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Introduction to regularity structures

Martin Hairer
The University of Warwick

Abstract. These are short notes from a series of lectures given at the Uni-
versity of Rennes in June 2013, at the University of Bonn in July 2013, at
the XVIIth Brazilian School of Probability in Mambucaba in August 2013,
and at ETH Zurich in September 2013. They give a concise overview of the
theory of regularity structures as exposed in the article [Invent. Math. DOI:
10.1007/s00222-014-0505-4]. In order to allow to focus on the conceptual
aspects of the theory, many proofs are omitted and statements are simplified.
We focus on applying the theory to the problem of giving a solution theory
to the stochastic quantisation equations for the Euclidean fI>§1 quantum field
theory.

1 Introduction

Very recently, a new theory of “regularity structures” was introduced (Hairer,
2014), unifying various flavours of the theory of (controlled) rough paths (includ-
ing Gubinelli’s theory of controlled rough paths (Gubinelli, 2004), as well as his
branched rough paths (Gubinelli, 2010)), as well as the usual Taylor expansions.
While it has its roots in the theory of rough paths (Lyons, 1998), the main ad-
vantage of this new theory is that it is no longer tied to the one-dimensionality
of the time parameter, which makes it also suitable for the description of solu-
tions to stochastic partial differential equations, rather than just stochastic ordi-
nary differential equations. The aim of this article is to give a concise survey of
the theory while focusing on the construction of the dynamical CI>‘31 model. While
the exposition aims to be reasonably self-contained (in particular no prior knowl-
edge of the theory of rough paths is assumed), most of the proofs will only be
sketched.

The main achievement of the theory of regularity structures is that it allows to
give a (pathwise!) meaning to ill-posed stochastic PDEs that arise naturally when
trying to describe the macroscopic behaviour of models from statistical mechanics
near criticality. One example of such an equation is the KPZ equation arising as
a natural model for one-dimensional interface motion (Kardar et al., 1986; Bertini
and Giacomin, 1997; Hairer, 2013):

dh=032h+ (0,h)* +&—C.
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Another example is the dynamical CI>‘3L model arising, for example, in the stochastic
quantisation of Euclidean quantum field theory (Parisi and Wu, 1981; Jona-Lasinio
and Mitter, 1985; Albeverio and Rockner, 1991; Da Prato and Debussche, 2003;
Hairer, 2014), as well as a universal model for phase coexistence near the critical
point (Giacomin et al., 1999):

HP=ADP+CP—D°+&.

In both of these examples, & formally denotes space—time white noise, C is an
arbitrary constant (which will actually turn out to be infinite in some sense), and
we consider a bounded square spatial domain with periodic boundary conditions.
In the case of the dynamical d>‘31 model, the spatial variable has dimension 3, while
it has dimension 1 in the case of the KPZ equation. While a full exposition of the
theory is well beyond the scope of this short introduction, we aim to give a concise
overview to most of its concepts. In most cases, we will only state results in a
rather informal way and give some ideas as to how the proofs work, focusing on
conceptual rather than technical issues. The only exception is the “reconstruction
theorem,” Theorem 2.10 below, which is the linchpin of the whole theory. Since its
proof (or rather a slightly simplified version of it) is relatively concise, we provide
a fully self-contained version. For precise statements and complete proofs of most
of the results exposed here, we refer to the original article (Hairer, 2014).

Loosely speaking, the type of well-posedness results that can be proven with
the help of the theory of regularity structures can be formulated as follows.

Theorem 1.1. Let &, = 6, x & denote the regularisation of space—time white noise
with a compactly supported smooth mollifier §. that is scaled by ¢ in the spatial
direction(s) and by &2 in the time direction. Denote by he and ®, the solutions to

dhe = 32he + (Bxhe)* — Co + £,
a[q)g = Aq>8 + égq)g — qDS +§8.

Then there exist choices of constants C, and C, diverging as ¢ — 0, as well as
processes h and ® such that hy — h and ®; — © in probability. Furthermore,
while the constants C, and C, do depend crucially on the choice of mollifiers 4,
the limits h and ® do not depend on them.

Remark 1.2. We made a severe abuse of notation here since the space—time white
noise appearing in the equation for 4, is on R x T!, while the one appearing in the
equation for @, is on R x T3. (Here, we denote by T" the n-dimensional torus.)

Remark 1.3. We have not described the topology in which the convergence takes
place in these examples. In the case of the KPZ equation, one actually obtains
convergence in some space of space—time Holder continuous functions. In the case
of the dynamical CI>‘31 model, convergence takes place in some space of space—time
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distributions. One caveat that also has to be dealt with in the latter case is that the
limiting process ® may in principle explode in finite time for some instances of
the driving noise.

From a “philosophical” perspective, the theory of regularity structures is in-
spired by the theory of controlled rough paths (Lyons, 1998; Gubinelli, 2004;
Lyons et al., 2007), so let us rapidly survey the main ideas of that theory. The
setting of the theory of controlled rough paths is the following. Let us say that we
want to solve a controlled differential equation of the type

dY = f(Y)dX(1), (1.1

where X € C% is a rather rough function (say a typical sample path for an m-
dimensional Brownian motion). It is a classical result by Young (1936) that the
Riemann-Stieltjes integral (X, Y) — [; Y dX makes sense as a continuous map
from C* x C¥ into C* if and only if @ > % As a consequence, “naive” approaches
to a pathwise solution to (1.1) are bound to fail if X has the regularity of Brownian
motion.

The main idea is to exploit the a priori “guess” that solutions to (1.1) should
“look like X at small scales.” More precisely, one would naturally expect the solu-
tion Y to satisfy

Y, =Y+ Y X, +O(|r — 517, (1.2)

where we wrote X, ; as a shorthand for the increment X; — X;. As a matter of
fact, one would expect to have such an expansion with Y’ = f(Y). Denote by C§
the space of pairs (Y, Y’) satisfying (1.2) for a given “model path” X. It is then
possible to simply “postulate” the values of the integrals

t
X&,::/ X,, ® dX,, (1.3)

satisfying “Chen’s relations”
Xs,t _Xs,u _Xu,t :Xs,u ®Xu,tv (1-4)

as well as the analytic bound |X; ;| S |r — s |2, and to exploit this additional data
to give a coherent definition of expressions of the type [ Y d X, provided that the
path X is “enhanced” with its iterated integrals X and Y is a “controlled path” of
the type (1.2). See, for example, Gubinelli (2004) for more information or Hairer
(2011) for a concise exposition of this theory.

Compare (1.2) to the fact that a function f:R — R is of class C¥ with y €

(k,k + 1) if for every s € R there exist coefficients fs(l), cee, fs(k) such that

k
fi=f+ ) fLPe—9 403t —sI). (1.5)

(=1
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Of course, fs(z) is nothing but the £th derivative of f at the point s, divided by
£!. In this sense, one should really think of a controlled rough path (Y, Y’) € C§
as a 2«-Holder continuous function, but with respect to a “model” determined by
the function X, rather than by the usual Taylor polynomials. This formal analogy
between controlled rough paths and Taylor expansions suggests that it might be
fruitful to systematically investigate what are the “right” objects that could possi-
bly take the place of Taylor polynomials, while still retaining many of their nice
properties.

2 Definitions and the reconstruction operator

The first step in such an endeavour is to set up an algebraic structure reflecting
the properties of Taylor expansions. First of all, such a structure should contain a
vector space T that will contain the coefficients of our expansion. It is natural to
assume that T has a graded structure: 7 = @, 4 To, for some set A of possible
“homogeneities.” For example, in the case of the usual Taylor expansion (1.5),
it is natural to take for A the set of natural numbers and to have Ty contain the
coefficients corresponding to the derivatives of order £. In the case of controlled
rough paths, however, it is natural to take A = {0, o}, to have again T contain
the value of the function Y at any time s, and to have 7, contain the Gubinelli
derivative YS’. This reflects the fact that the “monomial” ¢t — X ; only vanishes
at order o near ¢t = s, while the usual monomials 7 — (¢ — 5)¢ vanish at integer
order £.

This, however, is not the full algebraic structure describing Taylor-like expan-
sions. Indeed, one of the characteristics of Taylor expansions is that an expansion
around some point xp can be re-expanded around any other point xj by writing

m m! k ¢

(r—x0)"= ) i —x0) -’ 2.1
k+l=m

(In the case when x € R, k, ¢ and m denote multi-indices and k! = k;!- - - kq!.)

Somewhat similarly, in the case of controlled rough paths, we have the (rather

trivial) identity
KXot = Xsg,s0 - 1+ 1- Xy, 1. (2.2)

What is a natural abstraction of this fact? In terms of the coefficients of a “Taylor
expansion,” the operation of re-expanding around a different point is ultimately
just a linear operation from I': T — T, where the precise value of the map I
depends on the starting point xg, the endpoint x;, and possibly also on the details
of the particular “model” that we are considering. In view of the above examples,
it is natural to impose furthermore that I has the property that if T € T, then
't — 7 € @pg~y Tp- In other words, when re-expanding a homogeneous monomial
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around a different point, the leading order coefficient remains the same, but lower
order monomials may appear.

