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Abstract. In this paper, we study the main statistical properties of the class
of log-symmetric distributions, which includes as special cases bimodal dis-
tributions as well as distributions that have heavier/lighter tails than those of
the log-normal distribution. This family includes distributions such as the
log-normal, log-Student-t , harmonic law, Birnbaum–Saunders, Birnbaum–
Saunders-t and generalized Birnbaum–Saunders. We derive quantile-based
measures of location, dispersion, skewness, relative dispersion and kurtosis
for the log-symmetric class that are appropriate in the context of asymmetric
and heavy-tailed distributions. Additionally, we discuss parameter estimation
based on both classical and Bayesian approaches. The usefulness of the log-
symmetric class is illustrated through a statistical analysis of a real dataset, in
which the performance of the log-symmetric class is compared with that of
some competitive and very flexible distributions.

1 Introduction

Data whose interest variable is continuous, strictly positive, and asymmetric and
that may include outliers are commonly found in practice in various fields of
knowledge. In fact, there is an extensive body of literature about distributions
whose support is the interval (0,∞). Some of the more flexible distributions in-
clude the generalized modified Weibull (Carrasco, Ortega and Cordeiro (2008)),
generalized Inverse Gaussian (see, e.g., Jørgensen, 1982), and generalized Gamma
(Stacy, 1962) distributions. However, according to Limpert, Stahel and Abbt
(2001), the log-normal distribution has been successfully applied in an enormous
range of applications. Thus, to describe the behavior of strictly positive data, we
consider the log-symmetric distribution class, which is a generalization of the log-
normal distribution that is flexible enough to include as special cases bimodal
distributions as well as distributions that have heavier/lighter tails than those of
the log-normal distribution. Furthermore, the log-symmetric distributions are en-
dowed with two interesting properties, closure under change of scale and closure
under reciprocals, which, according to Puig (2008), are very desirable properties
for distributions that are used to describe data with ratios of positive magnitudes.
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The log-symmetric class also generalizes and makes more flexible the distribu-
tions that have been developed to describe lifetimes under the assumption of ac-
cumulated damage (e.g., the Birnbaum–Saunders (Birnbaum and Saunders, 1969),
Birnbaum–Saunders-t (Barros, Paula and Leiva, 2008, Paula et al., 2012) and gen-
eralized Birnbaum–Saunders (Díaz-García and Leiva, 2005) distributions) by in-
troducing therein an additional parameter that may be used to control the shape
of the hazard function and to regulate the skewness and the relative dispersion.
Furthermore, as demonstrated in this work, the log-symmetric class has several
desirable statistical properties that may make it preferable to alternative distribu-
tions. For instance, the two parameters of the log-symmetric class are orthogonal
and they may be interpreted directly as median and skewness (or relative disper-
sion), which are, in the context of asymmetric distributions, the most meaning-
ful measures of location and shape, respectively. In addition, the extension of the
log-symmetric class to the multivariate case is straightforward (Marchenko and
Genton, 2010). This paper studies the main statistical properties of the class of
log-symmetric distributions and addresses the key issues of parameter estimation
based on both classical and Bayesian approaches.

The remainder of this paper is organized as follows: in Section 2, the log-
symmetric class is characterized, and some of its main statistical properties are
derived. Section 3 addresses the parameter estimation based on the maximum like-
lihood method by using the Fisher scoring and expectation-maximization (EM)
algorithms. A joint iterative process for estimating the scale and power parame-
ters is presented. Section 4 is devoted to a method for exact inferen ce provided
by the Bayesian inference using Markov chain Monte Carlo (MCMC) methods.
In Section 5, a practical use of the log-symmetric class of distributions is illus-
trated through an application to per capita gross domestic product data, in which
the performance of the log-symmetric class is compared with that of some com-
petitive and very flexible distributions such as the generalized modified Weibull,
generalized Inverse Gaussian, generalized Gamma, log-skew-t (see, e.g., Azzalini,
Dal Cappello and Kotz (2003)) and Box-cox-t (see, e.g., Rigby and Stasinopoulos
(2006)) distributions.

2 Log-symmetric distributions

Let Y be a continuous and symmetric random variable whose distribution belongs
to the symmetric class (see, e.g., Fang, Kotz and Ng, 1990) that has location pa-
rameter −∞ < μ < ∞, dispersion parameter φ > 0 and density generator g(·). We
denote this class as Y ∼ S(μ,φ,g(·)). Its probability density function is given by
fY (y) = g[(y − μ)2/φ]/√φ for −∞ < y < ∞ provided that g(u) > 0 for u > 0
and

∫∞
0 u−1/2g(u) ∂u = 1. Then, by setting T = exp(Y ), a new class of distribu-

tions, the so-called log-symmetric class, is obtained. We denote this class, whose
support is the interval (0,∞), as T ∼ LS(η,φ, g(·)), where η = exp(μ) and φ are
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its scale and power parameters, respectively (see, e.g., Marshall and Olkin, 2007,
Chapters 7 and 12). The probability density function of T reduces to

fT (t) = g(t̃2)

t
√

φ
, t > 0, (2.1)

where t̃ = log[(t/η)1/
√

φ]. The density generator g(·) may involve an extra param-
eter (or an extra parameter vector), which is denoted here as ζ ; for convenience, we
assume that this parameter is known. Members of the class of distributions char-
acterized by (2.1) include the log-normal, log-Student-t , log-power-exponential,
log-logistic type I and II, log-hyperbolic, log-slash, log-contaminated-normal,
harmonic law (see Puig (2008) and references therein), Birnbaum–Saunders
(Birnbaum and Saunders, 1969), Birnbaum–Saunders-t (see, e.g., Barros, Paula
and Leiva, 2008) and generalized Birnbaum–Saunders (see, e.g. Díaz-García and
Leiva, 2005, Leiva et al., 2008) distributions. It is noteworthy that the Birnbaum–
Saunders, Birnbaum–Saunders-t and generalized Birnbaum–Saunders distribu-
tions cited above are special cases (in which φ = 4) of the (extended) homonymous
distributions that will be considered here. Similarly, the harmonic law cited above
is a special case (in which φ = 1) of the (extended) homonymous distribution that
will be considered here.

Moreover, if T ∼ LS(η,φ, g(·)) then, one can verify the following properties,
which are immediate consequences of the definition of the log-symmetric class:

(P1) The cumulative distribution function (c.d.f.) of T may be written as
FT (t) = FZ(t̃), where FZ(·) is the c.d.f. of Z = (Y − μ)/

√
φ ∼ S(0,1, g(·)).

(P2) T ∗ = (T /η)1/
√

φ ∼ LS(1,1, g(·)), that is, T ∗ follows standard log-
symmetric distribution.

