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1. Introduction

Semi-continuous response variables appear in many practical situations. In fi-
nance, for instance, losses in loans (zero loss means no default and a positive
loss means no payment); in medicine when it is necessary to measure the con-
centration of a certain substance that may or may not be present in blood. In
these cases, the response variable y can be described as

y =

{

0, if B = 1,
C, if B = 0,

where C is a positive random variable (in this paper, continuous) and B is a
Bernoulli variable with parameter ν. The probability distributions attributed to
model y are called zero-inflated.

Some particularly interesting distributions are the Zero-Adjusted Inverse
Gaussian distribution, named as ZAIG distribution, e.g. [5, 7], and the Beta
Zero-Inflated distribution, named as BEZI distribution [14]. The ZAIG is a
zero-inflated distribution, where C follows an inverse normal distribution. In
the case of BEZI, the random variable C follows a beta distribution. Ridout et
al. [17] describe other inflated distributions for counting data.

In cross section studies, estimates of the regression model parameters for
ZAIG or BEZI responses may be obtained by the library gamlss [19] for R1.

The authors in [4] developed generalized estimating equations for zero in-
flated random variables. In their proposal, there was a regression model for the
probability of zero and for the mean of the continuous part of the distribution.
The method assumes that C belongs to the class of exponential dispersion mod-
els (see [8], for instance) and when it follows a log-normal distribution. Dobbie
and Welsh [2] developed estimating equations for zero-inflated counting data.

Other advances in the study of regression models for zero-inflated distribu-
tions, in the presence of dependence among the observations and when C is
a discrete variable, may be found in [13], who developed random effect mod-
els for zero-inflated counting data. Multivariate distributions with zero-inflated
marginal distributions may be found in [3].

In this paper we developed diagnostic techniques for regression models, with
zero-inflated response variable and panel data structure, applying estimating
equations. We consider cases with homogeneous and heterogeneous dispersion
parameters. These techniques are based on [20] who considered estimating equa-
tions for longitudinal continuous data with probability distribution in the expo-
nential family and under a homogeneous dispersion parameter.

This paper is organized as follows. The next section presents basic concepts of
estimating functions. In Section 2 we propose a general model for zero-inflated
panel data analysis, analogous to Liang and Zeger’s independent estimating
equations, whose application to ZAIG and BEZI response variable is presented
in Sections 2.2 and 2.3, respectively. Section 2.1 describes an interactive method
for estimating parameters. In Section 3 we propose some diagnostics measures.

1See [16].
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Some properties of the estimators obtained by the proposed estimating equations
are evaluated by a simulation study in Section 4. Finally, we analyze a data set
with the proposed methodology and then we present our concluding remarks.

2. General model

By definition, any measurable function ψ of the data and of the parameters of
interest (θ) is an estimating function. Let yi = (yi1, . . . , yiT )

⊤, i = 1, . . . , n,
be a sample of independent random vectors2. Assume that ψi = ψi(yi; θ),
i = 1, . . . , n, are estimating functions. The concept of estimating function may
be extended to the sample by Ψ(y; θ) = Ψ(θ) =

∑n
i=1 ψi(yi; θ), where y =

(y⊤
1 , . . . ,y

⊤
n )

⊤ is an (N × 1) dimensional vector, N = nT .
Under general regularity conditions, e.g. [18], we may prove that the estimator

θ̂, obtained from Ψ(θ̂) = 0 is consistent and that
√
n(θ̂ − θ) is asymptotically

normal with null mean vector and covariance matrix given by the inverse of

J(θ) = lim
n→∞

nS⊤
n (θ)K

−1
n (θ)Sn(θ), (1)

where Sn(θ) =
∑n

i=1 E(
∂Ψ
∂θ⊤ (yi; θ)) is the sensibility matrix and Kn(θ) =

∑n
i=1 E(Ψ(yi; θ)Ψ

⊤(yi; θ)) is the variability matrix.
In the presence of zero-inflated data, let yi = (yi1, . . . , yiT )

⊤ be a sample of
independent random vectors of the ith experimental unit, i = 1, . . . , n, with

yit =

{

0, with probability νit,
Cit, with probability (1− νit),

where Cit is a continuous random variable with a regular probability density
function given by fit = f(yit;µit, σit), with a position parameter µit and a
second parameter given by σit (by convenience, it will be called a dispersion
parameter, although it may indicate any other distribution characteristic).

Consider the existence of three column vectors of fixed covariates xit, dit and
qit of dimensions p, q and r, respectively, such as

g1(νit) = x⊤
itβ, g2(µit) = d⊤

itγ and g3(σit) = q⊤
itδ,

where β, γ and δ are parametric vectors and g1, g2 and g3 are continuous,
invertible and double differentiated link functions, with i = 1, . . . , n and t =
1, . . . , T .

The probability density function of yit is given by

pit = p(yit; νit, µit, σit) =

{

ν
I{yit=0}

it (1− νit)
I{yit 6=0}

}{

f
I{yit 6=0}

it

}

,

where Iy∈A is an indicator variable that assumes the value 1 if y belongs to the
set A. The right side of equation pit may be factorized in one term that just

2The number of observations T does not need to be necessarily equal among experimental
units and can be treated as Ti.
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depends on νit and another one that depends on µit and σit, which uses the
continuous part of the dependent variable (see [11]).

