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Abstract. Large families of noisy interacting units (cells, individuals, com-
ponents in a circuit, . . . ) exhibiting synchronization often exhibit oscillatory
behaviors too. This is a well established empirical observation that has at-
tracted a remarkable amount of attention, notably in life sciences, because of
the central role played by internally generated rhythms. A certain number of
elementary models that seem to capture the essence, or at least some essential
features, of the phenomenon have been set forth, but the mathematical analy-
sis is in any case very challenging and often out of reach. We focus on phase
models, proposed and repeatedly considered by Y. Kuramoto and coauthors,
and on the mathematical results that can be established. In spite of the fact
that noise plays a crucial role, and in fact these models in abstract terms are
just a special class of diffusions in high dimensional spaces, the core of the
analysis is at the level of the PDE that provides an accurate description of the
limit of a very large number of units in interaction. We will stress how the fun-
damental difficulty in dealing with these models is in their non-equilibrium
character and the results we present for phase models are crucially related to
the fact that, with a very special choice of the parameters, they reduce to an
equilibrium statistical mechanics model.

1 Introduction

1.1 The main question

The analysis of life sciences phenomena and, even more generally, of real world
phenomena leads naturally to considering large families or interacting units. A unit
can be a cell, an individual, a component of a circuit, . . . and one can approach the
problem by modeling first each unit, for example, in terms of a finite dimensional
(possibly noisy) dynamical system, which may be challenging to analyze on its
own right. One can write then a larger model including N of these model units
coupled by interaction terms that in principle can be of a complex nature: we are
going to be more concrete in the cases we are going to develop, but we stress from
now that one can get to an arbitrarily large complexity both at the level of single
unit and of the interaction, while our attention will be on minimal models capable
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to capture some key phenomena. And the key question for us here is: can systems
exhibit (stable) periodic behavior if they are made up of units that do not behave
periodically? In other terms, how can families of units generate a rhythm which is
inscribed nowhere in the single unit? It is impossible to properly account for the
literature on this question that encompasses cases as diverse as neural networks,
gene networks, prey-predator equilibria, just to name a few. However, in order to
start making more precise our aim, we are particularly interested in the mechanism
reviewed in Lindner et al. (2004) and:

• as it is clear from the title of Lindner et al. (2004)—Effects of noise in excitable
systems—noise plays a crucial role. This is intriguing in its own right: noise ap-
pears to play a crucial role in generating the very regular (used here as opposite
to noisy) phenomena that are rhythms.

• Another key word is synchronization, in the sense that interaction is typically
introduced in such a way that units tend to go together or to cooperate. And it is
often observed (Kuramoto (1984); Pikovsky et al. (2001); Strogatz (2003)) that
a synchronization transition takes place, that is, if the interaction is sufficiently
strong the units start operating in synchrony. The word transition in itself some-
what calls for very large families of interacting units (N → ∞) and this starts
reconciling the apparent contradiction about noise as necessary ingredient for
rhythms: in such a limit the law of large numbers rules and the distribution of
the noise may still be (and in fact, it is) present, even if the randomness in itself
is washed out.

• In spite of the centrality of rhythm generation in the real world and of all the
attention paid in the applied sciences to the general question and to the models
like the ones in Lindner et al. (2004), see, for example, the third of the cases
treated in Gunawardena (2014) and the references therein, the rigorous results
are very few even for cases that at first appear as very elementary. It does appear
however that there are some important obstacles to be overcome for substantial
mathematical progress, as we argue below.

Remark 1.1. A last quick observation before moving to more concrete examples
is that units need not being identical. They can even be very different: this is an
aspect that is often accounted for by introducing another source of randomness,
that we will call disorder, and it is of high interest for example from the modeling
viewpoint, but also for the mathematical challenges it introduces and because it
does lead to phenomenological richness, as we will see. However, it should not
be confused with the dynamical noise that has been discussed so far and which is
even in the title of this contribution.

1.2 Modeling noisy interacting units

The state of a single, or isolated, unit dynamics we have in mind can be modeled
by a d dimensional variable X that evolves driven by a force Fv that depends on
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X and on parameters v

Ẋ(t) = Fv

(
X(t)

)
. (1.1)

An enlightening example is the well-known FitzHugh–Nagumo model for a neu-
ron, see Lindner et al. (2004) and references therein. In this case d = 2, X = (x, y),
v = (a, ε) ∈ R× (0,∞) and Fv(X) = ((x − x3

3 − y)/ε, x + a), that is,

εẋ = x − x3

3
− y, ẏ = x + a. (1.2)

One can verify that a = 1 is critical (in fact, it is a bifurcation point):

• X = (−a,−a + a3/3) is globally attractive for |a| > 1.
• For |a| < 1, a stable limit cycle appears.

However, the behavior of the system is not completely trivial for |a| > 1, at
least when |a| is not to far from 1: in fact moderate excitations produce large
pulses, that eventually of course lead back to the stable stationary point. The pulses
correspond, in the original motivation from neurosciences, to spikes. This loosely
defined feature actually is what is behind the word excitability.

Let us now put N systems in interaction and introduce noise. The scheme we
have in mind is

Ẋj (t) = Faj

(
Xj(t)

) + Interactionj

(
X1(t), . . . ,XN(t)

) + noisej (t), (1.3)

for j = 1,2, . . . ,N . In spite of the apparent generality (and certain vagueness)
of (1.3), the form of such an equation is already very imposing: realistic model-
ing would probably have to include time delays (Pikovsky et al. (2001)), fami-
lies that vary in size (Barabási (2002)) or even types of interactions that cannot
be reduced to the term in (1.3) (think, e.g., of quorum sensing type interactions
(Joint et al. (2007))). Going back to FitzHugh–Nagumo systems one could look
for example, at the stochastic system⎧⎪⎨⎪⎩dxj =

(
xj − x3

j

3
− yj

)
dt − K

N

N∑
i=1

(xj − xi)dt + σ dBj(t),

dyj = (xj + a)dt + κ dWj(t),

(1.4)

with K ≥ 0 (so to favor synchrony) and {Bj(·)}j=1,2,... and {Wj(·)}j=1,2,... in-
dependent families of independent standard Brownian motions. The information
about such a 2N dimensional system is naturally encoded into a probability mea-
sure on R

2, the empirical measure:

μN,t (dx,dy) := 1

N

N∑
j=1

δ(xj (t),yj (t))(dx,dy), (1.5)

where δv is the Dirac delta measure on v. The Law of Large Numbers, that is the
existence of the N → ∞ limit of the empirical measure and that the limit satisfies
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a Fokker–Plack PDE is well known (see, e.g., Scheutzow (1986) but also Bertini
et al. (2010) for further references on the vast literature available)

∂tpt (x, y) = σ 2

2
∂2
xpt (x, y) + κ2

2
∂2
ypt (x, y)

− ∂x

[(
x − x3

3
− y −

∫
R2

(
x′ − x

)
pt

(
x′, y′)dx′ dy′

)
pt(x, y)

]
(1.6)

− ∂y

[
(x + a)pt (x, y)

]
,

where pt(·, ·) is the (probability) density of the N → ∞ limit of the empirical
measure. What is less understood is the behavior of the limit PDE (1.6), even if
it is numerically clear that if a > 1, but close to 1, then (1.6) has a stable limit
cycle at least for suitable choices of the interaction parameter K and of the noise
parameters σ and κ , that is, the N → ∞ limit of the empirical measure can ex-
hibit stable time periodic behavior, that is, rhythms, even if for a > 1 the isolated
FitzHugh–Nagumo system has a globally stable stationary solution.

In order to go deeper into the analysis of (1.6), one should first identify a syn-
chronization transition (e.g., in the parameter K , for fixed σ and κ). However,
rigorous results are meager and such a speculative discussion would take us far
without necessarily clarifying the various issues. Results close in spirit to what
one would like to prove for (1.6) can be found in Scheutzow (1985, 1986); Rybko
et al. (2009); Dai Pra et al. (2013); Pakdaman et al. (2013); Touboul et al. (2012):
notably Scheutzow (1985) is possibly the first mathematical work showing that
interaction and noise can give origin to periodic behaviors. However, these results
do not address systems that qualify as excitable and we choose to stick to excitable
systems. And for this we will focus on an even more (with respect to FitzHugh–
Nagumo) elementary version of excitable systems, the active rotator models pro-
posed by Kuramoto, Sakaguchi and Shinomoto (Kuramoto et al. (1987); Sakaguchi
et al. (1988a); Shinomoto and Kuramoto (1986a, 1986b)).

Active rotators, that we are going to introduce in Section 2, are phase models,
in the sense that the dynamics of the isolated units takes place on a circle: we
refer to Ermentrout and Kopell (1986); Kuramoto (1984); Teramae et al. (2009);
Yushimura and Arai (2008) for the procedure of reduction to a phase that has
attracted a lot of attention and that can motivate further the use of these models,
but one can also simply take active rotators as (possibly, toy or very parsimonious)
models for synchronization of excitable systems. Two important observations are:

• One can actually show that active rotator models, in suitable regimes, exhibit
stable rhythms, even if the isolated units have just a globally stable stationary
point. The reason why these results can be proven is that active rotator models
reduce in a special case to a statistical mechanics model (even if in this special
case the underlying system is not excitable). As we will see, the key-word here
is stochastic reversibility that translate into gradient flows in the N → ∞ limit,
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that is, for the limit PDE. One can then make precise sense of the phase transi-
tion and several precise estimates are available. Results are then obtained in a
neighborhood of this special case, using dynamical systems tools.

