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Abstract: The paper considers an analysis of the juggling dataset based
on registration. An elementary landmark registration is used to extract the
juggling cycles from the data. The resulting cycles are then registered to
functional principal components. After the registration step the paper then
lays its focus on a functional principal component analysis to explain the
amplitude variation of the cycles. More results about the behavior of the
juggler’s movements of the hand during the juggling trials are obtained by
a further investigation of the principal scores.
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1. Introduction

Functional Principal Component Analysis (FPCA) approximates a sample curve
f(t) as a linear combination of orthogonal basis functions ~;(t) with coeffi-
cients 6;:

L
F&) =7 (1)6;. (1)
=1
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The principal components v; have the best basis property: for any fixed number
L of orthogonal basis functions, the expected total squared lose is minimized.
The choice of L is up to the operator, depending what accuracy is needed. It
is often possible to describe the essential parts of the variations of functional
data by looking only at a usually very small set of principal components and
the corresponding principal scores 6;.

However, if the curves have phase variation, even the most elementary tools
of any data analysis like the pointwise mean or variance will not be able to
describe the data adequately [3]. In such a case not only are more principal
components needed to describe the same amount of variation in the data, but
also further analysis based on principal components will become more difficult to
interpret. In order to analyze the juggling data, we use a registration procedure
introduced by [1] in which the principal components are the features which are
aligned. The juggling data is a nice application, because the data set contains
many problems that have to be solved using different strategies.

After registering the data in Section 2, we perform a FPCA on the individual
juggling cycles in Section 3. In Section 4 we examine the evolution of the scores
of the juggling cycles over the trials where we additionally take the information
from the warping functions into account. Section 5 summarizes our findings.

2. Registering the juggling data

During our analysis we are especially interested in the juggling cycles. We will
use the following notation: for ¢ € [0,1] let f(t) = (fz(t), fy(t), f-(t)) be the
spatial coordinates of a typical juggling cycle, u(t) = E(f(t)) their structural
mean and v;(t) = (o, (t), 7y.5 (t), 72,5 (t)) be a typical principal component. We
refer to chapter 8.5 of [3] for an instruction on how to calculate the principal
components in our multivariate case in practice. Referred to [2], a juggling cycle
is observed on the “clock time scale” which is the “juggling time” ¢ transformed
by a warping function h. As usual, we assume h to be an element of the space
H of strictly increasing continuous functions. We hence observe

fIM@®)] = plh()] + Z 7 [h(£)105, (2)

where 0 = [ 7 j (1) fa () + 7y (1) fy () + 72 5 (w) f2 () du.

Note that by stating equation (2), we met the natural assumption that time
and therefore also the warping function has to be the same in all three directions
by introducing a common A function for all three spatial dimensions. In contrast
to [2] where the tangential velocity function is used to avoid the problem of facing
three spatial dimensions at once, we will work in the original three dimensional
coordinate system. By doing so we hope to find effects which are only observable
within the raw data. We approach the registration of the cycles with a two stage
procedure by performing what we call “macro” and “micro” warping. By macro
warping we mean a very basic registration. The purpose of this registration step
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Fic 1. A random trial along the x direction together with the chosen landmarks.

is to normalize the overall juggling speed such that we can properly extract the
cycles from each trial. We adjusted the data for the different numbers of cycles
per trial by trimming each trial down to the first 10 juggling cycles. In order
to preserve as much information of the cycles as possible for further analysis,
we chose the simplest possible landmark registration which consists only of one
landmark per cycle located at the local maxima occurring along the z-direction
and a linear interpolation of the h function between. Since we only select one
landmark per cycle, identifying it can be done very quickly.

The next step is to cut of all cycles at the landmarks such that we end up
with a set of data consisting of a total of 100 cycles. This cropping implies that
each of the cycles starts when one of the balls leaves the hand of the juggler to
go up in the air in a high arc as seen in Figure 1.

During the “micro” step, we register all 100 cycles simultaneously. By doing
this we perform a very precise warping on the cycles. This is in fact a more
difficult task than the “macro” warping part, because a lot of different features
in the cycle curves have to be taken into account. To clarify this point we
displayed a random sample of 20 cycles in Figure 2.