We propose the use of an estimating function for θ = (β⊤,γ⊤, δ⊤)⊤ that
is identical to the score function obtained in the case of independence among
yij , i = 1, . . . , n and j = 1, . . . , T (full independence). In practical terms, the
point estimators of the parameters are identical to those obtained under full
independence, but the standard errors must be corrected by equation (1) for the
presence of dependence among observations of the same sample unit. This result
is similar to the one obtained by [10] for independence estimating equations.

Under full independence, the likelihood function for θ would be given by

L(θ) = L1(β)L2(γ, δ),

where

L1(β) =

n
∏

i=1

T
∏

t=1

ν
I{yit=0}

it (1− νit)
I{yit 6=0} ,

L2(γ, δ) =
∏

i,t:yit 6=0

f
I{yit 6=0}

it .

Consequently, the logarithm of the likelihood function of θ = (β⊤,γ⊤, δ⊤)⊤

would be given by

ℓ(θ) = ℓ1(β) + ℓ2(γ, δ), (2)

where

ℓ1(β) =

n
∑

i=1

T
∑

t=1

ℓit(νit) =

n
∑

i=1

T
∑

t=1

[

I{yit=0} ln(νit) + I{yit 6=0} ln(1− νit)
]

,

ℓ2(γ, δ) =
∑

i,t:yit 6=0

ℓit(µit, σit) =
∑

i,t:yit 6=0

ln(fit),

From (2) the estimating equation, which coincides with the score function
obtained in case of full independence, is given by

Ψ(θ) =
n
∑

i=1

M⊤
i ΛiΩ

−1
i ai, (3)

whereMi =diag{Xi,Di,Qi},Λi=diag{G1i,G2i,G3i},Ωi =diag{V−1
1i , IT , IT }

and ai = ((ji − νi)
⊤,u⊤

i ,m
⊤
i )

⊤, with Xi = (xi1, . . . ,xiT )
⊤, Di = (di1, . . . ,

diT )
⊤,Qi = (qi1, . . . ,qiT )

⊤,G1i = diag{ ∂νit
∂g1(νit)

},G2i = diag{ ∂µit

∂g2(µit)
I{yit 6=0}},

G3i = diag{ ∂σit

∂g3(σit)
}, V−1

1i = diag{νit(1 − νit)}, i = (I{yi1=0}, . . . , I{yiT=0})
⊤,

νi = (νi1, . . . , νiT )
⊤, ui = (ui1, . . . , uiT )

⊤ and mi = (mi1, . . . ,miT )
⊤. Besides,

uit =

{

0, if yit = 0
∂ℓit(µit,σ)

∂µit
, if yit 6= 0

, mit =

{

0, if yit = 0
∂ℓit(µit,σit)

∂σit
, if yit 6= 0

,

i = 1, . . . , n and t = 1, . . . , T .
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Assuming the existence of an structure of dependence among the components

of yi, from (1), we have
√
n(θ̂−θ) D−→Np(0,J

−1), with Sn(θ)=−∑n
i=1 M

⊤
i WiMi

and Kn(θ) =
∑n

i=1 AiCov(ai)A
⊤
i , with Ai = M⊤

i ΛiΩ
−1
i , Wi = ΛiΩ

−1
i BiΛi

and

Bi =





IT 0 0

0 −∆{E(u̇i)} −∆{E(u̇iσ)}
0 −∆{E(u̇iσ)} −∆{E(ṁi)}



 ,

where ∆(·) is an operator that, when applied to a vector, creates a diagonal
matrix with the vector elements at the main diagonal. Besides, u̇i, ṁi and u̇iσ

are T -dimensional vectors whose components are given, respectively, by

u̇it =

{

0, if yit = 0
∂uit

∂µit
, if yit 6= 0

, ṁit =

{

0, if yit = 0
∂mit

∂σit
, if yit 6= 0

and

u̇itσ =

{

0, if yit = 0
∂uit

∂σit
, if yit 6= 0

.

Moreover, E (u̇itσ) may also be written as

E(u̇it) = E(E(u̇it|yit)) = E (0|yit = 0) νit + E

(

∂uit

∂µit
|yit 6= 0

)

(1− νit)

= E

(

∂uit

∂µit
|yit 6= 0

)

(1 − νit)

and E (ṁit) is defined by the same following way.

2.1. Estimation of the parameters

We may obtain an estimate of θ̂ by the following iterative process

θ̂
(m+1)

= θ̂
(m) − S−1

n (θ̂
(m)

)Ψ(θ̂
(m)

), (4)

where m = 0, 1, 2, . . . indicates the step of the iterative process.
Equation (4) may be presented as reweighted least square iterative process

with weight matrix Wi and a modified dependent variable zi given by

θ̂
(m+1)

=
(

n
∑

i=1

M⊤
i Ŵ

(m)

i Mi

)−1 n
∑

i=1

M⊤
i Ŵ

(m)

i z
(m)
i , (5)

where zi = τ̂ i + (B̂iΛ̂i)
−1âi and τ̂ i = Miθ̂.