(P3) cT ∼ LS(cη,φ, g(·)) for all constant c > 0.
(P4) T c ∼ LS(ηc, c2φ,g(·)) for all constant c �= 0.
(P5) (T /η) and (η/T ) are random variables that are identically distributed.
(P6) If E(T r) and E(Z) exist, then E(T r) ≥ ηr .
(P7) If MY (r) exists, then E(T r) = MY (r), where MY (r) is the moment gen-

erating function of Y = log(T ).
(P8) The quantile function of T is given by ϑ(q) = η exp(

√
φZ

(q)
ζ ), where

Z
(q)
ζ is the 100(q)% quantile of Z = (Y − μ)/

√
φ ∼ S(0,1, g(·)).

(P9) The Shannon entropy of T , which is denoted as ET(T ), may be expressed
as ET(T ) = log[η√

φ] + ET(Z), provided that ET(Z) and E(Z) exist.
(P10) If the W(·) function is such that log[W(x)] = h[log(x)], where h :R→R

is an injective and differentiable odd function, then the distribution of T = W(T ∗)
is LS(1,1, g(·)), where g(u) = g{[h−1(

√
u)]2}/h′[h−1(

√
u)].

Let t = (t1, t2, . . . , tn)

 be a random sample of size n from T ∼ LS(η,φ, g(·)).

Then, the maximum likelihood estimates (MLEs) of η and φ (which are denoted
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here as η̂ and φ̂, resp.) for known or fixed ζ may be written as

η̂ =
{

n∏
k=1

t
v(ˆ̃tk)
k

}1/
∑n

k=1 v(ˆ̃tk)
and φ̂ ∝

∑n
k=1 v(ˆ̃tk)[log(tk/η̂)]2

∑n
k=1 v(ˆ̃tk)

,

where ˆ̃tk = log[(tk/η̂)1/
√

φ̂] and v(t) = −2g′(t2)/g(t2) is a weight function in-

duced by g(·), and v(ˆ̃t1), . . . ,v(ˆ̃tn) is a set of positive weights if the g(u) function
is monotonically decreasing for u > 0, with g′(u) = ∂g(u)/∂u. Therefore, when

v(ˆ̃tk) > 0 for k = 1, . . . , n, the MLE of η , may be interpreted as a weighted geo-
metric mean of t1, t2, . . . , tn, whereas the MLE of φ is proportional to a weighted

arithmetic mean, for which v(ˆ̃t1), . . . ,v(ˆ̃tn) are the individual-specific weights.
Thus, the choice of g(·) may induce a v(·) function that enables one to estimate
the parameters using the maximum likelihood method in a manner that is robust
to extreme or outlying observations (that is the g(·) function may induce an v(t)

function whose value decreases as the t value departs from the centre of the T

distribution).
Below are listed some distributions of the log-symmetric class

• Log-normal(η,φ):

g(u) ∝ exp
[
−1

2
u

]
and v(t) = 1.

• Log-Student-t (η,φ, ζ ):

g(u) ∝
[
1 + u

ζ

]−(ζ+1)/2

, ζ > 0 and v(t) = ζ + 1

ζ + t2 .

If φ > (ζ + 1)2/4ζ , then the function fT (t) is monotonically decreasing.
• Log-power-exponential(η,φ, ζ ):

g(u) ∝ exp
[
−1

2
u1/(1+ζ )

]
, −1 < ζ ≤ 1 and v(t) = |t |−(2ζ )/(ζ+1)

1 + ζ
.

The log-normal(ζ = 0) and the log-Laplace(ζ = 1) distributions are special
cases. If ζ = 1 and φ > 1/4, then fT (t) is a monotonically decreasing func-
tion because f ′

T (t) < 0 for t ∈ (0, η) ∪ (η,∞). Similarly, if ζ = 1 and φ < 1/4,
then η is a mode of T because fT (t)/fT (η) ≤ 1 for t > 0. The distribution of
Y = log(T ) is power exponential (Box and Tiao, 1973).

• Log-hyperbolic(η,φ, ζ ):

g(u) ∝ exp[−ζ
√

1 + u], ζ > 0 and v(t) = ζ√
1 + t2

.

The log-normal (η, σ 2) distribution is a limiting case when φ → ∞ and φ/ζ →
σ 2. Similarly, the log-Laplace(η, σ 2) distribution is a limiting case when φ → 0
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and φ/ζ 2 → 4σ 2 (Fonseca, Migon Helio and Ferreira Marco (2012)). If φ ≥
ζ 2, then the function fT (t) is monotonically decreasing. The distribution of
Y = log(T ) is symmetric hyperbolic (Barndoff-Nielsen, 1977). The moment
generating function of Y allows to calculate the moments of T by using the
following expression

E
(
T r)= ηr

K1(

√
ζ 2 − φr2)

K1(ζ )

ζ√
ζ 2 − φr2

, |r| < ζ/
√

φ,

in which Kr (ζ ) = 1
2

∫∞
0 xr−1 exp[− ζ

2 (x+ 1
x
)] ∂x is the modified Bessel function

of third-order and index r .
• Log-slash(η,φ, ζ ):

g(u) ∝ IGF
(
ζ + 1

2
,
u

2

)
and v(t) = IGF

(
ζ + 3

2
,
t2

2

)/
IGF

(
ζ + 1

2
,
t2

2

)
,

where ζ > 0, IGF(a, x) = ∫ 1
0 exp(−tx)ta−1 ∂t is the incomplete gamma func-

tion for a > 0 and x ≥ 0. The distribution of Y = log(T ) is slash (Rogers and
Tukey, 1972).

• Log-contaminated-normal(η,φ, ζ = (ζ1, ζ2)

): The log-contaminated-normal

distribution is a convex linear combination of the T1 ∼ log-normal(η,φ/ζ2) and
T2 ∼ log-normal(η,φ) distributions, that is, fT (t) = ζ1fT1(t) + (1 − ζ1)fT2(t).
Therefore,

g(u) ∝√
ζ2 exp

[
−1

2
ζ2u

]
+ (1 − ζ1)

ζ1
exp

[
−1

2
u

]
, 0 < ζ1 < 1,0 < ζ2 < 1

and

v(t) = ζ2
3/2ζ1 exp[(1 − ζ2)(t

2/2)] + (1 − ζ1)

ζ2
1/2ζ1 exp[(1 − ζ2)(t2/2)] + (1 − ζ1)

.

The moments of T are given by

E
(
T r)= ηr exp

[
1

2
φr2

]{
ζ1 exp

[
1 − ζ2

2ζ2
φr2

]
+ (1 − ζ1)

}
.

If the mode of T exists, then it is within the interval (η exp(−φ/ζ2), η exp(−φ)).
The distribution of Y = log(T ) is contaminated normal.