• The difficulty in dealing with the questions that we have raised is that systems
built on excitable models are not stochastically reversible. This is important,
because stochastical reversibility is actually in contrast with rhythmic behaviors
(this is extensively treated in Bertini et al. (2010)). We are therefore naturally
dealing with non-equilibrium models (see, e.g., Bertini et al. (2014); Derrida
(2011)) and rhythmic behaviors can therefore be seen as a further expression of
the variety of non-equilibrium phenomena.

The paper is organized as follows: in Section 2 we define the active rotator
model and its PDE limit. In Section 3, we analyze in detail the particular key
model in the class that is reversible, that is, which is an equilibrium statistical
mechanics model, and that is rotation invariant. Then in Section 4 we introduce
the notion of normally contracting manifold and exploit it to carry information
from the reversible model to non-reversible ones. This section contains a number
of quantitative results in a rather general set-up and these results are applied in
Section 5 to a number of specific instances.

2 Stochastic phase models and their N → ∞ limit

2.1 The microscopic models

From now on, we will focus on the system of N = 1,2,3, . . . coupled stochastic
differential equations

dθω
j (t) = Uωj

(
θω
j (t)

)
dt + 1

N

N∑
i=1

J
(
θω
j (t) − θω

i (t)
)

dt + σ dBj(t), (2.1)

for j = 1,2, . . . ,N where σ ≥ 0 (but we stress from now that the case σ = 0 has
almost no role in what we are going to present) and:

1. {ωj }j=1,2,... is a sequence of real numbers with law P: we will normally
choose them by sampling a sequence of independent and identically distributed
random variables, still denoted by {ωj }j=1,2,..., with common law ν. The sequence
{ωj }j=1,2,... can be viewed, with a statistical mechanics language, as a disorder.

2. Uω(·) is a 2π -periodic C∞ function and the map (θ,ω) �→ Uω(θ) is con-
tinuous: much of what we are going to say works assuming Uω(·) just Lipschitz
or C1, but in the applications we consider Uω(·) is always smooth (even with re-
spect to ω: a list of particular cases that are relevant for application is given just
below and (θ,ω) �→ Uω(θ) is always going to be smooth (jointly in the two vari-
ables), and we remark that the regularity or even only the continuity requirement
in ω is superfluous if the ωj ’s are drawn from a discrete random variable).
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3. J (·) is a 2π -periodic C∞ function (once again, such a high regularity
is chosen just to simplify the presentation): in the applications either J (·) :=
−K sin(·), K ≥ 0, or such a particular case will play a crucial role.

4. {Bj(·)}j=1,2,... are IID standard Brownian motions—the dynamical
noise—with law P: the two sequences {ωj }j=1,2,... and {Bj(·)}j=1,2,... are inde-
pendent.

The existence of a unique global (strong, if σ > 0) solution to the system (2.1)
is classical (there is nothing to require at this stage about the dependence of
(θω

1 (0), . . . , θω
N(0)) on ω) and such a strong solution is in C0([0,∞);RN). How-

ever, we will actually focus on θω
j (t)mod(2π) ∈ T := R/(2πZ), still denoted by

θω
j (t) by abuse of notation (note that the right-hand side in (2.1) is unaffected by

such a change). Therefore, if σ > 0, t �→ (θω
1 (t), . . . , θω

N(t)) is a diffusion process
on the manifold T

N , and it has a unique invariant measure, which is absolutely
continuous with respect to the Lebesgue, or Haar, measure on T

N . In general how-
ever, such an invariant measure is not explicit.

Given the mean-field nature of the system we are considering, a central role is
going to be played by the empirical measure

μN,t (dθ,dω) := 1

N

N∑
j=1

δ(θj (t),ωj )(dθ,dω), (2.2)

which is a probability measure on D := T × R, that is μN,t ∈ M1 = M1(D).
Of course μN,· ∈ C0([0,∞);M1). The important observation is that we can
rewrite (2.1) as

dθω
j (t) = Uωj

(
θω
j (t)

)
dt +

∫
D

J
(
θω
j (t) − θ

)
μN,t (dθ,dω)dt + σ dBj(t). (2.3)

We will talk of isolated unit or of isolated unit dynamics when referring to the
ODE

θ̇ (t) = Uω

(
θ(t)

)
, (2.4)

which is a simple dynamics on T, but it is particularly relevant for us because in
the end we are interested in understanding what of this dynamics persists in the
behavior of μN,· for N → ∞.

Here is a list of special relevant cases:

• Reversible and rotation symmetric case: σ > 0, Uω(·) ≡ 0 for every ω and J =
(J̃ )′ with J̃ even when looked upon as a function with domain R (from now
on, we say even periodic). In this case, the isolated dynamics is trivial and the
dynamics defined by (2.1) is reversible with respect to the probability measure

mN(dθ1, . . . ,dθN) ∝ exp
(

2

σ 2 HN(θ1, . . . , θN)

)
HaarN(dθ1, . . . ,dθN), (2.5)
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where HN(θ1, . . . , θN) := (2N)−1 ∑
i,j J̃ (θi − θj ) and HaarN is the Haar mea-

sure on T
N , from now on just denoted by dθ1 · · ·dθN . The reader who is not

familiar with the notion of stochastic reversibility will find the necessary back-
ground in Section 3, where also the notion of rotation symmetry is developed.
Note that the case Uω(·) ≡ c ∈ R for every ω is not reversible, but it is directly
mapped to a reversible case by the change of variables θω

j (t) �→ θω
j (t) − ct .

Moreover, if J (·) := −K sin(·), then the model is just the simplest Langevin
dynamics associated to the standard statistical mechanics model of mean field
plane rotators, also called mean field classical XY model (see Bertini et al.
(2010) and references therein).

• The (stochastic) Kuramoto model: Uω(·) ≡ ω and J (·) := −K sin(·) (see
Acebrón et al. (2005) for a survey of the literature on this model). In the lit-
erature the case of J (·) odd but containing more harmonics is also considered
Daido (1992). The isolated dynamics for the Kuramoto model is a constant
speed rotation.

• Active rotators. Introduced in Sakaguchi et al. (1988a); Shinomoto and Ku-
ramoto (1986a, 1986b), the model typically limited to J (·) := −K sin(·) and, in
its most basic version, to Uω(θ) = U(θ) = 1 + a sin(θ), with a a real constant.
The isolated dynamics depends crucially on a: if |a| < 1 it is just a rotation (at
nonconstant speed), while for |a| > 1 there is a stable and an unstable fixed point
(there is a saddle point if |a| = 1). In the case |a| > 1 the isolated dynamics is
excitable, since a sufficiently large perturbation allows a rotator located initially
in its stable fixed point to go over the unstable fixed point, and to travel the
whole circle before returning to the stable fixed point. This corresponds to the
one-dimensional analog of the pulses or spikes in the FitzHugh–Nagumo model,
described in the Introduction. When referring to the active rotator model we will
have this specific example in mind, but of course one can choose a more com-
plex non-disordered (i.e., no dependence on ω) U(·)—this case will be referred
to as generalized active rotator model—or one can also consider disordered ver-
sions, for example Uω(·) = 1 + ω sin(·) which will be referred to as disordered
active rotator model.

• Tilted interaction. The case of J (θ) := −K sin(θ − ψ) appears in Sakaguchi
et al. (1988b) with Uω(·) ≡ ω and it is one of the most natural examples of non-
reversibility due to the interaction term: in fact the model is non-reversible even
for Uω(·) ≡ 0.

• Rod-like polymers with Maier–Saupe potential. This model, proposed by Hess
and Doi (Hess (1976); Doi (1981)), provides an evolutionary equation for solu-
tions of rigid polymers subject to a shear flow. In dimension 2, this model can
be written as (2.3), with J (θ) = 4C sin(2θ) and U(θ) = Pe(1 + sin((2θ)))/2,
for some parameters C, Pe and a related to the molecular properties.

Remark 2.1. We deal with first order dynamics, that appear in physics in the limit
in which the inertia is irrelevant. However, synchronization in presence of inertia is
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perfectly natural and possibly even more realistic, see, for example, Acebrón et al.
(2005) and references therein, and, going even beyond, the tools we develop and
employ may apply also in other frameworks, like for example, the stochastically
forced Hamiltonian mean field model in Nardini et al. (2012).

2.2 The N → ∞ limit

There is an extensive literature on the content of this section: see, for example,
Dai Pra and den Hollander (1996); Luçon (2011) and references therein. We start
by observing that μN,t (dθ,dω) is a random element of M1. We will assume
that {μN,0(dθ,dω)}N=1,2,... converges to a deterministic limit probability μ0. The
sense in which this convergence takes place is weakly in probability, that is for
every f ∈ C0

b(D;R), the subscript b of course stands for bounded, and for every
ε > 0 we have

lim
N→∞P

(∣∣∣∣∫
D

f dμN,0 −
∫
D

f dμ0

∣∣∣∣ > ε

)
= 0. (2.6)

M1, endowed with the topology of weak convergence, is actually a complete sep-
arable metric space and it is rather straightforward to see that requiring that (2.6)
holds for every f ∈ C0

b(D;R) is equivalent to requiring that the sequence of ran-
dom variables {dM1(μN,0,μ0)}N=1,2,... converges to zero in probability: of course
dM1(·, ·) is a distance on M1 compatible with the weak convergence.

