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Abstract. In the independence setup, when the responses exhibit high degree
of asymmetry, the median regression model is preferred to the mean regres-
sion model to obtain consistent and efficient regression estimates. However,
when this type of asymmetric data are collected repeatedly over time, devel-
oping median regression model for such correlated asymmetric data may not
be easy. As a remedy, there exist some studies where the longitudinal corre-
lations of this type of asymmetric data have been computed using the mo-
ment estimates for all pairwise correlations and these correlations of repeated
(multi-dimensional) data used to develop a median based quasi-likelihood
approach for estimation of the regression effects. By considering an autore-
gressive order 1 (AR(1)) model for longitudinal exponential responses, in this
paper, it is however, demonstrated that the existing pairwise estimates of cor-
relations under median regression model may yield inefficient estimates as
compared to the simpler independence assumption based estimates. We il-
lustrate the inference techniques discussed in the paper by reanalyzing the
well-known labor pain data.

1 Introduction

Suppose that a scalar response yit and a p-dimensional vector of covariates xit

are observed for cluster i = 1,2, . . . ,K at a time point t (t = 1,2, . . . , T ). For
the ith cluster, let yi = (yi1, . . . , yit , . . . , yiT )′ be the response vector and Xi =
(xi1, . . . , xit , . . . , xiT )′ bet the T × p matrix of covariates. Let β denote the p × 1
vector of regression parameters which measures the effects of xit on yit for all
t = 1,2, . . . , T and for all i = 1,2, . . . ,K . When the responses are continuous and
their distributions are symmetric, one fits the linear model

yi = Xiβ + εi (1.1)

to estimate β . Suppose that εi = (εi1, . . . , εiT )′ in (1.1) has the mean vector 0 and
covariance matrix �i = A

1/2
i C(ρ)A

1/2
i with Ai = diag[Var(εi1), . . . ,Var(εit ), . . . ,
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Var(εiT )] and C(ρ) as the T × T correlation matrix. It then follows that the well-
known generalized least square (GLS) estimator of β is a solution of the estimating
equation

K∑
i=1

X′
i�

−1
i (yi − Xiβ) = 0. (1.2)

Note that if the responses are continuous but their distributions are asymmet-
ric such as Gamma (McCullagh and Nelder (1989, p. 300)), β estimates of the
mean regression model (1.1) can be inefficient (Bassett and Koenker (1978)). As
a remedy, for the asymmetric data in the independence setup, that is when T re-
peated responses yi1, . . . , yit , . . . , yiT are treated to be independent, one may fol-
low Morgenthaler (1992), among others and model the median rather than the
mean of the responses as a function of the covariates x. More specifically, let
mit = (mi1, . . . ,miT )′ be the median of yit and mi = (mi1, . . . ,miT )′. Further,
for some link function g(·), let

g(mit ) = x′
itβ. (1.3)

For independent data, Morgenthaler (1992, eqn. (3.1)) suggested to solve an abso-
lute deviations based quasi-likelihood (ADQL) estimating equation

K∑
i=1

D′
i

{
diag[si1, . . . , sit , . . . , siT ]}−1{

sgn(yi − mi)
} = 0, (1.4)

where sit is an user-supplied function that models the scatter of the responses
as a function of the median mit , Di is the T × p partial derivatives of the mean
vector with respect to β , that is D′

i = ∂μ′
i/∂β , where μi = [μi1, . . . ,μit , . . . ,μiT ]′

is the mean response vector of yi . This ADQL approach appears to have several
limitations. First, sit is chosen as sit ∝ m2

it which may be an appropriate choice
only if mit holds a proportionality relation to μit so that mit = cμit for a suitable
constant c for all t = 1,2, . . . , T . Second, using a mean response based gradient
matrix Di is also dependent on such proportionality relation between means and
medians, which may not hold for all t .

We now turn back to the longitudinal case where it is expected that the repeated
responses yi1, . . . , yit , . . . , yiT will be correlated. To accommodate this type of
dependent observations, Jung (1996), for example, suggests to solve an indicator
function based quasi-likelihood estimating equation, where indicator variable is
defined as I (yit ≥ mit ), with mit as the median of yit as in (1.3). More specifically,
in the cluster regression setup, Jung’s quasi-likelihood (QL) estimating equation
can be expressed as