These heuristic considerations can be summarised in the following definition of
an abstract object we call a regularity structure:

Definition 2.1. Let A C R be bounded from below and without accumulation
point, and let 7 = @, 4 Ty be a vector space graded by A such that each T is a
Banach space. Let furthermore G be a group of continuous operators on 7" such
that, for every o € A, every I' € G, and every 7 € Ty, onehas 't — 7 € @ﬂ<a Tg.
The triple 7 = (A, T, G) is called a regularity structure with model space T and
structure group G.

Remark 2.2. Given t € T, we will write ||7|, for the norm of its component
in Ty.

Remark 2.3. In Hairer (2014), it is furthermore assumed that 0 € A, Ty ~ R, and
Tp is invariant under G. This is a very natural assumption which ensures that our
regularity structure is at least sufficiently rich to represent constant functions.

Remark 2.4. In principle, the set A can be infinite. By analogy with the polyno-
mials, it is then natural to consider 7" as the set of all formal series of the form
> weA Ta, Where only finitely many of the 7,’s are non-zero. This also dovetails
nicely with the particular form of elements in G. In practice, however, we will
only ever work with finite subsets of A so that the precise topology on 7" does not
matter.

At this stage, a regularity structure is a completely abstract object. It only be-
comes useful when endowed with a model, which is a concrete way of associating
toany T € T and xp € RY, the actual “Taylor polynomial based at x¢” represented
by t. Furthermore, we want elements T € T, to represent functions (or possibly
distributions) that “vanish at order o around the given point xg.

Since we would like to allow A to contain negative values and, therefore, al-
low elements in T to represent actual distributions, we need a suitable notion of
“vanishing at order «.” We achieve this by considering the size of our distribu-
tions, when tested against test functions that are localised around the given point
xo. Given a test function ¢ on R?, we write ¢} as a shorthand for

ot =27 (A (v — x)).

Given r > 0, we also denote by B, the set of all functions ¢: RY — R such that
¢ € C" with |l¢|lcr <1 that are furthermore supported in the unit ball around the
origin. With this notation, our definition of a model for a given regularity structure
T 1is as follows.



180 M. Hairer

Definition 2.5. Given a regularity structure .7 and an integer d > 1, a model for
7 on RY consists of maps

Mm:RY — £(T,S'(RY)), T:RYxR?— G,
x = Iy, (x,y) > Tyy

such that I'yy 'y, = T'y; and I, 'y, = I1y,. Furthermore, given r > |inf A[, for any
compact set & C R? and constant y > 0, there exists a constant C such that the
bounds

(M) (0)] < CATla, Tyl < Clx = y1“ i, (2.3)
hold uniformly over ¢ € B, (x,y) € 8,2 € (0,1], 7 € Ty witha <y, and 8 < «.

Remark 2.6. In principle, test functions appearing in (2.3) should be smooth. It
turns out that if these bounds hold for smooth elements of [5,, then 1,7 can be
extended canonically to allow any C" test function with compact support.

Remark 2.7. The identity IT, "y, = IT, reflects the fact that Iy is the linear map
that takes an expansion around y and turns it into an expansion around x. The first
bound in (2.3) states what we mean precisely when we say that t € T;, represents a
term that vanishes at order . (Note that & can be negative, so that this may actually
not vanish at all.) The second bound in (2.3) is very natural in view of both (2.1)
and (2.2). It states that when expanding a monomial of order & around a new point
at distance & from the old one, the coefficient appearing in front of lower-order
monomials of order  is of order at most h% 5.

Remark 2.8. In many cases of interest, it is natural to scale the different directions
of R? in a different way. This is the case, for example, when using the theory
of regularity structures to build solution theories for parabolic stochastic PDE:s,
in which case the time direction “counts as” two space directions. To deal with
such a situation, one can introduce a scaling s of R?, which is just a collection
of d mutually prime strictly positive integers and to define go% in such a way that
the ith direction is scaled by A%. In this case, the Euclidean distance between
two points should be replaced everywhere by the corresponding scaled distance
[x|s =2 |xil 1/5i  See also Hairer (2014) for more details.

With these definitions at hand, it is then natural to define an equivalent in this
context of the space of y-Holder continuous functions in the following way.

Definition 2.9. Given a regularity structure .7 equipped with a model (IT, ") over

RY, the space DY = D¥ (.7, T') is given by the set of functions f :R? — Do~y Te

such that, for every compact set £ and every o < y, the exists a constant C with
[/ =Ty DMy = Clx =y 2.4)

uniformly over x, y € R.
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The most fundamental result in the theory of regularity structures then states
that given f € DY with y > 0, there exists a unique Schwartz distribution R f on
R? such that, for every x € RY, R f “looks like I1, f (x) near x.” More precisely,
one has the following theorem.

Theorem 2.10. Let 7 be a regularity structure as above and let (I1, ") a model
for T on R%. Then, there exists a unique linear map R:DY — S'(R?) such
that

(Rf — T f () (¢2)| S 27, (2.5)

uniformly over ¢ € B, and A as before, and locally uniformly in x.

Proof. The proof of the theorem relies on the following fact. Given any r > 0 (but
finite), there exists a function ¢ : RY — R with the following properties:

(1) The function ¢ is of class C" and has compact support.

(2) For every polynomial P of degree r, there exists a polynomial P of degree r
such that, for every x € RY, one has Zyezd P(Yo(x —y)=P(x).

(3) One has [@(x)p(x —y)dx =8, o forevery y € 74,

(4) There exist coefficients {ax}; ¢ such that 2_d/2go(x/2) =D pezd akp(x — k).

The existence of such a function ¢ is highly non-trivial. This is actually equiv-
alent to the existence of a wavelet basis consisting of C" functions with com-
pact support, a proof of which was first obtained by Daubechies in her semi-
nal article (Daubechies, 1988). From now on, we take the existence of such a
function ¢ as a given for some r > |inf A|. We also set A" =27"Z¢ and, for
y e A", we set (p;l (x) = 2"/2¢(2"(x — y)). Here, the normalisation is chosen in
such a way that the set {¢}}yea» is again orthonormal in L?. We then denote by
Vp, CC" the linear span of {¢}}yean, so that, by the property (4) above, one has

Vo C V1 C Vo C ---. We furthermore denote by V, the L?-orthogonal comple-
ment of V,,_1in V,,, sothat V,, = Vo & \71 ®---d \7n. In order to keep notations
compact, it will also be convenient to define the coefficients a; with k € A" by
a]r(l =dajng.

With these notation at hand, we then define a sequence of linear operators
R":DY — C" by

(R*F)») =D (M f () (@)@ ().

xeA"

We claim that there then exists a Schwartz distribution R f such that, for every
compactly supported test function v of class C", one has (R" f, ) — (Rf) (),
and that R f furthermore satisfies the properties stated in the theorem.
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Let us first consider the size of the components of R**! f — R f in V,,.. Given
x € A", we make use of properties (3) and (4), so that

(RMVF =R fol) = Y af{R™ folfl) — (M f () ()
keAnJrl

= Y (M f (x +0)(9T)) — (T f (1)) ()

ke An+1

= Y @ (Mo f & +0)(@hT) — (M f ) (@11)

keAn+l
= Y @ (Mesk(f @+ k) = Toppr f0))) (@1T).
keA"+'

where we used the algebraic relations between I, and I, to obtain the last iden-
tity. Since only finitely many of the coefficients a; are non-zero, it follows from the
definition of DY that for the non-vanishing terms in this sum we have the bound

|+ = T fO], S27"0),

uniformly over n > 0 and x in any compact set. Furthermore, for any t € T, it
follows from the definition of a model that one has the bound

[Ty ) ()| S 27 nd/2,

again uniformly over n > 0 and x in any compact set. Here, the additional factor
274/ comes from the fact that the functions ¢ are normalised in L? rather than
L'. Combining these two bounds, we immediately obtain that

}(’R/’H_lf _ Rnf, (p;l>| S 2—yn—nd/2’ (26)

uniformly over n > 0 and x in compact sets. Take now a test function ¥ € C" with
compact support and let us try to estimate (R"*!f — R" f, ). Since R"T! f —
R"f € V41, we can decompose it into a part R" f € V,, and a part SR”f € \7,1+1
and estimate both parts separately. Regarding the part in V,,, we have

S22 N ik )

xeAntl

. @27

R £w)l=| X R ek )

xeAnt+l

where we made use of the bound (2.6). At this stage we use the fact that, due to
the boundedness of v, we have |(¢, V)| < 277d/2 Furthermore, thanks to the
boundedness of the support of ¥, the number of non-vanishing terms appearing in
this sum is bounded by 2nd, so that we eventually obtain the bound

(6R" foy)| S 277 (2.8)

Regarding the second term, we use the standard fact coming from wavelet analysis
(Meyer, 1992) that a basis of V,41 can be obtained in the same way as the basis
of V,, but replacing the function ¢ by functions ¢ from some finite set ®. In other
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words, \7”+1 is the linear span of {@} }can.¢ecq. Furthermore, as a consequence of
property (2), the functions ¢ € ® all have the property that

f P(x)P(x)dx =0, (2.9)

for any polynomial P of degree less or equal to . In particular, this shows that one
has the bound

|<(‘5?, 1,0)| S 2—nd/2—nr.

As a consequence, one has

R vl =| X (R got )| S 2R | (R gt
A" A
x;e@ fﬁeetb

At this stage, we note that, thanks to the definition of Rt and the bounds on
the model (IT, "), we have [(R"F! £, ¢™)| < 2—nd/2—aon \where g = inf A, so that
|((§7€”f, Y| < 270" Combining this with (2.8), we see that one has indeed
R" f — R f for some Schwartz distribution R f.

