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Abstract: We propose an adaptive smoothing method for nonparamet-
ric regression. The central idea of the proposed method is to “calibrate”
the estimated function through an adaptive bandwidth function, which is a
kind of intermediate solution between the global bandwidth (constant on
the support) and the local bandwidth (variable with x). This also allows to
correct the bias of the local polynomial estimator, with some benefits for
the inference based on such estimators. Our method, which uses the Neu-
ral Network technique in a preliminary (pilot) stage, is based on a rolling,
plug-in, bandwidth selection procedure. It automatically reaches a trade-
off between the efficiency of global smoothing and the adaptability of local
smoothing. The consistency and the optimal convergence rate of the re-
sulting bandwidth estimators are shown theoretically. A simulation study
shows the performance of our method for finite sample size.
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1. Aims and motivations

Consider the real bivariate process {Y,X}. A general regression setup is

mφ(x) = E {φ(Y )|X = x} , (1)

which includes several special cases through appropriate definition of the func-
tion φ. Given a realization of the process {Yi, Xi; i = 1, . . . , n}, the unknown

function mφ(·) and its derivatives m
(v)
φ (·) can be estimated nonparametrically
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OPTIMAL SMOOTHING AND BIAS CALIBRATION
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Fig 1. Boxplots of the local polynomial estimations for the conditional mean function of
model 6, used in the simulation study, with samples of n = 200 observations. The solid
lines represent the true regression function. Plot in (a) is made using the estimated optimal
bandwidth, but without bias calibration. Plot in (b) includes the procedure with bias calibration.

using the local polynomial estimator (LPE). Denote with m̂φ(x;h) such estima-
tor, where h denotes the smoothing parameter (bandwidth). The good theoretical
properties of the LPE and its conceptual simplicity determine the success of such
estimators. But a serious drawback of the LPE is its strong dependence on the
bandwidth parameter, which has a remarkable affect on the bias and the vari-
ance of the estimator. By studentizing the estimator, we can highlight its bias
term

m̂φ(x;h)−mφ(x)√
V ar[m̂φ(x;h)]

=
m̂φ(x;h)− E[m̂φ(x;h)]√

V ar[m̂φ(x;h)]
+

E[m̂φ(x;h)]−mφ(x)√
V ar[m̂φ(x;h)]

= Zn(x) +
Bias[m̂φ(x;h)]√
V ar[m̂φ(x;h)]

.

Now, if the true asymptotic optimal local bandwidth hopt
L (x) is used, we can

show that

Zn(x)
d−→ N(0, 1)

Bias[m̂φ(x;h
opt
L )]√

V ar[m̂φ(x;h
opt
L )]
−→±

√
2v + 1

2(p− v + 1)
, (2)

where p is the order of the local polynomial estimator. So, even when the
bandwidth is the best one, there is a non-vanishing bias into the normal limit
of the estimator, given that p and v are fixed (see also the example in the left
panel of fig. 1). This has implications for the inference. For example, if we do
not consider the bias term explicitly, the confidence intervals are not centred
around the true value of the function. As a consequence, the coverage, the size
and the power of the confidence intervals and tests are all affected. So, for
optimal smoothing regression, it is necessary both optimal bandwidth selection
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and bias correction. Anyway, the bias and the bandwidth must be estimated,
and the quality of such estimations has strong implications on the final estimate
of the regression function.

The aim of this paper is to propose an adaptive smoothing method based on
both data-driven bandwidth estimation and bias correction. Our method works
through a rolling plug-in bandwidth selection procedure which also provides all
the estimations required for bias correction, as will be explained in section 7.3.

Figure 1 shows an example. It reports the boxplots of the local polynomial
estimations for the conditional mean function of model 6, used in the simulation
study of section 7.1 (for samples of size n = 200). The solid lines represent
the true regression function. Plot (a) is obtained using our estimated optimal
bandwidth, but without bias correction. Plot (b) includes bias correction.

The central idea of our proposed method is to “calibrate” the local poly-
nomial estimated function through an adaptive bandwidth function, which is a
kind of intermediate solution between the global bandwidth (constant on the
support) and the local bandwidth (variable with x). The motivation of our pro-
posal is based on the consideration made in Wang & Gasser (1996) that the rate
of convergence of a global bandwidth estimator is generally much faster than
the rate of convergence of any local bandwidth estimator. So the advantage
(adaptability) of the local bandwidth function may not tranfer in the estimated
local bandwidth function, at least for small samples. With our rolling proce-
dure, we estimate global bandwidths which are adaptive on the support, still
maintaining the advantage of global smoothing (efficiency), as will be shown in
the simulation study. Moreover, we also obtain better results compared with the
local bandwidth estimators, such as the one proposed in Prewitt & Lohr (2006).

The most important theoretical result of this paper concerns the rates of
convergence of the proposed bandwidth and bias estimators, which also influence
the final rate of the local polynomial estimator m̂φ(x;h). We show in Theorem
1 that our global bandwidth estimator reaches the optimal rate of convergence,
assuming conditions that are less stringent than those used by other global
bandwidth estimators (as in Fan & Huang (1999)). Furthermore, the result for
our local bandwidth estimator is even more interesting. In fact, we show in
Theorem 2 that the proposed rolling procedure is a useful “trick” which lets
to estimate the true local bandwidth asymptotically, with a relative rate of
convergence which confirms the optimal relative rate of convergence for any
local bandwidth estimator shown in Wang & Gasser (1996).

The method proposed in this paper for bandwidth selection differs from the
usual plug-in procedures for local bandwidth selection that have been proposed
in the context of regression estimation. In particular, it differs from the approach
used in the paper of Prewitt & Lohr (2006), which directly estimates the local
bandwidth function hopt

L (x). This and similar approaches usually produce highly
variable bandwidth functions. On the other hand, it differs from the approaches
which partition the X space and apply a global methodology to each subset,
such as Fan & Gijbels (1995). Both of these methods require a smoothing of the
estimated bandwidth function, to avoid roughness or change in the bandwidths
between partitions. As a consequence, they introduce additional smoothing se-
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lection problems in the final stage of the procedure (say post-smoothing). Our
approach avoids this problem by introducing a rolling scheme with an auto-
matic rule for the selection of the rolling interval, here denoted with a, which
determines the right “degree of locality”. Our method borrows the idea of Hall
& Schucany (1989) of considering an interval around the point of estimation
x, although they use a cross-validation procedure for density estimation, while
we propose a plug-in method for regression estimation, with better rates of
convergence.

The smoothing method proposed in this paper uses the neural networks in a
preliminary (pilot) stage, in order to estimate the optimal bandwidth. A param-
eter d, denoting the number of nodes of the neural network function, is therefore
introduced and must be set externally to our smoothing procedure. The pres-
ence of such a pilot parameter is not new in the context of kernel regression.
In fact, it has the same role as the well known pilot bandwidths used in the
classic plug-in bandwidth selection procedures. Anyway, even if the role is the
same, there are important differences in their behaviour. First of all, setting
the parameter d is much simpler than setting the pilot bandwidths, as it will
be explained in section 3. Moreover, we will show in the simulation study that
variations in (misspecification of) the parameter d have little effect on the final
results of the smoothing regression, contrary to what happens with the pilot
bandwidths.

This paper is organised as follows. Section 2 introduces the adaptive smooth-
ing method. Sections 3 and 5 describe in details the estimation procedure based
on the neural networks technique. In section 4 we propose a methodology to se-
lect the optimal value of the parameter a. In sections 6 and 8 we derive the rate
of convergence for our bandwidth estimators, in particular section 6 concerns
the general bandwidth estimator while section 8 concerns the local bandwidth
estimator, obtained asymptotically when a = an → 0 for n→∞. Then we show
the performance of the proposed method: section 7.1 shows the results of a sim-
ulation study; section 7.2 gives an example of application of our procedure to a
real dataset, while section 7.3 explains how to correct the bias of the final local
polynomial estimator. All the technical proofs are contained in the appendix.

2. Our proposal: From global to local smoothing

The local polynomial estimator is given by a weighted least squares regression

m̂
(v)
φ (x;h) =

n∑

i=1

φ(Yi)WK,v,p(x −Xi;h), (3)

where v = 0, 1, . . . denotes the degree of the derivative (v = 0 for the function
itself) and the weights WK,v,p(·;h) are derived from a kernel function, K(·),
and from a local approximation of the function mφ(x) through a polynomial
of order p. The kernel function is a symmetric and bounded density function
defined on [−1, 1]. The bandwidth h, which regulates the smoothness of the
estimated function, must be such that h → 0, nh2v+1 → ∞ when n → ∞.
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Table 1

Coefficients B
(v)
p,K

and V
(v)
p,K

for the Epanechnikov kernel K(u) = 0.75(1 − u2)I(u ≤ 1)

B
(v)
p,K

V
(v)
p,K

v p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
0 1/10 — 1/504 3/5 — 5/4
1 — 1/14 — — 15/7 —
2 — — 1/36 — — 35/4

The degree of the polynomial can be p = 0, 1, 2, . . . , respectively for Nadaraya-
Watson estimator, local linear estimator, local quadratic estimator, and so on.
For theoretical reasons, the parameter p is generally fixed to p = v + 1 or in
such a way that p− v is odd. To slim the equations, we omit the symbols p, v
and K from the notation of the estimator m̂φ(x;h). See Fan & Gijbels (1996)
for a detailed description of the LPE and its properties.

