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Abstract: It is well-known that if a time series is not sampled at a fast
enough rate to capture all the high frequencies then aliasing may occur.
Aliasing is a distortion of the spectrum of a series which can cause severe
problems for time series modelling and forecasting. The situation is more
complex and more interesting for nonstationary series as aliasing can be in-
termittent. Recent work has shown that it is possible to test for the absence
of aliasing in nonstationary time series and this article demonstrates that
additional benefits can be obtained by modelling a series using a Shannon
locally stationary wavelet (LSW) process. We show that for Shannon LSW
processes the effects of dyadic-sampling-induced aliasing can be reversed.
We illustrate our method by simulation on Shannon LSW processes and
also a time-varying autoregressive process where aliasing is detected. We
present an analysis of a wind power time series and show that it can be
adequately modelled by a Shannon LSW process, the absence of aliasing
can not be inferred and present a dealiased estimate of the series.
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1. Introduction

This article considers the problem of spectral estimation in the presence of
aliasing for a special class of discrete-time non-stationary time series: locally
stationary Shannon processes. Aliasing is a well known though, arguably, under-
appreciated phenomenon which can severely distort the estimates of the spec-
trum and autocovariance of a time series. Consider for a moment the situation
in the (second-order) stationary setting. Given a discrete time series sampled at
rate δt then, as is well known, the range of frequencies which can be observed
undistorted in the spectrum is [0, π/δt), where π/δt is the Nyquist frequency. If,
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Fig 1. Aliasing Example. Both: solid=subsampled series, dashed=original series. Left: real-
ization of both series: Xt on the positive integers, Yt = X2t on the odd positive integers.
Right: spectra for both series: fX(ω) on [0, π), fY (ω) on [0, π/2).

given a fixed sampling rate for our discrete time series, there exist frequencies
in the series which are in excess of the Nyquist, then the phenomenon of alias-
ing occurs. In particular, high frequency information reappears in the observed
spectrum at lower frequencies. The following example demonstrates this effect
more clearly.

Aliasing Example. Figure 1 demonstrates how aliasing can distort the truth.
SupposeXt is the stationary AR(3) modelXt = −0.2Xt−1−0.6Xt−2+0.3Xt−3+
Zt where Zt is independent standard Gaussian white noise. The spectrum of Xt

on [0, π) can be seen as the dashed line on the right plot of Figure 1 and the
peak frequency is approximately ω = 1.89.

Let Yt = X2t be a subsampled series. After subsampling, the highest (Nyquist)
frequency that can be observed in any series on the even integers is π/2. The
spectrum of Yt is displayed as the solid line on the right-hand plot in Figure 1
and now the peak frequency occurs at ω = 1.25. Due to aliasing the true peak
frequency of 1.89 has been reflected or folded to a peak at 1.25. The left-hand
plot in Figure 1 shows the original series (dashed) and how it looks after sub-
sampling (solid). Simply put, the higher frequencies in the original cannot be
reproduced accurately in the subsample as the sampling rate is too slow. The key
point is that one often obtains series like Yt with no knowledge of Xt. Hence, one

can be deceived into thinking that there is genuine power at frequency ω = 1.25,
when the actual oscillation was at 1.89. The practical question is: given a series
Yt is there any way of telling that aliasing occurred and the real peak is at 1.89?

We are by no means the first to consider the effect of aliasing in time series.
Indeed many respected monographs describe the effect of aliasing, e.g. Hannan
(1960) and Priestley (1983). Hinich and collaborators (Hinich and Wolinsky,
1988; Hinich andMesser, 1995) address the question of alias detection for second-
order stationary series and introduce a hypothesis test for its detection. More
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recently Eckley and Nason (2013) consider the more general problem of detection
and location of aliasing within locally stationary wavelet time series, proposing
a test for the absence of aliasing.

Our work. When dealing with non-stationary series it should be recognised
that sometimes such a series can be aliased and sometimes not. Hence, our
primary contribution is to propose an approach to estimate and remove the
(potentially localised) effect of such time-dependent aliasing from wavelet-based
spectral estimates for locally stationary Shannon processes. Specifically this
article establishes that, for an (dyadically sampled) aliased Shannon locally
stationary wavelet processes, one can identify both the amount of aliasing and

obtain an (uncontaminated=‘dealiased’) estimate of the evolutionary wavelet
spectrum (EWS) for scales below the Nyquist limit.