It remains to show that the bound (2.5) holds. For this, given a distribution
n € C* for some o > —r, we first introduce the notation

Pan= Y nlehet,  Pa=Y > n(@h)er.

XEA" peD xeA"

We also choose an integer value n > 0 such that 27" ~ A and we write

Rf — T f(x)
=R = Pull f()+ Y (R™f = R"f —Pulle f(x))  (2.10)
=R'f —Pull f(x) + Y BR™f = Pull f(x)) + Y SR f.

We then test these terms against 1//)? and we estimate the resulting terms separately.
For the first term, we have the identity

(R"f = Palle f0)) (¥) = Y (My f(») = TLe fO) (@)}, w7). (2.11)
YEA"
We have the bound |(<p;’, 1//)?)| < A—d2—=dn/2  2dn/2 Gince one furthermore has
|y — x| < A for all non-vanishing terms in the sum, one also has similarly to before
(M f(y) = T f () ()| S D Ay —eprdn/aman ~ gmdn/z=yn, (2.12)
a<y

Since only finitely many (independently of n) terms contribute to the sumin (2.11),
it is indeed bounded by a constant proportional to 277" ~ AY as required.
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We now turn to the second term in (2.10), where we consider some fixed value
m > n. We rewrite this term very similarly to before as

BR™ f — Pl f (1)) (V1)
=YY (M f(y) = T f ) (@ T @i @)@, vt ),

Ged ¥z

where the sum runs over y € A”*! and z € A™. This time, we use the fact that by
the property (2.9) of the wavelets ¢, one has the bound

‘((Z)Z ,w;u” S )\—d—rz—rm—md/z, (213)

m+1 ~m

and the L2-scaling implies that [y ™, @) < 1. Furthermore, for each z € A™,

only finitely many elements y € A”*+! contribute to the sum, and these elements
all satisfy |y — z| < 27™. Bounding the first factor as in (2.12) and using the fact
that there are of the order of 292" terms contributing for every fixed m, we thus
see that the contribution of the second term in (2.10) is bounded by

Z )Ldzmd Z )Ly—a—d—rz—dm—am—rm

m=>n a<y

~ Z \y—a-r Z gTam=rm 3y

a<y m>n

For the last term in (2.10), we combine (2.7) with the bound |(g0;1, 1//)?)| <

A~4274m/2 and the fact that there are of the order of A2 terms appearing
in the sum (2.7) to conclude that the mth summand is bounded by a constant pro-
portional to 27¥™, Summing over m yields again the desired bound and completes
the proof. U

Remark 2.11. Note that the space D? depends crucially on the choice of model
(IT, I'). As a consequence, the reconstruction operator R itself also depends on
that choice. However, the map (I1, I, f) — R f turns out to be locally Lipschitz
continuous provided that the distance between (I1, I, f) and (I, T, f ) is given
by the smallest constant o such that

| £ = Fx) = Tay fO) + Ty FO], < 0lx — "2,
[Tyt — 7)(9h)] < 0A®Iz ]I,
ITxyT — Caytllp < olx — y|* 7P|z

Here, in order to obtain bounds on (R f — R f)(¥) for some smooth compactly
supported test function ¥, the above bounds should hold uniformly for x and y
in a neighbourhood of the support of yr. The proof that this stronger continuity
property also holds is actually crucial when showing that sequences of solutions to
mollified equations all converge to the same limiting object. However, its proof is
somewhat more involved which is why we chose not to give it here.
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Remark 2.12. In the particular case where I, t happens to be a continuous func-
tion for every t € T (and every x € R, R f is also a continuous function and one
has the identity

(Rx) = (T f (x)) (x). (2.14)
This can be seen from the fact that

(RAHG = lim (R"f)(y) = lim > (M. f(0)) (@)} ).

xXEA"

lim
n—oo

Indeed, our assumptions imply that the function (x, z) — (Ilx f(x))(z) is jointly
continuous and since the non-vanishing terms in the above sum satisfy |x — y| <
27" one has Zd"/z(l'le(x))(%’c‘) ~ (ITy f(y))(y) for large n. Since furthermore
Y orean O (y) = 241/2 the claim follows.

3 Examples of regularity structures

3.1 The polynomial structure

It should by now be clear how the structure given by the usual Taylor polynomials
fits into this framework. A natural way of setting it up is to take for 7' the space
of all abstract polynomials in d commuting variables, denoted by X1, ..., Xy, and
to postulate that 7; consists of the linear span of monomials of degree k. As an
abstract group, the structure group G is then given by R? endowed with addition
as its group operation, which acts onto T via I’y X% = (X — h)¥, where h € R¢ and
we use the notation X* as a shorthand for X Ilq S Xfld for any multiindex k.
The canonical polynomial model is then given by

(HxXk)(y) =y - x)k7 ny = Fy—x'

We leave it as an exercise to the reader to verify that this does indeed satisfy the
bounds and relations of Definition 2.5.

In the particular case of the canonical polynomial model and for y ¢ N, the
spaces DY then coincide precisely with the usual Holder spaces C”. In the case of
integer values, this should be interpreted as bounded functions for y = 0, Lipschitz
continuous functions for y =1, etc.

3.2 Controlled rough paths

Let us see now how the theory of controlled rough paths can be reinterpreted in
the light of this theory. For given « € (%, %) and n > 1, we can define a regularity
structure .7 by setting A = {¢ — 1, 2o — 1,0, «}. We furthermore take for Ty a
copy of R with unit vector 1, for Ty, and T,—1 a copy of R" with respective unit
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vectors W; and E;, and for T4 1 a copy of R™™" with unit vectors W j&i. The
structure group G is taken to be isomorphic to R” and, for x € R", it acts on T via
I'vl=1, I'yE8; =&,
W, =W; —x'1, FX(W]‘E,')IWJ'E,‘—X‘/E,‘.

Let now X = (X, X) be an a-Holder continuous rough path with values in R”".
In other words, the functions X and X are as in the Introduction, satisfying the
relation (1.4) and the analytic bounds |X; — X;| < |t — s]%, (X, | S|t — 5% It
turns out that this defines a model for .7 in the following way (recall that X, ; is a
shorthand for X; — X,):

Lemma 3.1. Given an a-Holder continuous rough path X, one can define a model
for 7 on R by setting I's,, =T'x, , and

M0 =1,  T,W,)1) =X,

(M,E)(¢) = / Yydx], (W, E)) = / () dXE]

Here, both integrals are perfectly well-defined Riemann integrals, with the differ-
ential in the second case taken with respect to the variable t. Given a controlled
rough path (Y, Y') € C§ as in (1.2), this then defines an element Y € D% by setting

Y(s) =Y ()1 + Y/ (s)W;,
with summation over i implied.
Proof. We first check that the algebraic properties of Definition 2.5 are satisfied. It
is clear that I'g,, I',;, = I, and that IT; 'y, 7 = 1,7 for T € {1, W;, E,}. Regarding
W; E;, we differentiate Chen’s relations (1.4) which yields the identity

dX) = dX + X, dx].
The last missing algebraic relation then follows at once. The required analytic

bounds follow immediately from the definition of the rough path space D“.
Regarding the function Y defined in the statement, we have

[¥(s) = CsuY @)y = |Y () = Y () + Y[ ) X!,

| (s) = Tau¥ )|, = ¥/ (s) = ¥' ()

’

so that the condition (2.4) with y = 2« does indeed coincide with the definition of
a controlled rough path given in the Introduction. O

In this context, the reconstruction theorem allows us to define an integration op-
erator with respect to W. We can formulate this as follows where one should really
think of Z as providing a consistent definition of what one means by Y dX/.
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Lemma 3.2. In the same context as above, let o € (%, %), and consider Y € D>
built as above from a controlled rough path. Then the map YE; given by

(YENE)=Y($)E; 4+ Y/ (5 )W, E;

belongs to D=1, Furthermore, there exists a function Z such that, for every
smooth test function ¥, one has

RVE)W) = [ wnaz),
and such that Z.; = Y (s) X1, + Y/()Xo] 4+ O(|t — s ).

Proof. The factthat Y E; € D3~ ! is an immediate consequence of the definitions.
Since o > % by assumption, we can apply the reconstruction theorem to it, from
which it follows that there exists a unique distribution 1 such that, if i is a smooth
compactly supported test function, one has

"(¢?)=/¢?(t)Y(s)dX{ +/://§(z)yi/(s)dx§:{ +op).

By a simple approximation argument, it turns out that one can take for v the
indicator function of the interval [0, 1], so that

N(ls.) = YO XL, + Y X5 +O(1r — s1%).

Here, the reason why one obtains an exponent 3« rather than 3o — 1 is that it is
really |r —s|~! 1;5,7) that scales like an approximate §-distribution as ¢ — s. g

Remark 3.3. Using the formula (2.14), it is straightforward to verify that if X
happens to be a smooth function and X is defined from X via (1.3), but this time
viewing it as a definition for the left-hand side, with the right-hand side given by a
usual Riemann integral, then the function Z constructed in Lemma 3.2 coincides
with the usual Riemann integral of Y against X/.