The asymptotic mean squared error of the estimator m̂φ(x;h) can be decom-
posed, as is usual, into the sum of the squared asymptotic bias and asymptotic
variance

AMSE{m̂φ(x;h)} = ABias2[m̂φ(x;h)] +AV ar[m̂φ(x;h)]

= B2(x)h2(p+1−v) + V(x)
1

nh2v+1
, ∀x ∈ R, (4)

where, denoting with fX(·) the density of the random variable X and with σ2
φ

the conditional variance V ar{φ(Y )|X = x} (for simplicity the model is supposed
to be homoscedastic), we have

B(x) = B
(v)
p,Km

(p+1)
φ (x) V(x) =

V
(v)
p,Kσ2

φ

fX(x)
. (5)

The coefficients B
(v)
p,K and V

(v)
p,K are known, and depend on the parameters K,

v and p. Table 1 reports the values for the most used kernel function and for
different values of p and v (see Fan & Gijbels (1996) for the formulas). Note
that only the cases where p− v is odd are reported. Taking account of the bias-
variance trade-off , the asymptotic plug-in optimal local bandwidth is derived
by minimizing the AMSE at the point x, giving

hopt
L (x) =

{
(2v + 1)V(x)

2n(p− v + 1)B2(x)

}1/(2p+3)

∀x ∈ R. (6)

Note that the (6) is a local bandwidth function, which performs a smoothing
of the regression function which varies with the support of the estimation. We
use the notation hopt

G to denote a constant bandwidth that minimises some
global measure of the estimation error, as the integrated asymptotic mean square
error (AMISE). We expect local bandwidths to perform better than global
bandwidths. In any case, the estimator of hopt

L (x) is expected to be less efficient

than the estimator of hopt
G (note that hopt

L (x) is a function while hopt
G is a value).

So, the question is how to evaluate whether there is an effective gain from using
the estimated local bandwidth instead of the estimated global bandwidth.
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In this paper we propose an hybrid method that aims to combine the ad-
vantages of local (adaptability) and global (efficiency) smoothing. We call the
method Global Adaptive Smoothing (GAS). Our idea is based on the use of
a rolling window procedure. Given a point x ∈ χ, where χ is a compact set
of R (see the appendix for more details), the optimal bandwidth for that point
is derived by estimating a global bandwidth on the interval centred on x,
Ix = [x − a/2, x + a/2], for a given a > 0. So, the interval Ix must be of
positive length and it must contain at least one observed point. By moving the
interval Ix, we derive an estimation of the optimal local bandwidth for other
points x on the support of the estimation. Define the AMISE on Ix as

∫

Ix

AMSE{m̂φ(u;h)}fX(u)du. (7)

The optimal bandwidth on Ix can be derived by minimizing the (7). Denote
such bandwidth with hIx . It is equal to

hIx =

{
(2v + 1)VIx

2n(p− v + 1)BIx

}1/(2p+3)

(8)

where

BIx = (B
(v)
p,K)2

∫ x+a/2

x−a/2

[m
(p+1)
φ (u)]2fX(u)du, VIx = V

(v)
p,Kσ2

φa. (9)

We need to estimate the functionals in (9) and to plug them into the (8) in or-

der to have the estimated bandwidth ĥIx . Then the final regression estimator of

mφ(x) is m̂φ(x; ĥIx ). In section 3, we propose to estimate the functionals σ2
φ and

m
(p+1)
φ using the neural networks technique, generalizing a procedure in Gior-

dano & Parrella (2008). Actually, other nonparametric estimators could be used
for the estimation of these functionals, such as splines or local polynomials (as
traditionally done in the other plug-in methods). Each one of these alternatives
implies, of course, the necessity of setting some pilot parameters (such as the
number of knots or the pilot bandwidths). However, the classic plug-in methods
for bandwidth selection are known to be crucially dependent on the correct iden-
tification of such pilot parameters. Instead, here we choose the neural network
because it is a global approximator and it allows our smoothing estimator to be
stable against the misspecification of the pilot parameter (which in our case is
given by the number of nodes d). This is shown in the simulation study.

Note that we do not need to estimate the density fX(·), since it is implicitly
estimated by integration (as shown in section 3).

A tuning parameter, a, which determines the width of the window around x,
is introduced to tune between the global and local bandwidths, since

∞←− a −→ 0

⇓
hopt
G ←− hIx −→hopt

L (x). (10)
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For a fixed point x and a finite sample size n, the bandwidth hIx reaches the
optimal bandwidths hopt

L (x) and hopt
G in limit, while for 0 < a < ∞ it assumes

some intermediate value which is suboptimal from a theoretical point of view,
but which can be the best choice when estimating hIx . Note that the rolling
window procedure automatically performs a “smoothing” of the estimated hIx ,
given that a > 0. Therefore, it is not necessary to post-smooth the estimated
bandwidth function in a second stage, as with other plug-in local bandwidth
selectors (see, for example, the papers of Fan & Gijbels (1995); Prewitt & Lohr
(2006); Gluhovsky & Gluhovsky (2007)). In section 4 we suggest a possible
strategy for the automatic selection of the parameter a.

3. The neural network GAS algorithm

In this section we present a procedure for estimating the unknown functionals
in (9). For simplicity, we consider the problem of estimating the conditional
mean function m(·). So, we start from the following model

Yi = m(Xi) + εi, i = 1, 2, . . . , n (11)

where the εi are i.i.d with mean zero and variance σ2
ε . We consider one point of

estimation x ∈ χ, around which we define the interval Ix. The bandwidth func-
tion is estimated by implementing the rolling procedure described in section 2.
We consider a nonparametric estimator q(x; η̂), where η̂ is given by

η̂ = argmin
η

n∑

i=1

[Yi − qd(Xi;η)]
2 , (12)

and qd(u;η) is a Feedforward Neural Network (FNN), with one input layer and
one hidden layer. It is defined as

qd(u;η) =

d∑

k=1

ckΓ (aku+ bk) + c0, (13)

where η = (c0, c1, . . . , cd, a1, . . . , ad, b1 . . . bd) is the vector of the parameters of
the FNN to be estimated, d is the number of nodes in the hidden layer and Γ(·)
is the activation function. We consider the class of feedforwad Neural Networks
with a sigmoidal activation function, i.e. a measurable function Γ(·) on R such
that Γ(x)→ 1 when x→∞ and Γ(x)→ 0 when x→ −∞.

The parameter d acts as a tuning parameter for the neural networks func-
tion, and must be identified by means of some optimality criteria. So, it has a
role similar to the pilot bandwidths of the classic plug-in bandwidth selection
procedures. Anyway, the effects of this parameter on the bandwidth estimator
are rather different, as will be evidenced in the simulation study. Moreover, the
selection of such tuning parameter is simpler than the selection of a pilot band-
width, given that the first is a positive integer number (generally some units),
whereas the second is a positive real number. Another important difference with
pilot bandwidths is that the parameter d for the estimation of the derivative
function is the same used for the estimation of the function itself (while the
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pilot bandwidths used for the estimation of the derivative function must be of
different order than the bandwidths used for the estimation of the function).

We define the residuals as ε̂i = Yi − q(Xi; η̂) and ε̃i = ε̂i − ¯̂ε, where ¯̂ε =
1
n

∑n
i=1 ε̂i. Thus we propose the following estimator for σ2

ε

σ̂2
ε =

1

n

n∑

i=1

ε̃2i . (14)

Next, we need to estimate the derivative function m(p+1)(x). We use the
previous NN estimate, taking the derivative of order p+ 1 of the estimated NN
function

m̂(p+1)(Xi) = q(p+1)(Xi; η̂), i = 1, . . . , n. (15)

Note that hIx can be written as

hIx =

{
(2v + 1)VωIx

2n(p− v + 1)BωIx

}1/(2p+3)

(16)

where, given that dωIx(u) = du/µX(Ix),

BωIx
= (B

(v)
p,K)2

∫

Ix

[m(p+1)(u)]2fX(u)dωIx(u), VωIx
=

V
(v)
p,Kσ2

ε a

µX(Ix)
. (17)

In the (17), µX(Ix) is the measure of Ix with respect to the distribution function
of X . We prefer to express the functionals in (17) with respect to the condi-
tional distribution function of X because this provides some advantages from a
computational point of view.

We can then propose the following two estimators for the functionals in (17)
with respect to a set Ix of dimension a:

B̂ωIx
=

(B
(v)
p,K)2

∑n
i=1

[
m̂(p+1)(Xi)

]2
I(Xi ∈ Ix)∑n

i=1 I(Xi ∈ Ix)
, V̂ωIx

=
V

(v)
p,K σ̂2

εa

n−1
∑n

i=1 I(Xi ∈ Ix)
.

(18)
The final bandwidth estimator, for a given value of the parameter a, is obtained
by plugging the (18) into the (16)

ĥIx =

{
(2v + 1)V̂ωIx

2n(p− v + 1)B̂ωIx

}1/(2p+3)

. (19)

4. Setting the parameter a

Here we suggest a strategy for the selection of the parameter a. First, suppose
that the functionals in the (4) are known. Given that

hopt
L (x) = argmin

h
AMSE{m̂φ(x;h)} x ∈ χ, (20)

we expect asymptotically an increase in the value of the local AMSE when
using a bandwidth different from hopt

L (x). Using the (4), (5) and (6), the relative
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increment is given by

AMSE{m̂φ(x;hIx)} −AMSE{m̂φ(x;h
opt
L (x))}

AMSE{m̂φ(x;h
opt
L (x))}

(21)

=
2v + 1

2p+ 3

(
hIx

hopt
L (x)

)2(p+1−v)

+
2(p+ 1− v)

2p+ 3

(
hIx

hopt
L (x)

)−(2v+1)

− 1.