• (extended) Birnbaum–Saunders(η,φ, ζ ):

g(u) ∝ cosh
(
u1/2) exp

[
− 2

ζ 2 sinh2(u1/2)], ζ > 0

and

v(t) = sinh(t)

t

[
4 cosh(t)

ζ 2 − 1

cosh(t)

]
,
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where sinh(·) and cosh(·) represent the hyperbolic sine and cosine functions, re-
spectively. The weighting v(t) of the Birnbaum–Saunders distribution increases
as |t | also increases. In addition, the Birnbaum–Saunders distribution is bimodal
if ζ > 2 and φ < �(ζ ), where

�(ζ ) = (√
1 + 2ζ 2 − 3

)× [
1√

1 +
√

1 + 2ζ 2

−

√
1 +

√
1 + 2ζ 2

ζ 2

]2

.

Note that �(ζ ) < 1 for all ζ > 2. The moments of T are given by (Rieck, 1999)

E
(
T r)= ηr exp(1/ζ 2)

ζ
√

2π

[
Kr∗

1

(
1/ζ 2)+ Kr∗

2

(
1/ζ 2)],

where r∗
1 = (r

√
φ+1)/2 and r∗

2 = (r
√

φ−1)/2. The distribution of Y = log(T )

is sinh-normal (Rieck and Nedelman, 1991).
• (extended) Birnbaum–Saunders-t (η,φ, ζ = (ζ1, ζ2)


):

g(u) ∝ cosh
(
u1/2)[ζ2ζ

2
1 + 4 sinh2(u1/2)]−(ζ2+1)/2

, ζ1 > 0, ζ2 > 0

and

v(t) = sinh(t)

t

[
4(ζ2 + 1) cosh(t)

ζ2ζ
2
1 + 4 sinh2(t)

− 1

cosh(t)

]
.

The Birnbaum–Saunders-t distribution is bimodal if ζ1 > 2
√

1 + 1/ζ2 and φ <

[v(t1)t1]2, where t1 = log[
√

t2
0 − 1 + t0] and t0 is given by

t0 = 1

2

[
(ζ2 + 1) + 2ζ2

ζ 2
1 ζ2 − 4

]−1/2

×
[
(ζ2 + 3) +

√
(ζ2 + 3)2 + 2(ζ2 + 1)

(
ζ 2

1 ζ2 − 4
)+ 4ζ2

]1/2
.

The distribution of Y = log(T ) is sinh-t (see, e.g., Paula et al., 2012).
• (extended) Generalized Birnbaum–Saunders(η,φ, ζ = (ζ1, ζ2)


):

g(u) ∝ cosh
(
u1/2)× hζ2

[
4

ζ 2
1

sinh2(u1/2)], ζ1 > 0,

where hζ2(·) represents the kernel of the symmetric distribution (indexed by the
extra parameter ζ2) that describes the cumulative damage, where hζ2(u) > 0
for u > 0 and

∫∞
0 u−1/2hζ2(u) ∂u = 1. The distribution of Z∗ = (2/ζ1) sinh(t̃)

is given by fZ∗(z) = hζ2(z
2) (Leiva et al., 2008). The Birnbaum–Saunders,

Birnbaum–Saunders-t and slash-Birnbaum–Saunders distributions are special
cases (Balakrishnan et al., 2009).
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• (extended) Harmonic law(η,φ, ζ ):

g(u) ∝ exp
[−ζ cosh

(
u1/2)], ζ > 0 and v(t) = ζ

sinh(t)

t
.

The moments of T are given by

E
(
T r)= ηr Kr∗(ζ )

K0(ζ )
,

where r∗ = r
√

φ. The mode of T is η[ζ−1(

√
φ + ζ 2 − √

φ)]√φ . Some interest-
ing properties of the harmonic law are described by Puig (2008).

The values of the individual-specific weights v(t) are strictly positive for the
log-normal, log-Student-t , log-power-exponential, log-slash, log-hyperbolic, log-
contaminated-normal, harmonic law, Birnbaum–Saunders (for ζ ≤ 2) and
Birnbaum–Saunders-t (for ζ1 ≤ 2

√
1 + 1/ζ2) distributions. Furthermore, for dis-

tributions with tails that are heavier than those of the log-normal distribution
(e.g., the log-Student-t , log-power-exponential (for 0 < ζ ≤ 1), log-slash, log-
hyperbolic and log-contaminated-normal distributions) the individual-specific
weights tend to be smaller as t departs from the “center” of the T distribution.
Therefore, for distributions that have heavier tails, the MLEs of η and φ are less
sensitive to extreme or outlying observations than for the log-normal distribution.
Similar results hold for the distributions that have been developed to describe life-
times under the assumption of cumulative damage. In fact, one can verify that the
weights of extreme or outlying observations for the Birnbaum–Saunders-t distri-
bution are (relatively) smaller than those for the Birnbaum–Saunders distribution.
Figure 1 shows the probability density functions of some log-symmetric distribu-
tions. This figure illustrates the flexibility of the log-symmetric class.

2.1 Hazard function

The hazard function of T is given by rT (t) = fT (t)/[1 − FT (t)]. The function
rT (t) of the class of log-symmetric distributions is quite flexible and can take vari-
ous shapes as illustrated in Figure 2. In fact, as demostrated by (Glaser, 1980), the
following statements hold: (a) If δ(t) > 0 for all t ∈ R, then rT (t) is increasing.
(b) If δ(t) < 0 for all t ∈ R, then rT (t) is decreasing. (c) If limt→0 fT (t) = ∞ and
there exists t0 for which δ(t) > 0 in t < t0, δ(t0) = 0, and δ(t) < 0 in t > t0, then
rT (t) is decreasing. (d) If limt→0 fT (t) = 0 and there exists t0 for which δ(t) > 0 in
t < t0, δ(t0) = 0, and δ(t) < 0 in t > t0, then rT (t) is upside-down bathtub shaped.
(e) If limt→0 fT (t) = ∞ and there exists t0 for which δ(t) < 0 in t < t0, δ(t0) = 0,
and δ(t) > 0 in t > t0, then rT (t) is bathtub shaped. (f) If limt→0 fT (t) = 0 and
there exists t0 for which δ(t) < 0 in t < t0, δ(t0) = 0, and δ(t) > 0 in t > t0, then
rT (t) is increasing. The δ(t) function may be written as

δ(t) = v′(t)t + v(t)[1 − t
√

φ] − φ.
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Figure 1 Graph of the density function of the log-power-exponential(η = 1, φ, ζ = 0.5) (a),
Birnbaum–Saunders-t (η = 1, φ, ζ = (6,4)
) (b), log-Student-t (η = 1, φ, ζ = 4) (c), and
harmonic-law(η = 1, φ, ζ = 0.1) (d) distributions.

For example, the hazard function of the log-normal distribution is upside-down
bathtub shaped. Moreover, if φ ≥ 1, then the hazard function of the harmonic law
is upside-down bathtub shaped, and it is increasing if φ < 1 and ζ > φ/

√
1 − φ.

If φ ≥ ζ 2 and φ ≥ 2, then the hazard function of the log-hyperbolic distribution is
decreasing.

