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Abstract: We consider an adaptive smoothing spline with a piecewise-
constant penalty function λ(x), in which a univariate smoothing parameter
λ in the classic smoothing spline is converted into an adaptive multivari-
ate parameter λ. Choosing the optimal value of λ is critical for obtaining
desirable estimates. We propose to choose λ by minimizing a multivariate
version of the generalized cross validation function; the resulting estimator
is shown to be consistent and asymptotically optimal under some general
conditions—i.e., the counterparts of the nice asymptotic properties of the
generalized cross validation in the ordinary smoothing spline are still prov-
able. This provides theoretical justification of adopting the multivariate
version of the generalized cross validation principle in adaptive smoothing
splines.
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1. Introduction

We consider the problem of estimating an unknown function f(·) given obser-
vations

yi = f(xi) + ǫi, i = 1, . . . , n, (1)

where the design points xi follow a strictly positive continuous density function
and ǫi are independent random noise with mean 0 and unknown variance σ2.
Without loss of generality, we assume that the domain of f is [0, 1]. Smoothing
spline is one of the most popular methods for estimating f . Let f (m) denote the
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mth derivative of f . The smoothing spline estimator is the unique solution of
the following problem

min
f∈Wm

2
[0,1]

1

n

n∑

i=1

(yi − f(xi))
2 + λ

∫ 1

0

{f (m)(x)}2dx, (2)

where Wm
2 [0, 1] is the mth order Sobolev space defined as {f : f (j) is absolutely

continuous for j = 0, . . . ,m−1, and f (m) ∈ L2[0, 1]} where L2[0, 1] is the space
of squared integrable functions, and λ is a smoothing parameter that controls the
trade-off between smoothness of the estimated function (the second term) and
the goodness of fit (the first term). Large values of λ produce smoother functions
while smaller values produce more wiggly functions. For the automatic choice
of λ, many procedures have been proposed, including cross validation (CV)
(Stone, 1974), generalized cross validation (GCV) (Craven and Wahba, 1979),
and Mallow’s Cp (Mallows, 1973).

Even though smoothing splines have been shown to perform well in many
examples, if the underlying function is spatially nonhomogeneous, traditional
smoothing splines will fail to capture the varying degrees of smoothness properly.
In practice, there are various types of functions with varying smoothness, and
four popular scenarios in Donoho and Johnstone (1995) are illustrated in Fig. 1.
The functions in Fig. 1 change rapidly in some regions while being smooth
in others. If we choose the global smoothing parameter to be relatively small,
the resulting spline estimate will describe the function well in the regions of
large variations, however it will under-smooth in other regions. On the other
hand, if the global smoothing parameter is chosen to be relatively large, then
the estimated function will be over-smoothed in the regions of large variations.
This indicates that in fitting functions with varying roughness, using a global
smoothing parameter is not sufficient.

To resolve such a problem and attain more flexible estimation of the function,
there have been attempts to allow for the smoothing parameter to vary adap-
tively with x (Abramovich and Steinberg, 1996; Pintore, Speckman and Holmes,
2006; Storlie, Bondell and Reich, 2010; Liu and Guo, 2010; Kim and Huo, 2012;
Wang, Du and Shen, 2013). Instead of (2), the following minimization problem
has been considered in the framework of smoothing splines:

min
f∈Wm

2
[0,1]

1

n

n∑

i=1

(yi − f(xi))
2 +

∫ 1

0

λ(x){f (m)(x)}2dx, (3)

where λ(x) is a variable smoothing parameter—a function of x.
In the framework in (3), one popular approach in deriving the solution is to

discretize λ(x). That is, λ(x) is approximated by a step function, i.e., a piecewise
constant function. Pintore, Speckman and Holmes (2006) assumed an equal-size
piecewise structure for λ(x). The number of jumps and the jump locations need
to be prespecified. Then the step function is estimated by minimizing the multi-
variate version of the generalized cross validation. Liu and Guo (2010) extended
the work of Pintore, Speckman and Holmes (2006). They also assume a step func-
tion for λ(x), but the segmentation is data-driven. The number of jumps and the
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(a) Blocks function (b) Bumps function
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(c) Heavisine function (d) Doppler function

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

Fig 1. Illustration of four widely-studied functions with varying degrees of smoothness:
(a) Blocks function, (b) Bumps function, (c) Heavisine function, (d) Doppler function. Solid
curve is the true function and dots are noisy observations.

jump locations are chosen based on the structure of data. Then the step func-
tion is estimated by maximizing the generalized likelihood. In these methods,
the optimal choice of the multivariate smoothing parameter and the associated
asymptotic properties have not been studied. Wang, Du and Shen (2013) develop
a general framework for asymptotic analysis of adaptive smoothing splines with
the use of the Green’s function. However, they require some highly technical
mathematical knowledge, and the assumptions made in their paper to estab-
lish theoretical results seem to be very strong, e.g., one assumption is that the
underlying true function is 2m-times continuously differentiable.

With the assumption that λ(x) is approximated by a step function, we study
an optimal choice for λ(x). We consider a discretized version of λ(x) with knots
si, i = 1, . . . , k: λ(x) ≡ ηi for x ∈ [si, si+1), where si satisfy 0 = s0 < s1 <
· · · < sk < sk+1 = 1 and si ∈ {x1, . . . , xn}. Then we need to estimate η =
(η1, η2, . . . , ηk) whose dimension is k. For the optimal choice of η, we propose
to use the multivariate version of the generalized cross validation (mGCV). We
show that under some moderate conditions, if we choose η by minimizing the
mGCV, then the resulting estimate is consistent in the sense that the true loss
tends to zero as the sample size goes to infinity, and is asymptotically optimal
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in the sense that it achieves the smallest possible loss in probability when the
sample size goes to infinity. Our theoretical analysis depends only on simple
linear algebra and calculus. In approximating λ(x) by a step function, we allow
the discretization of λ(x) to be as flexible as possible: our theoretical results
cover all possible cases of step functions assumed for λ(x) with flexible step size
and step number, regardless of the location of s1, . . . , sk and the number of k.

For the ordinary smoothing splines (i.e., with univariate λ), the optimal
choice of λ has been extensively studied. In particular, it has been shown that
if one chooses λ via GCV, the resulting estimate has nice asymptotic prop-
erties (Craven and Wahba, 1979; Li, 1985, 1986). However, for the adaptive
smoothing spline, similar study on the optimal choice of λ(x) (or its discretized
version—multivariate smoothing parameter) has not appeared. The main con-
tribution of this paper is to show that the adaptive smoothing spline estima-
tor with the mGCV choice of the multivariate smoothing parameter has the
same asymptotic properties as the ones established for the ordinary smoothing
splines—consistency and asymptotic optimality. This paper focuses on the the-
oretical study of the mGCV. Nevertheless, we present some numerical study of
the mGCV in Section 4 to show the practical advantage of the mGCV.

It is worth mentioning another popular approach to solve (3). Instead of
considering a step function, there have been attempts to assume a particu-
lar continuously varying penalty function for λ(x). Abramovich and Steinberg
(1996) assumed that λ(x) is proportional to (f (2)(x))−2, and Storlie, Bondell
and Reich (2010) assumed that λ(x) is proportional to (|f (2)(x)| + δ)−2γ that
allows more flexibility due to two more tuning parameters δ and γ. Kim and
Huo (2012) derived an asymptotically optimal local penalty function for λ(x).

The rest of the paper is organized as follows. In Section 2, we review ordinary
smoothing splines and the justification of GCV. In Section 3, we study asymp-
totic properties of the mGCV in choosing the multivariate smoothing parameter
in adaptive smoothing splines. In Section 4, we show the practical effectiveness
of the mGCV via simulations. We conclude in Section 5.