Now it turns out that, under the assumption we have just made on the initial
condition and under the additional assumption that

∫
R

supθ∈T |Uω(θ)|ν(dω) < ∞,
then for every T > 0 the law of the process μN,· ∈ C0([0, T ];M1) converges
as N → ∞ to the law of a limit process μ· ∈ C0([0, T ];M1). In particular, this
implies that for every bounded continuous f , every ε > 0 and every t ≥ 0

lim
N→∞P

(∣∣∣∣∫
D

f dμN,t −
∫
D

f dμt

∣∣∣∣ > ε

)
= 0. (2.7)

But the limit process μ· ∈ C0([0, T ];M1) is actually deterministic, hence the law
of μ· ∈ C0([0, T ];M1) is just the delta measure on the deterministic trajectory
μ· ∈ C0([0, T ];M1). One can characterize μ· ∈ C0([0, T ];M1) as the unique
weak solution of a PDE, but under the regularity assumptions we have made on
U and J , when σ > 0 the limit law μt has a density pt(θ,ω) with respect to
dθν(dω) for every t > 0, such that for every ω in the support of ν the function
(t, θ) �→ pt(θ,ω) is smooth and (t, θ,ω) �→ pt(θ,ω) is continuous for every ω in
the interior of the support of ν. Such a pt(θ,ω) can be characterized as the unique
solution to

∂tpt (θ,ω) = σ 2

2
∂2
θ pt (θ,ω)

(2.8)

− ∂θ

[
pt(θ,ω)

(
Uω(θ) +

∫
D

J
(
θ − θ ′)pt

(
θ ′,ω′)dθ ′ν

(
dω′))]

,
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for every ω in the support of ν, such that
∫
D

f (θ,ω)pt (θ,ω)dθν(dω) converges,
as t ↘ 0, to

∫
D

f dμ0 for every f continuous and bounded.
Of course, if ν charges only one point no disorder is present and the limit PDE

reduces to

∂tpt (θ) = σ 2

2
∂2
θ pt (θ) − ∂θ

[
pt(θ)

(
U(θ) +

∫
T

J
(
θ − θ ′)pt

(
θ ′)dθ ′

)]
. (2.9)

Remark 2.2. The result holds also when σ = 0, and there is no need of assuming∫
R

supθ∈T |Uω(θ)|dν(dω) < ∞ (this is treated in Lancellotti (2005) for the Ku-
ramoto case, and it generalizes in a straightforward fashion). However, the limit
evolution in general has to be characterized in a suitable weak sense. Actually, the
substantial difference with respect to the σ > 0 case is the lack of parabolic regu-
larization, but under suitable smoothness assumptions on U , J and on the initial
condition, the unique weak solution is actually a classical solution. Here we will
only be very marginally interested in the σ = 0 case so we do not go into details.

3 The reversible rotation symmetric case

3.1 Microscopic reversibility and macroscopic gradient flow

The diffusion defined by (2.1) (when σ > 0) has a unique invariant probability
mω

N ∈ M1(T
N), that can be determined by solving an elliptic PDE in dimension

N and this is far from an explicit expression. However when J = J̃ ′, J̃ even pe-
riodic, and Uω(·) = V ′

ω(·) then {θω
j (·)}j=1,...,N is reversible, in the sense that if

{θω
j (0)}j=1,...,N is distributed according to mω

N ∈ M1(T
N), then for every T > 0

the law of {θω
j (t)}j=1,...,N,t∈[0,T ] coincides with the law of the time reversed pro-

cess {θω
j (T − t)}j=1,...,N,t∈[0,T ]. Moreover, the invariant probability can be ex-

pressed as

mω
N(dθ1, . . . ,dθN) ∝ exp

(
2

σ 2

N∑
j=1

Vω(θj )+ 1

σ 2N

N∑
i,j=1

J̃ (θi −θj )

)
N∏

j=1

dθj . (3.1)

Of all these reversible cases however we will focus just on the case in which Vω

(hence, Uω) is identically zero: in this case if {θω
j (t)}j=1,...,N is a solution to (2.1),

then also {θω
j (t) + const.}j=1,...,N is a solution. This case is therefore naturally

dubbed rotation invariant, or rotation symmetric.

Remark 3.1. Note that the definition of rotation symmetry is well posed also in
absence of reversibility. And in fact it is easy to check that the system is rotation
symmetric if Uω(·) in (2.1) is a constant (that may depend on ω!). For example,
the Kuramoto model is rotation symmetric.
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Remark 3.2. In the special case J (·) = −K sin(·) the probability defined by (3.1)
is the classical mean field plane rotator model, considered in particular in Silver
et al. (1972); Pearce (1981) and that will play a central role for us. But at this
stage J (·) is allowed as long as if it has a Fourier decomposition that contains only
sin(n·) terms: for example, J (·) = cos(·) is not allowed. Note also that the standard
Kuramoto choice, that is, Uω(·) ≡ ω, is not allowed either if we want reversibility
(with the exception of the trivial case ν = δ0), because θ �→ Vω(θ) = ωθ is not
differentiable, in fact it is not even continuous, for ω �= 0.

If Uω = 0, the invariant probability is

mN(dθ) ∝ exp
(

2

σ 2 HN(θ)

)
dθ with HN(θ) := 1

2N

N∑
i,j=1

J̃ (θi − θj ), (3.2)

where we have introduced the shortcut notation θ = (θ1, . . . , θN). The reversibil-
ity property is actually equivalent to the fact that the (pre-)generator LN of the
dynamics

LNF(θ) := σ 2

2
exp

(
− 2

σ 2 HN(θ)

) N∑
j=1

∂θj

(
exp

(
2

σ 2 HN(θ)

)
∂θj

F (θ)

)
, (3.3)

is symmetric in L2(mN), that is
∫
TN GLNF dmN = ∫

TN FLNGdmN for F,G ∈
C2(TN ;R).

In Bertini et al. (2010), it is discussed how reversibility of the underlying
stochastic process leads to a specific structure for the N → ∞ limit of the em-
pirical measure. In fact, in this restricted context (2.8) reads

∂tpt (θ) = σ 2

2
∂2
θ pt (θ) − ∂θ

[
pt(θ)

∫
T

J
(
θ − θ ′)pt

(
θ ′)dθ ′

]
, (3.4)

which can be rewritten as

∂tpt (θ) = ∂θ

[
pt(θ)∂θ

δF(pt (θ))

δpt (θ)

]
, (3.5)

with

F(p) := σ 2

2

∫
T

p logp − 1

2

∫
T

∫
T

J̃
(
θ − θ ′)p(θ)p

(
θ ′)dθ dθ ′. (3.6)

It is straightforward to verify that

d

dt
F(pt ) = −

∫
T

pt(θ)

(
∂θ

δF(pt (θ))

δpt (θ)

)2

dθ

(3.7)

= −
∫
T

1

pt

(
σ 2

2
∂θpt − pt(J ∗ pt)

)2

dθ ≤ 0,

where ∗ denotes the convolution (f ∗g(θ) := ∫
T

f (θ −θ ′)g(θ ′)dθ ′) and (3.7) says
that F(·) is a Lyapunov function for the evolution.
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Remark 3.3. For what concerns the mathematical analysis, if σ > 0 one can as-
sume σ = 1 without loss of generality, because if pt(θ;K) solves (3.4) with σ

replaced by 1 then pσ 2t (θ;K/σ 2) solves (3.4).

Remark 3.4. The PDE (3.4) or very close variants, with J (·) which is either sim-
ply containing one harmonic like here or much more general, appears in a vari-
ety of contexts, for example, He et al. (2012). But one of the first instances is in
Lebowitz et al. (1991): there it is a technical tool to establish the validity of a dif-
fusion equation on a different space-time scale (for an exclusion model with Kac
potentials, see Presutti (2009) for much more on models with Kac potentials and,
more generally, for mean field type limits). The gradient flow structure (3.5)–(3.7)
has been made evident and exploited in Giacomin and Lebowitz (1997, 1998).

Remark 3.5. The steps (3.5)–(3.7) are not just formal. In Bertini et al. (2010);
Giacomin et al. (2012a), it is shown for the case J (·) = −K sin(·) that the solution
to (3.5) is strictly positive and smooth (real analytic) for t > 0: the arguments
directly extend to the case in which J (·) contains a finite number of harmonics,
even without requiring J (·) to be odd. If J (·) contains infinitely many harmonics
one would still obtain by the same arguments regularity results (that will depend
on the regularity of J (·)). The positivity result can be established by exploiting the
heat kernel approach in Aronson (1968) (see Bertini et al. (2010)) and it applies in
full generality.