2.2 Summary of the shape

The measures that are most frequently used for assessing the location, dispersion,
relative dispersion, skewness and kurtosis are based on moments. However, be-
cause of their derivation, such measures may be not appropriate in the context of
asymmetric distributions. Furthermore, sometimes the moments are not finite or
are quite difficult to calculate. Therefore, in this section, measures of the loca-
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Figure 2 Graph of the hazard function of the log-hyperbolic(η = 1, φ, ζ = 1) (a), and
Birnbaum–Saunders(η = 1, φ, ζ = 3) (b) distributions.

tion, dispersion, relative dispersion, skewness and kurtosis for the log-symmetric
class are derived; these measures, exist even for distributions for which no mo-
ments exist, are appropriate in the context of asymmetric distributions, are easier
to calculate and/or interprete than those based on moments, and are invariant under
changes in the extreme tails of the distribution. Furthermore, some of these mea-
sures (that is those used to measure the relative dispersion, skewness and kurtosis)
are invariant under location-scale transformations (see Groeneveld and Meeden,
1984).

2.2.1 Location. The median of T ∼ LS(η,φ, g(·)) is η, and the mode(s) of T

may be written as MT = η exp(tT
√

φ) provided that fT (t) is a twice continuously
differentiable function, in which tT is(are) the solution(s) of

−v(t)t =√
φ restricted to v′(t)t2sign(t) >

√
φ sign(t),

where v′(t) = ∂v(t)/∂t . In addition, it is possible to verify that MT < η if both
g(u) is monotonically decreasing for u > 0 and f ′

T (t) is continuous in MT .

2.2.2 Dispersion. The interquartile range of T ∼ LS(η,φ, g(·)) may be ex-
pressed as

ς = ϑ(0.75) − ϑ(0.25) = 2η sinh
(√

φZ
(0.75)
ζ

)
, ς ∈ (0,∞).

2.2.3 Relative dispersion. The coefficient of quartile variation (Zwillinger and
Kokoska (2000), page 17) is given by

� = ϑ(0.75) − ϑ(0.25)

ϑ(0.75) + ϑ(0.25)
= tanh

(√
φZ

(0.75)
ζ

)
, � ∈ (0,1),
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where tanh(·) is the hyperbolic tangent function. Note that � is a monotonically
increasing function of φ for fixed ζ . Therefore, according to � , φ may be in-
terpreted as a measure of the relative dispersion of T for fixed ζ . According to
Bonett (2006), � may be preferable to the coefficient of variation for describing
the relative dispersion in asymmetric distributions.

2.2.4 Skewness. A quantile-based measure of skewness (see, e.g., Hinkley, 1975,
Groeneveld and Meeden, 1984) is given by

κ(q) = ϑ(q) + ϑ(1 − q) − 2ϑ(1/2)

ϑ(1 − q) − ϑ(q)
= cosech

(√
φZ

(q)
ζ

)− cotanh
(√

φZ
(q)
ζ

)
,

where κ(q) ∈ (0,1), q ∈ (0, 1
2), and cotanh(·) and cosech(·) represent the hyper-

bolic cotangent and cosecant functions, respectively. A simple derivative reveals
that for all q ∈ (0, 1

2) the measure of skewness κ(q) is a monotonically increasing
function of φ for fixed ζ . Therefore, φ may be interpreted as the skewness of T

for fixed ζ .

2.2.5 Kurtosis. The kurtosis proposed by Moors (1988) reduces to

ς = ϑ(7/8) − ϑ(5/8) + ϑ(3/8) − ϑ(1/8)

ϑ(6/8) − ϑ(2/8)
= sinh(

√
φZ

(7/8)
ζ ) − sinh(

√
φZ

(5/8)
ζ )

sinh(
√

φZ
(6/8)
ζ )

,

where ς ∈ [0,∞).
The main conclusion of this section is that, irrespective of the value of φ, η is

the median of the T distribution. Similarly, irrespective of the value of η, φ is a
measure of the skewness (or the relative dispersion) of T for fixed ζ .

3 Maximum likelihood estimation

The log-likelihood function of the interest parameters can be written as

(θ) = −n

2
log(φ) −

n∑
k=1

log(tk) +
n∑

k=1

log
[
g
(
t̃2
k

)]
.

To calculate the maximum likelihood estimate of θ = (η,φ)
, denoted as θ̂ , the
system of equations given by (Uη(θ̂),Uφ(θ̂)) = (∂(θ̂)/∂η̂, ∂(θ̂)/∂φ̂) = (0,0) is
solved using the Fisher scoring algorithm, where

Uη(θ) = 1

ηφ
log

[
n∏

k=1

(tk/η)v(t̃k)

]

and

Uφ(θ) = − n

2φ
+ 1

2φ

n∑
k=1

v(t̃k)t̃
2
k .
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The (expected) Fisher information matrix, which is denoted as K(θ), is given
by

n−1K(θ) = −n−1E
[
∂2(θ)/∂θ ∂θ
]= [

dg(ζ )/φη2 0
0

[
fg(ζ ) − 1

]
/4φ2

]
,

where dg(ζ ) = E[v2(Z)Z2] and fg(ζ ) = E[v2(Z)Z4] for Z ∼ S(0,1, g(·)). For in-
stance, the quantity dg(ζ ) is equal to 1, (ζ +1)/(ζ +3), {21−ζ �[(3−ζ )/2]}/{(1+
ζ )2�[(1 + ζ )/2]} and 2 + 4

ζ 2 −
√

2π
ζ

{1 − erf(
√

2
ζ

)} exp( 2
ζ 2 ) when T is assumed

to exhibit the log-normal, log-Student-t , log-power-exponential and Birnbaum–
Saunders distributions, respectively, where �(·) represents the gamma function
and erf(x) = (2/

√
π)
∫ x

0 e−t2
dt . Similarly, the quantity fg(ζ ) is equal to 3,

3(ζ + 1)/(ζ + 3) and (ζ + 3)/(ζ + 1) when T is assumed to exhibit the log-
normal, log-Student-t and log-power-exponential distributions, respectively (see,
e.g., Cordeiro et al. (2000); Villegas et al. (2013)). Then, the Fisher scoring algo-
rithm becomes

Algorithm 3.1.

Step 1. Set the initial value of the parameter vector to θ (0).
Step 2. Initialize the counter of the algorithm as l = 0.
Step 3. Based on θ (l) calculate the following expressions:

η(l+1) = η(l)

{
n∏

k=1

[
tk/η

(l)]ρ(t̃
(l)
k )

}1/n

and

log
[
φ(l+1)]= log

[
φ(l)]+ 2

fg(ζ ) − 1

{
n−1

n∑
k=1

v
(
t̃
(l)
k

)[
t̃
(l)
k

]2 − 1

}
,

where t̃
(l)
k = log[(tk/η(l))1/

√
φ(l)] and ρ(t) = v(t)/dg(ζ ) is a standardized version

of the weight function.
Step 4. Update l = (l + 1) and θ (l).
Step 5. Repeat steps 3 and 4 until convergence of θ (l) is reached.

