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Abstract: We analyze the proteomics data introducing a block k-mean
alignment procedure. This technique is able to jointly align and cluster the
data, accounting appropriately for the block structure of these data, that
includes measurement repetitions for each patient. An analysis of area-
under-peaks, following the alignment, separates patients who respond and
those who do not respond to treatment.
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1. Block k-mean alignment

Motivated by the analysis of the proteomics dataset described in Koch, Hoffman
and Marron (2014), we introduce here a variant of the k-mean alignment proce-
dure that accounts appropriately for the block structure of these data. Likewise
the k-mean alignment technique described in Sangalli et al. (2010a) and San-
galli, Secchi and Vantini (2014), the proposed block variant is able to jointly
align and cluster in k clusters a set of functional data; moreover, it complies
with partially exchangeable structures in the data. In the proteomics applica-
tion, partial exchangeability is due to the presence of measurement repetitions
for each subject.

Consider a set of functions composed by repetitions of the same measurement
on different subjects or experimental units:

{fij(t)|i:17"'7m;j:17-'~7ni}7

where m is the number of experimental units, n; is the number of exchangeable
measurements for the i-th experimental unit, and f;;(¢) is the j-th measurement
for the i-th experimental unit at time ¢. The total number of functions is n =
ni+- -+ n.,. The set of exchangeable measurements for the same experimental
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unit, {f;;(t)]7 = 1,...,n;} for i« = 1,...,m, is referred to as block. In the
proteomics dataset the experimental units are the patients.

The block k-mean alignment consists of two concatenated steps: the within
block alignment and the between block alignment and clustering.

1) Within block alignment. In this step, each block {f;;(t)[j = 1,...,n;},
for i =1,...,m, is considered independently from the others. The curves
within the same block are aligned. To this end, the k-mean alignment
algorithm described in Sangalli et al. (2010a) and Sangalli, Secchi and
Vantini (2014) is used, with & =1 (see also Sangalli et al., 2009). In fact,
since the curves within the same block are replicated measurements, it
does not make sense here to consider multiple clusters.

Let fij be the within block aligned curves.

2) Between block alignment and clustering. In this step, the measurements on
the same experimental unit are treated in block. The k-mean alignment
algorithm is applied to the m blocks of curves

{{flj(t)‘j_l,...,nl},...,{fmj(t)‘j_l,...,nm}},

so that the curves in the same block are assigned to the same cluster, each
curve in the same block being warped with the same warping function.

The total alignment is the composition of the two warping functions found in
the two steps, the within block alignment and the between block alignment and
clustering.

Block k-mean alignment allows to explore possible clustering structures among
the experimental units. Thanks to its block structure, it avoids incoherent re-
sults where the measurement repetitions of the same experimental units are
assigned to different clusters.

The analysis here presented have been performed using fdakma R package
downloadable from CRAN (see Parodi et al., 2014).

2. Block k-mean alignment of the proteomics data

In the Proteomics dataset the fifteen curves are actually five blocks of three
curves each: a block represents a patient, while the three curves within each
block are TIC profile measurement repetitions. In this case m = 5, n; = 3 for i =
1,...,5, and the blocks are given by

{hi=A;17=123}{f; =B |j=123},{f3;=C; =123},

{fi;=X;17=1,23}Y,{f5;=Y;1j=1,2,3}.

A simple scheme of the block k-mean alignment in the case of the Proteomics
data is represented in Figure 1.
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FiG 1. Scheme of the block k-mean alignment in the case of the Proteomics data.

We shall consider two TIC profiles to be perfectly aligned if they are identical
up to a multiplicative factor. This choice is due to the characteristics of the data,
which have the same baseline and differ only for the peak pattern. Indeed, the
signature of a TIC profile is given by the relative heights of the peptide peaks.
Therefore, we shall use the following similarity index:

I fi(s)f(s)ds '
VI Fils)2dsy/ [ Fi(s)?ds

Indeed this similarity index assigns maximal similarity (similarity equal to 1)
to curves that differ only by a positive multiplicative factor:

p(fi, [;) =1 & 3a e R : fi(t) = af;(t).

The integrals in (2.1) are computed over the intersection of the domains of the
curves f; and f;.

The physical phenomenon does not suggest a unique group of warping func-
tions to use, hence the analysis were done with different groups of warping
functions in order to choose the group that provides the best results on the
data. We choose four groups that are coherent with the similarity index chosen.

p(fis f3) = (2.1)

Haffine = {h : h(t) = mt + ¢ with m € RT, ¢ € R},
Hsnite = {h : h(t) =t + ¢ with ¢ € R},
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F1Gc 2. Results of the within block alignment. The first panel shows the mean similarity
indexes of the unaligned curves (black) and those obtained after the alignment with Hepip
(blue), Hgitation (9reen) and Hagine (orange). The other panels show the alignment within
each block with H qgine warping functions.