3.2 Stationary solutions

Without loss of generality, cf. Remark 3.3, we assume σ = 1. By the positivity and
regularity results recalled in Remark 3.5, we have that stationary solutions to (3.5)
which we are interested in, that is probability densities, are positive and smooth,
hence they satisfy (

logq(θ)
)′ = 2(J ∗ q)(θ) + C

q(θ)
, (3.8)

with C a constant. But the integral on T of the left-hand side and of the first term
on the right-hand side is zero (for this

∫
T

J = 0 suffices), and this directly yields
C = 0. Therefore, a probability density q is a stationary solution to (3.5) if it solves
the fixed point equation

q = C exp
(
2(J̃ ∗ q)

)
, (3.9)

for some constant C > 0. This problem is not of straightforward solution in general
and we assume now J (·) = −K sin(·) (see Daido (1992) for the case in which J is
a superposition of finitely many sin(·) harmonics, but the problem becomes con-
siderably more involved). In this case, we write

∫
T

q(θ) exp(iθ)dθ = r exp(iψ),
with r ∈ [0,1] and ψ ∈ T (ψ of course is uniquely defined only for r > 0), so that



Noise, interaction, nonlinear dynamics and rhythmic behaviors 471∫
T

q(θ) cos(θ − ψ)dθ = r , while the analogous sin(·) expression gives zero. At
this point, we observe that by performing a rotation we can set ψ = 0 so, up to
rotations, all stationary solutions solve

q(θ) = C exp
(
2Kr cos(θ)

)
. (3.10)

The normalization condition yields C = 1/(2πI0(2Kr)), where we have used the
standard notation for the modified Bessel functions that we introduce here for the
order j = 0 and 1:

Ij (x) := 1

2π

∫
T

(
cos(θ)

)j exp
(
x cos(θ)

)
dθ. (3.11)

Since r = ∫
T

q(θ) cos(θ)dθ , we find that a probability density q is a stationary
solution to (3.5), with σ = 1, if and only if

q(θ) = exp(2Kr cos(θ))

2πI0(2Kr)
and r = �(2Kr), (3.12)

with �(x) = I1(x)/I0(x). Properties of �(·) are recalled in Figure 1 and its cap-
tion. The punchline here is:

• r = 0 always solves r = �(2Kr), that is q(·) ≡ 1
2π

is a stationary solu-
tion for every choice of K (of course this can also be checked directly). For
K ≤ Kc := 1, it is the unique stationary solution.

• For K > Kc there exists a unique solution r =: rK > 0 to r = �(2Kr) and
there is a non-constant stationary solution q(θ) ∝ exp(2Kr cos(θ)) (known in
the statistics literature as von Mises distribution). By recalling that we have ex-
ploited the rotation symmetry to center our solution, we actually have a whole

Figure 1 The fixed points of the problem r = �(2Kr) are the crossings of the graph of �(2K·)
(continuous line in the figure) and the first bisector line (dashed line). The function x �→ �(x)

is strictly concave on (0,∞) Pearce (1981), satisfies �(0) = 0, �(x) → 1 when x → ∞ and
�′(0) = 1/2. So r = 0 is always solution of the fixed point problem, and there exists a unique strictly
positive solution if and only if d

dr
�(2Kr)|r=0 = K is larger than 1.



472 G. Giacomin and C. Poquet

family M0 of stationary solutions

qψ(θ) := exp(2KrK cos(θ − ψ))

2πI0(2KrK)
, (3.13)

indexed by ψ ∈ T, without forgetting that when σ �= 1 the expression is rather

qψ(θ) := exp(2(K/σ 2)rK/σ 2 cos(θ − ψ))

2πI0(2(K/σ 2)rK/σ 2)
. (3.14)

We use M0 = {qψ(·) : ψ ∈ T} without stressing the dependence on σ .

3.3 Instability and linear stability analysis

Linearized evolutions are key to understand the (in)stability properties of station-
ary solutions: how to transfer results from linearized evolutions to the original
nonlinear PDE is a much studied issue that we will not tackle in this section and
essentially not even in the rest of this paper. We will limit ourselves to stating re-
sults and giving references. So let us observe that if p· solves (3.4) (with σ = 1 for
simplicity) then the linearized evolution around p is the solution u· to the linear
(in general, time inhomogeneous) equation

∂tut (θ) = 1

2
∂2
θ ut (θ) − ∂θ

[
pt(θ)J ∗ ut (θ) + ut (θ)J ∗ pt(θ)

]
. (3.15)

Given the conservation law structure of (3.4) it is natural to restrict the attention to
solutions to (3.15) with

∫
T

u0 = 0, hence
∫
T

ut = 0 for every t . We can rewrite this
equation as

∂tut (θ) = 1

2
∂2
θ ut (θ) + K

2π

∫
T

cos
(
θ − θ ′)ut

(
θ ′)dθ ′

(3.16)

= 1

2
∂2
θ ut (θ) + K

2π

(
cos(θ)û1(t) + sin(θ)ǔ1(t)

)
,

where ûn(t) := ∫
T

cos(nθ)ut (θ)dθ and ǔn(t) := ∫
T

sin(nθ)ut (θ)dθ . We can actu-
ally solve (3.16) by writing the evolution for the Fourier coefficients, since one
readily verifies that

d

dt
û1(t) = 1

2
(K − 1)û1(t) and

d

dt
ǔ1(t) = 1

2
(K − 1)ǔ1(t), (3.17)

while for n = 2,3, . . . we have

d

dt
ûn(t) = −n2

2
ûn(t) and

d

dt
ǔn(t) = −n2

2
ǔn(t). (3.18)

In particular, 1
2π

is unstable if K > 1: note that only two modes are unstable. On
the other hand, 1

2π
is linearly stable for K < 1: without surprise, we recover the

fact that K = 1 is critical.
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The linearized evolution around the non-constant stationary solution qψ(θ), cf.
(3.13) (of course, we are now assuming K > 1), is substantially more involved and
it has been treated in Bertini et al. (2010). We go back to (3.15) and we see that the
linearized evolution around qψ is ∂tut (θ) = −Lψut(θ) with

Lqψ u(θ) = Lψu(θ) := −1

2
∂2
θ ut (θ)+∂θ

[
qψ(θ)J ∗u(θ)+u(θ)J ∗qψ(θ)

]
. (3.19)

This operator acts on C2(T;R) functions u such that
∫
T

u = 0. The key point now
is to realize that it is symmetric with respect to the scalar product of the Hilbert
space H−1,1/qψ : this can be easily verified.

Remark 3.6. For w ∈ C1(T; (0,∞)), we can introduce the Hilbert space H−1,w

by saying that u ∈ H−1,w if there exists U ∈ L2(T) such that u = U ′ in the distribu-
tional sense. The norm ‖u‖−1,w of u then is the square root of

∫
T

U2w, where U ,
which a priori is defined only up to an additive constant (that now matters), is
chosen such that

∫
T

Uw = 0. Alternative definitions and proofs of properties for
H−1,w spaces can be found in Bertini et al. (2010) and in Bertini et al. (2014),
Section 2.1.

We resume in the next statement a number of properties of Lψ that are less
straightforward.

Proposition 3.7. Lψ is essentially self-adjoint in H−1,1/qψ and it has compact
resolvent. The spectrum of Lψ is therefore discrete. Moreover Lψq ′

ψ = 0 and the
eigenspace with eigenvalue zero is one dimensional. Zero is actually the smallest
eigenvalue, so all the other ones are strictly positive (in fact larger or equal to the
second smallest eigenvalue that we denote by λK > 0: the spectral gap).

By rotation symmetry, one readily sees that the eigenvalues, hence the spectral
gap, do not depend on ψ . On the other hand, the eigenfunctions do depend on ψ ,
starting from the q ′

ψ , but in a rather trivial way, since they are simply related by a
rotation by ψ .

Proposition 3.7 is saying that qψ is not linearly stable, because it has a neutral
direction—along q ′

ψ—which is intimately related to the rotation invariance of the
model. Proposition 3.7 actually suggests that a small perturbation of qψ will be
reabsorbed by the dynamics but the asymptotic state of the system would not nec-
essarily be qψ , but qψ̃ , with ψ̃ close to ψ . Here is an example of a precise result,
the proof of which is detailed in Giacomin et al. (2012a) by adapting classical ideas
(e.g., Henry (1981)).

Proposition 3.8. Consider the evolution (3.4), with σ > 0 and K > σ 2. Fore
every η ∈ (0, λK), there exists δ > 0 such that for every initial density p0 such
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that dL2(p0,M0) := infψ ‖p0 − qψ‖2 ≤ δ, then dL2(pt ,M0) = O(exp(−ηt)) as
t → ∞. Moreover for every t ≥ 0, the infimum in the definition of d(pt ,M0) is
achieved for a unique ψt ∈ T. The limit ψ∞ = limt→∞ ψt exists and
dT(ψ0,ψ∞) = o(dL2(p0,M0)), where dT(·, ·) is the arc length.

Remark 3.9. The choice of L2 is arbitrary, notably the same statement holds
in Hn, the Hilbert space with square norm

∑n
j=1 ‖∂jp‖2

2, n = 0,1, . . . . Of course

Hn ⊂ H 0 = L2(T) ⊂ L1(T) and we are interested only in initial conditions
that are probability densities, that is, non-negative and of unit total mass, prop-
erties that are preserved by the evolution. From now on, we use the notations
H1 := {p ∈ Hn : ∫

T
p = 1} and H0 := {p ∈ Hn : ∫

T
p = 0} where in the statements

n is arbitrary.