It is seen from Figure 2 that the data needs more than just one principal
component to be explained accurately. For example, by looking at the first half of
this random sample along the x direction (left plot in the figure), we see variation
which is obviously not induced by phase variation. Also a closer look at the

010

005

000

005

015 010 -005 000 005 010 015 020
L L L L L L L L

F1G 2. The figure shows a random sample of 20 cycles for the x, y and z direction. Registered
curves are displayed black, corresponding unregistered curves grey.
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F1G 3. The deformation functions estimate during the macro- and microwarping.

middle part in the z direction (right plot) reveals a lot of variation which can not
be explained by amplitude variation of a single component. Situations where we
encounter more complex amplitude variations are well suited for the registration
method presented in [1]. This procedure has another advantage because it allows
to control the intensity of the micro warping due to the smoothing parameter
in equation (16) of [1].

The method can be easily adapted to the multivariate case. Let D be the
derivative operator, then a straightforward modification of equation (15) of [1]
now becomes

SSE(h /0 Z {Fi(u) = filh~ @) = Dl (w)h(w)}? du  (3)

=(z,y,z)

which has to be minimized over h € . Finding a common warping function for
multivariate data can easily be handled by using (3) for the SSE part occurring
in the procedure of [1].

The result of our alignment is shown as the black curves in Figure 2 where
we registered the curves to 3 principal components. We observe that after the
warping procedure the main features along all directions are well aligned. By
looking at the first half of the left plot of Figure 2 one can observe the complex-
ity of the juggling cycles along the x direction: If the cycles would belong to a
one dimensional space (i.e. all cycles were random shifts from a mean curve),
then all features would have been aligned. However, a more complex model un-
derlies the data along this direction and any attempt to force the data to fit in
a simpler model will destroy the intrinsic features of the data; the alleged shift
we are observing after the registration is in fact a part of the data. The warping
functions for our alignment are displayed in Figure 3 through the deformation
functions h(t) — t obtained from the macro and micro step. Note that the de-
formation functions for the macro step do not end at a value of 0 since we only
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Fic 4. The Figure shows the effect of adding or subtracting a multiple of each of the principal
components to the scaled mean curves. The columns are the spatial directions x,y,z and the
rows represent the first, second and third principal component respectively.

displayed the part of the warping functions corresponding to the first 10 cycles
within the trials.

3. Analyzing the principal components

After the preprocessing steps we get suitable data to perform a FPCA. We
chose to use three components to represent the data, which explain more than
80 percent of the total variance. The impact of the three principal components
on each of the spatial directions of the data is displayed in Figure 4 where
we also pictured the effect of adding and subtracting a multiple of each of the
principal components to max-normalized mean curves. A closer look at Figure 4
reveals that the first component mainly explains the amplitude variation of the
y direction while the second component explains mainly the z direction and
the third component the x direction. While the effect of the first component of
the movement of the jugglers hand along the x and z direction only accounts
for a small shift in the beginning of the movement (the catch phase) it has an



1830 D. Poss and H. Wagner

TABLE 1
Variation of the j-th principal component due to the l-th spatial direction

Spatial direction

Principal Component T Y z
1st 0.117 0.793 0.091
2nd 0.053 0.185 0.762
3rd 0.851 0.100 0.049

important impact for the variation across the y direction. By looking at the
impact of the first component along the y direction we can see that, if the ball
coming in at low arch during the catch phase is juggled right in front of the
juggler, then he will overcompensate for this movement by throwing the next
ball from a much greater distance to himself. Such an compensation effect can
also be seen for the second component along the z direction and for the the
third component along the x direction. While for the y direction the latter two
components mainly adjust for the two bumps, which are influenced by the first
component, individually.

The importance of the components for the three directions is summarized
in Table 1, where we capture the variability in the j-th principal component
which is accounted for by the variation in the /-th direction. More formally: for
a typical principal component v we necessarily have fol V2 (u) du+ fol Yo (u) du+
fol v2(u)du = 1. And hence each of the summands can be interpreted to give
the proportion of the variability of the component which is accounted for by
the spatial direction. It is seen from the table that the y direction contributes
80% of the variation of the first component while the 2z and z direction can
be accounted for the variation of the second and third component respectively.
These values reveal that the directions are somewhat independent in the way
that each principal component represents mainly a single direction. These obser-
vations where only possible by keeping the data multivariate and not analyzing
the tangential velocity function.