2. A review of ordinary smoothing splines and GCV

We review ordinary smoothing splines and the justification of GCV in Section 2.1
and Section 2.2, respectively.

2.1. A review of ordinary smoothing splines

We briefly review ordinary smoothing splines. For more details, we refer to
Green and Silverman (1994) and Eubank (1999). Throughout this paper, we
focus on the cubic smoothing splines (i.e., with m = 2 in (2)) which are the
most commonly used splines in practice. Using the cubic smoothing splines, f is
estimated by minimizing the following objective function:

J(λ; f) =

n∑

i=1

[yi − f(xi)]
2 + λ

∫ 1

0

{f (2)(x)}2dx. (4)
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Let y = (y1, . . . , yn)
T , f = (f(x1), . . . , f(xn))

T , δi = f (2)(xi), i = 2, . . . , n − 1,
δ1 = δn = 0, and h = xi+1 − xi, 1 ≤ i ≤ n − 1. (The last equation indicates
that we restrict ourselves to the case of equally spaced samples—more general
case is approachable, however not described here.) Using these notations, the
objective function in (4) can be restated as

J(λ; f) = (y − f)T (y − f) + λδTMδ, (5)

where δ = (δ2, . . . , δn−1)
T and M is defined to be the (n− 2)× (n− 2) matrix

with elements mij , given by mii =
2h
3 for i = 1, . . . , n− 2; mi,i+1 = mi+1,i =

h
6

for i = 1, . . . , n− 3; zeros elsewhere. Using the fact that Mδ = Qf , one can find
the minimizer of J(λ; f) as follows:

f̂(λ) =
(
I+ λQTM−1Q

)−1
y, (6)

where Q is defined to be the (n − 2) × n matrix with elements qij , given by
qii = qi,i+2 = 1

h
and qi,i+1 = −2

h
for i = 1, . . . , n− 2, and zeros elsewhere.

2.2. A review of generalized cross validation

In (6), the choice of λ is an important issue, and many procedures have been
proposed for the optimal choice of λ. One of the most popular procedures is the
generalized cross validation (GCV) (Craven and Wahba, 1979). GCV selects λ
by minimizing

GCVn(λ) =
n−1‖y − f̂(λ)‖2

[n−1tr(I−A(λ))]2
, (7)

where A(λ) is the smoothing matrix that satisfies f̂ = A(λ)y (i.e., A(λ) =
(I+λQTM−1Q)−1 in (6)), ‖ · ‖ indicates the Euclidean norm that will be used
throughout the paper, and ‘tr’ denotes trace. In the remainder of this subsection,
we justify the adoption of GCV: if we choose λ by minimizing GCV, the resulting
estimate minimizes the true loss for estimating f with f̂(λ) defined by

Ln(λ) = n−1‖f − f̂(λ)‖2. (8)

In the following, we use An(λ) (instead of A(λ)) to integrate the sample
size n. Similarly, fn denote f when the sample size is n.

Theorem 1 (Li (1985)). Consider the following Stein’s estimate f̃n(λ), the
associated Stein’s unbiased risk estimator (SUREn(λ)), and the loss L̃n(λ) while
estimating fn by f̃n(λ):

f̃n(λ) = yn − σ2 tr(I−An(λ))

‖(I−An(λ))yn‖2
(I−An(λ))yn,

SUREn(λ) = σ2 − σ4 [n−1tr(I−An(λ))]
2

n−1‖(I−An(λ))yn‖2
,

L̃n(λ) = n−1‖f̃n(λ) − fn‖
2.



164 H. Kim and X. Huo

Under the following conditions:

(C.1) The 4th moment of ǫ′is are upper bounded by a constant, where ǫi are
random noise in (1),

(C.2) There exists a constant K, such that ∀a > 0,

sup
x∈R

P{x− a ≤ ǫi ≤ x+ a} ≤ K · a, for ∀i,

for any δ > 0, we have

sup
fn∈Rn

P

{

sup
λ∈R+

∣
∣
∣SUREn(λ) − L̃n(λ)

∣
∣
∣ > δ

}

→ 0.

Theorem 1 demonstrates that SUREn(λ) is a uniformly consistent estimator
of L̃n(λ). Also note that minimizing the GCV function in (7) is equivalent to
minimizing the SUREn(λ). In Theorem 1, the conditions (C.1) and (C.2) can
be replaced by the following condition (C.3): ǫi are i.i.d. N(0, σ2). That is,
(C.3) implies (C.1) and (C.2).

The asymptotic equivalence between f̃n(λ) and f̂n(λ) are known as in the
following theorem due to Li (1986).

Theorem 2 (Li (1986)). For any sequence λn such that f̂n(λn) is consistent in
the sense that

n−1‖fn − f̂n(λn)‖
2 → 0, (9)

and
(n−1trAn(λn))

2/n−1trA2
n(λn) → 0, (10)

under the condition that

inf
λ≥0

n · ELn(λ) → ∞, (11)

f̃n(λn) and f̂n(λn) are asymptotically indistinguishable in the sense that

n−1‖f̃n(λn)− f̂n(λn)‖
2/Ln(λn) → 0.

Let λ̂G denote the value of λ chosen by minimizing GCV in (7). It is known
(Li, 1986) that if f is not a polynomial of degree 2 or less, (11) holds, and that

if xi are equispaced and ǫi are i.i.d. N(0, σ2), (9) and (10) hold with λn = λ̂G.

Under these general conditions, therefore, f̃n(λ̂G) and f̂n(λ̂G) are asymptotically
equivalent due to Theorem 2. Together with Theorem 1, this demonstrates that
if we choose λ by minimizing GCV, the resulting smoothing spline estimate
f̂n(λ̂G) minimizes the true loss Ln(λ) in (8).

3. Adaptive smoothing splines and mGCV

We describe an optimization approach to achieve desirable spatial adaptation
in the framework of (3). This section is organized as follows. We introduce a
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penalization method for spatial adaptation in Section 3.1. The key idea is to
turn a univariate λ in Section 2.1 to a function of the location, λ(x), which is
subsequently discretized to a multivariate smoothing parameter. For the choice
of the multivariate smoothing parameter, a multivariate version of the GCV
(mGCV) is suggested in Section 3.2. The consistency and asymptotic optimality
of the mGCV are shown in Section 3.3 and Section 3.4, respectively.

3.1. A strategy to achieve spatial adaptivity

The essence of achieving spatial adaptivity is to utilize λ(x), which is a func-
tion of location x, instead of constant λ. We assume that λ(x) is absolutely
continuous nearly everywhere except for a set of points whose measure is zero.
As described in Section 1, we consider a discretized version of λ(x): λ(x) ≡ ηi
for x ∈ [si, si+1), i = 1, . . . , k, 0 = s0 < s1 < · · · < sk < sk+1 = 1, and
si ∈ {x1, . . . , xn}. Then we need to estimate η = (η1, η2, . . . , ηk) whose dimen-
sion is k. The objective of this paper is to provide theoretical justification of the
mGCV for choosing η by proving that the mGCV choice of η is asymptotically
optimal.

For our theoretical results to cover all possible cases of the step function
assumed for λ(x) with flexible step size and step number, we allow the dis-
cretization of λ(x) to be as flexible as possible. By adopting a new sequence
λ = (λ1, . . . , λn−1), we consider the most general case of the discretization: we
assume that λ(x) ≡ λi for x ∈ [xi, xi+1), 1 ≤ i ≤ n− 1 and x1 < x2 < · · · < xn.
Then estimating η is equivalent to estimating λη which is a special case of λ
and is defined as

λη = (η1, . . . , η1
︸ ︷︷ ︸

n1

, η2, . . . , η2
︸ ︷︷ ︸

n2

, . . . , ηk, . . . , ηk
︸ ︷︷ ︸

nk

), (12)

where ni is the number of design points included in [si, si+1), i = 1, . . . , k, and
n1+· · ·+nk = n−1. To establish the asymptotic optimality of the mGCV for all
possible cases of the step function, it suffices to prove the asymptotic optimality
for the most general case, i.e., λ. For this reason, λ will be considered rather
than η in our theoretical analysis throughout this paper. Then our established
theoretical results cover all possible cases of the step function for λ(x), including
an equal-size piecewise constant penalty function with a few steps, which is
considered in Pintore, Speckman and Holmes (2006). We have the following
theorem.