3.3 A classical result from harmonic analysis

The considerations above suggest that a very natural space of distributions is ob-
tained in the following way. For some o > 0, we denote by C~* the space of all
Schwartz distributions 1 such that n belongs to the dual of C" with r > @ some
integer and such that

(o)) <27

uniformly over all ¢ € B, and A € (0, 1], and locally uniformly in x. Given any
compact set £, the best possible constant such that the above bound holds uni-
formly over x € 8 yields a seminorm. The collection of these seminorms endows
C~“ with a Fréchet space structure.
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Remark 3.4. It turns out that the space C™* is independent of the choice of r in
the definition given above, which justifies the notation. Different values of r give
raise to equivalent seminorms.

Remark 3.5. In terms of the scale of classical Besov spaces, the space C7% is a
local version of BL.,. It is in some sense the largest space of distributions that

is invariant under the scaling ¢(-) = A "%@(A~!.); see, for example, Bourgain and
Pavlovi¢ (2008).

It is then a classical result in the “folklore” of harmonic analysis that the product
extends naturally to C™% x CP into &’ (RY) if and only if 8 > «. The reconstruction
theorem yields a straightforward proof of the “if” part of this result.

Theorem 3.6. There is a continuous bilinear map B:C~% x CP — S'(RY) such
that B(f, g) = fg for any two continuous functions f and g.

Proof. Assume from now on that £ € C™* for some « > 0 and that f € C? for
some 8 > «. We then build a regularity structure .7 in the following way. For the
set A,wetake A=NU(N —«) and for T, we set T =V & W, where each one of
the spaces V and W is a copy of the polynomial model in d commuting variables
constructed in Section 3.1. We also choose I' as in the canonical model, acting
simultaneously on each of the two instances.

As before, we denote by X¥ the canonical basis vectors in V. We also use the
suggestive notation “EX*” for the corresponding basis vector in W, but we postu-
late that EX* € T, x| rather than EX* € Tj|. Given any distribution & € C™%, we
then define a model (1, I"), where T is as in the canonical model, while IT¢ acts
as

(MXYM=0-0  ([MEEXH() = -0"Ew).
with the obvious abuse of notation in the second expression. It is then straight-
forward to verify that IT, = I1, o I'y, and that the relevant analytical bounds are
satisfied, so that this is indeed a model.

Denote now by R¢ the reconstruction map associated to the model (I1¢, I') and,
for f € CP, denote by F the element in D given by the local Taylor expansion of
f of order B at each point. Note that even though the space Df does in principle
depend on the choice of model, in our situation F € D# for any choice of &. It
follows immediately from the definitions that the map x — EF(x) belongs to
DB~ 50 that, provided that 8 > «, one can apply the reconstruction operator to it.
This suggests that the multiplication operator we are looking for can be defined as

B(f,£) =RE(EF).

By Theorem 2.10, this is a jointly continuous map from C# x C~* into S'(R?),
provided that 8 > «. If £ happens to be a smooth function, then it follows immedi-
ately from Remark 2.12 that B(f, §) = f(x)&(x), so that B is indeed the requested
continuous extension of the usual product. 0
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Remark 3.7. As a consequence of (2.5), it is actually easy to show that B:C™% x
cP—c.

4 Products and composition by smooth functions

One of the main purposes of the theory presented here is to give a robust way to
multiply distributions (or functions with distributions) that goes beyond the barrier
illustrated by Theorem 3.6. Provided that our functions/distributions are repre-
sented as elements in D? for some model and regularity structure, we can multi-
ply their “Taylor expansions” pointwise, provided that we give ourselves a table of
multiplication on 7.

It is natural to consider products with the following properties. Here, given a
regularity structure, we say that a subspace V C T is a sector if it is invariant
under the action of the structure group G and if it can furthermore be written as
V=Puca Va with V,, C T,.

Definition 4.1. Given a regularity structure (7', A, G) and two sectors V, VcCT,
a product on (V, V) is a bilinear map *:V x V — T such that, for any 7 € V,
and T € \_/,3, one has t » T € Ty g and such that, for any element I' € G, one has
Frtxt)=Tt*I7.

Remark 4.2. The condition that homogeneities add up under multiplication is
very natural bearing in mind the case of the polynomial regularity structure. The
second condition is also very natural since it merely states that if one re-expands
the product of two “polynomials” around a different point, one should obtain the
same result as if one reexpands each factor first and then multiplies them together.

Given such a product, we can ask ourselves when the pointwise product of an
element DY with an element in D?? again belongs to some D? . In order to answer
this question, we introduce the notation DY to denote those elements f € DY such
that furthermore

f) el =@ 13
Bz
for every x. With this notation at hand, it is not too difficult to verify that one has

the following result.

Theorem 4.3. Let fi € DL (V), f» € Di2(V), and let » be a product on (V, V).
Then, the function f given by f(x) = f1(x) * f>(x) belongs to DY with

a=a)+ay, y=W+a) A2 +ap). 4.1
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Proof. It is clear that f(x) € Pg- Tp, so it remains to show that it belongs to
DY . Furthermore, since we are only interested in showing that f] x f> € DY, we
discard all of the components in T for g > y.

By the properties of the product *, it remains to obtain a bound of the type

ITay f1() * Ty f2(0) = f100) % o) g S I — yI7 7P,

By adding and subtracting suitable terms, we obtain
eryf(y) - f(x)ng = H(nyfl ) — fi (x)) * (nyfz()’) - f2(x))”‘3
+ [ (Coy i) = i) * 20 | 4.2)

+ [ A1) * (Tay o) = f2(0)] -

It follows from the properties of the product  that the first term in (4.2) is bounded
by a constant times

Yo I i) = i@ 4, [Ty 20) = 200,
Bi1+B2=p

S D =yl P =y Sl =yt
Bi+B2=8

Since y1 + y» > y, this bound is as required. The second term is bounded by a
constant times

> T fiG) = i | L0,
Bi1+B2=p8

Sllx =yl Pig,ng, S llx — y|r o2 P,

where the second inequality uses the identity 81 + 2 = B. Since y1 + ag > y, this
bound is again of the required type. The last term is bounded similarly by reversing
the roles played by f1 and f5. O

Remark 4.4. It is clear that the formula (4.1) for y is optimal in general as can
be seen from the following two “reality checks.” First, consider the case of the
polynomial model and take f; € C*'. In this case, the truncated Taylor series F;
for f; belong to Dgi. It is clear that in this case, the product cannot be expected
to have better regularity than y; A y» in general, which is indeed what (4.1) states.
The second reality check comes from the example of Section 3.3. In this case, one

has F € Dg , while the constant function x +— E belongs to D%, so that, according
B—a

to (4.1), one expects their product to belong to DZ ", which is indeed the case.

It turns out that if we have a product on a regularity structure, then in many
cases this also naturally yields a notion of composition with smooth functions. Of
course, one could in general not expect to be able to compose a smooth function
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with a distribution of negative order. As a matter of fact, we will only define the
composition of smooth functions with elements in some DY for which it is guar-
anteed that the reconstruction operator yields a continuous function. One might
think at this case that this would yield a triviality, since we know of course how
to compose arbitrary continuous function. The subtlety is that we would like to
design our composition operator in such a way that the result is again an element
of DY,

For this purpose, we say that a given sector V C T is function-like if o <
0= V, =0 and if Vj is one-dimensional. (Denote the unit vector of Vy by 1.)
We will furthermore always assume that our models are normal in the sense that
(I, 1) (y) = 1. I this case, it turns out that if f € DY (V), then R f is a continuous
function and one has the identity (R f)(x) = (1, f(x)), where we denote by (1, -)
the element in the dual of V which picks out the pre-factor of 1.

Assume now that we are given a regularity structure with a function-like sector
V and a product x:V x V — V. For any smooth function G :R — R and any
f € DY(V) with y > 0, we can then define G(f) to be the V-valued function
given by

GO(f(x) -

(Go ) =3 —7 ok,

k>0

where we have set

fO=1f®),  f&)=fx-Ff@L

Here, G® denotes the kth derivative of G and 7** denotes the k-fold product
T % -+ % 7. We also used the usual conventions G(¥ = G and ** = 1.

Note that as long as G is C*, this expression is well-defined. Indeed, by as-
sumption, there exists some o > 0 such that fx) e Toj('). By the properties of the

product, this implies that one has f(x)* € TkJ&O- As a consequence, when consid-
ering the component of G o f in Tg for B < y, the only terms that give a con-
tribution are those with k < y /ag. Since we cannot possibly hope in general that
Gofe DY’ for some y’ > y, this is all we really need.

It turns out that if G is sufficiently regular, then the map f +— G o f enjoys
similarly nice continuity properties to what we are used to from classical Holder
spaces. The following result is the analogue in this context to the well-known fact
that the composition of a C¥ function with a sufficiently smooth function G is
again of class C7.

Proposition 4.5. In the same setting as above, provided that G is of class Ck
with k > v /ag, the map f + G o f is continuous from DY (V) into itself. If k >
y /ag + 1, then it is locally Lipschitz continuous.

The proof of this result can be found in Hairer (2014). It is somewhat lengthy,
but ultimately rather straightforward.
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4.1 A simple example

A very important remark is that even if both R f; and R f> happens to be
continuous functions, this does not in general imply that R(f1 * f2)(x) =
(R f1)(x)(R f2)(x). For example, fix ¥ < 0 and consider the regularity structure
givenby A = (—2«, —«, 0), with each T, being a copy of R given by T_,,, = (E").
We furthermore take for G the trivial group. This regularity structure comes with
an obvious product by setting E" x E" = E™ " provided that m +n < 2.