So, for fixed v and p, it is directly connected with the ratio hIx/h
opt
L (x). The min-

imum is reached, as expected, at hIx/h
opt
L (x) = 1, which leads to the following

condition
BIx

VIx

=
B2(x)

V(x)
, ∀x ∈ χ. (22)

There are two opposite cases for condition (22). The first one is when the func-
tion B2(x)/V(x) is constant over χ, which means that hopt

L (x) ≡ hopt
G , on χ. In

such a case, we have hIx = hopt
G , ∀x ∈ χ and ∀a > 0. The second is when the

ratio B2(x)/V(x) is not constant. In this case, given the (10) and the (20), the
only solution for the minimization of the (21) is a = 0, i.e. the local bandwidth.
Anyway, we may argue that in many cases the ratio B2(x)/V(x) is not con-
stant but rather “smooth”, such that it can be seen as substantially constant
over subintervals. In this case, there can exist a solution for the (22) for some
a > 0. Moreover, note that the (22) is actually a pointwise condition, suggesting
a pointwise optimal value, a∗x. But, if we are interested in the estimation of the
function mφ(x) on the whole support χ, we may prefer to identify a constant
value of a which can be considered globally optimal, though locally suboptimal.
In such a way, we maintain the procedure computationally simple. This is the
reason why we introduce the following global condition

∫

χ

BIx

VIx

dx =

∫

χ

B2(x)

V(x)
dx, (23)

which is not equivalent to (22) but which can be used to estimate a global
parameter a. This is only one possible criterion to choose the parameter a. Our
idea is to balance, in mean over the support χ, B2(x)/V(x) (related to the local
smoothing) and BIx/VIx (related to the global adaptive smoothing). In this way,
we find a global parameter a which is able to capture the trade-off between local
and global smoothing.

Under model (11), using the (17) the condition (23) can be written as follows

aR =

∫

χ

Ra(x)dx, (24)

where we compare the functionals Ra(x) =
∫ x+a/2

x−a/2 [m
(p+1)(v)]2fX(v)dv/µX(Ix)

and R =
∫
χ[m

(p+1)(v)]2fX(v)dv/µX(χ). From Proposition 1, we have

R̂ =

∑n
i=1

[
m̂(p+1)(Xi)

]2
I(Xi ∈ χ)∑n

i=1 I(Xi ∈ χ)
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R̂a(x) =

∑n
i=1

[
m̂(p+1)(Xi)

]2
I(Xi ∈ Ix)∑n

i=1 I(Xi ∈ Ix)

as consistent estimators for R and Ra(x) in equation (24), for some given values
of a and x. Let nx be the number of estimation points in χ. So {x1, x2, . . . , xnx

} ⊂
χ. Then, we can write 1

nx

∑nx

j=1 R̂a(xj) in place of
∫
χ Ra(x)dx. The estimated

ân is obtained by solving the equation

aR̂ =
1

nx

nx∑

j=1

R̂a(xj). (25)

It can be easily shown that the (24) admits always a solution a > 0 and that
the estimator â in the (25) is consistent in probability.

Overall, both the tuning parameters d and a are essential but they have differ-
ent roles in our smoothing procedure. The parameter a represents the trade-off
between local and global smoothing while the parameter d works in the so called
stage of pre-smoothing, so it has a role similar to the well known pilot bandwidths
typically used in the classic plug-in procedures.

5. Computational considerations on the NN-GAS algorithm

The estimation of the parameter a does not increase appreciably the computa-
tional burden of the bandwidth selecting procedure. To explain why it is so, we
present schematically the steps of the GAS algorithm.

• Step 1 : using the (12), we estimate the neural networks function q(Xi; η̂),
for i = 1, . . . , n. To this end, a BIC procedure can be used to derive the
optimal value of d.
• Step 2 : by the (14) and (15), using q(Xi; η̂), we derive the NN estimator of
the variance, σ̂2

ε , and the NN estimator of the derivative, m̂(p+1)(Xi), i =
1, . . . , n.
• Step 3 : given the points xj ∈ χ, j = 1, . . . , nx, we estimate the global
parameter, ân, by solving equation (25).

• Step 4 : plug-in the estimated B̂ωIx
and V̂ωIx

into the (16), to derive ĥIx ,
for the different xj , j = 1, . . . , nx, using a estimated in step 3.

• Output : the final local polynomial estimator m̂φ(xj ; ĥIx), j = 1, . . . , nx.

Note that only step 1 is computationally intensive, since it implies a nonlinear
minimization in order to estimate the neural networks function. The other steps
are very fast, given that they are based on simple calculations of such estimated
values, or simple averages of the estimated values falling in each interval Ix.

Note that the NN estimations in steps 1 and 2 are global estimations, i.e.
they do not depend on the points of estimation x. This means that they must
not be repeated for different values of x. On the other side, in steps 3–4 the NN
global estimations are transformed, through the (18), into “local” estimations.
Finally, only step 4 must be repeated for each desired point of estimation x ∈ χ.
Anyway, this takes a little more computing time, as will be shown now.
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The algorithm for the estimation of a in step 3 is based on successive splittings
of the interval in order to derive the solution of the (25).

To give an idea of the computing time, consider, for example, a sample of
size n = 500 and nx = 50 points of estimation xj ∈ χ. Let us consider three
cases: in the first, we point to estimate the pure global bandwidth (in such
case, step 3 is skipped and step 4 must be adapted for the global bandwidth
estimator); in the second case, we point to estimate the variable bandwidth hIx

for a fixed parameter a (in this case, we only skip step 3); in the last case, we
perform the full algorithm. We run the algorithm 100 times on a dual core with
Intel Pentium 2.00 GHz. In the first case (pure global bandwidth), the average
computing time is 8.03 seconds. In the second case, the time is 8.16 seconds.
So, the step 4 for the 50 points takes only 0.14 seconds. Finally, in the last
case of local bandwidth, the average time to run the whole algorithm is 10.50
seconds. These computing times are satisfactory for a local bandwidth selection
procedure. For example, the average time for one iteration of the Prewitt-Lohr
method is 12.67 seconds. Moreover, as pointed out in subsection 7.1, the BIC
criterion is consistent for selecting the parameter d, but it is not very sensible
in case of oversmoothing (i.e., the bandwidth estimates are substantially stable
for d ≥ 3). So, if we fix d = 4 we avoid the BIC selection step and we have only
4.61 seconds for our procedure.

6. Theoretical results for the rate of convergence

In this section we investigate the rate of convergence for our GAS procedure, and
compare it with the rates of convergence of the most popular global bandwidth
selectors proposed in the literature.

When analysing the rate of convergence of a global bandwidth selector, two
aspects need to be considered: the first involves the closeness of the AMISE
approximation to the MISE (being the AMISE the leading term of the MISE
expansion); the second concerns the quality of the functional estimation. In
particular, concerning the first aspect, using the same arguments as in section
2 of Ruppert et al. (1995), we can write

MISE{m̂φ(x;h)|X1, .., Xn} = AMISE{m̂φ(x;h)}+op

{
h2(p+1−v) +

1

nh2v+1

}
,

(26)
so the bandwith hopt

G = argminh AMISE{m̂φ(x;h)} represents the first order
approximation of the true optimal bandwidth minimizing the MISE, denoted
with hMISE .

Suppose for simplicity that v = 0 and p = 1, so that p−v is odd. The authors
Fan & Huang (1999) note that it is

hopt
G − hMISE

hMISE
= Op(n

−2/5), (27)

showing an upper bound rate of convergence for any plug-in bandwidth estima-
tor based on the estimation of hopt

G . They show also that it is useless to consider
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further terms in the asymptotic expansion of the MISE to improve the rate of
convergence. The only way to change this rate is to modify the kernel estimator
in order to decrease the order of its bias and/or variance, based, for example, on
the proposal in He & Huang (2009). Although our procedure can be generalised
to those setups, for simplicity we do not consider this point further.

The second aspect, concerning the quality of the functional estimation, is of
more interest to us, because it highlights the real differences among the band-
width estimators. Ruppert et al. (1995) show that the best rate of convergence
achieved by their bandwidth selectors is Op(n

−2/7) when using a local cubic

polynomial fit to estimate the derivative function m
(2)
φ . Fan & Huang (1999)

obtain a rate of the order Op(n
−2/5) for the pre-asymptotic substitution method

proposed by Fan & Gijbels (1995), which reaches the upper bound in the (27),
but they consider a local polynomial fit of order p = 5 to estimate the deriva-

tive function m
(2)
φ , which has several implications. First of all, an increase in the

variability of the estimator; second, the need for more data to avoid invertibility
problems; finally, the need of more stringent assumptions on the model, in terms
of the existence of higher order derivatives. Moreover, although the results in
Ruppert et al. (1995) and Fan & Huang (1999) are a big improvement on the
cross-validation procedures – which are Op(n

−1/10), as shown in Härdle et al.
(1988) – they are handicapped by the need to assume an “optimal” order for

the pilot bandwidths used in the polinomial fit of the derivative m
(2)
φ , which

overlooks that these pilot bandwidths also need to be estimated. When the pi-
lot bandwidths are estimated, the final rate of convergence of the bandwidth
selector becomes worse.

Our global smoothing method achieves the best rate of convergence without
requiring any recursive bandwidth estimations. Let

hopt
G =

{
VG

4nBG

}1/5

(28)

where

BG = (B
(0)
1,K)2

∫

χ

[m(2)(u)]2fX(u)du, VG = V
(0)
1,Kσ2

ǫ |χ|, (29)

and |χ| is the length of the closed and bounded interval χ. Moreover, suppose
that m(2)(·) 6≡ 0 for each Ix. If we consider Ix we can write MISEIx as in
(26). Note that AMISEIx is defined in (7). In this case, the bandwidth which

minimizes AMISEIx is hIx (see (8)). Let ĥopt
G be the estimator of the (28). We

can state the following two results.

Theorem 1. Under assumptions (a1)–(a6) in the appendix, the bandwidth esti-

mator, ĥIx , has the following uniform rate of convergence to the true bandwidth
hMISEIx w.r.t. a

sup
a>0

{
ĥIx − hMISEIx

hMISEIx

}
= Op

(
n−2/5 logn

)
.
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Corollary 1. Under assumptions (a1)–(a6) in the appendix, the global band-

width estimator, ĥopt
G , has the following rate of convergence to the true band-

width hMISE

ĥopt
G − hMISE

hMISE
= Op

(
n−2/5

)
.