Proposition 3.8 says in particular that no element of M0 is stable, but rather M0
itself is stable.

3.4 Toward normally contractive manifolds

From our viewpoint, a major consequence of Proposition 3.7 is that it implies
that M0 is a normally contracting invariant manifold for the evolution (3.4) (with
σ = 1). At this stage, this notion is essentially just a restatement of the concepts
introduced in the previous paragraphs, but the important point is that normally
contracting invariant manifolds are actually robust structures, as we will explain in
Section 4. In fact, M0 can be seen as a manifold, a circle, in H1. For every q ∈ M0
we introduce the projection operator P ‖(q) acting on H0 (of course H0 ⊂ H−1,w

for every weight w, cf. Remark 3.6):

P ‖(q)u := 〈u,q ′〉−1,1/q

〈q ′, q ′〉−1,1/q

q ′. (3.20)

This is the projection of the tangent space to M0 at q . We consider also the
projection on the orthogonal space: P ⊥ := 1 − P ‖ and we introduce the evolu-
tion operator �(p, t) defined by �(p, t)u for every u ∈ H0. One then directly
verifies that if for q ∈ M0 we call �(q, t) the linear evolution operator on H0,
that is the operator defined by ∂t�(q, t)v = Lq�(q, t)v for every v ∈ H0, we
have that:

1. For every t ≥ 0

�(q, t)P ‖(q) = P ‖(q)�(q, t). (3.21)

2. In fact �(q, t)P ‖(q) = P ‖(q) and for every t ≥ 0∥∥�(q, t)P ⊥(q)v
∥∥
H0

≤ exp(−λKt). (3.22)
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3. We can consider also t < 0, both for the nonlinear dynamics (3.4) and of
course for the linearized evolution, since we can just set pt = q for every t . Then
(3.21) as well as �(q, t)P ‖(q) = P ‖(q) hold also for t < 0.

We stress that, given Proposition 3.7, these three facts are immediate and
redundant, but we spell them out because they correspond to the definition
of normally contracting manifold that is given in the general set-up in Sec-
tions 4.1 and 4.2. The essential message here is that these three properties
are actually saying that M0 is a normally contracting invariant manifold for
(3.4).

3.5 Asymptotic dynamics

While not at all crucial for this review, it is worthwhile to quickly and informally
sum up the global results that can be proven about the asymptotic dynamics for
(3.4). Recall that Kc = σ 2. It is in fact possible to show that for every k ∈N

lim
t→∞pt =: p∞ exists in Ck and p∞

⎧⎪⎪⎨⎪⎪⎩
= 1

2π
if K ≤ Kc,

∈ M0 ∪
{

1

2π

}
if K > Kc.

(3.23)

Actually, the convergence takes place also in spaces of analytic functions. A proof
of these facts can be found in Giacomin et al. (2012a), Section 4, and it is based
on the regularity estimates in Giacomin et al. (2012a), Section 2, and on the gra-
dient structure of (3.4), see (3.5)–(3.7) (an alternative proof, still based on (3.5)–
(3.7), can be established exploiting the approach in Arnold et al. (1996)). Interest-
ingly, it is not difficult to give necessary and sufficient conditions on p0 such that
p∞ = 1

2π
:

1. Of course this is always the case if K ≤ Kc since in this case the uniform
density is the only stationary solution (this is already explicitly stated in (3.23)).

2. If K > Kc instead, p∞ = 1
2π

if and only if
∫
T

p0(θ) exp(iθ)dθ = 0.

The proof of this last statement, that is (2), is short and enlightening enough that
it is worth to spell it out.

Proof of (2). Set zn(t) := p̂n(t) + ip̌n(t) = ∫
T

pt(θ) exp(inθ)dθ . One then di-
rectly verifies that if p solves (3.4), then

d

dt
zn(t) = −σ 2

2
n2zn(t) + K

2
n(z1zn−1 − z1zn+1). (3.24)

In particular (note that z0(t) = 1 for every t ≥ 0),

d

dt

∣∣z1(t)
∣∣2 = (

K − σ 2)∣∣z1(t)
∣∣2 − K

2

(
z2

1(t)z2(t) + z2
1(t)z2(t)

)
, (3.25)
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and since |zn(t)| ≤ 1 we have∣∣z1(t)
∣∣2 ≤ ∣∣z1(0)

∣∣2 + ∣∣2K − σ 2∣∣ ∫ t

0

∣∣z1(s)
∣∣2 ds, (3.26)

and Gronwall’s inequality tells us that if z1(0) = 0, then z1(t) = 0 for every
t > 0. So

∫
T

pt(θ) exp(iθ)dθ = 0 for every t > 0 if it holds at t = 0. But if∫
T

pt(θ) exp(iθ)dθ = 0, then ∂tpt = 1
2∂2

θ pt , as can be read out of (3.16) or also
out of (3.24), so that pt relaxes (exponentially fast) to 1

2π
.

On the other hand if z1(0) = ∫
T

p0(θ) exp(iθ)dθ �= 0, then p∞ �= 1
2π

as one can
see by observing first that for such an initial condition it does not exist t > 0 such
that z1(t) = 0: in fact (3.25) can be rewritten as

d

dt

∣∣z1(t)
∣∣2 = g(t)

∣∣z1(t)
∣∣2

(3.27)

with g(t) := (
K − σ 2) − K

2

(z2
1(t)z2(t) + z2

1(t)z2(t))

|z1(t)|2 ,

so |g(t)| ≤ 2K − σ 2, hence |z(t)|2 = |z(0)|2 exp(
∫ t

0 g) �= 0. Therefore, we are just
left with excluding that it can happen that p0 is such that z1(0) �= 0, but p∞ = 1

2π
.

To exclude this, let us assume that it happens, so for example ‖pt − 1
2π

‖L1 ≤
(K − σ 2)/K for every t ≥ t0. Therefore for such values of t , we have

d

dt

∣∣z1(t)
∣∣2 ≥ (K − σ 2)

2

∣∣z1(t)
∣∣2, (3.28)

where we have simply used |z2(t)| ≤ ‖pt − 1
2π

‖L1 ≤ (K − σ 2)/K . But (3.28)
says that |z1(t)|2 grows without bounds, contradicting the hypothesis. So (2) is
proven. �

Figure 2 and its caption sum up the content of this subsection.

Figure 2 If the initial datum is on the hyperplane U := {p : |p̂0| + |p̌0| = 0}, then (3.4) reduces to
the heat equation and therefore p∞ = 1

2π
. For all other initial conditions, that is if the first Fourier

harmonic is present in the initial condition, the solution p to (3.4) asymptotically tends to a profile
p∞ ∈ M0. Therefore, in this second case the asymptotic dynamics is determined by the center of
synchronization ψ∞ (uniquely determined by qψ∞ = p∞). Of course p0 uniquely determines ψ∞,
but we do not have any explicit formula for ψ∞ as a function of p0.
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4 Robustness of contractive manifolds and perturbation theory

We start in the most general setting, that is (2.8). The linearized evolution around
a solution p· to (2.8) is given by the linear equation ∂tut = Aν

pt
u with

Aν
pt

u(θ,ω) := σ 2

2
∂2
θ u(θ,ω) − ∂θ

[
u(θ,ω)Uω(θ)

]
− ∂θ

[
pt(θ,ω)

∫
D

J
(
θ − θ ′)u(θ ′,ω′)dθ ′ν

(
dω′) (4.1)

+ u(θ,ω)

∫
D

J
(
θ − θ ′)pt

(
θ ′,ω′)dθ ′ν

(
dω′)].

In absence of disorder, that is, if ν = δ0, the operator reduces (with the convolution
notation, cf. (3.4)) to

Aδ0
pt

u(θ) := σ 2

2
∂2
θ u(θ) − ∂θ

[
u(θ)U(θ)

]
(4.2)

− ∂θ

[
pt(θ)J ∗ ut (θ) + u(θ)J ∗ pt(θ)

]
,

where now the operator naturally acts on functions that depend only on the θ vari-
able. It is of course well known that linear approximations do capture important
features of the evolution. But even regardless of the relation to the original evo-
lution, associated to (2.8) one can consider the linear evolution ∂tut = Aν

pt
u, that

is well defined for all times for which the solution p· exists and essentially for
all initial data u0. Notice of course that pt is a probability density and therefore
it is natural to consider u0 such that

∫
T

u0 = 0 and this property is preserved by
the linear evolution. We are going to be more precise on the functional spaces and
operator domains when needed: for example now that we specialize to (2.9).