Because the MLEs of η and φ for the log-normal distribution have closed forms,
they can be used as initial values for the iterative procedure for other log-symmetric
distributions. Because some distributions, such as the log-Student-t , log-power-
exponential (for 0 ≤ ζ ≤ 1), log-slash, log-hyperbolic and log-contaminated-
normal distributions, may be obtained as a power mixture of log-normal distri-
butions (see, e.g., Andrews and Mallows, 1974, West, 1987, Barndoff-Nielsen,
1977), the EM algorithm (Dempster, Laird and Rubin, 1977) can be used in those
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cases to develop an even more efficient iterative process for parameter estimation.
Then, for these distributions the step 3 of the Algorithm 3.1 reduces to

η(l+1) =
{

n∏
k=1

t
v(t̃

(l)
k )

k

}1/
∑n

k=1 v(t̃
(l)
k )

and

φ(l+1) = n−1
n∑

k=1

v
(
t̃
(l)
k

)[
log

(
tk/η

(l))]2.
Moreover, according to Balakrishnan et al. (2009), some distributions of the
generalized Birnbaum–Saunders class (e.g., the Birnbaum–Saunders-t and slash-
Birnbaum–Saunders distributions) can be obtained as a mixture of the Birbaum–
Saunders distribution. Thus, the EM algorithm can also be used in those cases to
develop a more efficient iterative procedure of parameter estimation. For example,
under the Birnbaum–Saunders-t distribution the joint iterative process for η̂ and φ̂

becomes

Algorithm 3.2.

Step 1. Set the initial value of the parameter vector to θ (0).
Step 2. Initialize the counter of the EM algorithm as m = 0.
Step 3. Calculate u(m) = (u

(m)
1 , . . . , u

(m)
n )
 based on θ (m) as follows:

u
(m)
k = ζ 2

1 (ζ2 + 1)

ζ 2
1 ζ2 + [2 sinh(t̃

(m)
k )]2

for k = 1, . . . , n.

Step 4. Calculate d∗
g (ζ1/[u(m)

1 ]1/2), . . . , d∗
g (ζ1/[u(m)

n ]1/2), where

d∗
g (ζ ) = 2 + 4

ζ 2 −
√

2π

ζ

{
1 − 2√

π

∫ √
2/ζ

0
exp

(−t2) ∂t

}
exp

(
2

ζ 2

)
.

Step 5. Calculate f ∗
g (ζ1/[u(m)

1 ]1/2), . . . , f ∗
g (ζ1/[u(m)

n ]1/2), where

f ∗
g (ζ ) = E

[(
4 sinh(Z) cosh(Z)Z/ζ 2 − tanh(Z)Z

)2]
and where Z exhibits a standard sinh-normal(ζ ) distribution.

Step 6. Initialize the counter of the Fisher scoring algorithm as l = 0.
Step 7. Set the initial value of the parameter vector to θ (0)∗ = θ (m).
Step 8. Perform the following algorithm based on θ (l)∗ :

(A) Compute the following expressions:

η(l+1) = η(l)

{
n∏

k=1

[
tk/η

(l)]ρ∗(t̃ (l)k ,u
(m)
k )

}
and

log
[
φ(l+1)]= log

[
φ(l)]+ 2

∑n
k=1{v∗(t̃ (l)k , u

(m)
k )[t̃ (l)k ]2 − 1}∑n

k=1 {f ∗
g (ζ1/[u(m)

k ]1/2) − 1} ,
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where

ρ∗(t̃ (l)k , u
(m)
k

)= v∗(t̃ (l)k , u
(m)
k

)/ n∑
i=1

d∗
g

(
ζ1/

[
u

(m)
i

]1/2)
,

k = 1, . . . , n

and

v∗(t̃ , u) = sinh(t̃)

t̃

[
4 cosh(t̃)u

ζ 2
1

− 1

cosh(t̃)

]
.

(B) Update l = (l + 1) and θ (l)∗ .
(C) Repeat steps (A) and (B) until convergence of θ (l)∗ is reached.

Step 9. Update m = (m + 1) and θ (m) = θ (l)∗ .
Step 10. Repeat steps 3, 4, 5, 6, 7, 8 and 9 until convergence of θ (m) is reached.

The usual regularity conditions of large sample theory are fulfilled by all of the
log-symmetric distributions listed above except for the log-Laplace distribution
(i.e., the log-power-exponential distribution for ζ = 1) (see Cordeiro et al. (2000)).
Thus, the asymptotic distribution of the maximum likelihood estimator of θ is the
following:

√
n

(
η̂ − η

φ̂ − φ

)
D−→

n→∞N2

(
0;

[
φη2/dg(ζ ) 0

0 4φ2/
[
fg(ζ ) − 1

] ]).

Hence, η̂ and φ̂ are asymptotically independent.

3.1 Measuring goodness-of-fit

The goodness-of-fit is quantified using the following statistic, which is quite intu-
itive and has the advantage of graphical representation:

ϒζ = n−1
n∑

k=1

∣∣�−1[FT

(ˆ̃t (k))]− υ(k)
∣∣,

where FT (·) is the cumulative distribution function of T , ˆ̃t (k) is the kth order statis-
tic of ˆ̃t , υ(k) is the expectation of the kth order statistic for a random sample of size
n of a standard normal distribution and �(·) is the cumulative distribution func-
tion of a standard normal distribution. Note that �−1[FT (t̃ (1))], . . . ,�−1[FT (t̃ (n))]
represent an ordered random sample from a standard normal distribution and η̂ and
φ̂ are a consistent estimators. Then, smaller values of ϒζ indicate better goodness-
of-fit. Graphically, the criterion ϒζ indicates that the smaller the difference be-

tween the normal Q–Q plot of �−1[FT (ˆ̃t (1))], . . . ,�−1[FT (ˆ̃t (n))] and a straight
line (with zero intercept and unit slope), the better the goodness-of-fit. One advan-
tage of this criterion is that it allows for graphically evaluating the appropriateness
or agreement with the data of the tails (heavier or lighter) and/or the unimoda
lity/bimodality of the distribution postulated for T .
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3.2 Choosing the extra parameter value

The density generator g(·) considered in the T distribution involves the extra pa-
rameter ζ , which is assumed to be known or fixed in the estimation process de-
scribed above. This assumption ensures easy calculation of confidence regions
and hypothesis testing for η and φ using Wald and Rao statistics because the
Fisher information matrix is diagonal. The motivation for this assumption also
comes from the paper by Lucas (1997), which demonstrated that the robustness
against outlying observations of Student-t models remains only if the degrees of
freedom are fixed instead of estimated using the maximum likelihood method. In
addition, Kano, Berkane and Bentler (1993) (and references therein) reported dif-
ficulties in calculating the extra parameter using the maximum likelihood method
for the power exponential and contaminated normal distributions. Thus, to con-
sider a unified approach for log-symmetric distributions, we propose choosing
the extra parameter value by minimizing the ϒζ statistic. In fact, if the estimator
ζ̂ = argminϒζ is consistent; and dg(·) and fg(·) are continuous functions, then the
multivariate Slutsky’s theorem allows one to demonstrate that the ζ value may be
replaced with the value obtained by minimizing the ϒζ statistic without changing
the asymptotic distribution of η̂ and φ̂.