Our article is arranged as follows: We begin in Section 2 with a brief review
of LSW theory, together with a summary of the relevant results of Eckley and
Nason (2013). Section 3 considers the behaviour of the Shannon-based EWS
estimate under dyadic subsampling and describes an unbiased estimator for
the ‘below-Nyquist’ scales. We then consider the behaviour of the ‘dealiased’
estimator for two special cases: with no aliasing (Section 3.3) and with white
noise (Section 3.4). Finally in Section 4 we explore the performance of our
approach on a simulated example and also consider its potential on an example
arising from wind energy.

2. Background: LSW processes

We start by recalling the key LSW process definitions from Nason, von Sachs
and Kroisandt (2000), henceforth referred to as NvSK00. The key building block
in the NvSK00 approach is to construct LSW processes using discrete wavelets.
These wavelets are usually defined via the low and high pass filters associated
with Daubechies’ compactly supported wavelets. More formally:

Definition 2.1. Let {hk} and {gk} be the usual low and high pass quadrature
mirror filters that are associated with the construction of the Daubechies (1992)
compactly supported orthogonal continuous time wavelets. Then the associated
discrete wavelets ψj = (ψj,0, ψj,1, . . . , ψj,Nj−1) are vectors of length Nj for
scales j ∈ N and can be calculated as follows:

ψ1,n =
∑

k

gn−2kδ0,k = gn, for n = 0, . . . , N1 − 1, (1)

ψj+1,n =
∑

k

hn−2kψj,k, for n = 0, . . . , Nj+1 − 1. (2)

Here Nj = (2j − 1)(Nh− 1)+1 where Nh is the number of non-zero elements of
{hk} and δ0,k is the Kronecker delta. The number of vanishing moments of the
wavelet is N = Nh/2, i.e.

∫

xmψ(x) dx = 0 for m ∈ N such that 0 ≤ m < N .
Finally nondecimated discrete wavelets are a particular indexing of discrete
wavelets given by ψj,k(t) = ψj,k−t for k, t ∈ Z, j ∈ N.
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In the limit, when the number of vanishing moments N → ∞, we obtain
the Shannon wavelets. The Shannon discrete wavelets, ψj,n are no longer com-
pactly supported, do decay rapidly over n and are more efficiently defined in the
Fourier domain. However, our work, up until Section 3, is valid for Daubechies’
compactly supported wavelets and Shannon wavelets, so we will defer a precise
definition of Shannon wavelets until Section 3.

One of the key innovations proposed by NvSK00 is to embed discrete wavelets
within the LSW process model as follows:

Definition 2.2. Let {Xt,T}t=0,...,T−1, T = 2J , J ∈ N, be a sequence of doubly-
indexed stochastic processes. Then such a process is said to be a locally sta-
tionary wavelet (LSW) process if it has the following representation in the
mean-square sense:

Xt,T =

∞
∑

j=1

∞
∑

k=−∞

wj,k;Tψj,k(t)ξj,k. (3)

In this representation the {ξj,k} is a collection of uncorrelated random variables
with mean zero and variance one, {ψj,k}j∈N,k∈Z form a set of nondecimated
discrete wavelets, whilst {wj,k;T }j∈N,k∈Z is a set of amplitudes satisfying the
following conditions:

There exists, for each j ∈ N, a Lipschitz continuous function Wj : (0, 1) → R,
fulfilling the following properties:

i)
∑

∞

j=1 |Wj(z)|
2 <∞, uniformly in z ∈ (0, 1);

ii) the Lipschitz constants, Lj, are uniformly bounded in j and
∑

∞

j=1 2
jLj<∞;

iii) ∃{Cj}j∈N, such that for each T supk |wj,k;T −Wj(k/T )| ≤ Cj/T , where
for each j the supremum is over k = 0, . . . , T − 1 and {Cj} is such that
∑

∞

j=1 Cj <∞

Due to the various assumptions made in the above definition, the {wj,k} are
a collection of amplitudes that are ‘smooth’ in a particular way as a function
of k and w2

j,k ≈ Sj(k/T ). Specifically the rate of evolution of the second-order
properties of the series Xt,T is controlled by smoothness constraints on Sj(z)
as a function of z via those imposed on Wj(z) in (i)–(iii) in Definition 2.2.
Henceforth, for brevity, we drop the second T subscript in Xt,T .

Spectral power for a LSW time series is quantified by the evolutionary wavelet
spectrum, the time-scale analogue of the usual stationary spectrum, f(ω).