4.1 Normally contracting manifold: Non-disordered case

The evolution equation (2.9) gives rise to an evolution semigroup defined for
each trajectory in H1, cf. Remark 3.9. Given a solution p· of (2.9) this lin-
earized evolution semigroup operating on H0 will be denoted by �(p0, t), that
is, if we set ut := �(p0, t)u for some u ∈ H0, then at t = 0 we have u0 = u and
∂tut = A

δ0
pt ut for all t > 0. A normally contracting manifold of characteristics λ1,

λ2 (0 ≤ λ1 < λ2) and C > 0 for the nonlinear semigroup in H1 corresponding to
(2.9) is a compact connected manifold M which is time invariant and such that for
every p ∈ M there exists a projection P ‖(p) on the tangent space of M at p which
satisfies:

1. For every t ≥ 0

�(p0, t)P
‖(p0) = P ‖(pt )�(p0, t). (4.3)
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2. For every t > 0∥∥�(p0, t)P
‖(p0)

∥∥
H0

≤ C exp(λ1t), (4.4)

and, with P ⊥ = 1 − P ‖∥∥�(p0, t)P
⊥(p0)

∥∥
H0

≤ C exp(−λ2t). (4.5)

3. There exists a continuation of the nonlinear dynamics and of the linearized
semigroup for all negative times and for any such continuation (t < 0) we have∥∥�(p0, t)P

‖(p0)
∥∥
H0

≤ C exp(−λ1t). (4.6)

Identifying an invariant manifold for (2.9) and verifying that it is normally con-
tracting is far from trivial. However, and this is the key point, normally contracting
manifolds are robust. This key property has been at the center of many studies in
various settings (Fenichel (1971/1972); Bates et al. (1998); Sell and You (2002);
Hirsch et al. (1977)); in our context we rely on the work of Sell and You (2002)
which is well adapted to partial differential equations (see Giacomin et al. (2012b)
for a proof of this robustness in our particular context, based on the theory de-
veloped in Sell and You (2002)). Let us be more explicit for what concerns (2.9)
which we now write by replacing U with δU , δ ∈ R, and by using the notation
G[p](θ) := −∂θ [U(θ)p(θ)]:

∂tpt (θ) = σ 2

2
∂2
θ pt (θ) − ∂θ

[
pt(θ)

(∫
T

J
(
θ − θ ′)pt

(
θ ′)dθ ′

)]
+ δG[pt ](θ), (4.7)

which is just a cosmetic change but it suggests our line: we have our hands on the
case δ = 0 and we try to extract information about the case δ �= 0. In fact:

• for δ = 0, that is for (3.4), and K > Kc the dynamics has a normally contracted
manifold (this has been spelled out in Section 3.4). Note of course that A

δ0
pt =

A
δ0
qψ coincides with −Lψ of (3.19) and Proposition 3.7 if pt = qψ for every t ;

• if δ is not too large, that is |δ| below a threshold, M0 persists, in the sense that
it is regularly deformed into another manifold Mδ that is normally contracting
for (4.7). In particular, Mδ is still homeomorphic to a circle and it can still be
characterized by a phase. Note that in the case considered up to now G[·] is lin-
ear, but the approach works in a far more general context and in fact it suffices to
assume that G[·] is C1 as a map from Hn to Hn−1 and that its Frechet derivative
is uniformly bounded in a Hn neighborhood of M0, properties that are readily
verified for the linear map p �→ ∂θ [Up].

• In order to analyze the dynamics on Mδ we resort to perturbation theory and the
results are just asymptotical as δ → 0.

We resume these formal results into the following statements.
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Theorem 4.1 (Giacomin et al. (2012b)). There exists δ0 > 0 such that if |δ| < δ0

there exists a normally contracting manifold Mδ in H1 for (4.7). Moreover, p ≥ 0
for every p ∈ Mδ (so we are really dealing with probability densities) and we can
write

Mδ = {
qψ + φδ(qψ) : ψ ∈ T

}
, (4.8)

for a suitable function φδ ∈ C1(M0,H0) with the properties that:

• φδ(q) is in the range of Lq ;
• there exists C > 0 such that supψ(‖φδ(qψ)‖H0 + ‖∂ψφδ(qψ)‖H0) ≤ Cδ.

In particular, p ∈ Mδ can still be characterized by a phase.

For what concerns the dynamics on Mδ : as already stressed, the position on the
manifold is identified by the phase which we call ψδ

t . We set nδ
t := φδ(qψδ

t
): of

course ψ0
t = ψ0

0 and n0
t ≡ 0 for every t . We have the following theorem.

Theorem 4.2 (Giacomin et al. (2012b)). For δ ∈ [0, δ0], we have that t �→ ψδ
t is

C1 and

ψ̇δ
t + δ

〈G[qψδ
t
], q ′

ψδ
t
〉−1,1/q

ψδ
t

〈q ′, q ′〉−1,1/q

= O
(
δ2), (4.9)

with O(δ2) uniform in t . Moreover, if we call nψ the unique solution of

Lqψ nψ = G[qψ ] − 〈G[qψ ], q ′
ψ 〉−1,1/qψ

〈q ′, q ′〉−1,1/q

q ′
ψ and

〈
nψ, q ′

ψ

〉
−1,1/qψ

= 0, (4.10)

we have

sup
ψ

∥∥φδ(qψ) − δnψ

∥∥
H0

= O
(
δ2). (4.11)

We have therefore also a quantitative expression for the deviation of Mδ

from M0. Two observations are in order:

• for a fully satisfactory result one needs a further control on the regularity of the
right-hand side of (4.9), because if the first order term, that is the projection of
G[p] on the tangent space does not vanish for every p ∈ M0, then for δ suffi-
ciently small this guarantees that the dynamics is a rotation. But if it vanishes,
then the hyperbolic character of such a stationary point of the phase may be
affected by higher order terms: this is a rather technical issue and we refer to
Giacomin et al. (2012b), Theorem 2.3 and Section 3. But in any case it can be
shown that the dynamics of (4.7) on Mδ is of the same type as the one given by
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the first order of (4.9), that is (after a change of time that does not modify the
type of dynamics):

ψ̇t = −〈G[qψt ], q ′
ψt

〉−1,1/qψt

〈q ′, q ′〉−1,1/q

. (4.12)

• One can in principle go ahead in the expansion in δ and this is what we do in
Section 5.4, because first and second order vanish in that case.

Remark 4.3. Some of the expressions we have presented may look scary or rather
implicit, but it is just an impression: the right-hand side of (4.12) is just a function
of ψt which, as it will be shown in Section 5, can be made very explicit.

4.2 The disordered case

The steps in the disordered case are essentially the same, except that the functional
spaces and results become more complex. The original evolution in itself is more
complex and rather atypical, because the ω variable is statical, so (2.8) can actually
be viewed as a family of couples PDEs, one for each value of ω in the support of ν.
We rewrite it here by introducing the real parameter δ

∂tpt (θ,ω) = σ 2

2
∂2
θ pt (θ,ω) − ∂θ

[
pt(θ,ω)

∫
D

J
(
θ − θ ′)pt

(
θ ′,ω′)dθ ′ν

(
dω′)]

(4.13)− δ∂θ

[
pt(θ,ω)Uω(θ)

]
.

The first obstacle is that we can no longer use directly Proposition 3.7. Nev-
ertheless, as suggested by the fact that the underlying stochastic dynamics is
reversible for δ = 0 also in this case, one can look at (4.13) for δ = 0. Of
course now ν(dω) has a rather passive role in the dynamics, in the sense that
it still has a role in coupling the evolution for different values of ω, but the
drift term is not present so in the end ω has nothing more than a label role.
All the stationary solutions to (4.13) for δ = 0 can be computed exactly like in
the non-disordered case, see Section 3.2, since if we define rt and ψt by setting
rt exp(iψt ) = ∫

T×R
exp(iθ)pt (θ,ω)dθν(dω) then (4.13) for δ = 0 can be written

as

∂tpt (θ,ω) = σ 2

2
∂2
θ pt (θ,ω) − Kr∂θ

[
pt(θ,ω) sin(θ − ψt)

]
. (4.14)

In particular, for every ψ ∈ T for K > Kc we have nontrivial stationary solutions
q̃ψ(θ,ω) = qψ(θ) for every θ and ω and of course qψ is given in (3.14). Propo-
sition 3.7 can then be generalized, see Giacomin et al. (2014), Proposition 2.1,
and Aν

q̃ψ
(cf. (4.1)) is essentially self adjoint in H−1,1/q̃ψ ,ν , where ‖u‖2

H−1,1/q̃ψ ,ν
=∫

R
‖u(·,ω)‖2

H−1,1/q̃ψ (·,ω)
ν(dω), moreover its spectrum lies in (−∞,0], 0 is a simple
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eigenvalue with eigenspace spanned by ∂θ q̃ψ and there is a spectral gap of at least
λK (the same as in Proposition 3.7).

Starting from here one establishes that M̃0 := {q̃ψ : ψ ∈ T} is a normally con-
tracting manifold and the scheme for passing to δ �= 0 is the same as in the non-
disordered case (see Giacomin et al. (2014) for details). In particular, (4.9) be-
comes in this framework

ψ̇δ
t = δ

〈∂θ [Uωq̃ψδ
t
], ∂θ q̃ψδ

t
〉−1,1/q̃

ψδ
t
,ν

〈q ′, q ′〉−1,1/q

+ O
(
δ2). (4.15)

5 Applications

5.1 Active rotators

We possess now all the tools needed to prove the existence of periodic solutions
for the active rotators model. As it has already been introduced in Section 2, ac-
tive rotators correspond to the case J (θ) = −K sin(θ) and U(θ) = 1 + a sin(θ).
The properties of an isolated rotator in this case have already been described in
Section 2, and our goal here is to show that the global system can have a peri-
odic behavior (in other words, (2.9) can have periodic solutions) when the isolated
dynamics is excitable, that is when |a| > 1.