Then, we could for example take as a model for 7 = (T, A, G):

(ME) =1, (I E)(y) =0, (ME%) () =c, (4.3)

where c is an arbitrary constant. Let furthermore

Fi)=A0E + fIE, R =HAXE+ f(x)E.

Since our group G is trivial, one has F; € DY provided that each of the f; be-
longs to DY and each of the f! belongs to DY ™. (And one has y + k < 1.) One
furthermore has the identity (R F;)(x) = fi(x).

However, the pointwise product is given by

(Fix F2)(x) = fi(x) 2(x) E® + (f1 (0) f2(x) + f500) f[1(0)) B + f1(x) f3(x) B,

which by Theorem 4.3 belongs to DY ~“. Provided that y > «, one can then apply
the reconstruction operator to this product and one obtains

R(F1 x F2)(x) = fi(x) f2(x) + cf{ (x) f(x),

which is obviously different from the pointwise product RF - R F>.
How should this be interpreted? For n > 0, we could have defined a model IT1"
by

(M 2%y =1, (T, E)(y) = +/2csin(nx), (M, 2%)(y) = 2csin’(nx).
Denoting by R the corresponding reconstruction operator, we have the identity
(R™WF;)(x) = fi(x) + v 2c f (x) sin(nx),

as well as RO (F) x F») = RWF; - R™WF,. As a model, the model TI™ actu-
ally converges to the limiting model IT defined in (4.3). As a consequence of the
continuity of the reconstruction operator, this implies that

RWF - RWE, =R™W(F| x Fy) > R(Fi * F2) £ RF - RF>,

which is of course also easy to see “by hand.” This shows that in some cases, the
“non-standard” models as in (4.3) can be interpreted as limits of “standard” models
for which the usual rules of calculus hold. Even this is, however, not always the
case.
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5 Schauder estimates and admissible models

One of the reasons why the theory of regularity structures is very successful at
providing detailed descriptions of the small-scale features of solutions to semi-
linear (S)PDEs is that it comes with very sharp Schauder estimates. Recall that
the classical Schauder estimates state that if K : R? — R is a kernel that is smooth
everywhere, except for a singularity at the origin that is (approximately) homoge-
neous of degree § — d for some S > 0, then the operator f — K * f maps C* into
Coth for every a € R, except for those values for which « + B € N. (See, e.g.,
Simon (1997).)

It turns out that similar Schauder estimates hold in the context of general reg-
ularity structures in the sense that it is in general possible to build an operator
K:DY — D +P with the property that RK f = K * R f. Of course, such a state-
ment can only be true if our regularity structure contains not only the objects nec-
essary to describe R f up to order y, but also those required to describe K «R f up
to order y + . What are these objects? At this stage, it might be useful to reflect
on the effect of the convolution of a singular function (or distribution) with K.

Let us assume for a moment that f is also smooth everywhere, except at some
point xg. It is then straightforward to convince ourselves that K * f is also smooth
everywhere, except at xo. Indeed, for any § > 0, we can write K = K5 + K,
where K is supported in a ball of radius § around 0 and K7§ is a smooth function.
Similarly, we can decompose f as f = f5 + f5, where f5 is supported in a §-ball
around xp and fy is smooth. Since the convolution of a smooth function with an
arbitrary distribution is smooth, it follows that the only non-smooth component of
K x f is given by K * f5, which is supported in a ball of radius 2§ around x¢. Since
& was arbitrary, the statement follows. By linearity, this strongly suggests that the
local structure of the singularities of K * f can be described completely by only
using knowledge on the local structure of the singularities of f. It also suggests
that the “singular part” of the operator K should be local, with the non-local parts
of K only contributing to the “regular part.”

This discussion suggests that we certainly need the following ingredients to
build an operator /C with the desired properties:

e The canonical polynomial structure should be part of our regularity structure in
order to be able to describe the “regular parts.”

e We should be given an “abstract integration operator’” Z on 7 which describes
how the “singular parts” of R f transform under convolution by K.

e We should restrict ourselves to models which are “compatible” with the action
of 7 in the sense that the behaviour of I1,Z7 should relate in a suitable way to
the behaviour of K * I, T near x.

One way to implement these ingredients is to assume first that our model space T
contains abstract polynomials in the following sense.
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Assumption 5.1. There exists a sector T C T isomorphic to the space of abstract
polynomials in d commuting variables. In other words, Ty, # 0 ifand only ifoa € N,
and one can find basis vectors X* of Tix| such that every element I' € G acts on T
by I' XK = (X — h)* for some h € RY.

Furthermore, we assume that there exists an abstract integration operator Z with
the following properties.

Assumptim} 5.2. There exists a linear map L:T — T such that IT, C Tyyp,
such that IT = 0, and such that, for every I' € G and © € T, one has

I'Zr—Il'teT. (5.1)

Finally, we want to consider models that are compatible with this structure for
a given kernel K. For this, we first make precise what we mean exactly when we
said that K is approximately homogeneous of degree 8 — d.

Assumption 5.3. One can write K = ) ,-oK, where each of the kernels
K, :R? — R is smooth and compactly supported in a ball of radius 27" around
the origin. Furthermore, we assume that for every multi-index k, one has a con-
stant C such that the bound

sup| DF K, (x)| < c2M@=FHIkD, (5.2)
X

holds uniformly in n. Finally, we assume that [ K,(x) P (x)dx = 0 for every poly-
nomial P of degree at most N, for some sufficiently large value of N.

Remark 5.4. It turns out that in order to define the operator X on DY, we will
need K to annihilate polynomials of degree N for some N > y + 8.

Remark 5.5. The last assumption may appear to be extremely stringent at first
sight. In practice, this turns out not to be a problem at all. Say, for example, that we
want to define an operator that represents convolution with G, the Green’s function
of the Laplacian. Then G can be decomposed into a sum of terms satisfying the
bound (5.2) with 8 = 2, but it does of course not annihilate generic polynomials
and it is not supported in the ball of radius 1.

However, for any fixed value of N > 0, it is straightforward to decompose G
as G = K + R, where the kernel K is compactly supported and satisfies all of the
properties mentioned above, and the kernel R is smooth. Lifting the convolution
with R to an operator from DY — DY (actually to DY for any 7 > 0) is straight-
forward, so that we have reduced our problem to that of constructing an operator
describing the convolution by K.
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Given such a kernel K, we can now make precise what we meant earlier when
we said that the models under consideration should be compatible with the ker-
nel K.

Definition 5.6. Given a kernel K as in Assumption 5.3 and a regularity structure
7 satisfying Assumptions 5.1 and 5.2, we say that a model (I1, I") is admissible
if the identities

(T X5 (y) = (v — 0)X, ,Zt =K % ,t — 1,7 (x)1, (5.3)

holds for every T € T with |t| < N. Here, J(x):T — T is the linear map given
on homogeneous elements by

_ X_k (k) _
Jx)r= > | PR = (I @y). (5.4)

lkl<|z|+8

Remark 5.7. Note first that if 7 € T, then the definition given above is coherent
as long as |7| < N. Indeed, since Zt = 0, one necessarily has I1,Zt = 0. On the
other hand, the properties of K ensure that in this case one also has K % [1,t =0,
as well as J(x)T =0.

Remark 5.8. While K * & is well defined for any distribution &, it is not so clear
a priori whether the operator 7 (x) given in (5.4) is also well defined. It turns
out that the axioms of a model do ensure that this is the case. The correct way of
interpreting (5.4) is by

Xk
Jwr= 3 3} S (LD)(DYKa(x =),

lkl<|t|+Bn=0 "

Note now that the scaling properties of the K, ensure that 2= kD" D®R g (x — )
is a test function that is localised around x at scale 27". As a consequence, one has

(M) (DR K, (x — )| < 20kI=B=lehn,

so that this expression is indeed summable as long as |k| < |t| + .

Remark 5.9. As a matter of fact, it turns out that the above definition of an ad-
missible model dovetails very nicely with our axioms defining a general model.
Indeed, starting from any regularity structure .7, any model (I1, I') for .7, and a
kernel K satisfying Assumption 5.3, it is usually possible to build a larger regular-
ity structure g containing .7 (in the “obvious” sense that 7' C T and the action
of G on T is compatible with that of G) and endowed with an abstract integra-
tion map Z, as well as an admissible model (f[, f‘) on .7 which reduces to (I1, )
when restricted to 7. See Hairer (2014) for more details.
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The only exception to this rule arises when the original structure 7' contains
some homogeneous element T which does not represent a polynomial and which
is such that |t| + B € N. Since the bounds appearing both in the definition of
a model and in Assumption 5.3 are only upper bounds, it is in practice easy to
exclude such a situation by slightly tweaking the definition of either the exponent
B or of the original regularity structure .7 .

With all of these definitions in place, we can finally build the operator KC: DY —
DY*P announced at the beginning of this section. Recalling the definition of 7
from (5.4), we set

(KHX) =L )+ T @) fx)+ NV ), (5.5

where the operator N is given by

Xk
WHw= ¥ o [DYRG- DR~ f@)dn. 56
lkl<y+8 ™
Note first that thanks to the reconstruction theorem, it is possible to verify that the
right-hand side of (5.6) does indeed make sense for every f € DY in virtually the
same way as in Remark 5.8. One has the following.