Definition 2.3. The LSW process {Xt}t=0,...,T−1, for the infinite sequence T ≥
1 has evolutionary wavelet spectrum (EWS) defined by Sj(z) := |Wj(z)|

2

for j ∈ N and z ∈ (0, 1) with respect to {ψj,k}.

The spectrum, Sj(z), controls how much variance there is in the process at
different scales or frequency bands at time z. Roughly speaking, the quantity
Sj(z) corresponds to the variance of the process integrated over the approximate
frequency band [2−jπ, 21−jπ].

Finally, we recall the wavelet periodogram used for EWS estimation. The
nondecimated wavelet coefficients, {dℓ,m}, of a time series, Yt, are given
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by dℓ,m =
∑

t Ytψℓ,m(t) for ℓ ∈ N,m ∈ Z. The raw wavelet periodogram
of Yt is defined to be Iℓ,m = d2ℓ,m for ℓ ∈ N and m ∈ Z where {dℓ,m} are
the nondecimated wavelet coefficients of Yt. The autocorrelation wavelet,
Ψj(τ), is defined by Ψj(τ) :=

∑

k ψj,kψj,k−τ for j ∈ N, τ ∈ Z and the inner
product operator of the autocorrelation wavelets is given by: Aj,ℓ =< Ψj ,Ψℓ >=
∑

τ Ψj(τ)Ψℓ(τ) for j, ℓ ∈ N.
Remark: It transpires that the raw wavelet periodogram is a biased estimator

of the EWS. Specifically NvSK00 established that in the unaliased setting

lim
T→∞

E(d2ℓ,m) =
∑

j

Aℓ,jSj(m/T ) +O(T−1). (4)

Fortunately the inner product matrix, A, is invertible and can be constructed ef-
ficiently and so an asymptotically unbiased estimate can be obtained (see NvSK00
or Eckley and Nason (2005) for further details).

2.1. Aliasing within LSW processes

Since aliasing within a discrete time process is related to the rate at which
the process is observed, it is apparent that by subsampling an unaliased series
one can eventually induce aliasing. Recent work by Eckley and Nason (2013) has
focussed on precisely this problem, considering the effect of subsampling on LSW
series for general Daubechies wavelets. Specifically they consider a setting where
an observed LSW process Yt is obtained from dyadic samples of an (unaliased)
series, Xt. In other words Yt = X2rt for t ∈ Z and r = 1, . . . , J − 1. As the Yt
are sampled at a lower frequency than in the original unaliased series, there is
potential for high frequency structure in Xt to become aliased in Yt.

A number of interesting results flow from this setting. For example, Eckley
and Nason (2013) establish that {Yt} admits the following decomposition: Yt =
Ft + Lt where {Lt} is LSW with the same underlying wavelet family and Ft

is a process with zero mean and autocovariance function of known form which,
under certain conditions can be shown to be stationary white noise. Of particular
interest for the work presented here, Eckley and Nason (2013) establish the
following result which describes the form of the raw wavelet periodogram under
r-levels of dyadic subsampling:

D
(r)
l,m ≡ lim

T→∞

E(d2l,m) =

r
∑

j=1

Sj(2
rm/T )+

∞
∑

j=r+1

Aj−r,ℓSj(2
rm/T )+O(T−1). (5)

Comparing this form with the expression for the expectation of the raw wavelet
periodogram in the unaliased setting (equation 4) we note that any structure
which is sampled always appears as a ‘contaminant’

∑r
j=1 Sj(2

rm/T ) at every
scale of analysis and that this is observed at a grid spacing of (2rm)/T instead of
m/T . This results holds for all Daubechies’ wavelets and also Shannon wavelets.
However to establish the result for the Shannon setting, we also require that the
EWS, Sj(z), has continuous first derivative for each j > 0.
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Given the above, it is natural to consider whether some form of hypothesis
might be formed relating to the presence or absence of aliasing at a given time
point z ∈ (0, 1). Such a test is proposed by Eckley and Nason (2013), although
due to the fact that white noise causes similar consequences as aliasing, the test
which can be proposed has a very specific form: H0: no aliased component and
no white noise component at a specific time point z, against an alternative HA:
aliased component or white noise component present at z. We refer interested
readers to Eckley and Nason (2013) for further details of this test.

3. The Shannon succesive scale method

Can we do more than the hypothesis test described in the previous section?
In particular can we go further than identify periods of aliasing/white noise
contamination? This section shows that for Shannon LSW processes one can
identify both the contamination,

∑r
j=1 Sj(z), and obtain an (uncontaminated =

‘dealiased’) estimate of the EWS for scales below the Nyquist limit. In regular
EWS estimation such scales become contaminated according to the spectral
modification shown in equation (5).