Remark 1. In Theorem 1 and Corollary 1, we consider a sequence for d given
in Assumption (a6). However, we can use a selection criterion as BIC about d.
The penalty term in the BIC criterion is nd/n(logn), where nd indicates the
number of parameters to estimate in a Feedforward Neural Networks with d
hidden layer neurons. Using assumptions (a1)–(a6) in the appendix, we have

1

n

n∑

i=1

[
Yi − qd̂(Xi; η̂)

]2
= Op

((
logn

n

)1/2
)
,

where

(η̂, d̂) = argmin
η,d

1

n

n∑

i=1

[Yi − qd(Xi;η)]
2 +

nd(logn)

n
.

In order to prove this result, it is sufficient to use together Theorem 4 in Barron
(1994), Lemma 1 and the same arguments as in the proof of Lemma 2.

7. The NN-GAS procedure at work

7.1. Results from a simulation study

In this section we report the results of a Monte Carlo experiment aimed at
assessing the numerical performance of the NN-GAS procedure. Since our pro-
cedure can be used to perform both global and local smoothing, we compare it
with the most widely used procedures for global and local bandwidth selection.
In relation to global smoothing, we compare our procedure with Ruppert et al.
(1995) plug-in bandwidth selection algorithm (using their package implemented
in the R environment) and with the Cross-Validation method. Here, we denote
such bandwidth selection algorithms as RW and CV, respectively. Note that the
CV method uses a prediction error measure, contrary to plug-in methods which
use MISE based measures. In such a way, we give an idea of the performance
basing on different criteria. In relation to local smoothing, our benchmark is
the method proposed by Prewitt & Lohr (2006), who suggest a local bandwidth
selector based on the eigenvalue approach. We denote this bandwidth selection
algorithm by PL. We reply here the same simulation study of Prewitt & Lohr
(2006). In such way, we compare indirectly our NN-GAS procedure also with
their competitors Fan & Gijbels (1995); Ruppert et al. (1995); Choi et al. (2000).

We consider six different models, and we want to estimate the conditional
mean function m(x). Table 2 reports the details. The first four models were
considered by Fan & Gijbels (1995) and Prewitt & Lohr (2006). Models 5 and
6 were used by Ruppert et al. (1995) and Prewitt & Lohr (2006). We consider
different values of n and σε and we generate 500 replications for each setting
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Table 2

Models used in the simulation study

Model m(x) fX(x)
1 sin(2x) + 2 exp(−16x2) 0.4N(−1, 0.62) + 0.6N(1, 1)
2 ” 0.5N(−1.1, 0.82) + 0.5N(1.1, 0.82)
3 ” 0.2N(−1.1, 0.82) + 0.8N(1.1, 0.82)
4 ” N(0, 1)
5 1− 48x+ 218x2 − 315x3 + 145x4 U(0, 1)
6 sin(5πx) U(0, 1)

Table 3

Median, mean and standard deviation of the Integrated Square Error (respectively MedISE,
MISE and SDISE), observed when estimating the function m(x) for the 500 replications
of models 1–6, using the NN-GAS method for global smoothing. On the right, we report the
mean (m) and the standard deviation (s) of the estimated tuning parameters: the number of

nodes d and the global bandwidth hopt
G

Model NN-GAS estimations d̂ ĥopt

G

# σε n MedISE MISE SDISE m
d̂

s
d̂

m
ĥG

s
ĥG

1 (a) 0.3 200 0.008 0.026 0.361 3.1 0.3 0.118 0.006
(b) 0.3 500 0.003 0.004 0.001 3.3 0.5 0.100 0.003
(c) 0.7 200 0.030 0.033 0.015 2.3 0.5 0.167 0.019
(d) 0.7 500 0.014 0.015 0.006 3.0 0.3 0.137 0.009

2 (a) 0.3 200 0.007 0.010 0.020 2.8 0.5 0.113 0.005
(b) 0.3 500 0.003 0.003 0.001 3.2 0.5 0.094 0.003
(c) 0.7 200 0.029 0.032 0.019 2.1 0.3 0.155 0.015
(d) 0.7 500 0.012 0.013 0.006 2.3 0.5 0.130 0.008

3 (a) 0.3 200 0.009 0.009 0.006 3.1 0.3 0.129 0.008
(b) 0.3 500 0.004 0.004 0.001 3.2 0.5 0.108 0.004
(c) 0.7 200 0.030 0.035 0.050 2.6 0.5 0.183 0.033
(d) 0.7 500 0.014 0.015 0.006 3.0 0.2 0.148 0.012

4 (a) 0.3 200 0.012 0.020 0.085 4.1 0.6 0.142 0.013
(b) 0.3 500 0.005 0.005 0.002 4.5 0.6 0.117 0.005
(c) 0.7 200 0.039 0.043 0.020 2.3 0.6 0.221 0.034
(d) 0.7 500 0.018 0.019 0.007 3.6 0.8 0.168 0.018

5 (a) — 200 0.037 0.041 0.020 2.2 0.4 0.093 0.008
(b) — 500 0.018 0.019 0.008 2.6 0.5 0.073 0.006

6 (a) — 200 0.017 0.018 0.007 3.8 0.5 0.056 0.003
(b) — 500 0.008 0.008 0.003 4.2 0.4 0.047 0.001

configuration. For models 5 and 6, we fix the variance of the error σ2
ε as in

Ruppert et al. (1995). The number of points in which the regression estimation
is performed is fixed to nx = 50 (chosen uniformly on the support χ).

We use the Epanechnikov kernel function for the local polynomial estimations
and the logistic activation function for the neural network estimations. The
number of nodes in the hidden layer, d, is selected following a BIC optimization
procedure. Finally, all the estimations are derived without implementing bias
correction, in order to take the comparison with the competitors fair.

Table 3 assesses the performance of our method using global smoothing, which
means that we consider the pure global bandwidth estimator, that is constant
on the support of estimation. We want to stress here that the procedure com-
putes once for all the estimated global bandwidth ĥopt

G , and then it is used to
smooth the function m(x) for each point of estimation x. For the RW method,
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Fig 2. Boxplots of the NN-GAS estimations of the global bandwidth hopt

G
, obtained for different

values of d (=number of nodes in the hidden layer of the NN function). The solid lines
represent the true global bandwidth. Plot in (a) considers model 1 and n = 200. Plot in (b)
refers to model 1 and n = 500. In both cases, the first boxplot on the left summarizes the
results obtained when estimating d through the BIC.

we use the package implemented by Ruppert et al. (1995) in the R environ-
ment, with all the pilot estimations set automatically. We report the median,
mean and standard deviations of the integrated squared error (denoted with
MedISE, MISE, and SDISE, respectively), calculated over the 500 replica-
tions of models 1–6 (note that here the integrated squared error is taken as the
sum of the LP estimates obtained over the nx = 50 estimation points). On the
right of the table, we also report some summary statistics giving evidence of
the influence of the parameter d (= number of nodes in the hidden layer of the
NN function) on the bandwidth estimations. In particular, we report the mean

value and the standard deviation of d̂, denoted by md̂ and sd̂, respectively. The

results show that the variance of d̂ is low, while its mean value is not greater
than 5. For completeness, we also report the mean and the standard deviation
of the estimated global bandwidth (mĥ and sĥ, respectively).

In order to give more evidence of the sensitivity of the estimations from
the pilot parameter d, figure 2 shows the boxplots of the NN-GAS estimations
of the global bandwidth hopt

G , obtained for model 1 and for fixed values of d
(ranging from 2 to 5). The solid lines represent the true global bandwidth. Plot
in (a) considers n = 200, while plot in (b) refers to n = 500. In both cases,
the first boxplot on the left summarizes the results obtained when estimating
d through the BIC algorithm. Remember from table 3 that the mean value of
d̂, for such model, is approximately 3, as desired. Note also from the boxplots
of figure 2 that undersmoothing the NN function (= setting d < 3) may cause
some problems in the bandwidth estimations, while oversmoothing (= setting
d > 3) is not so crucial. The situation is similar for the other models.

Table 4 compares the NN-GAS method with other smoothing methods: 1) the
oracle smoothing estimator based on the true asymptotic global bandwidth hopt

G ;
2) the smoothing estimator based on the RW estimated global bandwidth; 3) the
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Table 4