K∑
i=1

1

φi

B ′
i�i	

−1
i

{
I (yi ≥ mi) − 1

2
1T

}
= 0, (1.5)
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where I (yi ≥ mi) = [I (yi1 ≥ mi1), . . . , I (yit ≥ mit ), . . . , I (yiT ≥ miT )]′ is the
T × 1 vector of indicator functions, 1T is the T × 1 unit vector, 	i is the T × T

covariance matrix of [I (yi ≥ mi) − 1
21T ], Bi is the T × p first derivative matrix

of mi with respect to β , that is, Bi = ∂m′
i/∂β , where mi = (mi1, . . . ,miT )′ with

g(mit ) = x′
itβ , and φ−1

i �i = φ−1
i diag[γ (mi1), . . . , γ (mit ), . . . , γ (miT )], where

φ−1
i γ (mit ) is the probability density function (pdf) of yit evaluated at the me-

dian mit . Jung (1996) refers to the solution of (1.5) for β as the maximum quasi-
likelihood estimate. Note that the QL estimating equation (1.5) may be treated
as a generalization of the ADQL estimating equation (1.4), from the indepen-
dent setup to the longitudinal setup. However, one cannot compute 	i , the co-
variance matrix of the vector of indicator functions, as we cannot compute the
pairwise bivariate distributions of the elements of the asymmetric response vec-
tor yi = (yi1, . . . , yit , . . . , yiT )′. This is because the correlation structure or the
joint distribution of the repeated responses may not be available. To resolve this
computational issue, Jung (1996) has estimated the pairwise elements of 	i ma-
trix by estimating the bivariate probability of any two indicator variables using
a distribution free moment approach. There are, however, several limitations to
this pairwise probability estimation by using such a moment approach. First, if
the repeated responses follow an auto-correlation model, which is most likely in
practice, using pairwise probabilities based on the concept of unstructured corre-
lations for repeated data may yield inefficient estimates, as in this approach one is
computing too many correlations whereas auto-correlation model contains only a
few lag correlations. Next, there is no guaranty that this type of unstructured cor-
relations based estimation can be more efficient than using simpler independence
assumption based 	i for the estimation of β (Sutradhar (2011)) involved in the
median regression function.

In this paper, we examine the aforementioned efficiency issue under an ex-
ponential auto-regressive of order 1 (EAR(1)) model, where yit marginally fol-
lows an exponential distribution with a specified median regression function in
β , and the repeated responses yi1, . . . , yit , . . . , yiT , follow a Gausian type AR(1)
correlation structure. This EAR(1) model with its basic properties is discussed in
Section 2. The true model based GQL estimation (Sutradhar (2003)) and various
semi-parametric GQL estimation approaches including the independence based
approach, are discussed in the same section. In Section 3, the median regres-
sion estimation based on three correlation structures such as (a) Jung’s (1996)
unstructured correlations, (b) an auto-correlation structure (Sutradhar (2003)), and
(c) ‘working’ independence structure, are compared with the true EAR(1) based
estimation through a simulation study. The simulation results in this paper show
that the simpler independence assumption based estimates, surprisingly are more
efficient (in the sense mean squared error) than other two correlation structures
based estimates. In the simulation study, we have also included the mean regression
based QL estimation approach to examine mainly its relative performance for high
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degree of asymmetry in exponential data caused by certain outliers. In Section 4,
we illustrate the application of the aforementioned QL estimation approaches for
the analysis of a well-known labor pain data which was earlier analysed by Davis
(1991), Jung (1996) and Geraci and Bottai (2007), among others.

2 Exponential AR(1) Model

Some authors such as Geraci and Bottai (2007) have modelled the asymmetric
data at a given time point by a Laplace distribution, and modelled the correlations
through the common individual random effects showed by the repeated responses.
However, even though the random effects generate an equicorrelation structure for
the repeated responses, they do not appear to address the time effects (Sutradhar
(2011, Section 2.4)). This is because these individuals specific random effects may
remain the same throughout the data collection period and hence cannot represent
any time effects. In the longitudinal setup, some authors considered linear fixed
or mixed models with errors unspecified for the purpose of quantile regression es-
timation. See, for example, Koenker (2004), Karlsson (2007), and Fu and Wang
(2012). In their approaches, the longitudinal correlations are accommodated either
through random effects or by using arbitrary ‘working’ correlations. Galvao Jr.
(2011) considered a dynamic panel data model, that accommodates the longitudi-
nal correlations but the empirical studies were confined to symmetric errors.