4. Analyzing the principal scores

If we perform activities like juggling several times, we expect something like
a learning effect to happen. For a juggler this effect could be measured by the
behavior of his hands along the directions, i.e. as the juggler gets more and more
used to the juggling, one would expect the movements to be more efficient or at
least the executions of the movements should become more homogeneous. By
performing a FPCA we prepare our data for further statistical analysis which
support us to answer such claims. This analysis will be performed on the scores.

Figure 5 shows the evolution of the scores corresponding to the second and
third principal component over the ten trials. A typical principal score 6 can
be modeled as a function depending on trial £ = 1,...,10 and number of cycle
1 =1,...,10. Figure 5 suggests that a polynomial regression model can capture
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Fic 5. The figure shows the evolution of the scores for the cycles corresponding to the second
and third principal component over the ten trials. The solid line represents the estimated
regression function when we impose a quadratic model.

the main message of the data. i.e. we assume
o(l,k) :a0+a1k—|—a2k2+ei. (4)

Table 2 contains the coefficients resulting from this regression. Before we inter-
pret the results, recall that the first component explains mostly the y direction
which is on one hand less complex in terms of its variability and on the other
hand is less important for a juggler. Indeed, one could imagine a perfect jug-
gling machine which would keep this direction constant such that a juggling
cycle could be described by looking solely at the x and z directions. Now, the
non-significant coefficients in the first row of Table 2 indicate that the movement
across the y direction can not be explained by the trials. This is reasonable as
one would expect that an experienced juggler mainly focuses about the move-
ment in the other two directions and any variation of his movement along the
y direction from a constant value should be random.

By the significance of the coefficients of the regressions for the scores corre-
sponding to the second and third principal component, we can conclude that

TABLE 2
Least squares coefficients obtained from a quadratic regression of the scores on the trials.
Significance codes are added in parentheses where 0 ****’; 0.001 "**’; 0.01 **’; 1~

Scores Parameter Estimates

ag ag a9
1st -0.0040 () 0.0014 () -0.0001 ()
2nd -0.0086 (***)  0.0031 (***)  -0.0002 (***)

3rd -0.0029 (*) 0.0018 (**)  -0.0002 (***)
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there exists indeed an evolution of the scores over the trials which can essentially
be described by our regression. This evolution can be regarded as some kind of
a “learning effect”. For example, in Figure 5 we can see that the scores will have
a small value at the peak of our regression function, implying that in this area
the variation of the movement of the jugglers hand is not very high and has to
be close to the mean curve. This can be seen as an improvement in his juggling
skills. Interestingly, the slope of the regression function decreases at the end.
While this effect is subsidiary for the second principal score and could be seen
as a nuisance from the simple quadratic model, it is apparent in the evolution
of the scores corresponding to the third component.

Recall that the second component mainly quantifies the variation of the jug-
glers hand movement along the z-direction, which captures the up- and down-
wards movement of his hand. A negative score in the beginning of the trials
indicates that he lunges out too far before throwing the ball up in the air. As
the regression function for the scores of the second component approaches values
close to zero, the “learning effect” becomes visible: getting used to the juggling
in the later trials, he performs almost identical movements along this direction.

If we take a more precise look at the regression function of the scores corre-
sponding to the third component, an interpretation is somewhat more compli-
cated as we experience a significant downward slope at the last trials. Maybe the
juggler gets fatigued or the behavior is caused by some kind of a psychological
effect, i.e. the concentration of the juggler decreases as he knows that he only
has to perform a few more trials and gets more impatient.

Taking a look at the time frame around 0.2-0.5 of the the bottom left panel
of Figure 4, we see that a particular small value of the third component implies
that his hand for catching the ball coming in from a low arch is comparable
moved towards the other hand. Possibly e is learning to simplify the process of
catching the ball coming in from low arch. Unfortunately this implies that he
has to wind up more in order to throw the ball leaving in high arch.