The matrix J may be estimated by

Ĵ = nS⊤
n (θ̂)

[

n
∑

i=1

Ai(θ̂)aia
⊤
i Ai(θ̂)

⊤

]−1

Sn(θ̂).
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2.2. ZAIG response variable

Herein, we will apply the results of this section to the case of the ZAIG response
variable. From (2), the log-likelihood in case of full independence would be given
by

ℓ1(β) =

n
∑

i=1

T
∑

t=1

[

I{yit=0} ln(νit) + I{yit>0} ln(1− νit)
]

,

ℓ2(γ, δ) =
∑

i,t:yit>0

{

− ln

(

√

2πy3it

)

− ln (σit)−
(yit − µit)

2

2yitµ2
itσ

2
it

}

.

When yit > 0, we have

uit =
∂ℓit(µit, σit)

∂µit
=

1

σ2
it

1

µ3
it

(yit − µit) (6)

and

mit =
∂ℓit(µit, σit)

∂σit
=

1

σ3
it

(sit − σ2
it), (7)

with sit =
(yit−µit)

2

yitµ2

it

.

From (6) and (7), the estimating function (3) is given by

Ψ(θ) =

n
∑

i=1







X⊤
i G1iV1i(i − νi)

D⊤
i G2iV2i(yi − µi)

Q⊤
i G3iV3i(si − σi)






,

where V2i = diag{(σ∗
it)

−2(µ∗
it)

−3}, V3i = diag{(σ∗
it)

−3} and σi = ((σ∗
i1)

2, . . . ,

(σ∗
iT )

2)⊤, with

σ∗
it =

{

0, if yit = 0
σit, if yit > 0

, µ∗
it =

{

0, if yit = 0
µit, if yit > 0

,

i = 1, . . . , n and t = 1, . . . , T .

For a ZAIG response, under heterogeneity of the dispersion parameter, we
have ai = ((i − νi)

⊤, (V2i(yi − µi))
⊤, (V3i(si − σi))

⊤)⊤ and

Bi =





IT 0 0

0 V2iNi 0

0 0 V4iNi



 ,

where V4i = diag{2(σ∗
it)

−2}.
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2.3. BEZI response variable

Herein, we analyze a BEZI response variable case. The corresponding log-likeli-
hood function as described in equation (2), under independence of all observa-
tions, should be expressed by

ℓ1(β) =
n
∑

i=1

T
∑

t=1

[

I{yit=0} ln(νit) + I{yit∈(0,1)} ln(1− νit)
]

,

ℓ2(γ, δ) =
∑

i,t:yit∈(0,1)

[log Γ(σit)− log Γ(µitσit)− log Γ((1− µit)σit)+

+ (µitσit − 1) log yit + ((1− µit)σit − 1) log(1− yit)] .

When yit ∈ (0, 1), one can say

uit =
∂ℓit(µit, σit)

∂µit
= σit(y

∗
it − µ̃∗

it) (8)

and

mit =
∂ℓit(µit, σit)

∂σit
=

= µit(y
∗
it − µ̃∗

it) + ψ(σit) + log(1 − yit)− ψ((1 − µit)σit), (9)

where ψ(·) is a digamma function,

y∗it =

{

0, if yit = 0

log
(

yit

1−yit

)

, if yit ∈ (0, 1)
and

µ̃∗
it =

{

0, if yit = 0
ψ(µitσit)− ψ((1 − µit)σit), if yit ∈ (0, 1)

.

From (8) and (9), the estimating function (3) is given by

Ψ(θ) =

n
∑

i=1







X⊤
i G1iV1i(i − νi)

D⊤
i G2iV2i(y

∗
i − µ̃∗

i )

Q⊤
i G3imi






,

where V2i = diag{σ̃∗
it}, y∗

i = (y∗i1, . . . , y
∗
iT )

⊤, µ̃∗
i = (µ̃∗

i1, . . . , µ̃
∗
iT )

⊤, with

σ̃∗
it =

{

0, if yit = 0
σit, if yit ∈ (0, 1)

,

i = 1, . . . , n and t = 1, . . . , T .
According to (3), the estimating function for BEZI response variable models,

under heterogeneity of the dispersion parameter is given by

ai =
(

(i − νi)
⊤, (V2i(y

∗
i − µ̃∗

i ))
⊤,mi)

⊤
)⊤
.
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Matrix Bi is

Bi =





IT 0 0

0 V6iNi V5iNi

0 V5iNi V4iNi



 ,

where

Ni = diag {(1 − νit)} ,
V4i = diag

{

µ2
itψ

′(µitσit) + (1 − µit)
2ψ′((1 − µit)σit)− ψ′(σit)

}

,

V5i = diag {σit[µitψ
′(µitσit)− (1− µit)ψ

′((1 − µit)σit)]} and

V6i = diag
{

σ2
it[ψ

′(µitσit) + ψ′((1 − µit)σit)]
}

,

and ψ′(·) is a trigamma function.

