sup
υ∈Υ◦(r)

‖Y(υ)‖ = 2 sup
υ∈Υ◦(r)

sup
‖u‖≤r

1

2r
u⊤Y(υ).

Due to Lemma C.2 the process U(υ,u)
def
= 1

2ru
⊤Y(υ) satisfies the condition

(C.4) as process on Rp∗ ×Rp. This allows to apply Corollary 2.2 of the supple-
ment of [29] to obtain the desired result. We get on a set of probability greater
1− e−x

sup
υ∈Υ◦(r)

‖Y(υ)‖ ≤ 2 sup
υ∈Υ◦(r)

sup
‖u‖≤r

{
1

2r
u⊤Y(υ)

}

≤ 6ν1rz
(
x,Q

(
Υ◦(r)×Br(0)

))
.

The constant Q
(
Υ◦(r)×Br(0)

)
> 0 quantifies the complexity of the set Υ◦(r)×

Br(0) ⊂ Rp∗×Rp. We point out that for compactM ⊂ Rp∗

we haveQ(M) = 2p∗

(see Supplement of [29], Lemma 2.10). This gives Q
(
Υ◦(r)×Br(0)

)
= 2p∗ + 2p.

Lemma C.2. Suppose that Y(υ) satisfies for each ‖u‖ ≤ 1

sup
υ∈Υ◦

logE exp
{λ(Y(υ)− Y(υ◦))⊤u

ω‖υ − υ◦‖Y

}
≤ ν20λ

2

2
, |λ| ≤ g. (C.3)
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Then for any u1,u2 ∈ Rp with ‖ui‖Y ≤ 2r and ‖ui‖ ≤ r

logE exp

{
λ

2r

(Y(υ)⊤u1 − Y(υ◦)⊤u2)

ω
√
‖υ − υ◦‖2

Y
+ ‖u1 − u2‖2

}
≤ ν20λ

2

2
, |λ| ≤ g. (C.4)

Proof. We simply plug in the definition to find for υ,υ◦ ∈ Υ◦(r)

logE exp

{
λ

2r

u⊤
1 Y(υ)− u⊤

2 Y(υ
◦)

ω
√
‖υ − υ◦‖2

Y
+ ‖u1 − u2‖2

}

= logE exp

{
λ

2r

u⊤
1

(
Y(υ)− Y(υ◦)

)
+ (u⊤

1 − u⊤
2 )Y(υ

◦)

ω
√
‖υ − υ◦‖2

Y
+ ‖u1 − u2‖2

}
.

By the Hölder inequality and (C.3) we infer

logE exp

{
λ

2r

u⊤
1

(
Y(υ)− Y(υ◦)

)
+ (u⊤

1 − u⊤
2 )Y(υ

◦)

ω
√
‖υ − υ◦‖2

Y
+ ‖u1 − u2‖2

}

≤ 1

2
logE exp

{
λ

r

u⊤
1

(
Y(υ)− Y(υ◦)

)

ω‖υ − υ◦‖Y

}

+
1

2
logE exp

{
λ

r

(u⊤
1 − u⊤

2 )Y(υ
◦)

ω‖u1 − u2‖

}

≤ sup
‖u‖≤1

1

2
logE exp

{
λ
u⊤(Y(υ)− Y(υ◦)

)

ω‖υ − υ◦‖Y

}

+ sup
‖u‖≤1

1

2
logE exp

{
λ
u⊤(Y(υ◦)− Y(υ∗)

)

ω‖υ◦ − υ∗‖Y

}
≤ ν20λ

2

2
, λ ≤ g.
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