To investigate the performance of the proposed criterion, a simu lation study is
performed. First, a sample of size n is generated from a standard log-symmetric
distribution. The resulting sample is used to estimate η and φ using the maxi-
mum likelihood method and to choose the extra parameter value by minimizing
the ϒζ statistic. This process is replicated R = 5000 times. To consider di ffer-
ent simulation scenarios, different log-symmetric distributions are used (i.e., the
log-Student-t , log-power-exponential, log-hyperbolic, log-slash and Birnbaum–
Saunders distributions) and the sample size is modified by considering n = 50,
100, 200, 400 and 800. As summary measures, the median (M) and interquartile
range (IR) of the R chosen extra parameter values are considered. The results are
presented in Table 1. It can be observed that in all scenarios, the median of the extra
parameter values yielded by the proposed method tends to the true value as the size
of the sample increases. Similarly, the variability around the median decreases as
the size of the sample increases. These results indicate that for large sample sizes,
the difference between the extra parameter value yielded by the proposed method
and the true parameter value is small. Therefore, for large sample sizes, the infer-
ence on η and φ could be based on the asymptotic distribution described above
even when the extra parameter value is unknown but has been chosen using the
proposed method.

4 Bayesian inference

The method for inference about the interest parameters using the classical ap-
proach is based on the asymptotic properties of the maximum likelihood estimator.
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Table 1 The median (M) and the interquartile range (IR) of the R = 5000 chosen extra parameter
values by minimizing the ϒζ statistic

n = 50 n = 100 n = 200 n = 400 n = 800

Distribution ζ M IR M IR M IR M IR M IR

Log-Student-t 2 1.80 1.10 1.90 0.70 1.95 0.50 2.00 0.40 2.00 0.20
4 3.30 3.10 3.60 2.30 3.80 1.80 3.90 1.23 3.95 0.90
6 4.60 6.20 5.20 4.80 5.50 3.70 5.80 2.60 5.90 2.60
8 5.40 9.50 6.40 7.90 7.00 6.10 7.60 4.50 7.85 3.20

Log-power-exp. 0.1 0.17 0.39 0.14 0.33 0.12 0.23 0.11 0.17 0.10 0.12
0.2 0.26 0.46 0.23 0.35 0.22 0.25 0.21 0.17 0.20 0.13
0.3 0.32 0.46 0.31 0.34 0.31 0.26 0.30 0.19 0.30 0.13
0.4 0.39 0.44 0.39 0.38 0.40 0.26 0.40 0.19 0.40 0.14

Log-hyperbolic 1.0 0.95 2.00 1.00 1.60 1.00 1.10 1.00 0.80 1.00 0.50
1.1 1.01 2.20 1.03 1.50 1.08 1.10 1.10 0.80 1.10 0.60
1.2 1.05 2.20 1.10 1.60 1.13 1.20 1.18 0.80 1.20 0.60
1.3 1.10 2.20 1.15 1.70 1.20 1.10 1.25 0.90 1.30 0.60

Log-slash 0.8 0.75 0.30 0.78 0.21 0.79 0.16 0.81 0.12 0.80 0.08
0.9 0.80 0.34 0.85 0.26 0.89 0.20 0.89 0.14 0.90 0.10
1.0 0.89 0.39 0.92 0.33 0.98 0.24 0.99 0.16 1.00 0.13
1.1 0.97 0.41 1.03 0.36 1.06 0.25 1.08 0.20 1.10 0.15

Birnbaum–Saunders 1.5 1.20 1.80 1.30 0.90 1.40 0.60 1.40 0.50 1.50 0.30
2.0 1.70 1.70 1.80 1.10 1.90 0.80 2.00 0.50 2.00 0.30
2.5 2.10 1.90 2.30 1.30 2.40 0.80 2.40 0.50 2.50 0.40
3.0 2.75 2.20 2.85 1.40 2.95 1.00 2.95 0.60 3.00 0.40

Therefore, for small sample sizes, such inference may be inadequate. Furthermore,
some distributions, such as log-Laplace distribution, do not satisfy the usual regu-
larity conditions; consequently, for such distributions, parameter inference cannot
be performed using the standard method. Thus, this section considers inference us-
ing a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods.
One of the main advantages of Bayesian inference is that it is exact and available
for any parametric model. For simplicity, it is supposed that η and φ are indepen-
dent and have the following prior distributions:

η ∼ log-normal(aη, bη) and φ−1 ∼ Gamma(cφ, dφ),

where aη > 0, bη > 0, cφ > 0 and dφ > 0 are assumed to be known. Next, we
describe how samples are drawn from the posterior distribution of θ .

4.1 Log-normal, log-Student-t , log-slash, log-contaminated-normal,
log-hyperbolic and log-Laplace distributions

One can sample from a joint posterior distribution of η and φ using Gibbs sampling
(see, e.g., Gelfand and Smith, 1990), which involves successive sampling from
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the complete conditional densities. Because some distributions, such as the log-
Student-t , log-slash, log-contaminated-normal, log-hyperbolic and log-Laplace
distributions, may be obtained as a shape mixture of log-normal distributions, the
algorithm can be easily developed using a data augmentation scheme, in which the
complete conditional densities are known distributions. Next, a simple algorithm
is described.

Algorithm 4.1.

Step 1. Set the initial value of the parameter vector to θ (0).
Step 2. Based on θ (l) sample u(l+1) = (u

(l+1)
1 , . . . , u

(l+1)
n ) independent as fol-

lows:
(A) Log-normal: P[u(l+1)

k = 1] = 1.
(B) Log-Student-t :

uk|η(l), φ(l) ∼ Gamma
(

ζ + 1

2
,

1

2

([
t̃
(l)
k

]2 + ζ
))

,

where u ∼ Gamma(a, b) represents a random variable with pro babil-
ity density function given by f (u) ∝ ua−1 exp(−bu).

(C) Log-slash:

uk|η(l), φ(l) ∼ TGamma
(

2ζ + 1

2
,

1

2

[
t̃
(l)
k

]2; (0,1)

)
,

where TGamma(·, ·; (0,1)) represents a random variable with trun-
cated gamma distribution within the interval (0,1) (see, e.g.,
Nadarajah and Kotz, 2006).