Haitation = {h : h(t) = mt with m € R+},
Hidcntity = {h : h(t) = t},

where the last one corresponds to the case where no alignment is indeed per-
formed.

In this analysis the k cluster templates are computed as medoids, i.e., the
curves in the sample that maximize the total similarity; see eq. (1.1) in Sangalli,
Secchi and Vantini (2014). See Sangalli et al. (2010b) for details. Medoids are
in fact more representative of these data that are characterized by numerous
sharp peaks.

The first panel of Figure 2 shows the results obtained in the first step, the
within block alignment. For each of the five patients, the plot shows the means
of the similarity indexes between the within block aligned functions and the
corresponding within block templates. The black dots represent the means of the
similarities between the unaligned data and their within block templates. The
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Fic 3. Results of the between block alignment and clustering. The left panel shows the mean
stmilarity indexes between curves and their corresponding templates, considering different
number of clusters k and different classes of warping functions. The right panel displays the
boxplots of the similarity indexes obtained using the group of warping functions Hpf-

blue, green and orange dots indicate the similarities obtained after the within
block alignment respectively with only shift, only dilation and affine warping.
The figure shows that for all five patients the highest similarity is obtained using
the group of affine warping functions. Hence, in the within block alignment step,
we choose the group of warping functions Hagine. The other panels of Figure 2
show the registration thus obtained by within block alignment. The figure shows
a good registration within each block, with the three TIC profiles of each patient
well aligned. The bottom of each plot displays the retention times of the reference
peptides provided with the data. It should be noticed that the retention times of
the reference peptides have not been used for the alignment; they are displayed
only to show the good alignment results.

The alignment between patients is obtained with the second step: the between
block alignment and clustering. The results of this step are shown in Figure 3.
The left panel shows the means of the similarity indexes between the functions,
aligned and clustered between blocks, and their corresponding templates, for
different number of clusters k. The gray dot indicates here the mean similarity of
the within block aligned curves and their corresponding within block templates.
In black the results obtained with the k-mean alignment with no warping allowed
(Hidentity ), 1-€., the functional k-mean clustering. In color the results obtained
with different classes of warping functions: only shifts in blue, only dilations in
green and affine transformations in orange. For £ = 5 the similarities coincide.
Indeed, in this case each cluster coincides with a block of (within block) aligned
curves, so that there is no need to further align.

The left panel of Figure 3 shows that the alignment of the functions increases
their similarity. The results obtained with the three groups of warping functions,
Hsnift, Hdilation and Hagine, are very similar. With only dilation the similarities
obtained are slightly lower than those with only shift or affine warping. The
similarities obtained with Hgnise and Hamne are almost identical. We therefore
choose to use the group Hgpig. The right panel of Figure 3 shows in blue the
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Fi1c 4. Total alignment obtained by block k-mean alignment, considering k =1 cluster (simple
alignment without clustering).

boxplots of the similarities between the functions, aligned and clustered between
blocks with Hgpift, and their corresponding templates, for different number of
clusters k. The gray boxplot refers to the similarities between the within block
aligned functions and their corresponding templates. The variability shown by
the boxplot of the case k = 5 is the residual variability amongst the within
block aligned curves. The total alignment is the composition of the within block
alignment with the group of warping functions Hamne and the between block
alignment and clustering with the group of warping functions Hgpift. In the
following we describe the results obtained by between block alignment and clus-
tering with k =1 and k = 2 clusters.

Figure 4 shows the total alignment obtained with k = 1 cluster (i.e., simple
alignment without clustering). A visual inspection of the aligned data and of
the retention times of the reference peptides highlights the very good alignment
results. Only the first two reference peptides appear not well aligned. Note that
the first reference peptide is not well aligned also by the procedures considered
for instance in Cheng et al. (2014), Tucker, Wu and Srivastava (2014) and Lu,
Koch and Marron (2014). This peptide is not associated to a peak of the TIC
profile and we wonder if its reference identification may have been inaccurate.
Also the second peptide proves to be difficult to align even when using the more
flexible warping functions considered by Tucker, Wu and Srivastava (2014). As
suggested by a Referee, the not so good alignment of the first two reference
peptides may also be due to a drift effect caused of the measurement instrument
(see Koch, Hoffman and Marron (2014)), as the third measurement from each
patient appears to have a truncated spectrum, with the first two identified
reference peptides offset to the right. See also Figure 2 that better illustrates this
aspect in within block aligned TIC profiles. Figure 5 shows the corresponding
total warping functions, colored according to two different criteria. In the left
panel the colors refer to the patients (blocks): the three warping functions of
the TIC profiles for the same patient have the same color. Instead, the right
panel displays the same warping functions colored according to the order of
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Fic 5. Total warping functions for the case k = 1 colored according to the patient (left panel)
and to the order of the TIC profile within the patient (right panel).
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Fic 6. Total alignment obtained by block k-mean alignment, considering k = 2 clusters. The
two clusters are represented in two different panels.