Relative increments in the median, mean and standard deviation of ISEs, with respect to the
results of the NN-GAS method reported in table 3, observed when estimating the function
m(x) through global smoothing with different bandwidths: the true optimal global bandwidth

hopt

G
, the RW’s estimated global bandwidth and the CV’s estimated global bandwidth. Note

that these values are calculated using the formula in (30), and they must be multiplied by
100 to give the percentage variations. The asterisked cases were omitted because the RW

method produces few results, due to invertibility problems

True global bandwidth RW global bandwidth CV global bandwidth

#
MedISE

∆
MISE

∆
SDISE

∆
MedISE

∆
MISE

∆
SDISE

∆
MedISE

∆
MISE

∆
SDISE

∆
1a -0.03 -0.02 -0.01 +1.16 +4.01 +1.79 +0.03 +0.20 +1.55
1b -0.01 -0.01 0.00 +0.85 +1.49 +16.70 +0.12 +0.16 +0.94
1c -0.06 -0.05 0.00 *** *** *** 0.06 +0.69 +23.99
1d -0.03 -0.03 -0.01 +0.79 +0.83 +1.86 +0.08 +0.12 +0.52
2a 0.00 +0.01 +0.05 +1.21 +5.98 +14.82 +0.12 +0.07 -0.48
2b -0.01 -0.01 0.00 +0.96 +1.32 +15.42 +0.09 +0.14 +0.53
2c -0.04 -0.21 -0.90 *** *** *** +0.07 +0.07 -0.40
2d -0.04 -0.03 -0.01 +0.80 +0.80 +0.78 +0.08 +0.12 +0.48
3a -0.02 -0.05 -0.28 *** *** *** 0.11 +0.52 +7.52
3b -0.03 -0.01 0.00 +0.96 +1.43 +15.83 +0.11 +0.20 +0.55
3c -0.09 -0.08 -0.05 *** *** *** 0.09 +0.20 +0.91
3d -0.06 -0.05 -0.03 +0.99 +1.08 +2.39 +0.10 +0.17 +0.45
4a 0.00 +1.25 +5.37 +0.74 +4.52 +5.35 -0.01 +0.40 +0.66
4b -0.02 -0.01 +0.01 +0.89 +1.33 +10.59 +0.06 +0.15 +3.14
4c +0.01 -0.01 -0.47 *** *** *** 0.04 +0.05 +0.02
4d -0.02 -0.02 0.00 +0.57 +0.67 +1.64 +0.08 +0.09 +0.29
5a +0.03 0.00 -0.02 +1.03 +0.97 +0.53 +0.17 +0.20 +0.91
5b -0.07 -0.07 -0.13 +0.77 +0.73 +0.28 +0.07 +0.12 +0.31
6a -0.07 -0.05 -0.09 +0.97 +1.36 +14.85 +0.09 +0.10 +0.18
6b +0.01 -0.01 +0.08 +0.81 +0.75 +0.32 +0.08 +0.10 +0.31

smoothing estimator based on the CV estimated global bandwidth. All the
results are reported as relative increments with respect to the results reported
in table 3, in particular we use the formula

MedISE

∆ =
MedISE(competitor)−MedISE(NN-GAS)

MedISE(NN-GAS)
, (30)

and similarly for the other two indicators MISE and SDISE. So, a positive
value of the (30) shows a better performance of the NN-GAS method compared

with the competitor, and the value of
MedISE

∆ multiplied by 100 gives the per-
centage increment in the MedISE. For example, looking at the first line of the
table, we note that the oracle smoothing estimator has a MedISE which is the
3% lower than the MedISE of the NN-GAS method presented in table 3. This
represents the loss due to the estimation of the asymptotic optimal global band-
width. The positive values which appear in the column of the oracle smoothing
estimator are more interesting to comment. They show that, in some cases, the
NN-GAS procedure performs even better than the oracle smoothing procedure:
this is due to the use of the asymptotic expression of the optimal bandwidth,
which for small samples can be distant from the true optimal bandwidth (in fact,
note that all positive and negative values converge to zero for increasing n). It
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Table 5

Relative increments in the mean and standard deviation for the Prediction Error, with
respect to the results of the NN-GAS method, observed when estimating the function m(x)
through global smoothing with the CV’s estimated global bandwidth. The values must be

multiplied by 100 to give the percentage variations

Model Mean SD
σε n

3 0.7 200 +0.0098 +0.0618
0.7 500 +0.0198 +0.0456

5 — 200 +0.1654 +0.0410
— 500 +0.0624 +0.0086

6 — 200 +0.1377 +0.0847
— 500 +0.0818 +0.0330

is interesting to note that, in general, the relative variations in the column of
the oracle smoothing estimator are not very high, contrary to what happens in
the other two columns relative to RW and CV methods. The NN-GAS method
clearly outperforms the RW and the CV methods, especially in terms of variabil-
ity. The asterisks hide some values that, though definitely favoring the NN-GAS
method, are not reliable because they are based on only a few results for the
RW. The reason for this is that the pilot estimations in the RW method are
based on the estimation of higher order derivatives through LPE, using p = 3,
and this implies some problems of invertibility for small samples (as said in the
introduction, this is one of the drawbacks of the classic plug-in methods which
is solved with our method, since the NN-GAS procedure uses the same pilot
estimation of the function m(x) in order to derive the estimate of the derivative
m(p+1)(x)).

Finally, we evaluate the performance of our estimator using a different mea-
sure, the prediction error. We compare our method with the CV method, re-
porting the relative increment in the same style as in Table 4 (of course, we
have corrected such an indicator by the variance of the error, given that the
prediction error converges to such value asymptotically). Therefore, positive
values in Table 5 show an advantage for our method compared with the CV.
Given the computational burden of the new measure, we considered only some of
the models (choosing among the most interesting ones). The performance of our
bandwidth estimator, based on the new measure, can be considered satisfactory.

Table 6 shows the results for local smoothing, which means that we suppose
that the bandwidth is variable on the support of the regression function. Thus,
for each model we fix the value of a as the value that produces the true minimum
MISE. Table 6 is organised as follows. The results for the neural network
method are reported in absolute values, as in table 3. On the right of the table,
we present some statistics on the estimated values of the tuning parameters d
and a, in particular mean and standard deviation. For the parameter d, one can
note that the results are nearly similar to those in table 3. This confirms that the
NN-GAS local bandwidth is estimated on the bases of the same NN estimations
used for the global smoothing procedure. Finally, the last column in table 6
tracks the estimated values for the tuning parameter a, which are divided by
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Table 6

Median, mean and standard deviation of ISEs, observed when estimating the function m(x)
for the 500 replications of models 1–6, using local smoothing. On the right, we report the

mean (m) and the standard deviation (s) of the estimated tuning parameters: the number of
nodes d and the length of the interval a (the last is divided by the length of the interval χ, to

give a relative measure of a)

Model NN-GAS method d̂ âr = â/range(χ)
# σε n MedISE MISE SDISE m

d̂
s
d̂

mâr
sâr

1 (a) 0.3 200 0.006 0.007 0.004 3.1 0.3 0.4 0.03
(b) 0.3 500 0.003 0.003 0.001 3.3 0.5 0.4 0.01
(c) 0.7 200 0.025 0.027 0.013 2.3 0.5 0.4 0.06
(d) 0.7 500 0.011 0.012 0.006 3.0 0.3 0.4 0.03

2 (a) 0.3 200 0.006 0.006 0.003 2.7 0.5 0.5 0.02
(b) 0.3 500 0.003 0.003 0.001 3.2 0.5 0.5 0.01
(c) 0.7 200 0.022 0.025 0.012 2.0 0.2 0.5 0.03
(d) 0.7 500 0.010 0.011 0.004 2.3 0.5 0.5 0.02

3 (a) 0.3 200 0.006 0.006 0.003 3.1 0.3 0.5 0.03
(b) 0.3 500 0.003 0.003 0.001 3.2 0.4 0.5 0.02
(c) 0.7 200 0.028 0.031 0.017 2.6 0.5 0.5 0.03
(d) 0.7 500 0.011 0.012 0.006 3.0 0.2 0.5 0.02

4 (a) 0.3 200 0.007 0.007 0.003 4.2 0.6 0.2 0.02
(b) 0.3 500 0.003 0.004 0.001 4.5 0.7 0.2 0.01
(c) 0.7 200 0.030 0.033 0.015 2.3 0.6 0.2 0.02
(d) 0.7 500 0.014 0.016 0.007 3.5 0.8 0.2 0.01

5 (a) — 200 0.038 0.041 0.020 2.2 0.4 0.9 0.06
(b) — 500 0.018 0.019 0.009 2.6 0.5 0.9 0.05

6 (a) — 200 0.017 0.018 0.007 3.8 0.5 1.0 0.06
(b) — 500 0.008 0.008 0.003 4.2 0.4 1.0 0.02

the length of the interval χ, in order to have a relative measure. Such estimated
values for a are obtained solving the equation (25). In this case, we use the first
approach described in section 4, for two reasons. First, from a theoretical point
of view, we have a faster rate of convergence, shown in Remark 1. Second, from
a computational point of view, we should not worry about any empty intervals,
Ix. One can note that, from model 1 to model 4, we have some benefits to
consider the our approach, since the estimated relative measure âr is rather
small with respect to one. Instead, for models 5 and 6, the estimated â suggest
a substantial global smoothing.

In table 7, we compare the previous results with some alternatives. First, we
want to evaluate what happens when we estimate the parameter a, as reported
in the last column of table 6. When we estimate the parameter a, we compare
the corresponding ISE’s results with those reported in table 6. To show the
relative increments, we report on the left of table 7 the ∆MedISE, ∆MISE and
∆SDISE statistics. Note that, in general, the relative increment is definitely
lower than the increment obtained when comparing the NN-GAS with the PL
method (right side of table 7). Indeed, in some cases there is even a decrease
(negative values), showing that there is still room for improvement to the NN-
GAS results. Looking at the right of table 7, our procedure works better than
PL procedure. Note that we implement the PL procedure considering the best
possible configuration of settings (in particular, the results are sensitive to the
choice of the bandwidth grids in the two minimization steps, so we try different
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Table 7

Relative increments in the median, mean and standard deviation of ISEs, with respect to the
results of the NN-GAS method reported in table 6, observed when estimating the function

m(x) through local smoothing with different bandwidths: the NN-GAS local bandwidth with a

estimated using the (25); the true optimal local bandwidth hopt

L
(x) and the PL’s estimated

local bandwidth. Note that the values reported here are calculated using the formula in (30),
and they must be multiplied by 100 to give the percentage variations