Theorem 3. Let f̂ (λ) denote the solution to (3) given λ. We have f̂(λ) ≈
(I+ h

3Q
TM−1M(λ)M−1Q)−1y as n → ∞, where h,Q,M were previously de-

fined, and M(λ) ∈ R
(n−2)×(n−2) satisfies M(λ)ii = λi + λi+1, 1 ≤ i ≤ n − 2,

M(λ)i,i+1 = M(λ)i+1,i =
λi+1

2 , 1 ≤ i ≤ n− 3, and zeros elsewhere.

See Appendix A for the proof of Theorem 3. We will propose to use the
mGCV for the optimal choice of λ in Section 3.2.
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3.2. Multivariate version of GCV (mGCV)

For the estimator f̂ (λ), the choice of the multivariate smoothing parameter λ is
important for appropriate spatial adaptation. We suggest to use the multivariate
version of generalized cross validation (mGCV) defined as

mGCVn(λ) =
n−1‖y − f̂(λ)‖2

[n−1tr(I− S(λ))]2
, (13)

where S(λ) denotes the smoothing matrix which satisfies f̂(λ) = S(λ)y.
Parallel to Theorem 1, we establish the uniform consistency of SUREn(λ)

in the following theorem. Together with the fact that minimizing mGCV is
equivalent to minimizing SUREn(λ), the following theorem gives a justification
of the mGCV. In the following, we use Sn(λ) (instead of S(λ)) to take into
account the sample size n.

Theorem 4. Consider the following Stein estimate f̃n(λ), the associated un-
biased risk estimate (SUREn(λ)), and the true loss L̃n(λ) while estimating fn
by f̃n(λ):

f̃n(λ) = yn − σ2 tr(I− Sn(λ))

‖(I− Sn(λ))yn‖2
(I− Sn(λ))yn,

SUREn(λ) = σ2 − σ4 [n−1tr(I− Sn(λ))]
2

n−1‖(I− Sn(λ))yn‖2
, (14)

and
L̃n(λ) = n−1‖fn − f̃n(λ)‖

2.

Then SUREn(λ) is a uniformly consistent estimate of L̃n(λ) over fn and λ:
For any δ > 0,

sup
fn∈Rn

P

{

sup
λ∈Rn−1

|SUREn(λ)− L̃n(λ)| > δ

}

→ 0.

Proof of the above theorem is in Appendix B.
Theorem 4 establishes the uniform consistency between SUREn(λ) and L̃n(λ)

which involves f̃n(λ). To consider the original loss Ln(λ) for estimating fn with

f̂n(λ), we establish the asymptotic equivalence between f̃n(λ) and f̂n(λ) in the
following theorem.

Theorem 5. For any λ̂ such that

Ln(λ̂) → 0, (15)

and
(n−1trSn(λ̂))

2

n−1trS2
n(λ̂))

→ 0, (16)

under the following condition,

(A.1) inf
λ∈R

n−1

+

n · ELn(λ) → ∞,
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we have
|SUREn(λ̂)− L̃n(λ̂)− n−1‖ǫn‖

2 + σ2|

Ln(λ̂)
→ 0, (17)

and
n−1‖f̃n(λ̂)− f̂n(λ̂)‖

2

Ln(λ̂)
→ 0. (18)

Proof of the above theorem is in Appendix C.
(A.1) states that the optimal rate of convergence of ELn(λ) to zero must

be slower than n−1. For (A.1), in the typical polynomial spline smoothing
problems, infλ>0 ELn(λ) tends to zero at the rate n

−1+δ for some small constant
δ > 0 except if the underlying function is the sampled values of a low order
polynomial (Wahba, 1985). In our framework, we need to study when (A.1)
holds—this is an open problem.

Let λ̂mG denote the value of λ chosen by minimizing the mGCV function in
(13). Using Theorem 5, we can show that under certain conditions, f̃n(λ̂mG) and

f̂n(λ̂mG) are asymptotically equivalent, which will be established in Theorem 9
in Section 3.3.

3.3. Consistency of mGCV

We say that f̂n(λ) is consistent if Ln(λ) → 0 as n → ∞, where Ln(λ) is the loss

while estimating fn by f̂n(λ), i.e., Ln(λ) = n−1‖fn − f̂n(λ)‖
2. In this section,

we show that if we choose λ via mGCV, then the resulting f̂ is consistent. To
establish the consistency of mGCV, we need the following two conditions:

(A.2) Recall that as n → ∞, we have Sn(λ) ≈ (I+Σn(λ))
−1, where Σn(λ) =

h
3Q

TM−1M(λ)M−1Q. Let 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn be the eigenvalues of

Σn(λ). For any m such that m/n → 0, we have
(
n−1

∑n
i=m+1 τ

−1
i

)2

n−1
∑n

i=m+1 τ
−2
i

→ 0, as n → ∞,

(A.3) There exists λn, such that Ln(λn) → 0.

The following theorem establishes the consistency of mGCV.

Theorem 6 (Consistency). Under (A.2) and (A.3), f̂n(λ̂mG), where λ̂mG is

the mGCV choice, is consistent, i.e., Ln(λ̂mG) → 0.

Proof of the above theorem is in Appendix D.
The above (A.2) involves eigenvalues, and seems hard to verify. The following

theorem provides a simple sufficient condition for it.

Theorem 7. For the estimator f̂(λ), if

max(λn)/min(λn) < Constant, as n → ∞,

where max(λn) and min(λn) denote the maximal and minimal values among
λi, 1 ≤ i ≤ n− 1, then condition (A.2) holds.
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Proof of the above theorem is in Appendix E.
For (A.3), it is known (Li, 1985, Theorem 5.5) that such λn exists for the

nonadaptive case if xi’s are equispaced and ǫi’s are i.i.d. N(0, σ2). Since the
nonadaptive smoothing spline is a special case of the spatially adaptive smooth-
ing spline, under the same conditions, (A.3) holds for the spatially adaptive
smoothing splines too. Then we have the following corollary, together with The-
orem 7:

Corollary 8. If xi’s are equispaced and ǫi’s are i.i.d. N(0, σ2), f̂n(λ̂mG) is

consistent, provided that max(λ̂mG)/min(λ̂mG) < Constant as n → ∞.

In the next theorem, using Theorem 5 and Theorem 6, we show that under
certain conditions, f̃n(λ̂mG) and f̂n(λ̂mG) are asymptotically indistinguishable.

Theorem 9. Under (A.1), (A.2), and (A.3),

n−1‖f̃n(λ̂mG)− f̂n(λ̂mG)‖
2

Ln(λ̂mG)
→ 0,

where λ̂mG is the mGCV choice.

Proof of the above theorem is in Appendix F. Together with Theorem 4,
Theorem 9 demonstrates that if we choose λ by minimizing mGCV, the resulting
estimate f̂n(λ̂mG) asymptotically minimizes the true loss Ln(λ), which is a direct

measure for estimating fn by f̂n(λ).

3.4. Asymptotic optimality of mGCV

In a series of historic papers (Li, 1985, 1986; Girard, 1991), asymptotic optimality
has been established for the GCV. In this section, we establish the asymptotic
optimality of the mGCV in the same sense as in Li (1986). The asymptotic
optimality in adaptive smoothing splines is defined as follows:

Ln(λ̂mG)

inf
λ∈R

n−1

+

Ln(λ)
→ 1, in probability, (19)

where λ̂mG is the minimizer of the mGCV function in (13). Under certain con-
ditions, the mGCV method of selecting λ is asymptotically optimal as indicated
by the following theorem.