each TIC profile within each patient (block): in red the 5 first TIC profiles for
the 5 patients, in light blue the second TIC profiles and in green the thirds.
The left panel does not show any clustering of the patients in the phase. This
means that phase variability is not related to the patient. Instead, the right
panel displays a clear clustering of the warping functions of the first, second
and third TIC profiles. The main difference amongst the three groups is the
value of the intercept of the warping functions. This phase variability is due to
the measuring instrument which introduced a time drift in the TIC profiles, as
described in Koch, Hoffman and Marron (2014) and already mentioned above.
In order to make up for the measurement drift, all the first TIC profiles must
be anticipated, while all the third TIC profiles must be delayed.

We now describe the results obtained considering k = 2 clusters in the between
block alignment and clustering step, hence exploring possible clustering in the
amplitude of the TIC profiles. The case k = 2 is particularly interesting since
a visual inspection of the similarities obtained by setting Hgnif: as the group
of warping functions, displayed in blue in the left and right panels of Figure 3,
suggests the existence of k = 2 clusters. Figure 6 shows the TIC profiles aligned
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Fic 7. Total warping functions for the case k = 2 colored according to the cluster (left panel)
and to the order of the TIC profile within the patient (right panel).

and clustered in k& = 2 clusters, displayed in the two panels. The alignment
of the curves within both clusters is very good, with only the first and second
peptides being problematic, as commented earlier. The first cluster, left panel,
is composed of patients A, B and X, while the second cluster, right panel, is
composed of patients C and Y.

The left panel of Figure 7 shows the total warping functions, colored according
to two clusters. No further clustering is apparent in the phase. Instead, the right
panel of the same figure displays the same warping functions colored according
to the order of each TIC profile within each patient (block), likewise in the
right panel of Figure 5. The same observations made previously, according to
clustering in the phase of first, second and third TIC profiles for each patient,
still hold.

The clustering in amplitude suggested by the procedure (patients A, B, and
X in one cluster and patients C and Y in the other) is not related to response
to chemotherapy. This clustering is related to some other feature distinguishing
the patients and it would be worthy of further investigation; more needs to
be know about the patients for this exploration. We note that performing the
analysis without considering the partial exchangeable structure of the data, and
applying the k-mean algorithm directly to the fifteen TIC profiles, leads to a
very similar clustering result, but with the inconsistency that the third TIC
profile of patient A is clustered together with the TIC profiles of patients C
and Y. With the block k-mean alignment this inconsistency is avoided.

It is however possible to discriminate patients who respond and patients who
do not respond to chemotherapy using for instance area-under-peaks. Suppose
that, after the alignment of the TIC profiles, it is possible to identify the refer-
ence peptides, for example by comparison to a given template whose reference
peptides’ retention times are known. We consider the last twelve of the fourteen
reference peptides (from the 3" to the 14'"*) and exclude instead the first two
reference peptides, since they are not well aligned by our procedure. We com-
pute the area under the twelve peaks by fixing a width for each of the twelve
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Fia 8. Discrimination between responders and non-responders using the area under the peaks.

considered peaks and using that same width for all the fifteen TIC profiles. The
left panel of Figure 8 shows the values of the area-under-peaks for the fifteen
TIC profiles. The red dots correspond to the patients responding to chemother-
apy, the blue ones to the patients who are not responding. Some peaks seem to
discriminate well the two groups of patients (for example peak 3 and peak 7).
We then performed PCA on area-under-peaks to reduce data dimensionality.
The right panel of Figure 8 shows the projections of the data along the first
three principal components: responders and not-responders are very well sepa-
rated. We also run the same analysis on the area-under-peaks after subtracting
the baseline to the data, obtaining the same results.

3. Discussion

As highlighted by the analyses, in this application the time warping seems truly
affine, and more specifically mainly captured by simple shifts, with phase vari-
ability amongst data mostly due to time drifts of the measuring instrument.
This and the finding on clustering in the phase of first, second and third TIC
profiles, are fully consistent with the data description given in Koch, Hoffman
and Marron (2014). In fact, also when using classes of warping functions richer
than the group of affinities, improvements in the alignment results are noticed
when forcing the warping toward linear (Lu, Koch and Marron (2014)) or toward
simple shifts (Cheng et al. (2014)).
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