3. Diagnostic techniques

Based on [20], this section presents some diagnostic measures to detect leverage
points, influential points and outliers for the models proposed in Section 2.

Equation (5) may be written as

θ̂ =
(

M⊤ŴM
)−1

M⊤Ŵz, (10)

where M = (M⊤
1 , . . . ,M

⊤
n )

⊤, Ŵ = diag(Ŵi) and z = (z⊤1 , . . . , z
⊤
n )

⊤. In this

case, M represents a design matrix and Ŵ and z assume the role of a weight
matrix and a dependent variable, respectively.

From (10), where Ŵ
1/2

z may be seen as a response vector [15], the ordinary
residual is given by

ri = Ŵ
1/2

i (zi − τ̂ i) = (IT −Hi)Ŵ
1/2

i zi, (11)

where Hi = Ŵ
1/2

i Mi(M
⊤ŴM)−1M⊤

i Ŵ
1/2

i and IT is a T -dimensional identity
matrix, with i = 1, . . . , n.

Matrix Hi has characteristics similar to those of hat matrix from a linear
model. Therefore, the main diagonal elements may be used to detect the presence
of leverage points [20, 15].

To identify outlier observations, a new residual is defined by standardizing
the ordinary residual described in (11). Under the model described in (3),

one may consider that Cov(ri|θ) ∼= Ci(θ) = (IT −Hi)W
1/2
i Λ−1

i B−1
i aia

⊤
i B

−1
i ×

Λ−1
i W

1/2
i (IT −Hi). Thus, the standardized residual for observation yit is given

by

rSDit =
e⊤(it)Ŵ

1/2

i (zi − τ̂ i)
√
cit

=
e⊤(it)Ŵ

1/2

i (B̂iΛ̂i)
−1âi

√
cit

, (12)
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where e(it) is a T -dimensional vector assuming the value 1 in the position related

to yit and 0 otherwise, and cit is the t-th element of the main diagonal of Ci(θ̂),
with i = 1, . . . , n and t = 1, . . . , T . This result is not a simple extension of [20].

For repeated measures regression models [20], the Cook distance used to
detect influential points is given by

DCit =
1

(p+ q + r)
(θ̂ − θ̂(it))⊤M⊤ŴM(θ̂ − θ̂(it))

= r2SDit

cithit
(p+ q + r)(1 − hit)2

.

(13)

where hit is the t-th element of the main diagonal of Hi, with i = 1, . . . , n and
t = 1, . . . , T . Under homogeneity of the dispersion parameter, assume r = 1;
otherwise, r is the dimension of the parametric vector δ.

Graphically, the plot of hit versus i− where hit represents the t-th element of
the main diagonal ofHi, i = 1, . . . , n and t = 1, . . . , T−may be useful to identify
leverage points. Widely discussed in the Statistics literature from [15], a relative
high value of the Cook distance may indicate an influential point; to identify
these points, do (DC)it versus the index i, i = 1, . . . , n and t = 1, . . . , T . At
last, relative high values of (rPD)it, i = 1, . . . , n and t = 1, . . . , T , may indicate
outliers.

4. Simulation study

A simulation study was conducted in order to evaluate the quality of the es-
timators obtained with the estimating equations proposed in this paper. The
behavior of the estimators was examined under different sample sizes (n =
50, 100, 500), response vector sizes (T = 2, 3, 5, 10) and five different degrees of
dependence.

Normal copulas (e.g. [21]) were used to generate multivariate data with (0, 1)
uniform marginal distributions. Let cit be the generated copula value for the
individual i in time t, the multivariate vector with ZAIG (or BEZI) marginal
distribution was given by doing

yit =

{

0, if cit ≤ νit,

Qit, if cit > νit,

where yit is the simulated value for individual i in time t and Qit is the quantile
of order cit of the respective ZAIG (or BEZI) model.

The copulas were obtained from multivariate normal distributions with corre-
lation coefficients ρ (ρ = 0.0, 0.2, 0.5, 0.8 and 0.9). In this context, ρ is a measure
of the degree of dependence among the generated vector components. This pro-
cedure was done with the help of the packages copula [6] and gamlss [19]
from R.

Each combination of n, T and ρ was simulated 10,000 times.
The model used in the simulation considered one independent variable, xit,

affecting νit, µit and σit, i = 1, . . . , n, t = 1, . . . , T , where xit were obtained by
generating independent uniform distributions in the range (−1, 1).
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For ZAIG models

νit =
exp (β0 + β1xit)

1 + exp (β0 + β1xit)
, µit = exp (γ0 + γ1xit)

and

σit = exp (δ0 + δ1xit),

with β0 = γ0 = δ0 = 0, β1 = 2 and γ1 = 1 and δ1 = 0.4. The choice of
δ1 = 0.4 minimized the amount of cases that failed to achieve convergence in
the estimation process. The lack of convergence was sometimes due to extreme
outliers in the data set. The value chosen for β1 allows that the probability of
zero response may vary between 12% and 88% roughly.