Such ‘dealiasing’ is known to be possible for certain restricted bandpass sig-
nals (those whose nonzero spectrum is contained in a compact interval of fre-
quencies, ω ∈ R not containing zero), see Harris (2004). However, as we explain
below, Shannon LSW seems to be special as ‘dealiasing’ can be achieved for
processes that are not bandpass or bandlimited. Shannon’s advantage stems
from the orthogonality of its autocorrelation wavelets at different scales, math-
ematically expressed by Aj,ℓ = 0 for j 6= ℓ and Aj,j = 2j , see NvSK00 A.5. In
particular, the orthogonality means that we do not need to concern ourselves
with the effects of ‘hidden’ scales (i.e. the very coarsest scales).

Section 3.1, next, provides a brief review of Shannon wavelets. Section 3.2
considers the behaviour of the Shannon-based EWS estimate under dyadic sub-
sampling and describes an unbiased estimator for the ‘below-Nyquist’ scales. We
then consider the behaviour of the ‘dealiased’ estimator for two special cases:
with no aliasing in Section 3.3 and with white noise in Section 3.4.

3.1. Brief review of Shannon wavelets

The Shannon wavelet is most efficiently defined in the Fourier domain, see, for
example, Chui (1997), pages 46 and 47 or Appendix A.5 of NvSK00. Define the
set Cj = [−2−j+1π,−2−jπ] ∪ [2−jπ, 2−j+1π]. The discrete Fourier transform

of the Shannon wavelet is given by ψ̂j(ω) = −2j/2 exp(−2j−1iω)χCj
(ω), where

χA(ω) is the indicator function of the set A. The underlying mother wavelet is
given by ψ(t) = π−1(t − 1

2 )
−1(sin 2πt − cosπt). Figure 2 shows a picture of a

Shannon wavelet which is not compactly supported but has decay like O(t−1)
in the time domain. As mentioned above, the A matrix for Shannon wavelets is
diagonal with Aj,j = 2j, for j ∈ N.
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Fig 2. A Shannon wavelet.

3.2. Shannon wavelet periodogram under dyadic subsampling

We now turn to consider the behaviour of the Shannon-based EWS estimate
under dyadic subsampling and describes an unbiased estimator for the ‘below-
Nyquist’ scales.

Setup. Shannon’s autocorrelation wavelet orthogonality is extremely useful as it
means (5) can be considerably simplified to:

D
(r)
j,m =

r
∑

ℓ=1

Sℓ(zm) +Aj,jSr+j(zm), for r, j ∈ N. (6)

The key simplification in (6) is that it involves (i) the aliased content
∑r

ℓ=1 Sℓ(zm)
and (ii) only the spectral level Sr+j . In particular, spectral information from
coarser levels, e.g. the infinity of levels in the right-hand sum of (5) do not
appear in (6). Next we turn to consider how one might estimate the alias and
spectral components within this particular setting.

Estimation. Define Im := (I1,m, . . . , IJ,m)T to be the vector of raw wavelet pe-
riodograms at time m. Estimates of

S̃m :=

(

r
∑

ℓ=1

Sℓ(zm), Sr+1(zm), . . . , Sr+J(zm)

)

,

can be obtained by inverting the series of equations in (6) and substituting

the empirical quantity d2j,m for its asymptotic expectation D
(r)
j,m. The astute

reader will have noted that we have J equations for J + 1 unknowns. A further
equation can be obtained by defining the local feasible variance of the series
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σ2
m =

∑r+J
ℓ=1 Sℓ(zm). Then by substituting a suitable estimator σ̂2 for σ2 we

have a system with J + 1 equations and unknowns which can be solved.
At this point it is worth explaining further the difference between feasible

and total variance. The total variance,
∑

∞

j=1 Sj(z), specifically includes contri-
butions from increasing scales without bound. In other words, the total variance
is the variance of the underlying stochastic processes at time z. The feasible
variance is computed from the sample where we only ever observe a finite but
potentially large, number of scales. Property (i) of Definition 2.2 implies that
Sj(z) → 0 as j → ∞, hence power has to decay eventually.

With the additional equation, the matrix representation of (6) is:

D̃(r)
m :=













σ2
m

D
(r)
1,m
...