Theorem 5.10. Let K be a kernel satisfying Assumption 5.3, let = (A, T, G)
be a regularity structure satisfying Assumptions 5.1 and 5.2, and let (I1, ") be an
admissible model for 7 . Then, for every f € DY withy € (O,N—B)andy + B ¢
N, the function K f defined in (5.5) belongs to DYt and satisfies RK f = K R f.

Proof. The complete proof of this result can be found in Hairer (2014) and will not
be given here. Let us simply show that one has indeed R f = K * R f in the par-
ticular case when our model consists of continuous functions so that Remark 2.12
applies. In this case, one has

(REf)(x) = (T (Zf (x) + T (x) £ (1)) (x) + (T (N ) (x)) (x).

As a consequence of (5.3), the first term appearing in the right-hand side of this
expression is given by

(Mx(Zf () + T () f(x)))(x) = (K * e f () (x).

On the other hand, the only term contributing to the second term is the one with
k = 0 (which is always present since y > 0 by assumption) which then yields

(M OV ) (@) () = / K@ — y)(Rf — My £())(dy).

Adding both of these terms, we see that the expression (K * [Ty f(x))(x) cancels,
leaving us with the desired result. g
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6 Application of the theory to semilinear SPDEs

Let us now briefly explain how this theory can be used to make sense of solutions
to very singular semilinear stochastic PDEs. We will keep the discussion in this
section at a very informal level without attempting to make mathematically precise
statements. The interested reader may find more details in Hairer (2014).

For definiteness, we focus on the case of the dynamical @‘3‘ model, which is
formally given by

JD=AD— D+, (6.1)

where £ denotes space—time white noise and the spatial variable takes values in
the three-dimensional torus. The problem with such an equation is that even the
solution to the linear part of the equation, namely

HW =AU +&,

only admits solutions in some spaces of Schwartz distributions. As a matter of fact,
one has W(z, ) € C™* if and only if & > 1/2. As a consequence, it turns out that
the only way of giving meaning to (6.1) is to “renormalise” the equation by adding
an “infinite” linear term “co®” which counteracts the strong dissipativity of the
term —®>. To be slightly more precise, one can prove a statement of the following
kind:

Theorem 6.1. Consider the sequence of equations
0P = AD; + Cc D — D) + &, (6.2)

where &, = 8, % & with 8,(t,x) = 8’5Q(8*2t, sflx),for some smooth and com-
pactly supported function o, and & denotes space—time white noise. Then there
exists a choice of constants C such that the sequence ®, converges in probability
to a limiting (distributional) process ®. Furthermore, the limiting process ® does
not depend on the choice of mollifier o.

Remark 6.2. It turns out that in order to obtain a limit that is independent of the
choice of mollifier o, one should take C. of the form

C -
C.= a + cloge + cs,
g

where ¢ is universal, but ¢ and c¢3 depend on the choice of o.

Remark 6.3. The limiting solution @ is only local in time, so that the precise
statement has to be slightly tweaked to allow for finite-time blow-ups. Regarding
the initial condition, one can take ® € C~# for any 8 < 2/3. This is expected to
be optimal, even for the deterministic equation.
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The aim of this section is to sketch how the theory of regularity structures can be
used to obtain this kind of convergence results. First of all, we note that while our
solution ® will be a space—time distribution (or rather an element of DY for some
regularity structure with a model over R*), the “time” direction has a different
scaling behaviour from the three “space” directions. As a consequence, it turns
out to be effective to slightly change our definition of “localised test functions” by
setting

G063 =200 72 =), 27 (v = x)).

Accordingly, the “effective dimension” of our space—time is actually 5, rather
than 4. The theory presented above extends mutatis mutandis to this setting. (Note
in particular that when considering the degree of a regular monomial, powers of
the time variable should now be counted double.) Note also that with this way of
measuring regularity, space—time white noise belongs to C~ for every o > % This
is because of the bound

20172 -
(Bl 03))"% = [l 2 272,

combined with an argument similar to the proof of Kolmogorov’s continuity
lemma.

6.1 Construction of the associated regularity structure

Our first step is to build a regularity structure that is sufficiently large to allow to
reformulate (6.1) as a fixed point in DY for some y > 0. Denoting by G the heat
kernel (i.e., the Green’s function of the operator d; — A), we can write the solution
to (6.1) with initial condition @ as

d=Gx* (£ — D)+ Gy,

where * denotes space—time convolution and where we denote by G&g the har-
monic extension of ®q. In order to have a chance of fitting this into the framework
described above, we first decompose the heat kernel G as

G=K+K,

where the kernel K satisfies all of the assumptions of Section 5 (with § = 2) and
the remainder K is smooth. If we consider any regularity structure containing the
usual Taylor polynomials and equipped with an admissible model, is straightfor-
ward to associate to K an operator K:D? — D™ via

. Xk .
KN@ =37 (PYKRf) @),

k

where z denotes a space—time point and k runs over all possible four-dimensional
multi-indices. Similarly, the harmonic extension of ®( can be lifted to an element
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in D which we denote again by G®( by considering its Taylor expansion around
every space-time point. At this stage, we note that we actually cheated a little:
while G®g is smooth in {(¢,x):¢ > 0, x € T?} and vanishes when ¢ < 0, it is of
course singular on the time-0 hyperplane {(0, x):x € T3}. This problem can be
cured by introducing weighted versions of the spaces DY allowing for singulari-
ties on a given hyperplane. A precise definition of these spaces and their behaviour
under multiplication and the action of the integral operator K can be found in
Hairer (2014). For the purpose of the informal discussion given here, we will sim-
ply ignore this problem.
This suggests that the “abstract” formulation of (6.1) should be given by

®=K(E - &%) +K(E - @) + Gdo. (6.3)
In view of (5.5), this equation is of the type
d=T(8E - )+ (), (6.4)

where the terms (---) consist of functions that take values in the subspace T of
T spanned by regular Taylor polynomials. In order to build a regularity structure
in which (6.4) can be formulated, it is natural to start with the structure given by
abstract polynomials (again with the parabolic scaling which causes the abstract
“time” variable to have homogeneity 2 rather than 1), and to add a symbol E

to it which we postulate to have homogeneity —% , where we denote by o~ an
exponent strictly smaller than, but arbitrarily close to, the value «.

We then simply add to T all of the formal expressions that an application of the
right-hand side of (6.4) can generate for the description of ®, ®2, and ®3. The
homogeneity of a given expression is completely determined by the rules |Z7| =
|T] +2 and |tT| = |t| + |t|. More precisely, we consider a collection ¢/ of formal
expressions which is the smallest collection containing 1, X, and Z(E), and such

that
1,1, 3eEU = I(timnn)el,
where it is understood that Z(X*) = 0 for every multiindex k. We then set
W={E}lU{tnimn:t €U},

and we define our space T as the set of all linear combinations of elements in WV .
(Note that since 1 € U, one does in particular have &/ C W.) Naturally, 7, consists
of those linear combinations that only involve elements in VV that are of homo-
geneity «. It is not too difficult to convince oneself that, for every o € R, VW con-
tains only finitely many elements of homogeneity less than «, so that each 7, is
finite-dimensional.

In order to simplify expressions later, we will use the following shorthand
graphical notation for elements of W. For E, we simply draw a dot. The inte-
gration map is then represented by a down-facing line and the multiplication of
symbols is obtained by joining them at the root. For example, we have

ZE =1 IE’=v, I(E)IIZE?’) =Y
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Symbols containing factors of X have no particular graphical representation, so we
will for example write X;Z(Z)? = X;v. With this notation, the space T is given
by

T = <E’\V’V’ $7 T’\Kﬂ w’ Xiv5 lﬂ\V’ \éﬂ "‘)’

where we ordered symbols in increasing order of homogeneity and used (-) to
denote the linear span. Given any sufficiently regular function & (say a continuous
space—time function), there is then a canonical way of lifting £ to a model (& =
(IT, ') for T by setting

LB =£(), (X)) =@ -0F,

and then recursively by

(M t7)(y) = (L) (y) - TL D) (y), (6.5)

as well as (5.3). (Note that here we used x and y as notation for generic space—time
points in order not to overload the notations.)

It turns out furthermore that there is a canonical way of building a structure
group G for T and to also lift & to a family of operators I'yy, in such a way that all
of the algebraic and analytic properties of an admissible model are satisfied. With
such a model (£ at hand, it follows from (6.5) and the admissibility of (£ that the
associated reconstruction operator satisfies the properties

RKf=Kx+«Rf, R(fg)=Rf Rg.

as long as all the functions to which R is applied belong to D for some y > 0. As
a consequence, applying the reconstruction operator R to both sides of (6.3), we
see that if @ solves (6.3) then, provided that the model (I1, I') = (£ was built as
above starting from any continuous realisation & of the driving noise, R® solves
the equation (6.1).

At this stage, the situation is as follows. For any continuous realisation £ of the
driving noise, we have factored the solution map (®g, £) — & associated to (6.1)
into maps

(Pg, &) = (Do, 1) > & > R,

where the middle arrow corresponds to the solution to (6.3) in some weighted
DY -space. The advantage of such a factorisation is that the last two arrows yield
continuous maps, even in topologies sufficiently weak to be able to describe driv-
ing noise having the lack of regularity of space—time white noise. The only arrow
that is not continuous in such a weak topology is the first one. At this stage, it
should be believable that a similar construction can be performed for a very large
class of semi-linear stochastic PDEs. In particular, the KPZ equation can also be
analysed in this framework.