In this paper, as opposed to the aforementioned studies, we consider asymmet-
ric longitudinal responses and study the median based regression effects. To be
specific, following Hasan et al. (2007, Section 2.1, p. 552) we consider a class of
non-stationary auto-correlations models for longitudinal exponential failure time
data, AR(1) model is being an important special case. We consider this EAR(1)
model and provide estimating equation for median based regression parameters.
Suppose that the response yi1 follows an exponential distribution with parameter
λi1 = h(x′

i1β), for a suitable known link function h(·). That is,

f (yi1) = λi1 exp(−λi1yi1). (2.1)

Next for t = 2, . . . , T , following Hasan et al. (2007, eqn. (2.1)) [see also Gaver
and Lewis (1980)], we write a dynamic model in exponential variables as,

yit = ρiyi,t−1 + Iitait , t = 2, . . . , T ; i = 1, . . . ,K, (2.2)

where, for a given i, {ait , t = 1, . . . , T ; i = 1, . . . ,K} is a sequence of exponential
random variables with parameter λit = exp(−x′

itβ) and ρi = ρ
λi,t−1
λit

with ρ as
a probability parameter or correlation parameter (0 ≤ ρ ≤ 1). In (2.2), Iit is an
indicator variable such that

Iit =
{

0 with probability ρ,
1 with probability 1 − ρ,

and Iit and ait are assumed to be independent.
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It is of interest to estimate β which is involved in both mean and median func-
tions of the responses. Note that for the estimation of β from the mean function,
one computes it from the mean regression based estimating equation, whereas the
same β may be estimated from the median function by solving the median regres-
sion based estimating equation. The main objective of the paper is to develop a
median regression based GQL estimating equation approach for β by accommo-
dating the correlations of the longitudinal exponential data. This development is
given in the next section. In the same section, we also provide various versions of
this GQL approach by using suitable ‘working’ correlation structures. This we do
in order to examine the correlation structure misspecification effect.

Note that the EAR(1) process (2.2) produces a auto-correlation structure given
by

Corr[Yit , Yi,t+j ] = ρj

[see also Hassan et al. (2007, eqn. (2.2))] which, similar to Gaussian models, is
known to be a stationary correlation structure. Thus, only stationary condition for
the series {yit , t = 1, . . . , T } is 0 < ρ < 1, which does not have anything to do with
the values of β in the mean function λit = exp(−x′

itβ) of the exponential process.
However, these means are non-stationary as they depend on time dependent co-
variates. For a smooth data with finite mean, one of course has to put condition on
β which is however a different problem. For more details on the stationarity, for
example, in the integer valued process one may refer to Jacobs and Lewis (1983),
and for similar stationarity in exponential and gamma process one may refer to Sim
(1986, 1990). Further note that for a stationarity of a linear process, it is often con-
venient to examine a condition whether the associated auto-covariance function
has ‘unit’ roots (Box and Jenkins (1976, Sections 3.1.3, 3.1.4)). This alternative
approach for stationarity is, however, not discussed adequately in the context of
exponential and/or gamma dynamic models.

2.1 Median regression based GQL estimation

To develop the median based estimating equation, first we compute the median
mit , and the indicator variable δ(yit ≥ mit ) of the responses for the EAR(1) model
(2.1)–(2.2). As far as the computation for the median mit under the dynamic model
(2.2) is concerned, one requires to compute the marginal distribution of yit for
all t = 1, . . . , T . For t = 1, the marginal distribution of yi1 is known by (2.1).
Thus one may compute mi1. However, for remaining t = 2, . . . , T , one has to find
the marginal distribution of yit (t = 2, . . . , T ) when it is known that yi1, . . . , yiT

jointly follow the EAR(1) correlation model (2.2). This marginal distributional
property for yit under (2.2) has also been studied by some authors. For example,
it has been shown in an unpublished Ph.D. thesis (Hasan (2004, Lemma 2.2)) [see
also Gaver and Lewis (1980, Section 2) for similar properties with stationary pa-
rameters such as λit = λi] that yit in general follows the exponential distribution
with parameter λit .
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Thus, it follows that, for all t = 1, . . . , T ,∫ mit

0
f (yit ) dyit =

∫ mit

0

1

λit

exp(−λityit ) dyit = 1

2
�⇒ mit = log 2

λit

. (2.3)

Note that, in order to develop a median regression based estimating equation for
β involved in the median mit = log 2

λit
with λit = exp(−x′

itβ), one first defines an
indicator variable relating yit and mit , as

δ(yit ≥ mit ) =
{

1 if yit ≥ mit ,
0 if yit < mit .