D
(r)
J,m













= ÃJ S̃m =















1 1 1 · · · 1
1 2 0 · · · 0
1 0 4 · · · 0
...

...
...

. . .
...

1 0 0 · · · 2J





























∑r
ℓ=1 Sℓ(zm)

Sr+1(zm)

Sr+2(zm)
...

Sr+J(zm)















, (7)

where ÃJ is a (J + 1)-dimensional square matrix which is invertible by the next
Proposition.

Proposition 3.1. ÃJ is invertible with det ÃJ = 2J(J−1)/2 for all integers

J > 0.

Proof. In the appendix, along with an explicit formula for Ã−1
J .

The Estimator. To estimate S̃m we introduce the following estimator ˆ̃Sm =

Ã−1
J

ˆ̃D
(r)
m , where ˆ̃D

(r)
m = (σ̂2

m, Im)T . The following restult establishes that this
estimator is unbiased.

Proposition 3.2. Let Xt be a Shannon LSW process, Yt = X2rt. Then
ˆ̃Sm is

an unbiased estimator of S̃m.

Proof. The proof is simply a rearrangement of (7).

In summary, Proposition 3.2 shows that, for Shannon LSW processes, under
aliasing we can recover the spectral components that would be contaminated
using the usual EWS estimation process. In the language of stationary time
series: we can successfully estimate below-Nyquist frequency components that
would have previously contaminated by the higher frequencies wrapping round
due to aliasing. Note, that since r is arbitrary this also includes the aliasing of
continuous time processes by the sampling process. This new method works for
signals that are not bandpass or bandlimited: however, they have to be of the
Shannon LSW form. Proposition 3.2 also permits us to recover

∑r
ℓ=1 Sℓ(zm).

Smoothing for consistency. NvSK00 note that the raw wavelet periodogram is
not consistent and, like the classical case, needs to be smoothed to obtain a
consistency. Such smoothing has been carried out using a variety of methods in
the literature, for example, second-stage wavelet shrinkage in NvSK00 or Haar-
Fisz estimation for piecewise constant spectra in Fryzlewicz and Nason (2006).
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Any of these methods could be used here to obtain a consistent estimator of
ÃJ S̃m with the same rates of convergence. Estimates of S̃m (without the pre-
multiplier of ÃJ ) can be carried out in precisely the same manner as in NvSK00
with the same rates of convergence as in their Theorem 4. Such theory is based
on existing results on quadratic forms of Gaussian variables which are χ2, see
Neumann and von Sachs (1995).

In the next section, we describe some results which validate the behaviour of
our estimator for some key cases of interest.

3.3. No aliasing and no white noise

What about the case where there is no aliasing or white noise? In other words,
the raw periodogram vector Im can be, and is, computed in the regular case
where it is a precursor to spectral estimation. From NvSK00, in the non-aliased
case we know that

D̃(0)
m =

(

∑J
j=1 Sj(zm)

ASm

)

, (8)

where A is the inner product matrix from NvSK00 and Sm = (S1(zm), . . . ,
SJ(zm))T .

However, suppose we just compute the raw wavelet periodogram, Im and
apply our ‘dealiasing’ matrix, Ã−1

J , but the underlying situation is that of no
aliasing. Then, the following happens:

Ã−1
J D̃(0)

m = Ã−1
J

(

∑J
j=1 Sj(zm)

ASm

)

= Ã−1
J













∑J
j=1 Sj(zm)

2S1(zm)
...

2JSJ(zm)













, (9)

the latter equality because A is diagonal for Shannon wavelets with Aj,j = 2j .

Proposition 3.3. With no aliasing the top row of the ‘dealiased’ vector is

zero, and the remaining elements are an unbiased estimate of the true EWS.

Mathematically,

Ã−1
J D̃(0)

m = (0, S1(zm), . . . , SJ(zm))
T
. (10)

Proof. In the appendix.

This means that if there is no aliasing then application of our ‘dealiasing’
matrix Ã−1

J behaves as we would expect, telling us that the top row is zero and
the remainder of the rows consist of the true EWS.

3.4. White noise

As mentioned in Section 2.1, if Yt is white noise with variance σ2 then the
expectation of the wavelet periodogram is given by Dℓ,m = σ2 for all ℓ,m.
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What happens if we subject white noise to our dealiasing method, i.e. applying
Ã−1

J to σ21J+1, the (J + 1)-dimensional vector of σ2s?

Proposition 3.4.
Ã−1

J σ21J+1 = σ2(1, 0, . . . , 0)T . (11)

Proof. This is easy to see as ÃJ is invertible and its first column is 1J+1.