For BEZI models

νit =
exp (β0 + β1xit)

1 + exp (β0 + β1xit)
, µit =

exp (γ0 + γ1xit)

1 + exp (γ0 + γ1xit)

and

σit = exp (δ0 + δ1xit),

with β0 = γ0 = δ0 = 0, β1 = 2 and γ1 = δ1 = 1.
The relative mean absolute error (RMAE), obtained by dividing the observed

mean absolute error by the parameter value, and the relative square root of the
mean square error (RMSE), obtained by dividing the square root of the observed
mean square error by the parameter value, were used to evaluate the simulation
results. As the conclusion based on these two indicators were similar, only the
RMAE results are presented in this section.

RMAE, in general, decrease, as n and T increase, for ZAIG and BEZI models.
That is expected by the consistency of the estimators.

To make the conclusions of the study of the behavior of the errors due the
dependency degree clear, for each combination of n and T , the ratio between
RMAE for a fixed value of ρ and for ρ = 0 was calculated. Figures 1 and 2
illustrate these results. It may be seen that the effect of the correlation is low
for small values of T , and it increases as T and ρ increase, for all n. This is more
visible for values of ρ greater than 0.5. This conclusion is the same for ZAIG
and BEZI models.

5. Application to the real data

In this section, traffic-related death rates in the southeastern cities of Brazil, be-
tween 2000 and 2002, will be analyzed. The dependent variables are the square-
root of the annual mortality rate of traffic-related accidents per 100 thousand
inhabitants (Ratesq) and the proportion of traffic-related deaths among all
causes of death (Proportion).

We will build different models for each dependent variable; nevertheless, all
models will use the following set of independent variables:
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Table 1

The relative mean absolute error (RMAE) considering the ZAIG simulation data set

ρ

Parameter n T 0.0 0.2 0.5 0.8 0.9
β1 50 2 18.9% 19.1% 19.0% 19.9% 20.4%

3 15.1% 15.4% 15.5% 16.8% 17.3%
5 11.6% 11.7% 12.3% 13.9% 14.5%
10 8.0% 8.3% 9.1% 11.4% 12.3%

100 2 13.0% 13.1% 13.4% 13.7% 13.9%
3 10.5% 10.5% 11.0% 11.5% 12.0%
5 8.0% 8.1% 8.7% 9.5% 10.2%
10 5.7% 5.9% 6.5% 7.9% 8.7%

500 2 5.7% 5.7% 5.8% 6.0% 6.1%
3 4.6% 4.7% 4.7% 5.1% 5.3%
5 3.6% 3.6% 3.8% 4.2% 4.5%
10 2.5% 2.6% 2.9% 3.5% 3.8%

γ1 50 2 22.9% 23.4% 23.1% 24.4% 25.0%
3 18.5% 18.6% 19.0% 20.3% 21.0%
5 14.1% 14.3% 15.1% 17.2% 18.3%
10 9.6% 10.0% 11.5% 14.6% 15.9%

100 2 15.6% 15.8% 15.8% 16.6% 16.9%
3 12.7% 12.8% 13.2% 14.2% 14.8%
5 9.8% 9.8% 10.6% 12.1% 12.9%
10 6.8% 7.0% 8.0% 10.3% 11.4%

500 2 6.8% 6.8% 7.1% 7.3% 7.5%
3 5.5% 5.6% 5.9% 6.4% 6.5%
5 4.3% 4.4% 4.7% 5.4% 5.8%
10 3.1% 3.1% 3.7% 4.7% 5.2%

δ1 50 2 44.6% 45.1% 45.5% 46.1% 46.8%
3 35.4% 34.7% 35.3% 36.4% 37.4%
5 26.3% 26.8% 27.2% 28.3% 29.8%
10 18.3% 18.3% 18.9% 21.7% 23.3%

100 2 29.4% 29.6% 29.7% 31.0% 30.6%
3 23.5% 23.8% 24.3% 24.6% 25.8%
5 17.9% 18.0% 18.4% 19.8% 20.7%
10 12.7% 12.7% 13.4% 15.3% 16.4%

500 2 12.6% 12.6% 12.9% 13.0% 13.3%
3 10.3% 10.1% 10.4% 10.7% 11.1%
5 7.9% 8.0% 8.2% 8.6% 9.1%
10 5.6% 5.6% 5.9% 6.7% 7.2%

Year assumes the value 0 if the information is related to 2000, 1 if 2001 and 2
if 2002;

Lnpop natural logarithm of the number of the city’s inhabitants, as determined
by 2000 census;

Propurb proportion of the population living in the urban area of a municipality
in 2000;
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Table 2

The relative mean absolute error (RMAE) considering the BEZI simulation data set

ρ

Parameter n T 0.0 0.2 0.5 0.8 0.9
β1 50 2 18.9% 19.1% 19.3% 19.7% 20.3%

3 15.1% 15.2% 15.7% 16.6% 17.3%
5 11.7% 11.8% 12.5% 13.8% 14.5%
10 8.1% 8.2% 9.1% 11.1% 12.3%

100 2 13.0% 13.1% 13.4% 13.8% 13.9%
3 10.5% 10.6% 10.8% 11.7% 12.1%
5 8.0% 8.3% 8.6% 9.7% 10.2%
10 5.8% 5.8% 6.4% 7.9% 8.6%