(2.4)

It is clear that the expectation and variance of the indicator variable have formulas

μ̃it = E
[
δ(yit ≥ mit )

] = 1

2
, σ̃it t = Var

[
δ(yit ≥ mit )

] = 1

4
. (2.5)

Next, the covariance between two indicator variables δ(yiv ≥ miv) and δ(yit ≥
mit ) is given by

σ̃ivt = Cov
[
δ(yiv ≥ miv), δ(yit ≥ mit )

]
= E

[
δ(yiv ≥ miv)δ(yit ≥ mit )

] − 1

4
(2.6)

= Pr(yiv ≥ miv, yit ≥ mit ) − 1

4
,

where, for the present EAR(1) model, the bivariate probabilities Pr(yiv ≥ miv,

yit ≥ mit ) may be computed as

Pr(yiv ≥ miv, yit ≥ mit )
(2.7)

=
{

e−λivmiv ; for mit ≤ ρt−vmiv,
e−λitmit e−λiv(1−ρt−v)miv ; for mit > ρt−vmiv

[see Hasan (2004, Section 4.1.1, p. 59)] where ρt−v = Corr(yiv, yit ); for v < t .
Now by writing

δ(yi ≥ mi) = [
δ(yi1 ≥ mi1), . . . , δ(yit ≥ mit ), . . . , δ(yiT ≥ miT )

]′ :T × 1, (2.8)

one obtains the mean and covariance of this T -dimensional variable δ(yi ≥ mi) as

E
[
δ(yi ≥ mi)

] = μ̃i,δ = 1

2
1T and �̃i,δ(β, ρ) = (σ̃ivt ), (2.9)

where σ̃ivt is given by (2.6).
One may then write the median regression based GQL estimating equation for

β as

K∑
i=1

∂δ(yi ≥ mi)

∂β ′ �̃−1
i,δ

[
δ(yi ≥ mi) − 1

2
1T

]
= 0 (2.10)
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[Jung (1996), Sutradhar (2003)] where

∂δ(yi ≥ mi)

∂β ′ = ∂

∂mi

[
2F̃i(yi − mi) − 1

]∂mi

∂β ′ = −2f̃i(mi)D̃
′
i (2.11)

with

D̃′
i =

[
∂mi1

∂β
, . . . ,

∂mit

∂β
, . . . ,

∂miT

∂β

]
with

∂mit

∂β
= ∂(log 2/λit )

∂β
,

f̃i(mi) = diag
[
f̃i1(mi1), . . . , f̃it (mit ), . . . , f̃iT (miT )

]
:T × T , (2.12)

with f̃it (mit ) = f (yit )|yit=mit
.

Note that for known ρ, the estimating equation (2.10) may be solved iteratively
using

β̂(r + 1) = β̂(r) +
[

K∑
i=1

∂δ(yi ≥ mi)

∂β ′
ˆ̃
�

−1

i,δ

∂δ(yi ≥ mi)
′

∂β

]−1

r
(2.13)

×
[

K∑
i=1

∂δ(yi ≥ mi)

∂β ′
ˆ̃
�

−1

i,δ

{
δ(yi ≥ mi) − 1

2
1T

}]
r

,

where [ ]r is computed by evaluating the quantity in [ ] using β = β̂(r).

2.1.1 Semi-parametric GQL estimation. Note that the construction of the me-
dian regression based GQL estimating equation (2.10) requires the knowledge of
(a) marginal density of yit to be evaluated at median mit , and (b) the correlation
structure for δ(yi ≥ mi) (2.8) evaluated from pairwise bivariate probabilities (2.7)
based on the correlation model such as EAR(1) structure (2.2) for the repeated
responses. In this section, we relax the need for the correlation model indicated
in (b). To be specific, we provide several semi-parametric versions of the median
regression based GQL estimating equation (2.10), where assumption (a) is still
used, but instead of (b), we consider three types of model free correlation struc-
tures as follows.

(a) Using independence among repeated responses. In this case, the correlation
index parameter ρ is treated to be zero. Consequently, the pairwise bivariate prob-
abilities for δ(yiv ≥ miv) and δ(yit ≥ mit ) given in (2.7), for example, reduce to

Pr(yiv ≥ miv, yit ≥ mit ) = e−2λitmit = 1

4
, (2.14)

because the marginal density f (yit ) is known, implying that the median mit =
log 2
λit

is known. Applying (2.14) to (2.6), one obtains zero covariances or cor-

relations, i.e., σ̃ivt = 0. Thus, one may simply use �̃i,δ = Cov(δ(yi ≥ mi)) =
A

1/2
i,δ C̃i,δ(ρ)A

1/2
i,δ = 1

4 C̃i,δ = 1
4IT in (2.10) for the estimation of β .
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Note that this result for the indicator variables, namely �̃i,δ = Cov(δ(yi ≥
mi)) = 1

4IT also holds when exponential responses yi1, . . . , yiT follow an MA(1)
(moving average of order 1) [EMA(1)] or equi-correlated (EQC) [EEQC] model
(Hasan et al. (2007, eqns. (2.5) and (2.11))).