Propositions 3.3 and 3.4 together mean that if you have any (a) white noise
component or (b) aliased power in your series then it migrates to the top row
of the ‘dealiased vector’. Sections 3.2 and 3.3 show that the other rows in the
‘dealiased vector’ contain uncontaminated estimates of the remainder of the
spectrum: something that classical spectral analysis does not do.

4. Examples

In this section we explore the application of our approach to simulated and real
data. In Section 4.1 we consider the performance of our estimation scheme in a
simulation study based on stationary time series, paying particular attention to
how the accuracy of our estimates behaves for different lengths of time series.
Then, in Section 4.3 we apply the proposed spectral estimation scheme to an
example arising from the wind energy sector.

4.1. Four-scale LSW process: Shannon ‘dealiasing’

We begin by exploring the performance of our approach in a simulated setting.
Here we let Xt be a stationary Shannon LSW process with S1 = 1, S2 = 2,
S3 = 3 and S4 = 0.5 and Gaussian innovations (since the process is stationary,
Sj(z) = Sj for all z ∈ (0, 1)). We also set Yt = X2t – in other words on
sampling, all the finest scale structure (i.e. scale j = 1) becomes aliased. Table 1
shows the results of estimating S̃ using the methods of Section 3, taken over
many simulations and shows that the sample size has to be moderately large
(e.g., T = 1024, say) before the dealiasing becomes accurate. However, the
results are not unreasonable for even quite small sample sizes (T = 256) bearing
in mind that the methodology is designed to work with nonstationary series.

Table 1

Estimated mean values of S̃j with their standard deviations in parentheses for the
Four-scale LSW process of different lengths T as defined in the text with aliasing.

The means/sds are taken over 200 simulations to 2 d.p.

Est. Aliased Corrected Spectrum
T j=1 j=2 j=3 j=4 j=5

Truth 1 2 3 0.5 0
128 2.65 (0.98) 1.26 (0.67) 2.54 (0.96) 0.32 (0.33) 0.00 (0.07)
256 1.80 (0.61) 1.59 (0.53) 2.75 (0.76) 0.38 (0.24) 0.00 (0.05)
512 1.39 (0.36) 1.81 (0.39) 2.86 (0.60) 0.45 (0.17) 0.00 (0.03)

1024 1.18 (0.25) 1.91 (0.25) 2.97 (0.39) 0.48 (0.12) 0.00 (0.02)
2048 1.10 (0.18) 1.93 (0.18) 2.95 (0.29) 0.49 (0.08) 0.00 (0.01)
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Table 2

Estimated mean values of S̃j with their standard deviations in parentheses for the
Four-scale LSW process of different lengths T as defined in the text with no aliasing.

The means/sds are taken over 200 simulations to 2 d.p.

Est. Aliased Corrected Spectrum
T j=1 j=2 j=3 j=4 j=5

Truth 0 2 3 0.5 0
128 1.41 (0.33) 1.33 (0.51) 2.65 (1.01) 0.33 (0.25) 0.00 (0.02)
256 0.68 (0.10) 1.64 (0.31) 2.79 (0.70) 0.41 (0.17) 0.00 (0.01)
512 0.34 (0.04) 1.84 (0.21) 2.89 (0.53) 0.46 (0.12) 0.00 (0.00)

1024 0.17 (0.01) 1.91 (0.19) 2.94 (0.37) 0.47 (0.09) 0.00 (0.00)
2048 0.09 (0.00) 1.96 (0.12) 2.97 (0.27) 0.49 (0.06) 0.00 (0.00)

Rarely, our estimator is slightly negative and so, as is common in the literature,
when this occurs we truncate it to zero. The simulation was repeated for S1 = 0,
i.e. no aliasing, and these results are shown in Table 2.