500 2 5.7% 5.7% 5.7% 6.0% 6.1%
3 4.6% 4.7% 4.8% 5.1% 5.3%
5 3.6% 3.6% 3.8% 4.3% 4.5%
10 2.5% 2.6% 2.9% 3.4% 3.8%

γ1 50 2 30.0% 30.4% 30.5% 30.4% 30.7%
3 24.1% 24.0% 24.4% 24.4% 24.8%
5 18.3% 18.4% 18.7% 19.0% 19.8%
10 12.8% 12.9% 13.3% 14.5% 14.9%

100 2 20.5% 20.7% 20.6% 20.5% 21.1%
3 16.4% 16.6% 16.8% 16.8% 17.2%
5 12.6% 12.8% 13.0% 13.3% 13.7%
10 8.8% 9.1% 9.3% 10.0% 10.5%

500 2 8.9% 8.9% 9.0% 9.2% 9.1%
3 7.2% 7.3% 7.4% 7.5% 7.6%
5 5.7% 5.7% 5.7% 6.0% 6.1%
10 4.0% 4.0% 4.1% 4.5% 4.6%

δ1 50 2 28.9% 29.7% 29.6% 30.1% 30.7%
3 22.9% 22.7% 23.2% 23.8% 24.2%
5 17.0% 17.2% 17.2% 18.5% 19.4%
10 12.0% 11.9% 12.2% 13.6% 15.0%

100 2 19.3% 19.4% 19.6% 19.9% 20.2%
3 15.5% 15.5% 15.5% 15.7% 16.6%
5 11.9% 11.9% 12.0% 12.7% 13.2%
10 8.3% 8.3% 8.6% 9.7% 10.5%

500 2 8.2% 8.4% 8.3% 8.4% 8.6%
3 6.7% 6.7% 6.9% 7.0% 7.2%
5 5.1% 5.1% 5.3% 5.6% 5.9%
10 3.7% 3.7% 3.8% 4.3% 4.6%

Propmasc proportion of men in the city’s population in 2000;
Prop2029 proportion of inhabitants aged 20–29 years; and
EHDI education index of the human development index of a municipality in

2000.

Table 3 shows some descriptive statistics for the response variables, there is a
high incidence of zero values. By comparing the information for 2000, 2001 and
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Fig 1. Plot of the ratio between RMAE for ρ and RMAE when ρ = 0 considering the ZAIG

simulation data set.

2002, we notice, in both variables, a small variation of the proportion of munic-
ipalities with zero values, in the average values and in the standard deviation.
This may be a suggestion time effect insistence. Due to some data problems,
the sample sizes are slightly different.

The ZAIG distribution was used to model the square root of the traffic-
related death rate and the BEZI distribution to model the percentage of traffic-
related deaths. In both cases a model with heterogenous dispersion parameter
was considered.

Let xit = (1, Year01it, Year02it, Lnpopi, Propurbi, Propmasci, Prop2029i,
EHDIi)

⊤ is a covariate vector of the tth observation of the ith experimental
unit, with i = 1, . . . , n and t = 1 (if Year= 2000), 2 (if Year= 2001) and 3 (if
Year= 2002). Moreover, let Year01it and Year02it be indicator variables with
value 1 when t = 2 and t = 3, respectively and xit = dit = qit.
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Fig 2. Plot of the ratio between RMAE for ρ and RMAE when ρ = 0 considering the BEZI

simulation data set.

The estimates of θ were obtained from the GAMLSS library available in
software R; the standard error corrections and the diagnostic measures were
obtained from a macro developed for R package.

5.1. Square-root of the annual traffic-related death rate

The following model was proposed in order to model the square root of the
traffic-related death rate:

νit =
exp(x⊤

itβ)

1 + exp(x⊤
itβ)

, µit = exp(x⊤
itγ) and σit = exp(x⊤

itδ).
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Table 3

Descriptive statistics of the square-root of the annual traffic-related death rate and of the
proportion of traffic-related deaths in the southeastern cities of Brazil

Ratesq Proportion

Statistics 2000 2001 2002 2000 2001 2002
% of zeros 37.9 39.6 38.0 37.8 39.6 37.8
Minimum positive observation 1.0 1.0 1.2 0.2 % 0.1 % 0.2 %
Maximum 18.4 17.9 15.9 75 % 75% 80 %
Mean 3.0 2.9 3.0 4.6 % 4.3 % 4.7 %
Standard Deviation (SD) 2.8 2.8 2.8 7.6 % 7.4 % 7.9 %
Mean of the positive observations 4.8 4.8 4.9 7.3 % 7.2 % 7.6 %
SD of the positive observations 2.1 2.0 2.0 8.6 % 8.4 % 8.9 %
n 1665 1657

Table 4

Parameter estimates described in θ = (β⊤,γ⊤, δ⊤)⊤, of the standard error (SE) when
there is supposition of independence among all observations (without correction) and when
there is supposition of dependence among the observations of the same experimental unit

(with correction), both modeled by ZAIG distribution under heterogeneity of the dispersion
parameter