(b) Jung’s approach. To apply the QL estimating equation (1.5), Jung (1996) has
estimated the pairwise elements of �̃i,δ matrix by estimating the bivariate proba-
bility of any two indicator variables using a distribution free moment approach. To
be specific, the pairwise bivariate probabilities for δ(yiv ≥ miv) and δ(yit ≥ mit )

have been non-parametrically estimated by using the proportion as

P̂r(yiv ≥ miv, yit ≥ mit ) =
∑K

i=1 δ(yiv ≥ miv)δ(yit ≥ mit )

K
. (2.15)

Thus, to construct �̃i,δ matrix, one writes �̃i,δ = (σ̃ivt ), where

σ̃ivt =
∑K

i=1 δ(yiv ≥ miv)δ(yit ≥ mit )

K
− 1

4
. (2.16)

The QL estimate of β is then obtained by solving (1.5) or equivalently using the
iterative equation (2.13).

(c) Lag-correlation approach. Note that, when the repeated responses yi1, . . . ,

yiT follow EAR(1), EMA(1) or EEQC structures, their correlations become lag
dependent as in the Gaussian case. Thus, Corr(yiv, yit ) depends on |v − t | rather
than individuals v, t = 1, . . . , T . For example, in the EAR(1) case Corr(yiv, yit ) =
ρ|t−v| which may be denoted by ρ|t−v|. This shows that unlike in (2.16) one only
needs to compute the correlation matrix

C̃i(ρ) = (
Corr

[
δ(yiv ≥ miv), δ(yit ≥ mit )

])
(2.17)

=

⎡
⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρT −1
ρ1 1 ρ1 . . . ρT −2
...

...
... . . .

...

ρT −1 ρT −2 . . . . 1

⎤
⎥⎥⎥⎦ ,

which we do by estimating ρ̃� as

ˆ̃ρ� =
[

K∑
i=1

T −�∑
t=1

δ(yit ≥ mit , yi,t+� ≥ mi,t+�)/
(
K(T − �)

) − 1

4

]/
(1/4). (2.18)

Consequently, �̃i,δ is computed as �̃i,δ = 1
4 C̃i(ρ), and β̂ is obtained by solving

(1.5) or equivalently using the iterative equation (2.13).
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3 A simulation study

To examine the relative performance of the median regression based approaches
described in Section 2.1.1, in this section we conduct a simulation study us-
ing finite sample size K = 100 individuals each having T = 4 repeated ex-
ponential responses. For the regression parameter β involved in E(Yit ) =
λ−1

it = exp(x′
itβ) = μit (β) or equivalently in the median function mit (β) =

median(Yit ) = (log 2)λ−1
it = (log 2) exp(x′

itβ), we consider p = 1 for simplicity
with β1 ≡ β = 0.5,0.7, and 1.0. For the design covariate we choose, for example,
a stationary covariate with xit = x̃i ∼ U(0,1) for all t = 1, . . . ,4, where U(0,1)

denotes the Uniform distribution in the interval 0 to 1. Note that when the effects
of stationary covariate (x̃i) on the responses yit are examined, the median based
estimating equations for β should be constructed by taking the correlations of the
repeated responses yi1, . . . , yit , . . . , yiT into account, so that the effect of corre-
lation index parameter ρ can be understood for β estimation. Further note that
we could also choose non-stationary xit for β estimation. But for simplicity we
have not considered such covariates in the present study. This is mainly because
of the fact that both non-stationary and stationary covariates based longitudinal
EAR(1), EMA(1) and EEQC models produce the same correlation structure. As
far as the correlation index parameter ρ is concerned we choose a large positive
value, namely ρ = 0.7.

In the present study, we generate yi1, . . . , yi4 for each i = 1, . . . ,100, following
the EAR(1) model yit = ρiyi,t−1 + Iitait (2.2), with ρi = ρ

λi,t−1
λit

, which how-
ever reduces to ρ (i.e., ρi = ρ) in the stationary case because λit and λi,t−1 are
the same in such cases. For the estimation of β , we use the median regression
based GQL estimating equation (2.10) and denote the estimate as GQL(TC) es-
timate, where TC stands for the true model based correlation structure. We then
consider three non-parametric correlation structures based estimating equations,
namely by using independence assumption (IND) from Section 2.1.1(a); Jung’s
QL approach (JQL) from Section 2.1.1(b); and by using lag-correlation (LC) based
GQL (GQL(LC)) from Section 2.1.1(c). The simulated means (SM), simulated
standard errors (SSE), simulated mean square errors (SMSE), and percentage effi-
ciency (E1) among median regression based approaches for the estimates of β are
reported in the Table 1.