4.2. Time-varying AR(1) process

In this example we investigate what happens when an aliased time-varying au-
toregressive process (TVAR) of order one is subjected to our methodology. We
simulated a single realization from the TVAR(1) model Xt = αtXt−1 + Zt, for
t = 1, . . . , 512, αt varied linearly from α1 = 0.9 to α512 = −0.9 over the extent
of the series and Zt was Gaussian white noise with mean zero and unit variance.
Simulations from this model can be obtained using the tvar1sim() function
from the locits package developed by Nason (2013). We then subsampled the
series to obtain Yt = X2t and the subsampled realization is shown in the left

hand plot of Figure 3. Figure 3 also shows the estimate ˆ̃Sm for this realization
after smoothing (right hand plot). The highest frequencies in the realization of
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Fig 3. Left: Subsampled TVAR(1) realization. Right: Smoothed estimate of S̃ for TVAR(1)
realization. The lowest scale labelled A/W contains the aliased or white noise content, the
other scales, j correspond to Sj+r in S̃.
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Xt are on the far right-hand side of the series and indeed our method presents
power in the ‘aliasing/white noise’ (lowest) band on the far right-hand side of
the right plot in Figure 3. This example is particularly interesting as aliasing
(or white noise) has clearly been detected even though the underlying process
is not a Shannon LSW process and indeed not a LSW process. However, there
are undoubtedly other TVARMA processes that are ‘further away’ from LSW
processes and further research would be required to see whether aliasing could
be as well detected as in this case.

4.3. Aberporth wind power series

The problem of wind speed and power forecasting has been a topic of increasing
focus in recent years, see for example Landberg et al. (2003) or Genton and Her-
ing (2007). This has been, to a greater extent, motivated by the need to develop
reliable forecast tools to enable effective integration of wind farm output into
electricity grids. Several authors have considered the applicability of ARIMA
models to such data, see, for example Brown, Katz and Murphy (1984), Huang
and Chalabi (1995), Sfetsos (2002)), where, naturally the fitting of such models
would require the assumption of no aliasing within the time series.

IDA and Shannon LSW Model Feasibility. This example considers hourly wind
speed data measured at the Meteorological Office station in Aberporth, Wales,
previously studied by Hunt and Nason (2001), Nason and Sapatinas (2002) and
Cardinali and Nason (2010). The first differences (to remove trend) of the wind
speed series are shown in Figure 4.

To verify the feasibility of representating this data by a Shannon LSW model,
we consider the regular spectrum, its confidence intervals and the estimated
Shannon spectrum. These are all shown in Figure 4. In a nutshell, this permits
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Fig 4. Left: First differences of wind speed at Aberporth (ms−1). Right: Spectral analysis
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Fig 5. Left: Regular Shannon wavelet EWS estimate of das series. Right: Dealiased Shannon
wavelet EWS estimate of das series. The levels at 2 and coarser are again present. An extra
level is present containing the sum of all potential aliases. The vertical lines in both estimates
at t = 328, 644 are explained in the text.

us to verify whether the Shannon LSW spectrum lies within the confidence
intervals of a nonparametric spectrum estimate from the data. If it does we
deem the Shannon LSW process to be a feasible model for the series. Note that
splitting the series into smaller parts improves the fit to the Shannon basis,
hence providing ample justification for this model for this series (for the whole
series we model a locally stationary Shannon series).

Aliasing? The standard Shannon wavelet EWS is shown in the left hand plot of
Figure 5. Here the finest scale referred to is scale j = 2, as we are investigating
whether there is power at finer scales. Now focus on time t = 328 indicated
by a vertical line. There is clearly oscillatory power at scale j = 3 at this time
which slowly tails off. This ‘tailing off’ coincides with an increase of power at the
finer scale j = 2 immediately afterwards. Indeed, careful scrutiny shows some
power starting earlier still at scale j = 5. This pattern of power is indicative of
a pulse increasing in frequency over time. Something similar happens at time
t = 644, power increasing in successively finer scales at slightly later times. The
key thing is that the left hand plot in Figure 5 suggests a possibility of two pulses
of power increasing in frequency over time. So, could this apparent frequency
increase have increased enough to cause aliasing?

Figure 5 (right hand plot) shows the result of applying our dealiasing method-
ology. The vertical lines at t = 328, 644 are again shown. What is interesting
about this figure is that our method indeed suggests significant power is present
in the ‘aliased’ band, and looking at the coarser scales the ‘frequency increase’
from 2 to ‘aliased’ is present in both cases (i.e. power at scale 2 just before the
aliasing occurred).

From this figure it might be thought that the presence of power is either
present in the aliased band or the ‘non-aliased bands’ (two to ten) but not
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both, i.e. they are mutually exclusive at any given point in time. This is ac-
tually illusory, there is actually power operating at some of the coarser scales
simultaneously with that in the ‘aliased’ band, but it is of a much smaller order
than that in the ‘aliased’ band.