WITHOUT correction WITH correction

β Estimate SE t P-value SE t P-value
Intercept 31.118 2.305 13.499 0.000 2.601 11.965 0.000
Year01 0.119 0.092 1.288 0.198 0.084 1.414 0.157
Year02 0.004 0.092 0.043 0.965 0.084 0.047 0.962
Lnpop -1.588 0.061 -26.093 0.000 0.068 -23.53 0.000
Propurb -0.253 0.261 -0.969 0.333 0.319 -0.793 0.428
Propmasc -0.095 0.039 -2.409 0.016 0.046 -2.079 0.038
Prop2029 -0.093 0.031 -3.006 0.003 0.035 -2.634 0.009
IDHE -13.163 0.981 -13.416 0.000 1.191 -11.056 0.000

γ Estimate SE t P-value SE t P-value
Intercept 0.843 0.463 1.820 0.069 0.618 1.363 0.173
Year01 -0.003 0.017 -0.186 0.852 0.012 -0.273 0.785
Year02 0.018 0.017 1.042 0.298 0.011 1.536 0.125
Lnpop -0.130 0.009 -15.134 0.000 0.013 -10.302 0.000
Propurb -0.312 0.058 -5.369 0.000 0.083 -3.741 0.000
Propmasc 0.004 0.008 0.471 0.637 0.012 0.330 0.741
Prop2029 0.005 0.006 0.808 0.419 0.010 0.543 0.587
IDHE 2.325 0.020 114.763 0.000 0.275 8.457 0.000

δ Estimate SE t P-value SE t P-value
Intercept -0.923 0.873 -1.057 0.291 1.050 -0.879 0.380
Year01 -0.009 0.031 -0.288 0.773 0.028 -0.320 0.749
Year02 -0.014 0.031 -0.435 0.663 0.028 -0.491 0.623
Lnpop 0.102 0.016 6.557 0.000 0.020 5.132 0.000
Propurb -0.311 0.106 -2.95 0.003 0.123 -2.527 0.012
Propmasc -0.032 0.016 -2.062 0.039 0.020 -1.571 0.116
Prop2029 0.013 0.012 1.081 0.280 0.016 0.822 0.411
IDHE -0.215 0.381 -0.564 0.573 0.480 -0.447 0.655

The parameters estimates are presented in Table 4. The corrected results,
considering the dependence between the observations, are presented in the last
three columns of the table; in the three previous columns, the results that would
be valid under total independence among the observations are presented. By
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Diagnostic measures to model the PROBABILITY (β)
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Diagnostic measures to model the MEAN (γ)
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Diagnostic measures to model the DISPERSION (δ)
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Fig 3. Plot of the diagnostic measures (hat matrix, Cook’s distance and standardized residual)
obtained for each vector of the regression parameters: β, γ and δ. Regression model ZAIG

under heterogeneity dispersion.

comparing these columns, it is possible to notice the correction effect. The most
important differences were observed in the intercept of µit (γ) models and, for
the coefficient of Propmasc, in the σit (δ) model.

In Figure 3, we may find the diagnostic measure graphs (projection matrix,
Cook’s distance and standardized residual) for each parameter vector of the
regression models: β, γ and δ. We may see that the city of Álvaro de Carvalho
(SP) appears as a high leverage point for the three parameter vectors. The
identification of the city of Álvaro de Carvalho as a high leverage point may be
due the fact that it presents discrepant values for Propmasc (59.94, when the
mean is 50.68 and the standard deviation is 1.25) and Prop2029 (24.95, when
the mean is 16.54 and the standard deviation is 1.48).

For β, the observation for the city of Itabira (MG), in 2002, appears as an
influential point and as an outlier. Its observed value for Ratesq is zero and the
model forecasts a low probability of assuming this value (0.45%); the estimated
proportion of cities with actual zero value for this variable is 63.58%.
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For δ, Barra do Turvo (SP), in 2000, appears as an influential point and as
an outlier. This city presents high values for the response variables in the three
years considered in the analysis (the highest in 2002, the second highest in 2000
and the third highest in 2001).

The observations for the city of Serra da Saudade (MG) and Josenópolis
(MG), for γ, in 2001, are highlighted in Cook’s distance and standardized resid-
ual graphs. We did not find any explanation for this fact.

5.2. Proportion of traffic-related deaths

The regression models for the proportion of traffic-related deaths are

νit =
exp(x⊤

itβ)

1 + exp(x⊤
itβ)

, µit =
exp(x⊤

itγ)

1 + exp(x⊤
itγ)

and σit = exp(x⊤
itδ).

The parameter estimates may be found in Table 5. As we have seen previously,
the correction effect occurs both increasing and decreasing the standard errors.