NN-GAS with â True local bandwidth PL local bandwidth

#
MedISE

∆
MISE

∆
SDISE

∆
MedISE

∆
MISE

∆
SDISE

∆
MedISE

∆
MISE

∆
SDISE

∆
1a +0.01 0.00 -0.18 +0.22 +0.13 -0.46 +0.39 +0.30 -0.23
1b +0.04 +0.03 +0.02 +0.21 +0.22 +0.03 +0.47 +0.47 +0.29
1c +0.06 +0.07 +0.18 -0.03 -0.04 -0.11 +0.03 +0.01 -0.08
1d -0.08 -0.02 +0.13 +0.03 +0.05 -0.25 +0.19 +0.19 -0.03
2a -0.03 -0.03 -0.04 -0.14 -0.14 -0.18 +0.15 +0.15 +0.08
2b +0.02 +0.02 -0.01 -0.10 -0.09 -0.06 +0.26 +0.26 +0.12
2c 0.00 -0.01 +0.01 -0.13 -0.14 -0.18 +0.15 +0.10 +0.01
2d -0.01 0.00 +0.04 -0.12 -0.08 +0.05 +0.17 +0.19 +0.18
3a +0.10 +0.24 +3.32 -0.09 0.00 +1.94 +0.51 +0.46 +0.34
3b +0.05 +0.06 +0.03 -0.08 -0.09 -0.10 +0.54 +0.55 +0.24
3c 0.00 0.00 -0.01 -0.30 -0.28 -0.23 +0.04 +0.01 -0.15
3d 0.00 0.00 0.00 -0.16 -0.16 -0.19 +0.27 +0.24 +0.05
4a 0.00 +0.02 +0.12 +0.11 +0.06 -0.15 +1.19 +1.09 +0.54
4b -0.15 -0.12 +0.17 -0.13 -0.11 -0.15 +1.53 +1.46 +0.90
4c +0.29 +0.30 +0.35 +0.01 -0.05 -0.30 +0.20 +0.14 -0.09
4d +0.06 +0.09 +0.45 -0.06 -0.08 -0.34 +0.43 +0.36 -0.10
5a -0.01 -0.01 -0.01 -0.20 -0.17 -0.1 +0.21 +0.21 +0.03
5b -0.03 -0.03 +0.02 -0.20 -0.20 -0.17 +0.38 +0.34 +0.05
6a +0.01 +0.02 +0.05 -0.09 -0.07 -0.09 +0.26 +0.26 +0.16
6b 0.00 0.00 0.00 -0.09 -0.09 -0.04 +0.33 +0.31 +0.14

values and use the best solution). Sometimes, the PL shows lower variability for
short datasets. This is not surprising, since the variability of the PL is limited by
the use of the grid of bandwidths, while the NN-GAS can generate unbounded
values of bandwidths. As the size of the sample increases, the estimations become
more stable, and the NN-GAS also improves over the PL in terms of varability.

Finally, the central columns in table 7 report the ∆MedISE, ∆MISE and
∆SDISE statistics for the oracle local smoothing estimator, which is based on
the use of the true asymptotic local bandwidth, hopt

L (x). The results seem quite
satisfactory.

In order to compare with the results in Prewitt & Lohr (2006), we also report
in table 8 the results when estimating the first derivative of the conditional mean
function, denoted here bym′(x). The results are comparable with those in tables
6 and 7, although, as expected, they reflect the greater difficulty to estimate the
derivative function (which is a latent function).

7.2. Application to a real dataset

In this section we analyse a real dataset downloaded from the data archive of
the NASA, at the following address:

https://mynasadata.larc.nasa.gov/

https://mynasadata.larc.nasa.gov/
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Table 8

Median, mean and standard deviation of ISEs, observed when estimating the derivative
function m′(x) for the 500 replications of models 1–6, when using local smoothing. In the

central column, the results for the neural network method are reported in absolute value. On
the right, the results for the PL method are reported as relative increments with respect to

the NN-GAS method

Model NN-GAS method PL method

σε n m
d̂

s
d̂

MedISE MISE SDISE
MedISE

∆
MISE

∆
SDISE

∆
1 0.3 200 3.1 0.4 0.364 0.386 0.166 +0.687 +0.668 +0.411

0.3 500 3.3 0.5 0.003 0.003 0.001 +0.452 +0.452 +0.214
0.7 200 2.3 0.5 1.184 1.355 0.791 +0.241 +0.147 -0.200
0.7 500 2.9 0.3 0.637 0.684 0.343 +0.307 +0.253 -0.076

2 0.3 200 2.8 0.5 0.395 0.417 0.166 +0.470 +0.437 +0.306
0.3 500 3.2 0.4 0.002 0.003 0.001 +0.266 +0.262 +0.126
0.7 200 2.1 0.3 1.232 1.466 0.996 +0.192 +0.069 -0.375
0.7 500 2.3 0.5 0.010 0.011 0.005 +0.196 +0.181 +0.091

3 0.3 200 3.1 0.3 0.441 0.494 0.259 +0.720 +0.681 +0.401
0.3 500 3.3 0.5 0.003 0.003 0.001 +0.585 +0.530 +0.251
0.7 200 2.6 0.5 1.650 2.636 3.794 -0.001 -0.333 -0.809
0.7 500 3.0 0.2 0.011 0.012 0.005 +0.262 +0.257 +0.084

4 0.3 200 4.2 0.6 0.405 0.421 0.151 +2.824 +2.787 +2.752
0.3 500 4.5 0.6 0.003 0.004 0.001 +1.534 +1.443 +0.814
0.7 200 2.3 0.6 1.314 1.466 0.792 +0.700 +0.532 -0.190
0.7 500 3.6 0.8 0.014 0.015 0.007 +0.456 +0.386 -0.050
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Fig 3. Application of the NN-GAS procedure to estimate the average monthly precipitation,
measured at latitude 0 and longitudes from 154.9W to 19.9E, using the dataset downloaded
from the data archive of the NASA. Plot in (a) gives the observed values. Plot in (b) shows the
estimated bandwidth functions for different values of the parameter a (in bold the estimated
optimal one).

The x value are the longitudes from 154.9W to 19.9E, for a total of 700 obser-
vations, while the y values give the monthly precipitation, measured in mm/hr,
observed at the zero latitude in January of the year 1999. For our analysis we
scaled the x values (longitudes) in the range (0–1).

Figure 3 reports the results of the analysis. Plot in (a) gives the observed
values. Plot in (b) shows the estimated bandwidth functions for different values
of the parameter a. We consider nx = 20. It is evident how the bandwidth
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Fig 4. Application of the NN-GAS procedure to estimate the average monthly precipitation,
measured at latitude 0 and longitudes from 154.9W to 19.9E, using the dataset downloaded
from the data archive of the NASA. The solid line represents the local bandwidths by our
method (NN-GAS), dotted line is the constant global bandwidth using the Neural Networks
and the dashed line is the local bandwidth by Prewitt-Lohr method.

locally adapts to the peculiar structure of the dataset as long as the parameter
a changes. The bold line denotes the optimal one, that is the bandwidth function
derived by estimating the optimal value of the parameter a using the criterion
suggested in equation 25. The estimate of a is 0.26 against an interval of length 1.
Looking at Figure 3 we can argue that there is an advantage to use a local
bandwidth selection procedure because the data structure seems to be very
different behaviour on the x values.

Figure 4 reports the local bandwidth estimates by our method (NN-GAS)
(solid line), the local bandwidth estimates by PL method (dashed line) and the
global bandwidth derived using the Neural Network approach.

If we compare the mean squared residuals using the obseved values, we have
that the global approach and the local one (NN-GAS) give nearly the same value.
Therefore, contrary to what one could expect, by observing the scatter-plot of
the data, the optimal bandwidth function is almost equivalent to the global
bandwidth function, so a substantial global smoothing should be preferred to a
local smoothing for the analysed dataset. All that because the estimated global
bandwidth is very low as we can note in Figure 4. Instead, the same measure
for PL method gives a greater value. Since we do not know the true unknown
function, it is more interesting to analyze the two local bandwidth curves from
NN-Gas and PL methods. In this way, it is important to outline that the esti-
mated local bandwidth by NN-GAS is a very smooth curve with respect to the
PL estimates (Figure 4). Besides, the behaviour of NN-GAS bandwidth curve
respects the data points. When the data are nearly constant then we have a
high value for the estimated bandwidth, otherwise the estimated bandwidth
is lower. Finally, this aspect is important because a higher bandwidth implies
that nh gives a greater value so we can reduce the variability of nonparametric
estimator which is important for inference as in the case of confidence bands
and so on. Finally, by these considerations we can suggest to use a local band-
width approach. Moreover, our method gives an automatic trade-off between
the adaptability (local bandwidth) and efficiency (global bandwidth).
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7.3. Bias correction of the local polynomial estimator

Having estimated VωIx
and hIx , we have all the information to correct the bias

of m̂φ(x;hIx). In fact, given the (2), we can write

Bias[m̂φ(x;h
opt)] ≈ sign{m(p+1)

φ (x)}
√

V ar[m̂φ(x;hopt)]
2v + 1

2(p− v + 1)

≈ sign
Ix

{m(p+1)
φ (x)}

√
(2v + 1)VIx

2n(p− v + 1)(hIx)
2v+1

, (31)

where the operator signIx determines the mean of the sign operator on Ix (it
can be estimated, for example, through the mean of the signs of the estimated
function (15) in the interval Ix). Finally, the bias corrected local polynomial
estimator is

m̃φ(x; ĥIx) = m̂φ(x; ĥIx)− B̂ias[m̂φ],

where B̂ias[m̂φ] is obtained from (31) substituting the unknown functionals with
their estimators. This correction has been implemented in plot (b) of figure 1.

8. Further extensions: Rate of convergence for the GAS local

bandwidth estimator

Note that our method can be used to estimate the optimal local bandwidth
when considering a sequence of values an such that an → 0 for n→∞. For the
sake of completeness, in this section we derive the rate of convergence of our
local bandwidth estimator. We show that it almost reaches the upper bound for
a local bandwidth estimator established in Wang & Gasser (1996).