Let us apply the results of Section 4.1. As stated in the discussion following
Theorem 4.2, the dynamics on Mδ of the same type as the dynamics given by

ψ̇t = 〈∂θ ((1 + a sin(·))qψt ), q
′
ψt

〉−1,1/qψt

〈q ′, q ′〉−1,1/q

. (5.1)

In order to compute the scalar product 〈u, v〉−1,1/q of two functions u and v, one
can proceed as follows. If one knows the primitive of u satisfying

∫
U/q = 0,

then an arbitrary primitive of v suffices (no need to compute the correct centering
constant): for all primitive V of v we have in fact 〈u, v〉−1,1/q = ∫

UV/q . A simple
calculation shows that the primitive q̄ of q ′ satisfying

∫
q̄/q = 0 is (we keep here

the dependence in σ , in order to discuss the behavior of the model with respect to
the noise)

q̄ = q − 1

2πI 2
0 (2(K/σ 2)rK/σ 2)

, (5.2)

and so we can make the denominator of the right-hand side of (5.1) explicit:〈
q ′, q ′〉

−1,1/q =
∫
T

1

q
q

(
q − 1

2πI 2
0 (2(K/σ 2)rK/σ 2)

)
(5.3)

= 1 − 1

I 2
0 (2(K/σ 2)rK/σ 2)

.
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For what concerns the numerator in (5.1), we have〈
∂θ

((
1 + a sin(·))qψt

)
, q ′

ψt

〉
−1,1/qψt

=
∫
S

(1 + a sin θ)

(
qψ(θ) − 1

2πI 2
0 (2(K/σ 2)rK/σ 2)

)
dθ (5.4)

= 1 − 1

I 2
0 (2(K/σ 2)rK/σ 2)

+ a

∫
S

qψ(θ) sin θ dθ.

Using the trigonometric identity sin θ = cosψ sin(θ − ψ) − sinψ cos(θ − ψ), and
recalling the definition of qψ (see (3.14)), we obtain〈

∂θ

((
1 + a sin(·))qψt

)
, q ′

ψt

〉
−1,1/qψt

(5.5)

= 1 − 1

I 2
0 (2(K/σ 2)rK/σ 2)

− a
I1(2(K/σ 2)rK/σ 2)

I0(2(K/σ 2)rK/σ 2)
sinψ,

so we get an explicit formula for (5.1) (more exactly semi-explicit, since rK/σ 2 is
determined by solving a fixed point equation):

ψ̇t = 1 + a

ac(K/σ 2)
sinψt

(5.6)

where ac

(
K/σ 2) = I 2

0 (2(K/σ 2)rK/σ 2) − 1

I0(2(K/σ 2)rK/σ 2)I1(2(K/σ 2)rK/σ 2)
.

The dynamics given by (5.6) is quite easy to characterize, and is in fact of the
same type as the dynamics of an isolated rotator, apart from the factor ac(K/σ 2):
the dynamics on Mδ is periodic if and only if a < ac(K/σ 2). Let us now restrain
the study to the case K = 1, making σ vary between 0 and 1 (the synchronization
transition occurs in that case at σ = 1). Figure 3 represents the variations of the
function ac(1/σ 2) with respect to σ . We make the following observations:

• The function ac(1/σ 2) admits a maximum amax which satisfies in particular
amax > 1. So if a > amax the dynamics on Mδ has two fixed points, and the dy-
namics of the center of synchronization is similar to the dynamics of the isolated
system.

• If a ∈ (1, amax), the problem ac(1/σ 2) = a admits two solutions σ−(a) <

σ+(a). For σ ∈ (σ−(a), σ+(a)) the dynamics on Mδ is periodic, while the iso-
lated systems has an excitable dynamics. In a sense, this is our punchline: the
PDE (2.9) admits in this case a periodic solution corresponding to a regular and
synchronized excitation of the rotators and this is a combined effect of noise and
interaction on the excitable isolated units, which by themselves just drift toward
a fixed point (see Figure 4).
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Figure 3 Plot of ac(1/σ 2) with respect to σ .

• If a < 1, the problem ac(1/σ 2) = a admits one solution σ(a), and in particular
the dynamics on Mδ is of fixed point type if σ > σ(a) while the isolated dy-
namics is periodic. This is another surprising phenomenon and it corresponds to
a state in which the isolated dynamics is just a rotation, but the dynamics of the
population tends to a fixed point, that is, density profile. We point out that the
system is in this case still synchronized, in the sense that this fixed point belongs
to Mδ , and thus it does not correspond to a deformation of the hyperbolic trivial
state 1/2π of the reversible case (3.4).

5.2 Nematic crystals

We now focus on the periodic behavior of the nematic cristal model proposed by
Hess and Doi, that we have already introduced in Section 2. When the solution is 2-
dimensional, the model is closely related to the active rotators model we consider,
since it can be written in the following way:

∂tpt (θ) = ∂2
θ pt (θ) − 4C∂θ

[
pt(θ)

∫
T

sin
(
2
(
θ − θ ′))pt

(
θ ′)dθ ′

]
(5.7)

+ Pe

2
∂θ

[
pt(θ)

(
1 + a sin(2θ)

)]
,

where C characterizes the concentration of the solution, Pe is the Péclet number
and a is a molecule shape parameter. The difference is the interaction term and
the drift term involve sin(2θ) rather than sin(θ), since here the orientation of the
polymers does not matter (we are only interested in angles between lines).
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Figure 4 The active rotators case for K = 2, a = −1.1, δ = 1/2, σ = 1 and N = ∞, that is, we
are looking at solutions of the PDE (2.9). In the first plot the profiles are taken at constant time
intervals, thus reproducing the non-constant speed of the phase (which is sensibly slower in a region
on T somewhat close to where the fixed points of the isolated dynamics, i.e. around π/2): of course
the dynamics of the phase is explicit to first order in δ and this numerical observation does match
(5.1) at least qualitatively (but actually it is very close also quantitatively!). In the second one instead
the center of synchronization is chosen more evenly spaced and the figure reflects only Mδ = M1/2
and not the dynamics on it. We may note that we are quite far from M0: the bell shape is roughly
preserved, but certainly not the variance that strongly depends on the phase for M1/2. The rigorous
analysis as presented here does not say anything for δ = 1/2, even if the approach can be pushed
much farther (to higher order in δ and explicit estimates on the remainders) and it may be possible
to get theoretical estimates for such a large value of δ: but here we content ourselves with observing
numerically that for δ = 1/2 we observe a behavior which coincides qualitatively with what we can
rigorously prove for δ sufficiently small.
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The emergence of periodic behaviors has been proved for simplifications of the
model, via the so-called Doi closure (Lee et al. (2006); He et al. (2012)), but the
results of Section 5.1 imply the existence of periodic solutions for (5.7) for certain
choices of parameters (in particular Pe small). Indeed it is easy to see that if pt is
a solution of the active rotators model, then p̃t (θ) = p̃t (θ + π) := pt(2θ) = for
all θ ∈ [0, π] is a solution of (5.7) when K = 4C, σ 2 = 2 and δ = Pe/2. So if pt

is periodic for the active rotators, p̃t also is for (5.7). However the local stability
of the periodic orbits in the active rotators model imply the local stability of the
associated orbit for (5.7) only in the subspace of the π -periodic functions. To get
the local stability in the whole space one would need to study directly the linearized
evolution of (5.7).

5.3 Tilted interaction

In this section, we study the model (2.1) with tilted interaction, that is with Uωj
= 0

and J (θ) = −K sin(θ − δ). In this case, the model is invariant by rotation, and
thus the invariant manifold Mδ is in fact a circle, defined by the translations with
respect to θ of the profile qδ := q +φδ(q). So the dynamics on Mδ is also invariant
by rotation, and it means that there exists a real c(δ) such that qδ(θ − c(δ)t) is
solution of (2.8). If c(δ) �= 0, the dynamics on Mδ is a traveling wave of speed
c(δ). Let us approximate c(δ) for δ small, relying on the results of Section 4.1:
now the limit PDE (2.8) is

∂tpt (θ) = σ 2

2
∂2
θ pt (θ) + ∂θ

[
Kpt(θ)

∫
T

sin
(
θ − θ ′ − δ

)
pt

(
θ ′)dθ ′

]

= σ 2

2
∂2
θ pt (θ) + ∂θ

[
Kpt(θ)

∫
T

sin
(
θ − θ ′)pt

(
θ ′)dθ ′

]
(5.8)

+ δG[pt ](θ)

with

G[p](θ) = −sin(δ)

δ
∂θ

[
Kpt(θ)

∫
T

cos
(
θ − θ ′)p(

θ ′)dθ ′
]

(5.9)

+ cos(δ) − 1

δ
∂θ

[
Kpt(θ)

∫
T

sin
(
θ − θ ′)p(

θ ′)dθ ′
]
.