Theorem 10 (Asymptotic Optimality). Under (A.1), (A.2), and (A.3),

f̂n(λ̂mG), where λ̂mG is the mGCV choice, is asymptotically optimal as in (19).

Proof of the above theorem is in Appendix G.
Theorem 10 states that under certain conditions, the mGCV choice, λ̂mG,

and the optimal value of λ behave the same for sufficiently large n in terms of
the corresponding values of the loss. It also says that Ln(λ̂mG) will tend toward
the minimal loss as n → ∞.
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Recall that λ has the dimension of the sample size minus one. Although
this λ allows the most flexible adaptation to varying roughness, it may not be
computationally efficient. For more efficient computation, it is generally recom-
mended to reduce the dimension of λ by assuming a step function for λ(x) with
the number of jumps much less than the sample size, such as λη in (12). As a
special case of Theorem 10, it can be easily shown that if we choose λη by min-
imizing the mGCV, the asymptotic optimality still holds. Under the following
conditions (A.1′), (A.2′), and (A.3′):

(A.1′) infη ∈ R
k
+ n · ELn(λη) → ∞,

(A.2′) Recall that as n → ∞, we have Sn(λη) ≈ (I + Σn(λη))
−1, where

Σn(λη) = h
3Q

TM−1M(λη)M
−1Q. Let 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn be the

eigenvalues of Σn(λη). For any m such that m/n → 0, we have
(
n−1

∑n
i=m+1 τ

−1
i

)2

n−1
∑n

i=m+1 τ
−2
i

→ 0, as n → ∞,

(A.3′) There exists λη,n such that Ln(λη,n) → 0,

we have
Ln(λ̂η,mG)

infη∈R
k

+
Ln(λη)

→ 1, in probability,

where λ̂η,mG is the value of λη chosen by minimizing the mGCV function in
(13) with λ replaced by λη.

4. Numerical study

The main objective of this paper is to provide the theoretical justification for
employing the mGCV in adaptive smoothing splines. Nevertheless, we present
some numerical study of the mGCV to show its practical effectiveness. We sug-
gest a simple segment-based search algorithm to estimate a piecewise constant
penalty function using the mGCV, which has proved to work well in practice:

1. Assume the initial λ = (λ1, . . . , λn−1) = (λ, . . . , λ), where λ is chosen via
the GCV.

2. Given λ from the step 1, define a sequence λ̃
1
(i0, i1, α) = (λ̃1

1, . . . , λ̃
1
n−1)

where we impose the following: if i0 ≤ i ≤ i1, λ̃
1
i = λi + α; and λ̃1

i = λi,

otherwise. We find i0, i1, α, such that the mGCV(λ̃
1
) is minimized. This

step can be done via an extensive search.

3. Given λ̃
1
from the step 2, define a sequence λ̃

2
(β) such that for 1 ≤ i ≤

n − 1, λ̃2
i = β · λ̃1

i where β > 0. We find β such that the mGCV(λ̃
2
) is

minimized. This step can be done via an extensive search. We declare the
convergence and terminate, if β is close enough to 1 or the newly obtained
minimum value of the mGCV is larger than the one at the previous iter-

ation. Otherwise, bring λ̃
2
back to the step 2 with λ replaced by λ̃

2
. The

final λ̃
2
is our estimate of the multivariate smoothing parameter.
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(a) Estimated function (b) Smoothing parameter
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Fig 2. Illustration of our numerical results using the Doppler and Bumps functions (top and
bottom rows, respectively). In (a), the estimated function using our method (solid) is shown,
together with the result from the classic smoothing spline (dashed). In (b), our multivariate
smoothing parameter (solid) is shown, together with the global smoothing parameter from the
standard GCV (dashed).

Even though the asymptotic optimality of the mGCV holds for the most gen-
eral case of the piecewise constant penalty function, assuming a small number
of pieces is recommended in practice for more efficient computation. In our nu-
merical study, we force the number of pieces to be small by specifying the step
size of the above search algorithm to be large enough. The suggested simple
algorithm only guarantees a local minimum of the mGCV function. Neverthe-
less, promising numerical results have been obtained in our simulation study: we
found that our method outperforms or performs comparably with other compet-
itive methods. As an alternative, well-known nonlinear optimization algorithms
(e.g., Nelder-Mead, quasi-Newton, and conjugate gradient methods) can be used
to minimize the mGCV function. However, researching on the best numerical
strategy is beyond the scope of this paper.

In Fig. 2, we illustrate our numerical results using the two popular exam-
ples of the Doppler and Bumps functions introduced in Fig. 1. For both ex-
amples, we consider 128 data points sampled regularly on [0, 1] and the signal-
to-noise ratio of 7. Each row shows the estimated function in (a) and the esti-
mated smoothing parameter in log scale in (b). Our results are shown in a solid
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line, together with the results from the standard smoothing spline in a dashed
line. For the choice of the smoothing parameter in the standard smoothing
spline, we use the GCV. We observe that our estimated functions in (a) show
much better agreement with the true functions than the standard smoothing
splines do. We also observe that our estimated multivariate smoothing param-
eter in (b) is spatially adaptive: it has relatively small values in the regions
of large local variations, and large values in the regions of small local varia-
tions.

Based on repeated simulations, we further verify the performance of our
method using the Doppler and Bumps examples via the following four ways:

• Comparison with the traditional smoothing splines (denoted as SS): This
comparison will show the advantage of adopting the adaptive smoothing
parameter over the global smoothing parameter. The global smoothing
parameter for SS is chosen via the GCV.

• Comparison with the spatially adaptive smoothing splines (denoted as
SASS) in Pintore, Speckman and Holmes (2006): SASS assumes an equal-
size piecewise constant penalty function. 5 and 10 pieces are assumed
for the Doppler and Bumps functions, respectively. This comparison will
show the advantage of adopting more flexible structure on the piecewise
constant penalty function rather than the equal-size pieces.

• Comparison with the locally optimal adaptive smoothing splines (denoted
as LOASS) in Kim and Huo (2012): LOASS assumes an asymptotically op-
timal local penalty function that is continuously varying. This comparison
will show the advantage of adopting a piecewise constant penalty function
rather than the continuously varying penalty function.

• Comparison with the Wavelet shrinkage method in Donoho and Johnstone
(1995): Wavelet shrinkage has emerged to be a powerful nonparametric
smoothing method. We choose the Symmlet wavelets with 8 vanishing mo-
ments, and the coarsest level is set to be 4. This comparison will show the
effectiveness of our spline-based method for fitting functions with varying
roughness.