First of all, we consider the results in Fan et al. (1996). They show that
(Theorem 2), for x0 ∈ χ, v = 0 and p = 1, it is

hMSE(x0)− hopt
L (x0)

hopt
L (x0)

= Op(n
−2/5 logn), (32)

where the hMSE(x0) is the bandwidth that minimises the true MSE at the
point x0 and hopt

L (x0) is defined in (6). Hence, the ideal bandwidth hMSE(x0)

behaves in first order like the asymptotical optimal bandwidth hopt
L (x0), and the

(32) gives the upper bound for the rate of convergence of a plug-in bandwidth
estimator based on the approximation of hopt

L (x0) and uniformly with respect h.
For the non uniform case, the bound becomes

hMSE(x0)− hopt
L (x0)

hopt
L (x0)

= Op(n
−2/5). (33)

Let ĥIx0
, defined in (19), be the estimator of hIx0

in the point x0, with p = 1

and v = 0. Moreover, suppose that m(2)(·) 6≡ 0 in Ix0
. Now, given the bound in

(33), the following result holds.
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Theorem 2. Under assumptions (a1)–(a4) in the appendix, with p = 1, if
an → 0 and na5n →∞, when n→∞, and if the second derivative of fX(x) and
the fourth derivative of m(x) are bounded ∀x ∈ Inx0

and m(2)(x0) 6= 0, then the

bandwidth estimator ĥIn
x0

has the following rate of convergence to the true ideal

local bandwidth hMSE(x0)

ĥIn
x0

− hMSE(x0)

hMSE(x0)
= Op

((
logna5n
na5n

)1/2
)

+O(a2n) +Op(n
−2/5),

where Inx0
= [x0 − an/2;x0 + an/2].

Remark 2. Theorem 2 states that
ĥInx0

−hopt

L
(x0)

hopt

L
(x0)

p−→ 0 when an → 0, na5n →∞
as n→∞. The rate of convergence depends on an. But when we consider such
a sequence we estimate, asymptotically, the local bandwidth in a point x0. If
we consider the sequence an = O(n−1/9), we have the best rate of convergence
for our local bandwidth estimator which is Op((log n)

1/2n−2/9), by Theorem 2.
This result almost reaches the upper bound stated in Wang & Gasser (1996),
that is Op(n

−2/9).

Remark 3. The proposed procedure can be generalised to the cases with mul-
tivariate predictors. First, using Barron (1993) and Chen & Shen (1998) we
have already the theory to deal with the multivariate neural network estima-
tors. Second, using the properties of the product kernel, we can refer to the well
known results in the literature (see, for example, Ruppert & Wand (1994)) in
order to derive the multivariate functionals for the optimal bandwidth.

Appendix: The consistency of the NN-GAS procedure

Let χ ⊂ R be a compact set such that χ ⊆ SX , where SX is the support of the
random variable X .

Assumptions

(a1) E(εi) = 0, E(ε4i ) <∞.
(a2) The density function of X , fX(·), is positive and bounded ∀x ∈ χ.
(a3) Xi ∼ i.i.d., εi ∼ i.i.d. and the Xi’s are independent of the εi’s, ∀i.
(a4) The sigmoidal activation function, Γ(·), has a continuous p+1 derivative.
(a5) The derivative m(p+1)(x) is continuous ∀x ∈ χ.
(a6) d ≡ dn = O(( n

logn )
1/2).

Now, the compact set, χ, can be the support of the random variable X if it
is compact. Instead, if the support of X is not compact we can set χ such that
its measure is positive, γ, for example γ = 0.95.

Now, we state the consistency result for the neural estimators. Consider
{Y ∗

i , X
∗
i } the process where X∗

i are the random variables Xi ∈ χ, while Y ∗
i

and ε∗i are the corresponding random variables Yi and εi, using model (11),
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i = 1, 2, . . . , n∗, with n∗ = nµX(χ). Thus n∗ = O(n). We have the neural
network estimator, q(x; η̂∗), as in (12)

η̂
∗
i = argmin

η

n∗∑

i=1

[Y ∗
i − q(X∗

i ;η)]
2
, i = 1, 2, . . . , n∗.

Lemma 1. Under the assumptions (a1)–(a6), the neural network estimator of
m(·) is consistent in the sense that:

∫

χ

(q (x; η̂∗)−m(x))
2
dµX(x) = Op

((
logn

n

)1/2
)
.

Proof. We have to consider two cases. First, the support of X is compact.
So we can fix χ = SX . Second, if the support of X is not compact then we
build the random variable X∗ which has a compact support. Note that, in this
case, n∗ = O(n). Moreover, using assumption (a3) we have that the function
m(p+1)(·) is square integrable on χ. Thus we can apply the results in Barron
(1993). Moreover, using the Case 1.1 in Chen & Shen (1998) the result follows.

The next two Lemmas show some preliminary results which are used in
Propositions 1 and 2.

Let n̂∗ = nµX
n (χ), where µX

n (χ) = 1
n

∑n
i=1 I(Xi ∈ χ) with I(·) the indicator

function.

Lemma 2. Under the assumptions (a1)–(a6), the estimator σ̂2
ε = 1

n̂∗

∑n̂∗

i=1 ε̃
2∗
i

is consistent in the sense that

σ̂2
ε − σ2

ε = Op

((
logn

n

)1/2
)
.

Proof. By (14), we can write σ̂2
ε = 1

n̂∗

∑n̂∗

i=1 ε̂
∗2
i − (¯̂ε

∗
)2. We must show that

1

n̂∗

n̂∗∑

i=1

ε̂∗2i − σ2
ε = Op

((
logn

n

)1/2
)

and
(
¯̂ε
∗)2

= Op

((
logn

n

)1/2
)
.

We show only the first convergence result. The second is straightforward. Fix
n̂∗ = n∗. Note that n∗ = O(n). Using model (11), we have that

[
1

n∗

n∗∑

i=1

ε̂∗2i

]
=

[
1

n∗

n∗∑

i=1

[m(X∗
i )− q (X∗

i ; η̂
∗) + ε∗i ]

2

]
=

=
1

n∗

n∗∑

i=1

[m(X∗
i )− q (X∗

i ; η̂
∗)]

2
+

1

n∗

n∗∑

i=1

ε∗2i +
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+
2

n

n∗∑

i=1

ε∗i [m(X∗
i )− q (X∗

i ; η̂
∗)]

= I1 + I2 + I3.

For I1, using the Markov’s inequality, we have, for δ > 0

PX∗| η̂
∗

(
1

n∗

n∗∑

i=1

[q(X∗
i ; η̂

∗)−m(X∗
i )]

2 ≥ δ

)
≤ 1

δ

∫

χ

(q(x; η̂∗)−m(x))2dµX(x).

But
∫
χ
(q(x; η̂∗)−m(x))2dµX(x) = Op((

log n
n )1/2) by Lemma 1. So we can con-

clude that I1 = Op((
logn
n )1/2).

For I2, by assumption (a1), it follows that 1
n∗

∑n∗

i=1 ε
∗2
i − σ2

ε = Op(n
−1/2).

Therefore, I2 − σ2
ε = Op(n

−1/2).
For I3, we have that

PX∗| η̂
∗

(
1

n∗

n∗∑

i=1

ε∗i [q (X
∗
i ; η̂

∗)−m(X∗
i )] ≥ δ

)
≤

≤ 1

δ2
σ2
ε

n∗

∫

χ

(q (x; η̂∗)−m(x))
2
dµX(x) = Op

(
log1/2 n

n

)
.

All that implies

1

n∗

n∗∑

i=1

ε̂∗2i − σ2
ε = Op

((
logn

n

)1/2
)
.

Now we have to consider n̂∗. By definition n̂∗ = n∗ + n(µX
n (χ) − µX(χ)).

But µX
n (χ) − µX(χ) = Op(n

−1/2). Since n∗ = O(n), it implies that n̂∗ = n(1 +
Op(n

−1/2)).

Finally, the result follows.

Lemma 3. Under the assumptions (a1)–(a6), the following result holds

1

n̂∗

n̂∗∑

i=1

(
q(p+1) (X∗

i ; η̂
∗)−m(p+1)(X∗

i )
)2

= Op

((
log n

n

)1/2
)
.

Proof. Let M be the space of functions of model (11). By assumptions (a2)
and (a3) we have that

∫
χ
(m(j)(x))2dµX(x) < ∞, ∀j ∈ {0, 1, . . . , p + 1} and

∀m ∈M.
Put n̂∗ = n∗. Note that n∗ = O(n). It is sufficient to show that

∫

χ

(
q(j) (x; η̂∗)−m(j)(x)

)2
dµX(x) = Op

((
logn

n

)1/2
)
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∀j ∈ {0, 1, . . . , p+ 1}. When j = 0 we have Lemma 1. For j > 0 we can write
∫

χ

(
q(j) (x; η̂∗)−m(j)(x)

)2
dµX(x) ≤

∥∥∥D(j)
∥∥∥
2
∫

χ

(q (x; η̂∗)−m(x))
2
dµX(x)

where ‖D(j)‖2 = supm∈M

∫
χ
(m(j)(x))2dµX(x). But ‖D(j)‖2 = C < ∞ because

D(j) is a linear and bounded operator onM.
Let Ix = [x− a, x+ a], with a > 0 and ∀x ∈ χ. By assumption (a2) it follows

that µX(Ix) > 0. Moreover, the number of observed values in Ix from (11) tends
to infinity when n→∞ with probability one.
We can write the estimator B̂ωIx

from (18), that is

B̂ωIx
=

B2
p,K

∑n̂∗

i=1

[
q(p+1) (X∗

i ; η̂
∗)
]2

I(X∗
i ∈ Ix)

∑n̂∗

i=1 I(X
∗
i ∈ Ix)

. (34)

Proposition 1. Under the assumptions (a1)–(a6), B̂ωIx
, defined in (34), Ix ⊆

χ, is consistent in the sense that:

B̂ωIx
− BωIx

= Op

((
log n

n

)1/2
)

where BωIx
is defined in (17).