The second term in the definition of G is clearly of order O(δ2) and thus is neg-
ligible in the first order expansion we perform, and applying Theorem 4.2 we see
that for σ = 1, K > 1 and δ sufficiently small we have the following expansion:

c(δ) = δ
〈∂θ [Kq(·) ∫

T
cos(· − θ ′)q(θ ′)dθ ′], q ′〉−1,1/q

〈q ′, q ′〉−1,1/q

+ O
(
δ2). (5.10)
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Now an easy computation allows to express
∫
T

cos(θ − θ ′)q(θ ′)dθ ′ in term of rK :∫
T

cos
(
θ − θ ′)q(

θ ′)dθ ′

= cos(θ)

∫
T

cos
(
θ ′)q(

θ ′)dθ ′ + sin(θ)

∫
T

sin
(
θ ′)q(

θ ′)dθ ′ (5.11)

= rK cos(θ),

and thus we have (recall that the primitive q̄ of q ′ satisfying
∫

q̄/q = 0 is q̄ =
q − 1/2πI 2

0 (2KrK)):〈
∂θ

[
Kq(·)

∫
T

cos
(· − θ ′)q(

θ ′)dθ ′
]
, q ′

〉
−1,1/q

= KrK

∫
T

1

q(θ)
q(θ) cos(θ)

(
q(θ) − 1

2πI 2
0 (2KrK)

)
dθ (5.12)

= Kr2
K.

Recalling (5.3), we deduce the following expansion for c(δ):

c(δ) = δ
Kr2

KI 2
0 (2KrK)

I 2
0 (2KrK) − 1

+ O
(
δ2). (5.13)

This is in fact a first order, and the terms of higher degree could be obtained,
applying recursively the perturbation arguments used in Section 4.1, which would
lead to an expression of the form

c(δ) = c1δ + c2δ
2 + c3δ

3 + · · · . (5.14)

We will not look for the higher order terms in this case (it has been done, e.g., for
the disordered Kuramoto model in Giacomin et al. (2014)), but it is easy to see
that thanks to the symmetries of the model the even order terms vanish, and thus
the next term is of order O(δ3), as illustrated numerically in the third column of
Table 1. For the parameters as in Table 1, the term of order δ in (5.13) is c1 =
1.417503 and the second column of the table shows the convergence of c(δ)/δ

to c1.

5.4 The stochastic Kuramoto model

We now focus on the stochastic Kuramoto model, that is the case Uωj
= ωj . In this

case, as for the tilted interaction (Section 5.3), the symmetries of the model imply
that the curve Mδ is in fact a circle (of course when it exists, i.e., when K > σ 2 and
δ is small enough), given by the translations of the profile qδ,ν . So the dynamics
on Mδ is of the type qδ,ν(θ − cν(δ)t,ω), where the speed cν(δ) depends on the
distribution ν and may be zero. When the distribution ν is symmetric this speed
is in fact zero, so the dynamics on Mδ is stationary, and, as in the reversible case,
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Table 1 Numerical simulations of c(δ) for K = 2
and σ = 1

δ c(δ)/δ (c(δ) − c1δ)/δ3

0.5 1.272407 −0.580384
0.1 1.411574 −0.592888
0.05 1.416018 −0.594223
0.01 1.417443 −0.594447
0.005 1.417448 −0.594442

these stationary profiles are in fact known explicitly (Sakaguchi (1988)). We will
focus here on the case when ν is not symmetric.

It is natural to think that when the disorder ν has a mean m �= 0, then the syn-
chronized population will drift in the direction given by this mean m. This intuition
is verified by the perturbation results of Section 4.2: in this case (4.15) is

cν(δ) = 〈ω∂θ q̃, ∂θ q̃〉−1,1/q̃,ν

〈q ′, q ′〉−1,1/q

δ + O
(
δ2), (5.15)

where q̃ := q̃0 has been defined in Section 4.2, and since q̃ does not depend on ω

we have

〈ω∂θ q̃, ∂θ q̃〉−1,1/q̃,ν = 〈
q ′, q ′〉

−1,1/q

∫
R

ω dν(ω), (5.16)

so we simply have

cν(δ) = mδ + O
(
δ2). (5.17)

Of course if ν is centered, that is if m = 0, this last equation is of little use, and we
need to perform a higher order expansion of cν(δ) to get satisfactory information.
This work has been done in Giacomin et al. (2014). We will not detail the steps of
this expansion here but only give the result, and we refer to Giacomin et al. (2014)
for the interested readers. The symmetries of the problem imply clearly that the
terms of even orders in δ in the expansion are null, so the next term is the term of
order δ3, and the calculations made in Giacomin et al. (2014) lead to

cν(δ) = cν,3δ
3 + O

(
δ5), (5.18)

with

cν,3 = 〈ω∂θn
(2), ∂θ q̃〉−1,1/q̃,ν

〈q ′, q ′〉−1,1/q

, (5.19)

where n(2) is the unique solution to

Aν
q̃n(2) = −ω∂θn

(1) and
〈
n(2), ∂θ q̃

〉
−1,1/q̃,ν = 0, (5.20)
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and n(1) is the unique solution to

Aν
q̃n(1) = −ω∂θ q̃ and

〈
n(1), ∂θ q̃

〉
−1,1/q̃,ν = 0. (5.21)

So we are able to get the asymptotic of the speed cν(δ), via two successive inver-
sions of the operator Aν

q̃ . Further expansion can be made and in fact the terms of
all orders in δ can be obtained, but these terms are rather complex, and we refer to
Giacomin et al. (2014) for interested readers.

In general, the expressions (5.18)–(5.21) cannot be made explicit. They are how-
ever not too difficult to handle numerically. Let us consider for example the case
of disorder μ which is centered and not symmetric if ν = pδ1−p + (1 − p)δ−p ,
where p ∈ (0,1/2). In this case, the population of rotators is divided into two
sub-populations: a majority that possesses a negative drift −p, and a minority that
possesses a positive drift 1−p, which is greater in absolute value than the negative
drift. Even in this simple case we do not know any simple heuristic that would give
the behavior of the global and synchronized population of rotators: we are not even
able to guess with simple arguments which population dominates, that is what is
the sign of the drift of the whole population.

This question can be attacked for δ small at the level of the reduced phase dy-
namics we have shown to hold: the sign of cν(δ) is the one of cν,3 for δ small
(see (5.18)), and Figure 5 shows that in fact cν,3 is negative for all p ∈ (0,1/2).
So in this case it is always the majority of rotators having a smaller drift that leads

Figure 5 Plot of cν,3 with respect to p for K = 1.5 when ν = pδ1−p +(1−p)δ−p . This simulation
shows that cν,3 is negative for all p ∈ (0,1/2), so in this model larger subpopulation (which has the
negative drift −p) dominates the global dynamics.
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Figure 6 Plot of cν(δ)/δ3 with respect to log δ, in the case ν = pδ1−p + (1 − p)δ−p with p = 0.2
and K = 1.5, which illustrates the convergence toward cν,3.

the dynamics. In Figure 6, we illustrate the convergence of the renormalized speed
cν(δ)/δ

3 toward cν,3.
The results of Section 4.2 are of perturbation type, and only prove the existence

of Mδ for δ sufficiently small, but in fact we observe numerically that Mδ persists
for rather large values of δ. The drifting profiles for macroscopic δ may differ
substantially from the non-perturbed stationary states q̃ , as illustrated in Figure 7.

5.5 Disordered active rotators

In this section, we are interested in the disordered Active Rotators model, that is the
case when Uω(θ) = 1 + ω sin(θ). In this model, periodic and excitable dynamics
may coexist in the population of rotators, since an isolated dynamics is periodic if
|ωj | < 1, and excitable if |ωj | > 1 (see the discussion in Section 2).

In this case, the dynamics on Mδ of the limit PDE is for δ small of the same
type as the one given by

ψ̇t = 〈∂θ [q̃ψt (1 + ω sin(·))], ∂θ q̃ψt 〉−1,1/q̃ψt ,ν

〈q ′, q ′〉−1,1/q

, (5.22)

and since q̃ψt does not depend on ω, the integration with respect to ν can be made
first, so the dynamics given by (5.22) is the same as the one associated to the non-
disordered active rotator model given by U(θ) = 1 + ∫

R
ν(dω) sin(θ), that is (for

σ = 1)

ψ̇t = 1 +
∫

ων(dω)

ac(K)
sinψt, (5.23)
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Figure 7 Representation of the drifting synchronized profile of rotators, in the case Uω(·) ≡ ω

(the stochastic Kuramoto model), ν = pδ1−p + (1 − p)δ−p , with p = 0.3, δ = 1, K = 1.8, σ = 1
and with N = 20,000 rotators. The dark histogram represents the repartition of the fast (speed 0.7)
minority fraction (associated the disorder ω = 1 − p), and the light one the slow (speed −0.3)
majority fraction. In this case the disorder is clearly not a perturbation δ = 1, and the deviation from
the non-perturbed circle M̃0 (see Section 4.2), in which the subpopulations have exactly the same
profile, is visible macroscopically: the two bell shapes are not centered and the one corresponding
to the fast minority fraction is more spread out. We stress that the slower majority wins and the two
bell shaped profiles just rotate rigidly (up to fluctuation corrections) at the same negative speed, that
is, to the left or (more precisely) counterclockwise.

where ac has been defined in (5.6). So for δ small it is the mean of the disorder
that determines the type of the dynamics that occurs on Mδ .
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