In conclusion it is important to realize that we are not necessarily detecting
aliasing: the power in the ‘aliased’ band could be due to a white noise component
(and our test cannot detect the difference between the two). However, we might
be suspicious that aliasing is occurring due to the suggestion that there is power
of increasing frequency over time in the left hand plot of Figure 5. More formal
clarification of this could be obtained by applying the Hinich and Wolinsky
(1988) on assumed stationary segments of the relevant parts of the series.

5. Concluding remarks

This article introduces new theory on what happens to a Shannon LSW pro-
cess, and its spectrum, under dyadic subsampling. For this special case we can
estimate below-Nyquist spectral components, even for time series that are not
bandlimited because of the orthogonality of Shannon autocorrelation wavelets.
Additional simulation studies have also demonstrated that the Shannon analysis
wavelet works well even if the process was synthesized using other Daubechies
compactly supported wavelets.

Improved knowledge of aliasing, white noise component, or neither clearly
has important implications for the modelling, estimation and forecasting of time
series. For example, if there is strong evidence for aliasing then forecasting might
be inaccurate as forecasting techniques often rely heavily on spectral estimates.
On the other hand, knowledge that aliasing is unlikely to be affecting a time
series means that the sampling rate need not be increased.

Other directions for future research Clearly there is much scope for future
work in this area. For example it would also be interesting to explore whether
some of these ideas can also be extended to the locally stationary Fourier or
other settings, such as the SLEX framework of Ombao et al. (2002). Finally, in
all that we have considered here we have focussed on those situations where the
process generating wavelet is known a priori. However as early work by Gott
and Eckley (2013) reports, in practice this will be unknown and the effect of
analysing the time series by another wavelet can be significant. What this means
in the aliased world still remains to be investigated.
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Appendix: Proofs

Proof of Proposition 3.1 (Invertibility of ÃJ)

Write ÃJ in block matrix form as follows:

ÃJ =

(

I B
C A

)

, (12)

where I = (1), B = CT = (1, . . . , 1) and A = diag(2, 22, . . . , 2J) is just the
inner product matrix from NvSK00. Clearly, A is invertible and hence, using
basic properties of determinants, we have

det ÃJ = det(A) det(1−BA−1C). (13)

Here A−1 = diag(2−1, 2−2, . . . , 2−J), and BA−1C =
∑J

j=1 2
−j = 1 − 2−J .

Hence:
det ÃJ = 21+2+···+J−1 = 2J(J−1)/2 > 0 for J ∈ N. (14)

We now find the inverse formula. We have already mentioned that A is invert-
ible and it can be seen from above that 1−BA−1C = 2−J . Hence the quantity
(1−BA−1C) is invertible and its inverse equal to 2J . Hence, using well-known
results on the inverse of block matrices we obtain:

Ã−1
J =

(

(1 −BA−1C)−1 Q
QT P

)

(15)

where
Q = −(1−BA−1C)−1BA−1 = −2JBA−1, (16)

and

P = A−1 +A−1C(1 −BA−1C)−1BA−1 = A−1 + 2JA−1CBA−1. (17)

After some algebra it can be shown that Q = −(2J−1, 2J−2, . . . , 1) and P =
(pi,j) where

pi,j =

{

2−j(1 + 2J−j) for i = j,

2J−(i+j) for i 6= j.
(18)

Hence:

Ã−1
J =











2J −2J−1 −2J−2 · · · −1
−2J−1

... P
−2−1











(19)
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Proof of Proposition 3.3: Ã
−1
J

D̃
(0)
m

From (9) we write

D̃(0)
m =

(

v
ASm

)

, (20)

where v =
∑J

j=1 Sj(zm). Then

Ã−1
J D̃(0)

m =

(

2J Q
QT P

)(

v
ASm

)

=

(

2Jv +QASm

QT v + PASm

)

, (21)

where Q,P were defined in the proof of Proposition 3.1 above.
The top row of the right-hand side of (21) is

2Jv +QASm = 2J
J
∑

j=1

Sj(zm)− 2J−1 · 2S1(zm)

− 2J−2 · 22S2(zm)− · · · − 1 · 2JSJ(zm) = 0. (22)

For the second row, the quantity QT v = −
∑J

j=1 Sj(zm)(2J−1, . . . , 1) and
from (17) we have:

PASm = (A−1 + 2JA−1CBA−1)ASm = (I + 2JA−1CB)Sm (23)

= (I −QT v). (24)

Hence, rows 2 to J + 1 of (21) are the vector Sm and we have the remarkable
result that

Ã−1
J D̃(0)

m = (0, S1(zm), . . . , SJ(zm))T . (25)
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