It is clear from the results of Table 1 that all three approaches, namely IND,
JQL, and GQL(LC) appear to produce unbiased regression estimates similar to
that of median based GQL(TC) estimates. However, when the standard errors of
these three approaches are compared to the median based GQL(TC) approach,
Jung’s QL (JQL) approach appears to be less efficient as compared to the IND
and GQL(LC) approaches. Between the last two approaches, that is, IND and
GQL(LC), IND appears to be slightly more efficient. Thus, for the AR(1) based
exponential data, median regression based IND approach appears to be the best in
producing efficient regression estimates and this approach is simpler as compared
to the other approaches.
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Table 1 Comparison of mean regression and median regression approaches for the estimation of
regression parameter (β = 0.5, 0.7, 1.0) involved in an EAR(1) model with a large correlation value
ρ = 0.7; based on 500 simulations

Statistic

ρ β Regression Estimation approach SM SSE SMSE E1 E2

0.7 0.5 Median GQL(TC) 0.504 0.114 0.013 100 51
IND 0.505 0.115 0.013 99 50
JQL 0.488 0.178 0.031 41 21

GQL(LC) 0.500 0.119 0.014 94 48
Mean GQL(GAC) 0.505 0.081 0.006 – 100

0.7 Median GQL(TC) 0.704 0.114 0.013 100 51
IND 0.705 0.115 0.013 99 50
JQL 0.689 0.171 0.029 45 23

GQL(LC) 0.705 0.124 0.015 86 44
Mean GQL(GAC) 0.705 0.081 0.006 – 100

1.0 Median GQL(TC) 1.004 0.114 0.013 100 51
IND 1.005 0.115 0.013 99 50
JQL 0.984 0.212 0.045 29 15

GQL(LC) 1.001 0.124 0.015 85 43
Mean GQL(GAC) 1.005 0.081 0.006 – 100

3.1 Mean regression based GQL estimation

Note that the aforementioned comparison is made among various correlation struc-
ture based median regression approaches. However, for the sake of completion, one
may also be interested to examine the performance of a general auto-correlation
(GAC) structure based mean regression GQL approach when it is known that the
repeated data follow the EAR(1) model. To develop the GQL (Sutradhar (2010))
estimating equation, we first provide the computational formula for the mean, vari-
ance and correlations of the responses for the EAR(1) model (2.1)–(2.2). To be
specific, following Hasan et al. (2007), one may write

μit (β) = E(Yit ) = Eyi,t−1E
[{ρiyi,t−1 + Iitait }|yi,t−1

]
= E

[
ρiyi,t−1 + E(Iit )E(ait )

]
(3.1)

= ρi

{
1

λi,t−1

}
+ (1 − ρ)

{
1

λit

}
= 1

λit

,

σitt (β) = Var(Yit )

= Eyi,t−1V
[{ρiyi,t−1 + Iitait }|yi,t−1

]
(3.2)

+ Vyi,t−1E
[{ρiyi,t−1 + Iitait }|yi,t−1

]
= 1

λ2
it

,
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and

E(YitYi,t−�) = Eyi,t−�
Eyi,t−�+1 · · ·Eyi,t−1E[YitYi,t−�|yi,t−1, . . . , yi,t−�]

= ρ�

√√√√ 1

λ2
it

1

λ2
i,t−�

+
{

1

λit

}{
1

λit−�

}

=
{

1

λit

}{
1

λit−�

}[
ρ� + 1

]
,

yielding

ciut (ρ) = Corr(Yiu, Yit ) = ρ|t−u|. (3.3)

Now by writing

μi(β) = [
μi1(β), . . . ,μit (β), . . . ,μiT (β)

]′ and
(3.4)

�i(β,ρ) = A
1/2
i Ci(ρ)A

1/2
i ,

where Ai = diag[σi11(β), . . . , σitt (β), . . . , σiT T (β)] and Ci(ρ) = (ciut (ρ)), one
derives the mean regression based GQL estimating equation for β , as

K∑
i=1

∂μ′
i

∂β
�−1

i (β, ρ)(yi − μi) = 0. (3.5)

Note that for known ρ, this equation (3.5) may be solved iteratively using

β̂(r + 1) = β̂(r) +
[

K∑
i=1

∂μ′
i

∂β
�−1

i (β, ρ)
∂μi

∂β ′

]−1

r

[
K∑

i=1

∂μ′
i

∂β
�−1

i (yi − μi)

]
r

, (3.6)

where [ ]r is computed by evaluating the quantity within the square brackets [ ]
using β = β̂(r). Next, because ρ is unknown in practice, it must be estimated. By
using lag 1 sample correlations one may estimate ρ involved in ciut (ρ) = ρ|t−u|
by solving the moment equation given by

ρ̂ =
∑K

i=1
∑T −1

t=1 ỹit ỹi,t+1/(K(T − 1))∑K
i=1

∑T
t=1 ỹ2

it /(KT )
, (3.7)

where ỹit is the standardized residual, defined as, ỹit = (yit−μit )

{σitt }1/2 .