We compare the mean squared error (MSE) for fitting the two functions. The

MSE is defined as MSE = n−1
∑n

i=1(f(xi) − f̂(xi))
2. For each function, we

consider 128, 256, 512 data points sampled regularly on [0, 1] and the signal-to-
noise ratio of 7. For each example, we run 100 experiments, and then take the
averagedMSE as a performance measure. The results are summarized in Table 1:
the averaged MSE (in bold-face if it is the smallest one) with the standard error
(in parentheses) are reported. The results from the competitive methods are
reproduced from Kim and Huo (2012). For our method to be computationally
efficient, we intentionally made the number of pieces in the estimated piecewise
constant penalty function to be small by setting the step size of the search
algorithm large enough. As a result, the average of the number of pieces in our
estimated penalty function was obtained as 5 and 8 for the Doppler and Bumps
functions, respectively. In Table 1, we observe that our method outperforms or
performs competitively with other methods.
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Table 1

The five competing methods are compared using the Doppler and Bumps functions. The
averaged MSE based on 100 simulations are shown. The values in the parentheses are

standard errors. In each case, the smallest MSE is indicated in bold-face

n=128 Doppler Bumps

SS 2.98 (0.32) 27.11 (0.55)

SASS 2.58 (0.42) 29.50 (0.41)

LOASS 1.46 (0.21) 17.92 (0.95)

Wavelets 1.91 (0.21) 3.51 (0.28)

Our method 0.61 (0.14) 0.89 (0.15)

n=256 Doppler Bumps

SS 1.23 (0.15) 4.35 (0.45)

SASS 0.85 (0.25) 4.84 (0.50)

LOASS 0.78 (0.07) 0.79 (0.07)

Wavelets 1.17 (0.13) 3.32 (0.19)

Our method 0.39 (0.07) 0.87 (0.12)

n=512 Doppler Bumps

SS 0.58 (0.04) 1.19 (0.14)

SASS 0.56 (0.05) 1.15 (0.21)

LOASS 0.56 (0.04) 0.75 (0.07)

Wavelets 0.81 (0.07) 2.62 (0.14)

Our method 0.35 (0.05) 0.85 (0.12)

5. Conclusion

The asymptotic optimality of the generalized cross validation (GCV) is well
known in smoothing splines. The multivariate version of the GCV (mGCV)
is more flexible in practice, and has been used to achieve spatial adaptivity
in smoothing splines. However, little is known about its theoretical property.
We show that the mGCV also has the asymptotic optimality, under general
conditions that are comparable as those conditions in the case of GCV. Our
analysis provides theoretical justification for employing the mGCV in choosing
the multivariate smoothing parameter in spatially adaptive smoothing splines.

Appendix A: Proof of Theorem 3

We have
∫ xi+1

xi

{f (2)(x)}2dx =
h

3

(
δ+i
)2
+
h

3

(
δ−i+1

)2
+
h

3
δ+i δ

−
i+1, i = 1, . . . , n−1, (20)

where δ+i is the second derivative of f from the right at xi, and δ−i+1 is the second

derivative of f from the left at xi+1, that is, δ
+
i = f (2)(x+

i ) and δ−i = f (2)(x−
i ),

where x+
i = lima→0,a>0(xi + a) and x−

i = lima→0,a<0(xi + a), and h = xi+1 −
xi, 1 ≤ i ≤ n − 1. Note that δ−i 6= δ+i for λi−1 6= λi: |δ

+
i − δ−i | is constrained

through the quantity |{λ(x−
i )−λ(x+

i )}/{λ(x
−
i )λ(x

+
i )}| (Pintore, Speckman and
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Holmes, 2006). Recall that λ(x) ≡ λi for x ∈ [xi, xi+1], 1 ≤ i ≤ n− 1. Then as
n → ∞, we have λ(x−

i ) ≈ λ(x+
i ), and consequently, δ+i ≈ δ−i . Then as n → ∞,

(20) can be approximated as
∫ xi+1

xi

{f (2)(x)}2dx ≈
h

3
δ2i +

h

3
δ2i+1 +

h

3
δiδi+1, i = 1, . . . , n− 1, (21)

where δi = f (2)(xi), i = 2, . . . , n − 1, δ1 = δn = 0. Using (21), as n → ∞, we
have

J⋆(λ; f) = (y − f)T (y − f) +

∫ 1

0

λ(x){f (2)(x)}2dx

≈ (y − f)T (y − f) +
h

3

n−1∑

i=1

λi(δ
2
i + δ2i+1 + δiδi+1)

= (y − f)T (y − f) +
h

3
δTM(λ)δ, (22)

where δ = (δ2, . . . , δn−1)
T and M(λ) ∈ R

(n−2)×(n−2) satisfies M(λ)ii = λi +

λi+1, 1 ≤ i ≤ n − 2, M(λ)i,i+1 = M(λ)i+1,i = λi+1

2 , 1 ≤ i ≤ n − 3, and

zeros elsewhere. Pintore, Speckman and Holmes (2006) showed that with the

assumption of step function on λ(x), the solution f̂ (λ) satisfies all conditions,
but the continuity of the second derivative of f , to be a natural cubic spline.
However, since δ+i ≈ δ−i as n → ∞, we can take advantage of the fact that

Mδ ≈ Qf as n → ∞. (Note that the identity Mδ = Qf holds if and only if f(x)
is a natural cubic spline.) Then, as n → ∞, using the fact that Mδ ≈ Qf and

by considering the first order condition, from (22), f̂(λ) can be approximated
as

f̂ (λ) ≈

(

I+
h

3
QTM−1M(λ)M−1Q

)−1

y.

Appendix B: Proof of Theorem 4

To prove Theorem 4, we extend the proof of Theorem 1 in Li (1985). Note that
λ can be factorized as λ1(1, λ2/λ1, . . . , λn−1/λ1) where λ1 is the first element
of λ, and let λ̃ denote (1, λ2/λ1, . . . , λn−1/λ1). Due to Theorem 3, as n → ∞,
we have Sn(λ) ≈ (I + Σn(λ))

−1 where Σn(λ) =
h
3Q

TM−1M(λ)M−1Q. Also

note that Σn(λ) = λ1Σn(λ̃). Let 0 ≤ τ̃1 ≤ τ̃2 ≤ · · · ≤ τ̃n be the eigenvalues of
Σn(λ̃). As in Li (1985), the key to prove the above theorem is to establish the
following three inequalities: There exist δ1, δ2 > 0 and an → 0 such that

P

{

inf
λ1≥0

inf
λ̃≥0

λ2
1

n∑

i=1

(f(xi) + ǫi)
2(λ1 + τ̃i)

−2/Qn(λ1) ≤ an

}

≤ δ2/2,

P

{

sup
λ1≥0

sup
λ̃≥0

λ2
1

nQn(λ1)

n∑

i=1

(λ1 + τ̃i)
−1

∣
∣
∣
∣
∣

n∑

i=1

ǫ2i − σ2

λ1 + τ̃i

∣
∣
∣
∣
∣
≥ anδ1

}

≤ δ2/2,
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P

{

sup
λ1≥0

sup
λ̃≥0

λ2
1

nQn(λ1)

n∑

i=1

(λ1 + τ̃i)
−1

∣
∣
∣
∣
∣

n∑

i=1

f(xi)ǫi
λ1 + τ̃i

∣
∣
∣
∣
∣
≥ anδ1

}

≤ δ2/2,

where Qn(λ1) = λ2
1

∑n
i=1(λ1+ τ̃i)

−2(f(xi)
2+σ2). A careful scrutiny at the proof

in Li (1985) revealed that the choice of δ1, δ2, and an does not depend on the
values of τ̃i, so the argument in Li (1985) is sufficient to establish Theorem 4.
To avoid repeating a lengthy discussion, we omit a detailed proof here.