Table 5

Parameter estimates described in θ = (β⊤,γ⊤, δ⊤)⊤, of the standard error (SE) when there
is supposition of independence among all observations (without correction) and when there
is supposition of dependence among the observations of the same experimental unit (with

correction), both modeled by BEZI distribution under heterogeneity of dispersion parameter

WITHOUT correction WITH correction

β Estimate SE t P-value SE t P-value
Intercept 31,498 2.319 13.583 0.000 2.621 12.018 0.000
Year01 0.133 0.093 1.430 0.153 0.084 1.583 0.114
Year02 0.000 0.093 0.000 1.000 0.085 0.000 1.000
Lnpop -1.601 0.061 -26.246 0.000 0.068 -23.544 0.000
Propurb -0.278 0.262 -1.061 0.289 0.321 -0.866 0.387
Propmasc -0.099 0.040 -2.475 0.013 0.046 -2.152 0.032
Prop2029 -0.098 0.031 -3.161 0.002 0.036 -2.722 0.007
IDHE -13.152 0.986 -13.339 0.000 1.198 -10.978 0.000

γ Estimate SE t P-value SE t P-value
Intercepto -5.792 0.985 -5.880 0.000 1.625 -3.564 0.000
Year01 0.000 0.034 -0.009 0.993 0.029 -0.010 0.992
Year02 0.051 0.034 1.500 0.134 0.028 1.821 0.069
Lnpop -0.428 0.017 -25.176 0.000 0.042 -10.190 0.000
Propurb -0.693 0.122 -5.680 0.000 0.210 -3.300 0.001
Propmasc 0.067 0.018 3.722 0.000 0.030 2.233 0.026
Prop2029 0.107 0.014 7.643 0.000 0.023 4.652 0.000
IDHE 3.176 0.435 7.301 0.000 0.725 4.381 0.000

δ Estimate SE t P-value SE t P-value
Intercept 1.351 1.792 0.754 0.451 3.040 0.444 0.657
Year01 0.027 0.065 0.415 0.678 0.070 0.386 0.700
Year02 -0.014 0.064 -0.219 0.827 0.071 -0.197 0.844
Lnpop 0.536 0.032 16.750 0.000 0.089 6.022 0.000
Propurb 1.081 0.217 4.982 0.000 0.379 2.852 0.004
Propmasc -0.014 0.032 -0.438 0.662 0.057 -0.246 0.806
Prop2029 -0.070 0.025 -2.800 0.005 0.045 -1.556 0.120
IDHE -2.779 0.791 -3.513 0.000 1.334 -2.083 0.037
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Diagnostic measures to model the PROBABILITY (β)
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Fig 4. Plot of the diagnostic measures (hat matrix, Cook’s distance and standardized residual)
obtained for each vector of the regression parameters: β, γ and δ. Regression model BEZI

under heterogeneity dispersion.

Figure 4 brings the diagnostic measure graphs for β, γ and δ.

Three state capitals (out of four) – São Paulo, Rio de Janeiro and Belo Hori-
zonte – appear as leverage points in the mean modeling. This may be explained
by high value of the variable Lnpop. In 2000, the mean population value of the
cities included in the analysis were 12.2 thousand inhabitants, while the popula-
tion of these capitals were 10.5 million, 5.9 million and 2.2 million, respectively.

Álvaro de Carvalho was identified as a leverage point, just like in the last
section. Itirapina, Riolândia and Rosana were identified as high leverage points
too; the first two presented a high value for the variable Propmasc (Itaparina:
55.67 and Riolândia: 55.76). Rosana showed low value for Propurb, 0.26) (the
mean was 0.70 and the standard deviation was 0.21), and high value for EHDI
0.91 (the mean was 0.82 and the standard deviation was 0.06); this behavior is
unexpected since the correlation between these variables is 0.72. Nova Serrana
was identified as a high leverage point, but we did not find any explanation for
this fact.
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The city of Itabira (MG), in 2002, also appears as an influential point and
as an outlier to BEZI model. The value for Proportion in 2002 is zero, but the
model also forecasts a low probability of assuming this value, 0.42%.

Mathias Lobato is detected as outlier and as influent for γ and β. It is a
city with a low population (Lnpop=8.0, while the mean population is 9.4 with
standard deviation 1.2) and, in 2000, the observed proportion of traffic-related
deaths was extremely high: 50%. Besides its value for Propurb was 90%, what
is unexpected for a city with 3,642 inhabitants. The correlation between Lnpop
and Propurb is 0.49.

6. Concluding remarks

In this paper we proposed estimating equations for regression models for zero-
inflated random variables. In particular, we focused on BEZI and ZAIG distri-
butions. The estimating equations are similar to the score function obtained in
the full independence case. In practical terms, the method provides a correction
for the standard errors of the parameter estimators.

The results are directly applicable to the analysis of any zero-inflated semi-
continuous response variable. In particular, to zero-inflated Gamma (ZIG), zero-
inflated log-normal (ZILN) and zero-inflated truncated Pareto (ZITPo), see [12]
and [1] for further details about these distributions.

Furthermore we proposed diagnostic techniques to identify outliers, leverage
points and Cook’s influence points, which is an advance compared to other
studies cited in this paper.

The simulation study suggests that the estimating errors decrease as the
sample size and the size of the response vector grow and increase when the
dependence degree among the response vector components is high, mainly for
large samples and response vector dimensions.

We applied the methods to two data sets to get a correct value for the stan-
dard error estimates of regression model parameters, in the presence of de-
pendency among observations of the same sample unit. The standard errors
obtained from Fisher’s information acquired under the assumption of indepen-
dence among all observations would lead to wrong inferences.
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