3.1.1 Performance of the linear regression based GQL approach. For the same
designs used above under median regression based approaches, we obtain estimate
of β by solving the mean regression based GQL estimating equation (3.5). The
SM, SSE and SMSE of this estimates are reported in Table 1 along with similar
results under the median regression based approach. The overall percentage effi-
ciency (E2) as compared to this mean regression based approach for the estimates
of β are reported in the last column of Table 1.
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The results of Table 1 show that the median regression based estimating equa-
tion produces less efficient (in the sense of MSE) estimates as compared to the
mean regression based estimating equation. This is because the median based
approaches when compared to the mean based approach produce estimates with
E2 < 100, where the efficiency E2 for a selected method (M), is defined as
E2(M) = {SMSE(Mean Based)}/{SMSE(M)} × 100. This result is not surpris-
ing because of the degree of asymmetry in the present exponential data which not
so strong. However, to understand the effect of large asymmetry in the data, we
have also generated asymmetric exponential data as in Table 1, but forced a small
percentage (1%) of observations to be mean shifted outliers, such that for these
observations x̃i was first generated from U(0,1) and then for 1% of them (x̃i )
was shifted to x̃i + 1.5. The mean and median regression based GQL estimates for
these outliers oriented data are shown in Table 2.

These results show that the mean regression based GQL estimates are now bi-
ased when compared to the corresponding estimates obtained in the outliers free
case as in Table 1, whereas the median regression based new estimates do not ap-
pear to be affected by outliers. This prompted us to compare the relative bias (RB)
as opposed to MSE, for the mean and median regression based estimates, where
RB of an estimate, say β̂ , is defined as

RB(β̂) = β̂ − β

s.e.(β̂)
× 100 ≡ SM − β

SSE
× 100.

Table 2 Comparison of mean regression and median regression approaches for the estimation of
regression parameter (β = 0.5, 0.7, 1.0) involved in an EAR(1) model with a large correlation value
ρ = 0.7, in the presence of 1% outliers through shifted covariate values; based on 500 simulations

Statistic

ρ β Regression Estimation approach SM SSE SMSE RB

0.7 0.5 Median GQL(TC) 0.517 0.115 0.013
IND 0.518 0.116 0.014
JQL 0.508 0.142 0.020 5.630

GQL(LC) 0.510 0.125 0.015
Mean GQL(GAC) 0.523 0.081 28.770

0.7 Median GQL(TC) 0.720 0.116 0.013
IND 0.721 0.117 0.014
JQL 0.701 0.152 0.023 0.515

GQL(LC) 0.714 0.130 0.017
Mean GQL(GAC) 0.734 0.080 41.451

1.0 Median GQL(TC) 1.032 0.116 0.015
IND 1.0307 0.1171 0.014
JQL 1.015 0.152 0.023 3.845

GQL(LC) 1.031 0.118 0.015
Mean GQL(GAC) 1.056 0.084 66.853
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It is clear from the last column of Table 2 that mean regression based GQL es-
timates have much larger relative bias, for example 66.85% when β = 1.0 and
ρ = 0.7, as compared to 3.85% relative bias for the median based regression esti-
mates. Thus, if the degree of asymmetry is high which is caused here due to added
outliers, the median regression based approach appears to work better than the
mean regression based approach.

4 Data analysis: Labor pain data

The labor pain data reported by Davis (1991) consists of repeated measurements
of self-reported amount of pain on K = 83 women in labor, of which 43 were ran-
domly assigned to a pain medication (treatment) group and 40 to a placebo group.
At 30-minute intervals, the amount of pain was marked on a 100 mm line, where
0 = no pain and 100 = extreme pain. The maximum number of measurements for
each woman was 6, but there are some missing values at later measurement times.
The observed data under treatment and placebo groups are displayed in Figures 1
and 2, respectively.

It appears from Figure 1 that under the treatment group, the labor pain at any
given time (t = 1, . . . ,6) have an exponential form, whereas the marginal observed
distributions at different times under the placebo group do not tend to follow the
same distribution.