We were further interested in an analysis of the warping functions themselves
which was the reason to perform only a very basic “macro” warping. In this
special kind of data set it is not reasonable to assume that the warping function
is only a nuisance parameter because the speed of juggling might have an effect
on the manner of the juggling.

To check this hypothesis we performed some further analysis on the warping
functions. Note that we can not perform a FPCA on the warping functions
directly, because we can not guarantee that the resulting curves are still elements
of H, i.e. strictly monotonic functions. Instead we pursue the following way out.
It is well known from [3] that any function h € H can be represented as

t
h(t) = / e qy,
0

where W(t) = log[Dh(t)] itself is an unrestricted function. In order to analyze
the warping functions h appropriately, we can use the unrestricted functions
W (t). We approximate W (¢) by using the first two principal components which
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TABLE 3
The table shows the correlation between the scores corresponding to the first two components
of W and the scores corresponding to the first three components of the juggling cycles

Scores of W Scores of the cycles

01 02 03
Ow,1 -0.0120 0.3044 -0.2351
Ow,2 -0.0122  0.0355 0.0013

explain more than 95 Percent of the variations in W (¢) and define by 6,1, 61
a typical scores corresponding to these two components. In Table 3 we computed
the correlation between the scores of W and 6.

We can determine that the speed a juggling cycle is performed with has nearly
no influence on the first component of a cycle. But this speed does have an effect
on the second and third component which explain mostly the x and z direction.
Obviously, this effect is occurs mainly through the first component of .

Another interesting result occurs by computing the correlation between the
scores of the principal components of W and and the residuals resulting from
the polynomial regression in (4). It reveals a significant amount of correlation
between these variables, i.e. a not negligible part of the residuals from (4) can
be explained by the juggling speed of the cycles. Moreover, running a regression
of the scores of the warping function W on the trials showed no significant
coefficient. From this we can conclude that, what we identified as a learning
effect, has no significant impact on the warping for a specific cycle. We hence
can identify two effects which influence the scores of a juggling cycle. The first
is due to learning and the second is a result which is related to the specific
warping. The effects are modeled by augmenting equation (4) by

0(i, k) = ag + ark + aok?® + B1Ow1 i + Bobwoai + €y (5)

where 0w ;; is the score of the i-th cycle corresponding to the j-th principal
component of the function W. Estimated coefficients are given in Table 4, from
where it can be seen that neither the speed the juggling cycles are performed
with, nor the trials have an impact on the movement of the jugglers hand along
the y direction. Moreover, it can be seen that there is a connection between the
scores of a juggling cycles and the speed of the juggling.

TABLE 4
The table shows the results from an Regression of the cycle scores on the trial number,
squared trial number as well as the scores from W with corresponding coefficients 51 and
Ba. Significance codes are added in parentheses where 0 "***’; 0.001 ***’; 0.01 "*’; 1 7~

Scores Parameter Estimates

o a1 oz B1 B2
1st -0.0042 () 0.0014 () -0.0001 () -0.0009 () 0.0000()
2nd -0.0081 (***)  0.0030 (***) -0.0002 (***)  0.0034 (**) 0.0025 ()

3rd -0.0033 (*) 0.0019 (**¥)  -0.0002 (**¥)  -0.0027 (*)  -0.0009 ()
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5. Summary

We analyzed the juggling data by combining two registration methods. First we
used an elementary landmark registration in order to crop the individual jug-
gling cycles, which were the focus of our analysis. In order to perform a refined
warping of the juggling cycles in a second step, we generalized the registration
method from [1] to the multivariate nature of the data. We analyze the regis-
tered data by performing a FPCA using three principal components where we
observed that each of the components essentially quantified the variation across
a single spatial direction.

More specific information about the behavior of the juggler is contained in
the scores which we studied in dependence on the trials. By doing so, we were
able to identify some kind of learning effect over the trials. The movement of
the jugglers hand for throwing a ball up in the air levels out over the trials.
After applying an alignment procedure one should not forget about the warping
functions. Interpreting the warping functions can not only be a very interesting
task for itself, but they can contain important additional information which can
be helpful to analyze the data.
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