(D) Log-contaminated-normal:

uk|η(l), φ(l)

∼

⎧⎪⎪⎨
⎪⎪⎩

ζ2, with probability p ∝ ζ
1/2
2 ζ1 exp

(
−ζ2

2

[
t̃
(l)
k

]2)
,

1, with probability q ∝ (1 − ζ1) exp
(
−1

2

[
t̃
(l)
k

]2)
,

(E) Log-Laplace:

uk|η(l), φ(l) ∼ GIG
(

1

2
,
[
t̃
(l)
k

]2
,

1

4

)
,

where u ∼ GIG(a, b, c) is a random variable with generali zed In-
verse Gaussian distribution (see, e.g., Hörmann and Leydold, 2015)
and density function given by

f (u) ∝ ua−1 exp
(
−1

2
[b/u + cu]

)
.
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(F) Log-hyperbolic:

uk|η(l), φ(l) ∼ GIG
(

1

2
,
[
t̃
(l)
k

]2 + 1, ζ 2
)
.

Step 3. Based on u(l+1) and φ(l), sample η(l+1) as follows:

η|u(l+1), φ(l) ∼ log-normal
(
a(l+1), b(l+1)) where

(A) Log-normal, log-Student-t , log-slash and log-contaminated-normal:

b(l+1) =
(

n∑
k=1

u
(l+1)
k

φ(l)
+ 1

bη

)−1

and

a(l+1) =
[
a

φ(l)/bη
η

(
n∏

k=1

t
u

(l+1)
k

k

)]b(l+1)/φ(l)

.

(B) Log-Laplace and log-hyperbolic:

b(l+1) =
(

n∑
k=1

1/u
(l+1)
k

φ(l)
+ 1

bη

)−1

and

a(l+1) =
[
a

φ(l)/bη
η

(
n∏

k=1

t
1/u

(l+1)
k

k

)]b(l+1)/φ(l)

.

Step 4. Based on u(l+1) and η(l+1), sample φ(l+1) as follows:

φ−1|u(l+1), η(l+1) ∼ Gamma
(

n

2
+ cφ, d(l+1)

)
where

(A) Log-normal, log-Student-t , log-slash and log-contaminated-normal:

d(l+1) = 1

2

n∑
k=1

[
log

(
tk

η(l+1)

)]2

u
(l+1)
k + dφ.

(B) Log-Laplace and log-hyperbolic:

d(l+1) = 1

2

n∑
k=1

1

u
(l+1)
k

[
log

(
tk

η(l+1)

)]2

+ dφ.

Step 5. Repeat steps 2, 3 and 4 until convergence is reached.
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4.2 Harmonic law, Log-power-exponential (−1 < ζ < 1),
Birnbaum–Saunders and Birnbaum–Saunders-t distributions

For these distributions, the posterior conditional densities of η given φ and φ

given η are unknown. Therefore, samples from the complete conditional densities
are drawn using the Metropolis–Hastings method (see, e.g., Chib and Greenberg,
1995). Next, a simple algorithm is presented.

Algorithm 4.2.

Step 1. Set the initial value of the parameter vector to θ (0).
Step 2. Based on θ (l) sample η∗ from the log-normal(a(l+1), b(l+1)) distribu-

tion, where

b(l+1) =
(

n

λφ(l)
+ 1

bη

)−1

and a(l+1) =
[
a

φ(l)/bη
η

(
n∏

k=1

tk

)]b(l+1)/λφ(l)

,

where λ > 0 is a tunning parameter. Then, a new value η(l+1) = η∗ is accepted
with probability

min
{

1,
fη(η

∗|φ(l))

fη(η(l)|φ(l))

}
,

where fη(η|φ) ∝ η−1

[
n∏

k=1

g
(
t̃2
k

)]
exp

{
− 1

2bη

[
log

(
η

aη

)]2}
.

Step 3. Based on η(l+1) and φ(l) sample 1/φ∗ from the Gamma(c(l+1), d(l+1))

distribution, where

c(l+1) = n

2
+ cφ and d(l+1) = 1

2λ

n∑
k=1

[
log

(
tk

η(l+1)

)]2

+ dφ.

Then, a new value φ(l+1) = φ∗ is accepted with probability

min
{

1,
fφ(φ∗|η(l+1))

fφ(φ(l)|η(l+1))

}
,

where fφ(φ|η) ∝
[

n∏
k=1

g
(
t̃2
k

)]
(1/φ)n/2+cφ−1 exp

(
−dφ

φ

)
.

Step 4. Repeat steps 2 and 3 until convergence is reached.

The value of the tuning parameter in the Algorithm 4.2 may be set to λ =
Var(log(T ∗)), where T ∗ exhibits a standard log-symmetric distribution.
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4.3 Unknown extra parameter

When the extra parameter ζ is unknown, an additional step may be included in the
algorithms described above to draw samples from the posterior conditional distri-
bution of ζ given θ ; it is assumed that ζ and θ have independent prior distributions.
For instance,

(A) Log-hyperbolic distribution: ζ is assumed to exhibit the log-normal(cζ , dζ )

distribution. Thus, ζ ∗ is sampled from the log-normal (ζ (l), λ) distribution, where
λ > 0 is a tunning parameter. A new value ζ (l+1) = ζ ∗ is accepted with probability
given by

min
{

1,
fζ (ζ

∗|u(l+1))

fζ (ζ (l)|u(l+1))

}
,

where fζ (ζ |u) ∝ [
K1(

√
ζ )
]−n exp

(
−ζ

[
1

2

n∑
k=1

uk

]
− 1

2dζ

[
log

(
ζ

cζ

)]2
)
.

(B) Log-slash distribution: ζ is assumed to exhibit the Gamma(cζ , dζ ) distri-

bution. Then, based on u(l+1), ζ (l+1) is sampled from the Gamma(c(l+1)
ζ , d

(l+1)
ζ )

distribution, where c
(l+1)
ζ = cζ + n and d

(l+1)
ζ = −∑n

k=1 log(u
(l+1)
k ) + dζ .

(C) Log-contaminated-normal distribution: ζ1 ∼ Beta(cζ1, dζ1) and ζ2 ∼
TGamma(cζ2, dζ2; (0,1)) are independent. Then, based on u(l+1), η(l+1) and

φ(l+1), ζ
(l+1)
1 and ζ

(l+1)
2 are sampled from the Beta(c(l+1)

ζ1
, d

(l+1)
ζ1

) and

TGamma(c(l+1)
ζ2

, d
(l+1)
ζ2

; (0,1)) distributions, where c
(l+1)
ζ1

= cζ1 +∑n
k=1 I(u(l+1)

k =
ζ2), d

(l+1)
ζ1

= dζ1 +∑n
k=1 I(u(l+1)

k = 1), c
(l+1)
ζ2

= cζ2 + 1
2
∑n

k=1 I(u(l+1)
k = ζ2) and

d
(l+1)
ζ2

= dζ2 + 1
2
∑n

k=1[t̃ (l+1)
k ]2I(u(l+1)

k = ζ2).