Figure 1 Labor pain observed data for treatment group.
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Figure 2 Labor pain observed data for placebo group.

Note that to understand the effect of times on the labor pain, Jung (1996, Sec-
tion 6), for example, fitted a linear median regression model with errors having
zero median. To be specific, Jung (1996) has fitted a model yit = β0 +β2t + εit for
the treatment group, and obtained β̂0 = 4.36 and β̂2 = 1.37 by using pairwise cor-
relation estimates based QL approach (JQL). In order to see how these estimates
or model fit the observed data in Figure 1, we have generated ε̂it from uniform dis-
tribution U(−1

2 , 1
2) [to keep the distribution at median to be uniform as suggested

by Jung (1996)] and estimated yit as ŷit = β̂0 + β̂2t + ε̂it . The fitted data for this
treatment group are displayed in Figure 3.

It is however clear that the histogram in Figure 3 do not exhibit the exponential
form exhibited by Figure 1. Thus, even though JQL approach fits the median well,
one may be compared for overall fitting. Note that if the inference procedure fits
the original distribution well, one may estimate other quantiles as well if needed.

For the aforementioned reason, we have re-analysed the data set using corre-
lated exponential model given in Section 2. Note that when we have compared the
IND, JQL and GQL(LC) approaches to the true model based GQL(TC) through
a simulation study in Section 3, it was found that IND followed by GQL(LC)
produce more efficient regression estimates. As shown in Table 1, among all ap-
proaches, Jung’s (1996) QL approach was the worst as it produces more bias
estimates along with large standard errors. For this reason, we have fitted IND,
GQL(LC) and GQL(TC) approaches to this data set. Because our main concern is
to see the effect of times in treatment group, we have fitted the exponential model,
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Figure 3 Linear median regression based fitted labor pain data for the treatment group with
U(− 1

2 , 1
2 ) error.

yit = ρiyi,t−1 + Iitait following (2.2) with median mit = (log 2) exp(β0 + β1t).
The parameter estimates along with their estimated standard errors (shown in
parenthesis) under these three approaches were found to be

β0 β1 ρ

GQL(TC) 2.161 (0.136) 0.138 (0.034) 0.746
IND 2.208 (0.114) 0.109 (0.032) –
GQL(LC) 1.799 (0.118) 0.179 (0.019) 0.785

and as displayed in Figure 4, the fitted medians by these three approaches appear
to agree well with the medians of the observed data (OBS).

These approaches also appear to fit the over all data distributions well. For ex-
ample, using above mentioned β̂0, β̂1 in mit = (log 2) exp(β0 + β1t) and ρ̂ under
both GQL(TC) and GQL(LC) approaches, when yit were generated following the
exponential distribution with median mit , they produce the distributions as in Fig-
ures 5 and 6, respectively. These distributions appear to agree well with seemingly
exponential distribution for the observed data displayed in Figure 1.

We also have estimated the parameters of the exponential model (2.2) using
the mean regression based GQL(TC) approach. The parameter estimates along
with the estimated standard errors under this approach were found to be β̂0 =
2.549 (0.194), β̂1 = 0.129 (0.051) and ρ̂ = 0.741. These estimates including cor-
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Figure 4 Observed versus various model based fitted medians for the treatment group.

Figure 5 Exponential median regression based fitted labor pain data for the treatment group under
GQL(TC).

relation estimate appear to be closer to the true model based GQL(TC) estimates
but with larger standard errors for the regression estimates. The pattern of these
standard errors to be different for this data set when compared to the simulation
results reported in Table 1. However, in view of the simulation results reported in
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Figure 6 Exponential median regression based fitted labor pain data for the treatment group under
GQL(LC).

Table 2 and because the observed data are highly asymmetric, the median based
estimates are preferable to the mean based estimates.

5 Concluding remarks

In a regression setup for repeated asymmetric data such as exponential data, there
exists a pair-wise correlation structure (semi-parametric) based median regression
QL approach (Jung (1996)) for the estimation of the regression effects. In this pa-
per, by using an AR(1) type correlation model for repeated exponential data, we
have examined the relative performance of various median based GQL approaches.
When median regression based approaches were compared among themselves (as
opposed to mean regression based approach), it was found that independence as-
sumption based QL approach performs better than the other competitive median
based GQL approaches. The empirical results of this paper show that the mean
regression based GQL approach may perform the same or better as compared to
the median regression based GQL estimates, when the degree of asymmetry in the
data is small. When asymmetry in the data will increase such as by introducing
outliers, the median regression approaches would perform better than the mean
regression based approach, as expected.
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