Given this construction, one is lead naturally to the following question: given a
sequence &, of “natural” regularisations of space—time white noise, for example,
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as in (6.2), do the lifts (£, converge in probably in a suitable space of admissible
models? Unfortunately, unlike in the case of the theory of rough paths where this
is very often the case, the answer to this question in the context of SPDE:s is often
an emphatic no. Indeed, if it were the case for the dynamical <I>§ model, then
one could have chosen the constant C, to be independent of ¢ in (6.2), which is
certainly not the case.

7 Renormalisation of the dynamical <I>g model

One way of circumventing the fact that (&, does not converge to a limiting model
as ¢ — 0 is to consider instead a sequence of renormalised models. The main
idea is to exploit the fact that our abstract definitions of a model do not impose the
identity (6.5), even in situations where & itself happens to be a continuous function.
One question that then imposes itself is: what are the natural ways of “deforming”
the usual product which still lead to lifts to an admissible model? It turns out that
the regularity structure whose construction was sketched above comes equipped
with a natural finite-dimensional group of continuous transformations R on its
space of admissible models (henceforth called the “renormalisation group”), which
essentially amounts to the space of all natural deformations of the product. It then
turns out that even though (£, does not converge, it is possible to find a sequence
M, of elements in $R such that the sequence M (&, converges to a limiting model
(11, T). Unfortunately, the elements M, no not preserve the image of ¢ in the space
of admissible models. As a consequence, when solving the fixed-point map (6.3)
with respect to the model M, (&, and inserting the solution into the reconstruction
operator, it is not clear a priori that the resulting function (or distribution) can again
be interpreted as the solution to some modified PDE. It turns out that in our case,
at least for a certain two-parameter subgroup of fR, this is again the case and the
modified equation is precisely given by (6.2), where C; is some linear combination
of the two constants appearing in the description of M.
There are now three questions that remain to be answered:

1. How does one construct the renormalisation group R?
2. How does one derive the new equation obtained when renormalising a model?
3. Whatis the right choice of M, ensuring that the renormalised models converge?

7.1 The renormalisation group

In order to construct fR, it is essential to first have some additional knowledge of the
structure group G for the type of regularity structures considered above. Recall that
the purpose of the group G is to provide a class of linear maps I': 7" — T arising
as possible candidates for the action of “re-expanding” a “Taylor series” around a
different point. In our case, in view of (5.3), the coefficients of these re-expansions
will naturally be some polynomials in x and in the expressions appearing in (5.4).
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This suggests that we should define a space T+ whose basis vectors consist of
formal expressions of the type

N
X[ Jei. (7.1)

i=1

where N is an arbitrary but finite number, the 7; are basis elements of 7', and the
¢; are d-dimensional multi-indices satisfying |¢;| < |t;| + 2. (The last bound is a
reflection of the restriction of the summands in (5.4) with 8 = 2.) The space T
also has a natural graded structure T = @ T, by setting

|Jet| = |7] +2—|¢], | X*| = |&|,

and by postulating that the degree of a product is the sum of the degrees. Unlike
in the case of T however, elements of TV all have strictly positive homogeneity,
except for the empty product 1 which we postulate to have degree 0.

To any given admissible model (T1, I'), it is then natural to associate linear maps

fe:TT = Rby fo(XK) =x*, fi(06) = fi(0) f+(5), and
Fo(To ) = / DK (x — y)(Ty7)(dy). (7.2)

It then turns out that it is possible to build a linear map A: T — T ® T such that
if we define F,:T — T by

Frr = ® fy)ArT, (7.3)

where [ denotes the identity operator on 7, then these maps are invertible and
I, F~! is independent of x. Furthermore, there exists amap A*: 7T — T+ QT+
such that

(ARDA=(I®AT)A, At(e5)=A%o - ATH. (7.4)

With this map at hand, we can define a product o on the space of linear functionals
f:TT — Rby

(feg)o)=(f®gATa.

If we furthermore denote by I  the operator T associated to any such linear func-
tional as in (7.3), the first identity of (7.4) yields the identity I' ¢ T'¢ = I" ro¢. The
second identity of (7.4) furthermore ensures that if f and g are both multiplicative
in the sense that f(o0) = f(0)f(0), then f o g is again multiplicative. It also
turns out that every multiplicative linear functional f admits a unique inverse f !
such that f~1 o f = f o f~! =e, where e: TT — R maps every basis vector of
the form (7.1) to zero, except for e(1) = 1. The element e is neutral in the sense
that I", is the identity operator.
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It is now natural to define the structure group G associated to 7T as the set of
all multiplicative linear functionals on 7, acting on T via (7.3). Furthermore, for
any admissible model, one has the identity

-1 —1
Loy =F, Fy=Ty,, Yoy = [y o fy

How does all this help with the identification of a natural class of deformations
for the usual product? First, it turns out that for every continuous function &, if we
denote again by (I1, I') the model (£, then the linear map I1: T — C given by

O=TI,F ",
which is independent of the choice of y by the above discussion, is given by
ME)(x) =£(x),  (MX¥)(x) =xF, (1.5)
and then recursively by
Ot =M1 M7, N7t =K xIIr.

Note that this is very similar to the definition of (£, with the notable exception that
(5.3) is replaced by the more “natural” identity I1Zt = K * IIt. It turns out that
the knowledge of Il and the knowledge of (I1, I') are equivalent since one has
[T, = I1F, and the map F, can be recovered from IT, by (7.2). (This argument
appears circular but it is possible to put a suitable recursive structure on 7 and
T ensuring that this actually works.) Furthermore, the translation (IT, ") <> IT
actually works for any admissible model and does not at all rely on the fact that it
was built by lifting a continuous function. However, in the general case, the first
identity in (7.5) does not of course not make any sense anymore and might fail
even if the coordinates of II consist of continuous functions.

At this stage, we note that if £ happens to be a stationary stochastic process
and IT is built from & by following the above procedure, then Ilt is a stationary
stochastic process for every v € T. In order to define fR, it is natural to consider
only transformations of the space of admissible models that preserve this prop-
erty. Since we are not in general allowed to multiply components of II, the only
remaining operation is to form linear combinations. It is therefore natural to de-
scribe elements of R by linear maps M : T — T and to postulate their action on
admissible models by IT — ™ with

n¥r =Mmr.

It is not clear a priori whether given such a map M and an admissible model (IT, I')
there is a coherent way of building a new model (ITM, I'M) such that ITY is the
map associated to (ITM M) as above. It turns out that one has the following
statement.
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Proposition 7.1. In the above context, for every linear map M : T — T commut-
ing with T and multiplication by X*, there exist unique linear maps AM :T —
TQTt and AM: Tt — TT ® T such that if we set

Myr=(IL,® f)aYz,  yM©o) =y ® foAYo,

then HQ/I satisfies again (5.3) and the identity HQ/’F% = Hy.

At this stage, it may look like any linear map M : T — T commuting with 7 and
multiplication by X* yields a transformation on the space of admissible models by
Proposition 7.1. This, however, is not true since we have completely disregarded
the analytical bounds that every model has to satisfy. It is clear from Definition 2.5
that these are satisfied if and only if [T 7 is a linear combination of the IT,7; with
|Tj| = |7|. This suggests the following definition.

Definition 7.2. The renormalisation group R consists of the set of linear maps
M :T — T commuting with Z and with multiplication by X*, such that for 7 € T,
and o € T, one has

AMr—1@1e PT.oTt, AMo-o@le@PI T
B>« B>«

Its action on the space of admissible models is given by Proposition 7.1.

7.2 The renormalised equations

In the case of the dynamical ®* model considered in this article, it turns out that
we only need a two-parameter subgroup of R to renormalise the equations. More
precisely, we consider elements M € R of the form M = exp(—C1L| — CyL»),
where the two generators L and L, are determined by the substitution rules

Li:ve>1, Ly: 1.

This should be understood in the sense that if 7 is an arbitrary formal expression,
then Lit is the sum of all formal expressions obtained from 7 by performing a
substitution of the type v + 1, and similarly for L. For example, one has

L =31, Li=Y, Lo = 31.
One then has the following result.
Proposition 7.3. The linear maps M of the type just described belong to *R. Fur-

thermore, if (I1, I') is an admissible model such that T1, T is a continuous function
for every T € T, then one has the identity

(MY 7)(x) = (M M7) (x). (7.6)



Introduction to regularity structures 205

Remark 7.4. Note that it is the same value x that appears twice on each side of
(7.6). It is in fact not the case that one has I'[)’C” t = I[1, M t. However, the identity
(7.6) is all we need to derive the renormalised equations.

It is now rather straightforward to show the following.

Proposition 7.5. Let M = exp(—C1L| — CoL») as above and let (ITM, TM) =
M & for some smooth function &. Let furthermore ® be the solution to (6.3) with
respect to the model (ITM , ™). Then the Sfunction u(t, x) = (RM®) (1, x) solves
the equation

du=Au—u’+ (3C; —9C)u + .