(D) Birnbaum–Saunders distribution: 1/ζ 2 is assumed to exhibit the
Gamma(cζ , dζ ) distribution. Based on η(l+1) and φ(l+1), 1/[ζ (l+1)]2 is sam-

pled from the Gamma(c(l+1)
ζ , d

(l+1)
ζ ) distribution, where c

(l+1)
ζ = cζ + n

2 and

d
(l+1)
ζ = 2

∑n
k=1 sinh2(t̃

(l+1)
k ) + dζ .

Maximum likelihood estimates for the same family of distributions may be used
as initial values for Algorithms 4.1 and 4.2. Inferences about the parameters or
functions of them are available from the approximate posterior marginal density.
For example, we can summarize the simulated posterior distribution of η and φ by
computing the summary statistics (i.e., the posterior means, medians, and standard
deviations) and credible intervals. In the case of non-informative priors, compar-
isons with the maximum likelihood approach may be performed.
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Table 2 Values of −2(θ̂), AIC and BIC for the fitted distributions to the GDP data

Generalized Generalized
Birnbaum– modified Generalized inverse

Log-normal Saunders log-skew-t Box-cox-t Weibull Gamma Gaussian

−2(θ̂) 3919.61 3902.82 3919.58 3919.58 3920.06 3921.62 3905.74
AIC 3923.60 3906.82 3927.58 3927.58 3928.06 3927.62 3911.75
BIC 3930.10 3913.31 3940.57 3940.57 3941.05 3937.36 3921.49

5 Application

Gross domestic product (GDP) divided by midyear population is known as the per
capita GDP. The per capita GDP is most likely the best measure of a country’s
overall well being. The GDP is the sum of the gross value added by all resident
producers in the economy and any product taxes and minus any subsidies that are
not included in the value of the products. It is calculated without making deduc-
tions for depreciation of fabricated assets or for depletion and degradation of nat-
ural resources. The dataset considered in this paper corresponds to the per capita
GDP (current US$) of 190 countries during 2010, and it was downloaded from the
World Bank’s DataBank website (http://databank.worldbank.org/data/). All of the
computations were performed using the R software package (R Core Team, 2013).

5.1 Maximum likelihood estimation

Table 2 lists the goodness-of-fit statistics −2(θ̂), AIC (Akaike, 1973) and BIC
(Schwarz, 1978) for the log-normal, Birnbaum–Saunders(ζ = 2.2), log-skew-t ,
Box-cox-t , generalized modified Weibull, generalized Gamma and generalized In-
verse Gaussian distributions fitted to the GDP data. The extra parameter ζ of the
Birnbaum–Saunders distribution was chosen by minimizing the criterion ϒζ , as
illustrated in Figure 3(a).

The Birnbaum–Saunders(ζ = 2.2) distribution has the lowest −2(θ̂), AIC and
BIC values among all the fitted models; thus, it could be considered to be the

best model. Figure 3(b) shows a plot of �−1[FT (ˆ̃t (k)
)] versus υ(k) for the fitted

Birnbaum–Saunders distribution; this plot indicates that the distribution describes
the data adequately. A plot of the Birnbaum–Saunders(ζ = 2.2) density distribu-
tion is shown in Figure 4(a) (together with the data histogram). Similarly, Fig-
ure 4(b) presents the empirical cumulative distribution function of the per capita
GDP and the cumulative distribution function of the Birnbaum–Saunders(ζ = 2.2)
model. The MLEs (and the corresponding standard errors, which are given in
parentheses) of the model parameters of the fitted Birnbaum–Saunders(ζ = 2.2)
distribution are

η̂ = 4891.135(427.07) and φ̂ = 3.187(0.21).

http://databank.worldbank.org/data/
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Figure 3 (a) Graph of ϒζ under the Birnbaum–Saunders distribution; (b) plot of �−1[FT (ˆ̃t (k))]
versus υ(k) under the Birnbaum–Saunders(ζ = 2.2) distribution fitted to the GDP data.

Figure 4 (a) Histogram and (b) empirical cumulative distribution function for per capita GDP
(current US$) of 190 countries during 2010.

Because the Birnbaum–Saunders(ζ = 2.2) distribution was identified as the best
model, and from the properties described in Section 2, one can conclude that the
probability distribution of any macroeconomic indicator that can be expressed as
c1T

c2 also belongs to the log-symmetric class, where T re presents the per capita
GDP during 2010 and c1 > 0 and c2 �= 0 are known constants. The Birnbaum–
Saunders(ζ = 2.2) distribution was also fitted to the per capita GDP for 2009;
η̂ = 4823.88(424.96) and φ̂ = 3.313(0.22) were obtained. Then, ignoring the vari-
ability associated with the point estimates of η and φ it may be concluded that the
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Table 3 Posterior mean, median, standard deviation (SD) and 95% credible interval for parameters
of the log-normal and Birnbaum–Saunders distributions fitted to GDP data

Mean Median SD 2.5% 97.5% DIC

Log-normal
η 4843.55 4808.20 541.03 3870.75 5978.52 3923.61
φ 2.35 2.33 0.25 1.92 2.88

Birnbaum–Saunders
η 4837.86 4821.61 362.48 4181.02 5573.93 3910.80
φ 3.25 3.23 0.30 2.70 3.90
ζ 2.20 2.19 0.19 1.84 2.60

median of the per capita GDP distribution increased in 2010, whereas in the same
year, both the skewness and relative dispersion of the per capita GDP distribu-
tion decreased. Similarly, the modes of the per capita GDP distributions were US$
466.056 and US$ 500.174 in 2009 and 2010, respectively.

5.2 Bayesian inference

We now consider the prior distributions described in Section 4 with hyperparam-
eters fixed as follows: aη = 1, bη = 10,000, cφ = 0.0001, dφ = 0.0001, cζ =
0.0001, and dζ = 0.0001. This setup allows for comparisons with the maximum
likelihood approach. One chain of size 110,000 for each parameter was simulated,
and the first 10,000 iterations were discarded to eliminate the effect of initial val-
ues. To avoid correlation, a spacing of size 10 was used, thereby obtaining an ef-
fective sample of size 10,000. Table 3 lists the summary statistics of the posterior
distribution and the 95% credible interval for the parameters of the log-normal and
Birnbaum–Saunders models fitted to the GDP data. The statistic DIC (see, e.g.,
Gelman et al., 2004) presented in Table 3 indicates that the Birnbaum–Saunders
model describes the data better than the log-normal model. The inferential results
are very similar to the results obtained using the maximum likelihood approach.
Figure 5 displays the history of the chains and the approximate posterior marginal
densities of the parameters η and φ for the Birnbaum–Saunders model.
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Figure 5 History of the chains and the approximate posterior marginal densities of η, φ and ζ for
the Birnbaum–Saunders distribution fitted to GDP data.
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