Proof. The estimator in (34) can be written as

B̂ωIx
=

B2
p,K

1
n̂∗

∑n̂∗

i=1

[
q(p+1) (X∗

i ; η̂
∗)
]2

I(X∗
i ∈ Ix)

1
n̂∗

∑n̂∗

i=1 I(X
∗
i ∈ Ix)

.

The quantity B2
p,K is known. Put n̂∗ = n∗. Note that n∗ = O(n). Then

1

n∗

n∗∑

i=1

I(X∗
i ∈ Ix) = µX(Ix)

(
1 +Op(n

−1/2)
)
.

Given the neural network estimator based on {Y ∗
i , X

∗
i }, i = 1, 2, . . . , n∗ and

using Lemma 3 we have that

1

n∗

n∗∑

i=1

(
q(p+1) (X∗

i ; η̂
∗)−m(p+1)(X∗

i )
)2

I (X∗
i ∈ Ix) = Op

((
logn

n

)1/2
)
.

Therefore, it implies that

1

n∗

n∗∑

i=1

(
q(p+1) (X∗

i ; η̂
∗)
)2

I(X∗
i ∈ Ix)

=

∫

Ix

(
m(p+1)(x)

)2
fX(x)dx

(
1 +Op

((
logn

n

)1/2
))

.
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Now, we have

B̂ωIx
= BωIx

1 +Op

((
log n
n

)1/2)

1 +Op(n−1/2)
.

Using the Taylor’s expansion it follows that

B̂ωIx
− BωIx

= Op

((
logn

n

)1/2
)
.

Finally, using the same arguments as in the end of the proof of Lemma 2, the
proof is complete.

Now we have to consider the estimator V̂ωIx
in (18).

Proposition 2. Using the same assumptions as in Proposition 1, then V̂ωIx
,

defined in (18), with Ix ⊆ χ is consistent in the sense that:

V̂ωIx
− VωIx

= Op

((
logn

n

)1/2
)
.

Proof. It is immediate applying Lemma 2 and following the same arguments
as in Proposition 1.

Now, we consider the optimal bandwidth and its plug-in estimator for the un-
known function m(·) in model (11) or its derivatives, using the Local Polynomial
Estimator.

Let Inx = [x − an/2;x + an/2] where an → 0 when n → ∞. Let ĥIx be the
estimator of hIx , defined in the (19).

Proposition 3. Using the assumptions (a1)–(a4), then

i) if a > 0, the assumptions (a5) and (a6) hold, and assuming that m(p+1)(·) 6≡
0 in Ix, then ĥIx is consistent in the sense that

ĥIx − hIx

hIx

= Op

((
logn

n

)1/2
)
;

ii) if na5n →∞ when n→∞, assuming that m(p+3)(x) is bounded on χ, and
assuming that m(p+1)(·) 6≡ 0 in Inx for some n ≥ 1 and m(p+1)(x) 6= 0,

then ĥIn
x
is consistent in the sense that:

ĥIn
x
− hIn

x

hIn
x

= Op

((
logna5n
na5n

)1/2
)
.

Proof. First, consider a value a > 0, for the part i). Then we have, by assump-

tions, that B̂ωIx
> 0 in probability, when n → ∞. Therefore, by Proposition
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1 and Proposition 2 and using the same approach as in Ruppert et al. (1995)

(page 1265), we have that
ĥIx−hIx

hIx
= Op((

log n
n )1/2).

When we have a sequence {an}, for the part ii), it is necessary to assure that
the number of observations in Inx goes to infinity in some sense in order to apply
Proposition 1 and 2.

By assumption (a2), and using the mean value theorem, we have that
nµX(Inx ) = O(nan). It can be shown that µX

n (Inx )− µX(Inx ) = Op((n/an)
−1/2).

Therefore, we have that nµX
n (Inx ) = nµX(Inx )[1 + Op((n/an)

−1/2)] so that
nµX

n (Inx ) = Op(nan).
Since m(p+3)(x) is bounded on χ, using Hornik et al. (1994) we have that

[∫ x+an/2

x−an/2

(
m(p+1)

n (x)−m(p+1)(x)
)2

fX(x)dx

]1/2
= O

(
a2n√
dn

)

where m
(p+1)
n (x) is the derivative of order p+ 1 of the neural network function

with the true weights and dn is the number of neurons in the hidden layer.
Following the proof of Case 1.1 in Chen & Shen (1998) and given that the

number of observations in [x − an/2, x + an/2] is O(ann), we have to find dn
such that the following relation

d2n
a4n

log dn = O(ann) (35)

is satisfied. It can be shown that dn = (
a5

nn
log(a5

nn)
)1/2 satisfies the (35) since

a5nn→∞ when n→∞. Using the same arguments as in the proof of Lemma 2,
we have that

ĥIn
x
− hIn

x

hIn
x

= Op

((
logna5n
na5n

)1/2
)
.

Proof of Theorem 1. Since we have the compact set χ, then there exists a
finite a∗ such that Iax = χ, ∀a ≥ a∗ and ∀x ∈ χ. (Note that Iax ≡ Ix. We write Iax
instead of Ix only to give more evidence for the parameter a). So we can build
the set I∗ = [b1, b2] with b1 > 0 and b2 = a∗ > b1.

By part i) of Proposition 3, with p = 1 and v = 0, we can write

sup
a∈I∗

{
ĥIa

x
− hMISEIax

hMISEIax

}
≤ sup

a∈I∗

{
ĥIa

x

hIa
x

− 1

}
sup
a∈I∗

{
hIa

x

hMISEIax

}
(I · II) +

+ sup
a∈I∗

{
hIa

x

hMISEIax

− 1

}
(III).

By Theorem 2 of Fan et al. (1996) it follows that III = Op(n
−2/5 logn)

because we have a continuous mapping between a ∈ I∗ and the bandwidth
hIa

x
∈ [n−b3, n−b4 ], for suitable b3 and b4. So, II = 1 +Op(n

−2/5 logn).
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Let Xn(a) =
∫
Ia
x
(q(u;η) − m(u))2fX(u)du and X̂n(a) =

∫
Ia
x
(q(u; η̂∗) −

m(u))2fX(u)du as in Lemma 1, where q(·; ·) is the neural network function
with the true parameter vector and estimator, respectively.

To show the rate of convergence for I, it is sufficient to derive the rate of
convergence for supa∈I∗ X̂n(a) and the result follows using Lemmas 2, 3 and
Propositions 1, 2 and 3, part (i).

There exists a finite sequence in I∗, say {ai}, 1 ≤ i ≤ M , with M finite
integer, such that

sup
a∈I∗

X̂n(a) ≤ max
1≤i≤M

X̂n(ai) + max
1≤i≤M

sup
|ai−a|≤M−1

∣∣∣X̂n(ai)− X̂n(a)
∣∣∣ = I ′ + II ′.

By Lemma 1 we have that I ′ ≤ MOp(d
−1
n ) = Op(d

−1
n ) where dn is defined in

assumption (a6). Using Hornik et al. (1994) it follows that |Xn(a1)−Xn(a2)| ≤
C|a1−a2|

dn
, with 0 < C < ∞. Therefore, using again Lemma 1, we have that

II ′ ≤ MOp(d
−1
n ). Since M is a finite constant then we can conclude that

supa∈I∗ X̂n(a) = Op(d
−1
n ). The proof is complete.

Proof of Corollary 1. By (10), we can find an arbitrary large value of a such
that hIx ≡ hopt

G . Therefore, by part i) of Proposition 3, with p = 1 and v = 0,
and using the (27), we have

ĥIx − hMISE

hMISE
=

ĥIx − hIx

hIx

hIx

hMISE
+

hIx − hMISE

hMISE

= Op

((
logn

n

)1/2
)

+Op(n
−2/5).

So the rate of convergence is dominated by the Op(n
−2/5) term.

Proof of Theorem 2. We have that

ĥIn
x0

− hMSE(x0)

hMSE(x0)
=

ĥIn
x0

− hopt
L (x0)

hopt
L (x0)

hopt
L (x0)

hMSE(x0)
+

hopt
L (x0)− hMSE(x0)

hMSE(x0)
. (36)

Now we can write the first term at the right hand side of (36) as:

ĥIn
x0

− hopt
L (x0)

hopt
L (x0)

=
ĥIn

x0

− hIn
x0

hIn
x0

hIn
x0

hopt
L (x0)

+
hIn

x0

− hopt
L (x0)

hopt
L (x0)

. (37)

By part ii) of Proposition 3, with p = 1 and v = 0, it follows that
ĥInx0

−hInx0

hInx0

=

Op((
logna5

n

na5
n

)1/2). Using the Taylor’s expansion for BIx0
≡ B(a;x0) with respect

to a, we have

B(a;x0) = B(0;x0) + B′(0;x0)a+ B′′(0;x0)
a2

2
+ B′′′(ã;x0)

a3

6
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where ã is a value between 0 and a. Using the conditions of the Theorem, it
follows that B(a;x0) = (m′′(x0))

2fX(x0)a + c1a
3, with c1 < ∞. After some

algebra, we can write hIn
x0

as:

hIn
x0

= hopt
L (x0)O

((
1

1 + c1a2n

)1/5
)

When we consider an instead of a, then also c1 depends on n. But, in this case
c1 <∞, ∀n and for n→∞. So, for simplicity we remain the constant c1.

Therefore, the last term in (37) is

hIn
x0

hopt
L (x0)

− 1 = O

((
1

1 + c1a2n

)1/5
)
− 1 = O(a2n).

So, we have that

ĥIn
x0

− hopt
L (x0)

hopt
L (x0)

= Op

((
logna5n
na5n

)1/2
)

+O(a2n).

Using the (33), it follows that

ĥIn
x0

− hMSE(x0)

hMSE(x0)
= Op

((
logna5n
na5n

)1/2
)

+O(a2n) +Op(n
−2/5).
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