Proof. By Theorem 4.3, it turns out that (6.3) can be solved in D? as soon as y
is a little bit greater than 1. Therefore, we only need to keep track of its solution
® up to terms of homogeneity 1. By repeatedly applying the identity (6.4), we see
that the solution @ is necessarily of the form

O=14+91-Y-3¢Y+ (Vog, X), (7.7)

for some real-valued function ¢ and some R>-valued function V. (Note that Vg
is treated as an independent function here, we certainly do not suggest that the
function ¢ is differentiable. Our notation is only by analogy with the classical
Taylor expansion....) Similarly, the right-hand side of the equation is given up to
order O by

E— @3 =8 —v—3pv+3¥ -3¢+ 60V + 99 — 3(Ve, vX) — 1. (7.8)

Combining this with the definition of M, it is straightforward to see that, modulo
terms of strictly positive homogeneity, one has

M(E - ®%) =2 - (M®)* 4+3C 1+ 3C191 —9Ca1 — 9Ca91
—E—(M®)’ + 3C| —9C)M .

Combining this with (7.6), the claim now follows at once. ]

7.3 Convergence of the renormalised models

It remains to argue why one expects to be able to find constants C{ and C3 such that
the sequence of renormalised models M?(&, converges to a limiting model. Instead
of considering the actual sequence of models, we only consider the sequence of
stationary processes Mr:= IT¢ M*t, where II°¢ is associated to (I1¢, ') = 1&; as
before. Since there are general arguments available to deal with all the expressions
T of positive homogeneity, we restrict ourselves to those of negative homogeneity
which, leaving out E which is easy to treat, are given by

v, v, 1, 3 XV
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For this section, some elementary notions from the theory of Wiener chaos ex-
pansions are required, but we will try to hide this as much as possible. At a formal
level, one has the identity

HST:K*%.;;:KS*Ev

where the kernel K is given by K, = K * 6.. This shows that, at least formally,
one has

(M) (2) = (K %)(2)* = / / Ke(z — 20)Ke(z — 22)E(21)E(22) dz1 dza.

Similar but more complicated expressions can be found for any formal expres-
sion 7. This naturally leads to the study of random variables of the type

1k<f)=/---/f<zl,...,Zk)s(zo--f(zmm---de. (7.9)

Ideally, one would hope to have an It6 isometry of the type El(f)Ix(g) =
(fSYym oYMy where (-, -) denotes the L2-scalar product and f™ denotes the sym-
metrisation of f. This is unfortunately not the case. Instead, one should replace the
products in (7.9) by Wick products, which are formally generated by all possible
contractions of the type

§(2i)6(zj) > §(zi) ©&(zj) +3(zi — zj).

If we then set

Bip= [ [ far s oot da - da.
one has indeed

El ()l (g) = (5™, g¥™).

See Nualart (1995) for a more thorough description of this construction, which
also goes under the name of Wiener chaos. It turns out that one has equivalence of
moments in the sense that, for every k > 0 and p > 0 there exists a constant Cy,
such that

E[It(D]” = Cip £¥™7 = Cropll £117,

where the second bound comes from the fact that symmetrisation is a contraction
in L. Finally, one has El;(f)I;(g) = 0 if k # £. Random variables of the form
Ii( f) for some k > 0 and some square integrable function f are said to belong to
the kth homogeneous Wiener chaos.

Returning to our problem, we first argue that it should be possible to choose M
in such a way that o'y converges to a limit as ¢ — 0. The above considerations
suggest that one should rewrite IT° as

(V) (2) = (K *&)(2)?
(7.10)

=//Ka(z—ans(z—zz)sm)os(zz)dzldzz+c8,
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where the constant C, is given by
C8=/K€2(zl)dm =/K82(Z—Z1)dzl-

Note now that K, is an e-approximation of the kernel K which has the same singu-
lar behaviour as the heat kernel. In terms of the parabolic distance, the singularity
of the heat kernel scales like K (z) ~ |z| > for z — 0. (Recall that we consider the
parabolic distance |(¢, x)| = /|f] + | x|, so that this is consistent with the fact that
the heat kernel is bounded by t=3/2)) This suggests that one has K Sz(z) ~ |z| 70 for
|z| > €. Since parabolic space—time has scaling dimension 5 (time counts double),
this is a non-integrable singularity. As a matter of fact, there is a whole power of z
missing to make it borderline integrable, which suggests that one has

1
Ce~—.
€

This already shows that one should not expect IT°V to converge to a limit as ¢ — 0.
However, it turns out that the first term in (7.10) converges to a distribution-valued
stationary space—time process, so that one would like to somehow get rid of this
diverging constant C,. This is exactly where the renormalisation map M (in par-

ticular the factor exp(—C;L1)) enters into play. Following the above definitions,
we see that one has

(V) (2) = (° MV)(2) = (T°V) (2) — C.

This suggests that if we make the choice C| = C¢, then IV does indeed converge
to a non-trivial limit as &€ — 0. This limit is a distribution given by

(HSV)(lﬁ)://W(Z)K(Z—Zl)K(Z—zz)d25(21)<>§(zz)d21dzz-

Using again the scaling properties of the kernel K, it is not too difficult to show
that this yields indeed a random variable belonging to the second homogeneous
Wiener chaos for every choice of smooth test function 1. Once we know that 1R
converges, it is immediate that o xv converges as well, since this amounts to just
multiplying a distribution by a smooth function.

A similar argument to what we did for v allows to take care of T = since one
then has

9@ = [ [ K= 20Kl = Kotz — 29
X £(z1) ©§(z2) ©&(z3)dz1dz2dz3
+3 [ [Kee =20k - 2Kz = 29
x 8(z1 — 22)6(z3) dz1dzadz3.
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Noting that the second term in this expression is nothing but
C. [ Kele = 208G dz1 =3¢, (M) 2),

we see that in this case, provided again that C1 = Cs, v is given by only the
first term in the expression above, which turns out to converge to a non-degenerate
limiting random distribution in a similar way to what happened for V.

Turning to our list of terms of negative homogeneity, it remains to consider Y,
s, and Y. It turns out that the latter two are the more difficult ones, so we only
discuss these. Let us first argue why we expect to be able to choose the constants
C1 and (> in such a way that n % converges to a limit. In this case, the “bad”
terms comes from the part of (IT¥Y>)(z) belonging to the homogeneous chaos of
order 0. This is simply a constant, which turns out to be given by

¢, =2/K(z)Q§(z>dz, (7.11)

where the kernel Q. is given by

0.(2) = / Ko@) Ko — 2)dz.

Since K, is an e-mollification of a kernel with a singularity of order —3 and the
scaling dimension of the underlying space is 5, we see that Q. behaves like an ¢-
mollification of a kernel with a singularity of order —3 — 3 + 5 = —1 at the origin.
As a consequence, the singularity of the integrand in (7.11) is of order —5, which
gives rise to a logarithmic divergence as ¢ — 0. This suggests that one should
choose C» = C, in order to cancel out this diverging term and obtain a non-trivial
limit for ﬁgw as ¢ — 0. This is indeed the case.

We finally turn to the symbol s. In this case, the “bad” terms appearing in
the Wiener chaos decomposition of IT°<{> are the terms in the first homogeneous
Wiener chaos, which are of the form

3/ 00z — 1)Ko (21 — 22)E(z2) d21 d 2
(7.12)

= 3/(@,3 * Ke)(z — 22)8(22) d22,

where QS is the kernel given by
0:(2) =2K (2) 07 (2).

As already mentioned above, the problem here is that as ¢ — 0, Qe converges
to a kernel O = 2K 02, which has a non-integrable singularity at the origin. In
particular, the action of integrating a test function against 0, does not converge to
a limiting distribution as ¢ — 0.
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This is akin to the problem of making sense of integration against a one-
dimensional kernel with a singularity of type 1/|x| at the origin. For the sake of
the argument, let us consider a function W : R — R which is compactly supported
and smooth everywhere except at the origin, where it diverges like W (x) ~ 1/]x]|.
It is then natural to associate to W a “renormalised” distribution ZW given by

(BW)(9) = f W) (9(x) — 9(0)) dx.

Note that ZW has the property that if ¢(0) = 0, then it simply corresponds to in-
tegration against W, which is the standard way of associating a distribution to a
function. In a way, the extra term can be interpreted as subtracting a Dirac distribu-
tion with an “infinite mass” located at the origin, thus cancelling out the divergence
of the non-integrable singularity. It is also straightforward to verify that if W, is a
sequence of smooth approximations to W (say one has W, (x) = W(x) for |x| > ¢
and W, ~ 1/& otherwise), then ZW?* — ZW in a distributional sense, and (using
the usual correspondence between functions and distributions) one has

RAWE = W?E — C,dy, C. = / We(x)dx.

The cure to the problem we are facing for showing the convergence of Y is
virtually identical. Indeed,by choosing C> = C; as in (7.11), the term in the first
homogeneous Wiener chaos for i corresponding to (7.12) is precisely given by

3/ 0z — 21)Ke (21 — 22)E(22) dz1 dza — 3C2 / Ke(z —22)6(z0)dzs

—3 / (# D¢ * Ke) (2 — 22)E(z2) d2a.

It turns out that the convergence of % Q. toa limiting distribution % O takes place
in a sufficiently strong topology to allow to conclude that I:ISQK does indeed con-
verge to a non-trivial limiting random distribution.

It should be clear from this whole discussion that while the precise values of the
constants C1 and C, depend on the details of the mollifier &, the limiting (random)
model (T, ') obtained in this way is independent of it. Combining this with the
continuity of the solution to the fixed point map (6.3) and of the reconstruction
operator R with respect to the underlying model, we see that the statement of
Theorem 6.1 follows almost immediately.
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