Appendix C: Proof of Theorem 5

We first prove (17). Let An(λ̂) = In − Sn(λ̂). Rewrite (17) as

2

∣
∣
∣
∣
∣

σ2trAn(λ̂)

n‖An(λ̂)yn‖2
〈ǫn,An(λ̂)yn〉 −

σ4(trAn(λ̂))
2

n‖An(λ̂)yn‖2
− n1‖ǫn‖

2 + σ2

∣
∣
∣
∣
∣
/Ln(λ̂)

≤ 2σ2trAn(λ̂)
∣
∣
∣〈ǫn,An(λ̂)fn〉

∣
∣
∣ /n‖An(λ̂)yn‖

2Ln(λ̂) (23)

+ 2σ2trAn(λ̂)
∣
∣
∣〈ǫn,Sn(λ̂)ǫn〉 − σ2trSn(λ̂)

∣
∣
∣ /n‖An(λ̂)yn‖

2Ln(λ̂) (24)

+ 2

∣
∣
∣
∣
∣

(

σ2trAn(λ̂)

‖An(λ̂)yn‖2
− 1

)

(σ2 − n−1‖ǫn‖
2)

∣
∣
∣
∣
∣
/Ln(λ̂). (25)

It suffices to show (23), (24), (25) tend to 0. Note that (15) is equivalent to

n−1‖An(λ̂)yn‖
2 → σ2. For (23) and (24), using (15), it suffices to show

sup
λ>0

∣
∣n−1〈ǫn,An(λ)fn〉

∣
∣ /ELn(λ) → 0, (26)

sup
λ>0

n−1
∣
∣σ2trSn(λ)− 〈ǫn,Sn(λ)ǫn〉

∣
∣ /ELn(λ) → 0, (27)

and
sup
λ>0

|Ln(λ)/ELn(λ)− 1| → 0. (28)

For (26), given any δ > 0, we have by Chebychev inequality that

P{sup
λ>0

∣
∣n−1〈ǫn,An(λ)fn〉

∣
∣ /ELn(λ) > δ}

≤ δ−2n−2
E‖ǫn‖

2‖An(λ)fn‖
2(ELn(λ))

−2. (29)

Using the fact that n−1‖An(λ)fn‖
2 ≤ ELn(λ) and (A.1), (29) goes to 0. For

(27), by using the fact that E(σ2trSn(λ) − 〈ǫn,Sn(λ)ǫn〉)
2 ≤ 2σ4trS2

n(λ) and
σ2n−1trS2

n(λ) ≤ ELn(λ), it can be proved in a similar way to prove (26). For
(28), it suffices to show the following

sup
λ>0

n−1 |〈An(λ)fn,Sn(λ)ǫn〉| /ELn(λ) → 0, (30)

and
sup
λ>0

n−1
∣
∣‖Sn(λ)ǫn‖

2 − σ2trS2
n(λ)

∣
∣ /ELn(λ) → 0. (31)
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Notice that (30) and (31) can be proved in the same way as (26) and (27),
respectively. Now only (25) remains to be proved. To prove (25), it suffices to
show

∣
∣
∣σ2n−1trAn(λ̂)− n−1‖An(λ̂)yn‖

2
∣
∣
∣

∣
∣σ2 − n−1‖ǫn‖

2
∣
∣ /Ln(λ̂) → 0.

Since ‖An(λ̂)yn‖
2 = ‖ǫn‖

2 + 2〈ǫn,An(λ̂)fn〉 − 2〈ǫn,Sn(λ̂)ǫn〉+ ‖fn − f̂n‖
2, we

have
∣
∣
∣σ2n−1trAn(λ̂)− n−1‖An(λ̂)yn‖

2
∣
∣
∣

≤

∣
∣
∣
∣
σ2 −

1

n
‖ǫn‖

2

∣
∣
∣
∣
+ Ln(λ̂) +

2

n

∣
∣
∣〈ǫn,An(λ̂)fn〉

∣
∣
∣

+
2

n

∣
∣
∣〈ǫn,Sn(λ̂)ǫn〉 − σ2trSn(λ̂)

∣
∣
∣+ n−1σ2trSn(λ̂).

Then using (26), (27), and (15), it suffices to show

(σ2 − n−1‖ǫn‖
2)2/Ln(λ̂) → 0, (32)

and
(n−1trSn(λ̂))

∣
∣σ2 − n−1‖ǫn‖

2
∣
∣ /Ln(λ̂) → 0. (33)

By (A.1), (28), and the central limit theorem, we have (32). Using (32), (28),

(A.1), and the fact that (n−1trSn(λ̂))
2 ≤ ELn(λ̂), we have (33). Hence, we

complete the proof of (17). Now it remains to prove (18). The numerator of
(18) can be rewritten as

n−1‖f̃n(λ̂)− f̂n(λ̂)‖
2 =

(

n−1σ2trAn(λ̂)

n−1‖An(λ̂)yn‖2
− 1

)2

n−1‖An(λ̂)yn‖
2

=

[

(σ2 − ‖ǫn‖
2

n
)− Ln(λ̂)−

2〈ǫn,An(λ̂)fn〉
n

+ 2〈ǫn,Sn(λ̂)ǫn〉
n

− σ2trSn(λ̂)
n

]2

n−1‖An(λ̂)yn‖2
.

Since n−1‖An(λ̂)yn‖
2 → σ2, to prove (18), it suffices to show the following:

(σ2 − n−1‖ǫn‖
2)2/Ln(λ̂) → 0, (34)

(

n−1〈ǫn,An(λ̂)fn〉
)2

/Ln(λ̂) → 0, (35)

(n−1trSn(λ̂))
2/Ln(λ̂) → 0, (36)

and
(

n−1〈ǫn,Sn(λ̂)ǫn〉
)2

/Ln(λ̂) → 0. (37)

Notice that (34) is the same as (32). Using (26), (35) can be easily proven. (36)
follows from (16) and (28). Finally, (37) follows from (27) and (36).
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Appendix D: Proof of Theorem 6

Recall the Stein estimates (f̃n), the associated unbiased risk estimate (SUREn),
and the true loss (L̃n) defined in Theorem 4. Note in Theorem 4 that SUREn(λ)
is a uniformly consistent estimate of L̃n(λ) over fn and λ. Also note that by

comparing (13) and (14), λ̂mG also minimizes SUREn(λ). We first need the
following Lemmas 11 and 12 to establish the upcoming Lemma 13.

Lemma 11. Under (A.3), we have L̃n(λn) → 0, where λn satisfies (A.3).

Proof. We have

L̃n(λn) =
1

n
‖f̃n(λn)− fn‖

2

=
1

n

∥
∥
∥
∥
ǫn − σ2 tr(I− Sn(λn))

‖(I− Sn(λn))yn‖2
(I− Sn(λn))yn

∥
∥
∥
∥

2

≤
1

n

(

1−
σ2tr(I− Sn(λn))

‖(I− Sn(λn))yn‖2

)2

‖ǫn‖
2

+
2

n

∣
∣
∣
∣
1−

σ2tr(I− Sn(λn))

‖(I− Sn(λn))yn‖2

∣
∣
∣
∣

∣
∣
∣
∣

σ2tr(I− Sn(λn))

‖(I− Sn(λn))yn‖2

∣
∣
∣
∣
‖ǫn‖|fn − Sn(λn)y‖

+
1

n

(

σ2 tr(I− Sn(λn))

‖(I− Sn(λn))yn‖2

)2

‖fn − Sn(λn)y‖
2.

It suffices to show that

‖(I− Sn(λn))yn‖
2

tr(I− Sn(λn))
→ σ2. (38)

Note that from the fact σ2(n−1trSn(λn))
2 ≤ σ2n−1trS2

n(λn) ≤ ELn(λn) → 0,
we have n−1trSn(λn) → 0. Thus, in the denominator of (38), we have

n−1tr(I− Sn(λn)) = 1− n−1trSn(λn) → 1. (39)

We also have, for the numerator of (38),

n−1‖(I− Sn(λn))yn‖
2 ≤ n−1‖ǫn‖+ n−1‖fn − f̂n‖

2 + 2n−1|〈ǫn, fn − f̂n〉| → σ2,
(40)

by the fact n−1‖ǫn‖
2 → σ2, (A.3), and the Cauchy-Schwartz inequality. Finally,

(38) follows from (39) and (40).

Lemma 12. Under (A.3), we have L̃n(λ̂mG) → 0.

Proof. From the uniform consistency of SUREn(λ), together with the fact that

λ̂mG also minimizes SUREn(λ), we have L̃n(λ̂mG) = SUREn(λ̂mG) + op(1) ≤

SUREn(λn) + op(1) = L̃n(λn) + op(1) = op(1), where the last equality follows
from Lemma 11.
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Once again using the fact of the uniform consistency of SUREn(λ), from

the result of Lemma 12, we have SUREn(λ̂mG) → 0. Equivalently, we have the
following Lemma.

Lemma 13. Under (A.3), we have mGCVn(λ̂mG) → σ2.

We also need the following Lemmas 14, 15 and 16.

Lemma 14. If ǫis are i.i.d. N(0, σ2),

lim
n→∞

P

{

‖(I− Sn(λ̂))yn‖
2

‖(I− Sn(λ̂))fn‖2 + σ2tr(I− Sn(λ̂))2
≤ 1− δ

}

= 0, for any δ > 0.

(41)

Proof. It can be proved similarly as in Li (1985): See the proof of Lemma 5.2 in
Li (1985)[pp.1374–1376]. The key is to upper bound five terms in (7.3.8) in Li
(1985) with a small quantity ǫ/5. Note that as n → ∞, our smoothing matrix
S(λ) has the same canonical form of (4.9) in Li (1985) with λi replaced by τi.
A careful check of the proof in Li (1985) reveals that the same argument applies
for arbitrary λi, hence the above lemma can be established accordingly.

Lemma 15. For any sequence λ̂ such that

mGCVn(λ̂) → σ2, (42)

under (A.2), we have n−1trSn(λ̂) → 0.

Proof. Using (42) and (41), we have [n−1tr(I−Sn(λ̂))]
2 ≥ [n−1tr(I−Sn(λ̂))

2](1−

op(1)). Then with the fact that [n−1tr(I − Sn(λ̂))]
2 ≤ n−1tr(I − Sn(λ̂))

2, we
have the following:

[n−1tr(I− Sn(λ̂))]
2

n−1tr(I− Sn(λ̂))2
→ 1. (43)

Recall that as n → ∞, we have Sn(λ̂) ≈ (I + Σn(λ̂))
−1, where Σn(λ̂) =

h
3Q

TM−1M(λ̂)M−1Q, and the eigenvalues ofΣn(λ̂) are 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn.

It is clear that the eigenvalues of I− Sn(λ̂) are τi(1 + τi)
−1. Similarly as in Li

(1985), let τ be the random variable taking values τi with probability n−1 for
each i. Then (43) means (Eτ(1 + τ)−1)2/Eτ2(1 + τ)−2 → 1, which implies

τ(1 + τ)−1/Eτ(1 + τ)−1 → 1 in probability. (44)

It is known (Girard, 1991) that (A.2) can be replaced with the following weaker
condition (A.2′): There exist constants p and q, 0 < p < q < 1 such that
lim sup τ[pn]/τ[qn] < 1, where [x] denotes the greatest integer less than or equal
to x. Since (44) implies that both τ[pn](1 + τ[pn])

−1 and τ[qn](1 + τ[qn])
−1 tend

to Eτ(1 + τ)−1, we have Eτ(1 + τ)−1 → 1 due to (A.2′). It is clear that Eτ(1 +

τ)−1 → 1 implies n−1trSn(λ̂) → 0.

Lemma 16. For any sequence λ̂ such that mGCVn(λ̂) → σ2, f̂n(λ̂) is consistent

if and only if n−1trSn(λ̂) → 0.
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Proof. If f̂n(λ̂) is consistent, Ln(λ̂) → 0, and hence, n−1‖yn − f̂n(λ)‖
2 →

σ2, since n−1‖ǫn‖ → σ2. Then, from the fact that mGCVn(λ̂) = n−1‖yn −

f̂n(λ̂)‖
2
2/[n

−1tr(I− Sn(λ̂))]
2 → σ2, we have [n−1tr(I− Sn(λ̂))]

2 → 1, and thus,

n−1trSn(λ̂) → 0. Conversely, if n−1trSn(λ̂) → 0, since mGCVn(λ̂) → σ2, we

have n−1‖yn − f̂n(λ̂)‖
2 → σ2. Then, with the fact that n−1‖ǫn‖ → σ2, we have

Ln(λ̂) → 0, which implies f̂n(λ̂) is consistent.

From Lemmas 13, 15, and 16, Theorem 6 is proved.

Appendix E: Proof of Theorem 7

Since we assume n → ∞, we have f̂ (λ) ≈ (I + h
3Q

TM−1M(λ)M−1Q)−1y as
n → ∞ provided in Theorem 3. We start with some basic linear algebra facts.
It can be shown that for matrix Φ = M−1Q, we have Φ(1,2,...,n−2)×(2,3,...,n−1) =
2I− 6M−1. The above can be verified by multiplying M on both sides; it also
indicates that we only need to consider the eigenvalues of the matrix (2I −
6M−1)TM(λ)(2I−6M−1), because one can then apply the interlacing theorem
to describe the eigenvalues of Σ(λ). Formally, we have

(2I− 6M−1)TM(λ)(2I− 6M−1) = Σ(λ)(2,...,n−1)×(2,...,n−1). (45)

That is, the left side is a principal submatrix of Σ(λ). It is known (Craven and
Wahba, 1979) that M−1 = ΓTD1Γ, where D1 = diag{1/(2 + cos iπ

n
)}, i =

1, 2, . . . , n − 2, and Γjk =
√

2
n
sin jkπ

n
, 1 ≤ j, k ≤ n − 2. Noticing that Γ

is orthogonal, we can easily derive the following: 2I − 6M−1 = ΓT D2Γ,

where D2 = diag{
2 cos iπ

n
−2

2+cos iπ

n

}, 1 ≤ i ≤ n − 2. Bringing this into (45), we have

(2I − 6M−1)TM(λ)(2I − 6M−1) = ΓTD2ΓM(λ)ΓTD2Γ, which has the same
eigenvalues as D2ΓM(λ)ΓTD2.

We need the following lemma.

Lemma 17. Suppose matrix A ∈ R
n×n and A is symmetric positive definite.

Suppose the eigenvalues of A are γ1(A) ≤ γ2(A) ≤ · · · ≤ γn(A). Let D be an
diagonal matrix D = diag{d1, d2, . . . , dn}, where 0 ≤ d1 ≤ d2 ≤ · · · ≤ dn. Let
τ1 ≤ τ2 ≤ · · · ≤ τn be the eigenvalues of matrix DAD. We have γ1(A)d2i ≤ τi ≤
γn(A)d2i .

Proof. According to the minimax theorem, we have

τi = sup
Ωi

inf
x∈Ωi

xTDADxT

xTx
,

where Ωi is an i-dimensional linear subspace of Rn(Ωi ⊂ R
n) and x is an n-

dimensional vector. We can easily establish the following:

γ1(A)xTD2x ≤ xTDADx ≤ γn(A)xTD2x.
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Applying operator supΩi
infx∈Ωi

on all the three terms above, we have

γ1(A) sup
Ωi

inf
x∈Ωi

xTD2x

xTx
≤ τi ≤ γn(A) sup

Ωi

inf
x∈Ωi

xTD2x

xTx
.

Notice that the first term above is γ1(A)d2i and the last term is γn(A)d2i .

Due to the above lemma, if τ1 ≤ τ2 ≤ · · · ≤ τn−2 are the eigenvalues of
D2ΓM(λ)ΓTD2, we have

γmin

(
ΓM(λ)ΓT

) 4(1− cos iπ
n
)2

(2 + cos iπ
n
)2

≤ τi ≤ γmax

(
ΓM(λ)ΓT

) 4(1− cos iπ
n
)2

(2 + cos iπ
n
)2

,

where γmin(ΓM(λ)ΓT ) and γmax(ΓM(λ)ΓT ) are the minimum and maximum
eigenvalues of ΓM(λ)ΓT . Recall Γ is orthogonal, so we have γmin(ΓM(λ)ΓT ) =
γmin(M(λ)) and γmax(ΓM(λ)ΓT ) = γmax(M(λ)). We will need the following
lemma to examine the coefficient of variations condition.

Lemma 18. If there are two functions 0 < C1(n) < C2(n) such that

C2(n)

C1(n)
< c where c > 0 is a constant,

and

C1(n) ·

(
1− cos iπ

n

)2

(2 + cos iπ
n
)2

≤ τi ≤ C2(n) ·

(
1− cos iπ

n

)2

(2 + cos iπ
n
)2

,

then we have, for any m satisfying m
n
→ 0,

(∑n
m τ−1

i /n
)2

∑n
m τ−2

i /n
→ 0 as n → ∞.

Proof. For the numerator, we have

1

n

n∑

m

(2 + cos iπ
n
)2

(
1− cos iπ

n

)2 ≤
1

n

n∑

m

9
(
1− cos iπ

n

)2 ≈

∫ 1

m

n

9

(1− cosxπ)2
dx

= −
(−2 + cos mπ

n
) cot mπ

2n (csc mπ
2n )2

2π
= A1.

For the denominator, we have

1

n

n∑

m

(
2 + cos iπ

n

)4

(
1− cos iπ

n

)4 ≥
1

n

n∑

m

1
(
1− cos iπ

n

)4 ≈

∫ 1

m

n

1

(1− cosxπ)4
dx

= −
(−32 + 29 cos mπ

n
− 8 cos 2mπ

n
+ cos 3mπ

n
) cot mπ

2n (csc mπ
2n )6

560π
= A2.
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Now we put everything together:
(
∑n

m
1
τi
/n
)2

∑n
m

1
τ2
i

/n
≤

A2
1C

−2
1 (n)

A2C
−2
2 (n)

= −
C2

2 (n)

C2
1 (n)

420 cos mπ
2n (−2 + cos mπ

n
)2 sin mπ

2n

π(−32 + 29 cos mπ
n

− 8 cos 2mπ
n

+ cos 3mπ
n

)
→ 0.

Combining the discussion after Lemma 17 and Lemma 18, if we can find a suf-
ficient condition of M(λ) such that γmax(M(λ))/γmin(M(λ)) is upper bounded
by a constant, then we find a sufficient condition for (A.2). We have the fol-
lowing lemma.

Lemma 19. Let λmin and λmax denote the minimum and maximum among
λ′
ks, 1 ≤ k ≤ n− 1. We have

γmax(M(λ))

γmin(M(λ))
≤ 3 ·

λmax

λmin
.

Proof. Let M(λ)ij be the (i, j) entry of M(λ), and γ denote an eigenvalue of
M(λ). Due to the Gershgorin circle theorem (Horn and Johnson, 1985), we have
|γ −M(λ)ii| ≤

∑

j 6=i |M(λ)ij |, 1 ≤ i ≤ n− 2. Consequently, we have

|γ| ≥ |M(λ)ii| − |γ −M(λ)ii| ≥ |M(λ)ii| −
∑

j 6=i

|M(λ)ij |. (46)

By recalling the structure of M(λ), we have that

|M(λ)11| −
∑

j 6=1

|M(λ)1j | = λ1 +
1

2
λ2, (47)

|M(λ)n−2,n−2| −
∑

j 6=n−2

|M(λ)n−2,j | =
1

2
λn−2 + λn−1, and (48)

|M(λ)ii| −
∑

j 6=i

|M(λ)ij | =
1

2
λi +

1

2
λi+1, 2 ≤ i ≤ n− 3. (49)

Combining (46) through (49), we have γmin(M(λ)) ≥ λmin. On the other hand,
we have |γ| − |M(λ)ii| ≤ |γ−M(λ)ii| ≤

∑

j 6=i |M(λ)ij |. Consequently, we have

|γ| ≤ |M(λ)ii|+
∑

j 6=i

|M(λ)ij |. (50)

On the other hand, we have

|M(λ)11|+
∑

j 6=1

|M(λ)1j | = λ1 +
3

2
λ2, (51)

|M(λ)n−2,n−2|+
∑

j 6=n−2

|M(λ)n−2,j | =
3

2
λn−2 + λn−1, and (52)

|M(λ)ii|+
∑

j 6=i

|M(λ)ij | =
3

2
λi +

3

2
λi+1, 2 ≤ i ≤ n− 3. (53)
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From (50) through (53), we have γmax(M(λ)) ≤ 3λmax. From all the above, we
prove the lemma.

The above lemma demonstrates that if we have λmax/λmin upper bounded by
a constant, then the (A.2) type condition is true for the terms on both sides of
(45). Note they are the (n−2)×(n−2) principal submatrix ofΣ(λ). The relation
of the eigenvalues of a principal submatrix and the eigenvalues of the original
matrix is known due to the interlacing theorem by Cauchy (Stewart, 1977).
Cauchy’s interlacing theorem states that if we let τ ′i be the eigenvalues of Σ(λ),
then τ ′i ≤ τi ≤ τ ′i+1. In essence, they have nearly identical behavior. It is not
hard to show that when the condition in Lemma 19 is met, the condition (A.2)
is satisfied for Σ(λ) as well. We skip some details and claim that Theorem 7 is
established.

Appendix F: Proof of Theorem 9

For the proof, we use Theorem 5. Note that in Theorem 5, besides (A.1), we
need two conditions: (15) and (16). Under the conditions (A.2) and (A.3),

(15) is true with λ̂mG due to Theorem 6. The following lemma states that
under (A.1) and (A.2), (15) implies (16); therefore we prove Theorem 9.

Lemma 20. Under (A.1) and (A.2), for any λ such that

Ln(λ) → 0, (54)

we have
(n−1trSn(λ))

2

n−1trS2
n(λ)

→ 0, (55)

Proof. Recall that as n → ∞, we have Sn(λ) ≈ (I+Σn(λ))
−1, where Σn(λ) =

h
3Q

TM−1M(λ)M−1Q, and the eigenvalues ofΣn(λ) are 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn.
We have

(n−1trSn(λ))
2

n−1trS2
n(λ)

=

(
n−1

∑n
i=1(1 + τi)

−1
)2

n−1
∑n

i=1 (1 + τi)
−2 .

Define m = i such that τi ≤ 1 ≤ τi+1. Then we have

n∑

i=1

(1 + τi)
−1 ≤ m+

n∑

i=m+1

τ−1
i ,

and
n∑

i=1

(1 + τi)
−2 ≥

1

4

(

m+
n∑

i=m+1

τ−2
i

)

. (56)

To show (55), therefore, it suffices to show

(
m
n
+ 1

n

∑n
i=m+1 τ

−1
i

)2

m
n
+ 1

n

∑n
i=m+1 τ

−2
i

→ 0. (57)
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On the other hand, from (54), we have ELn(λ) → 0 due to (28), and hence
n−1trS2

n(λ) → 0. Thus m/n → 0 due to (56). Bringing this to (57), we have
(55) under (A.2).

Appendix G: Proof of Theorem 10

It is clear that (54) is equivalent to (15). Then if we have any λ̂ such that

Ln(λ̂) → 0, by Lemma 20, we can utilize Theorem 5. Under (A.3), this holds

for λ̂ = λ
∗
n, where λ

∗
n is the minimizer of Ln(λ). Thus we have

SUREn(λ
∗
n)− n−1‖ǫn‖

2 + σ2 = Ln(λ
∗
n)(1 + op(1)).

On the other hand, by Theorem 6, this also holds for λ̂ = λ̂mG. Therefore we
have

SUREn(λ̂mG)− n−1‖ǫn‖
2 + σ2 = Ln(λ̂mG)(1 + op(1)).

From the fact that SUREn(λ̂mG) ≤ SUREn(λ
∗
n) and Ln(λ

∗
n) ≤ Ln(λ̂mG), we

have Ln(λ̂mG)/Ln(λ
∗
n) → 1.
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