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Abstract. In the present paper, we focus our attention on the multiplicative
binomial model, the double binomial model and the beta-binomial model
considering the Bayesian perspective, modeling both the probability of suc-
cess and the dispersion parameters. A Bayesian methodology is considered
for estimation and diagnostic under these three overdispersed binomial re-
gression models. A teratology data set is analyzed using the considered
methodology. We present a simulation study, based on data sets generated
mimicking the characteristics of the teratology data to assess the quality of
Bayesian estimates and to assess the performance of the considered Bayesian
diagnostic tools under each regression model. An extended study based on
simulated data is also performed to compare the logit and probit link func-
tions in a setting of overdispersed binomial data. We also consider simulated
data sets to illustrate how to detect overdispersion using posterior predictive
checks.

1 Introduction

One possible approach to binary data modeling in the presence of extra-binomial
variation is through distributions which generalize the binomial model. Among
these distributions, we focus on the multiplicative binomial (Altham, 1978), the
double binomial (Efron, 1986) and the beta-binomial distribution (Skellam, 1948).
The multiplicative binomial and double binomial distributions are two-parameter
models belonging to the exponential family and allowing for both over and un-
derdispersion. On the other hand, the beta-binomial distribution is not a member
of the exponential family and originally only allows for overdispersion. However,
Prentice (1986) extended the beta-binomial distribution and established the neces-
sary conditions for the model to accommodate underdispersion as well. Both the
multiplicative binomial and the double binomial models have intractable normal-
izing constants which, according to Lindsey and Altham (1998), may be the reason
why they are not widely used.

A Bayesian parametric approach for the double exponential family was pro-
posed by Dey et al. (1997), while Nott (2006) considered a nonparametric
Bayesian estimation procedure for the mean and variance functions of response
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variables following a distribution in the double exponential family. Cottet et al.
(2008) considered nonparametric Bayesian estimation and variable selection for
the double binomial regression model. Lee and Sabavala (1987) developed a
Bayesian estimation procedure for the beta-binomial parameters and Kahn and
Raftery (1996) generalized the logistic regression model for the beta-binomial dis-
tribution and performed a hierarchical Bayesian analysis for the proposed model.

As argued in Gelman et al. (1996), Bayesian data analysis is conditioned on
the considered probability model and can be misleading if the assumed model is
incorrect (or not plausible enough). Thus, in addition to considering appropriate
estimation procedures for overdispersed binomial data, it is also important to con-
duct diagnostics to check the underlying model assumptions, outliers and influent
observations. Gelman et al. (1996) and Gelman et al. (2000) proposed posterior
predictive checks, which are aimed to assess the goodness of fit of the proposed
models by detecting differences between the fitted model and the observed data.
The discrepancy variables can be compared using the posterior predictive p-value
proposed by Meng (1994). Albert and Chib (1993) defined a Bayesian residual
for binary data which has a real-valued posterior distribution and may be used for
outliers detection. Albert and Chib (1995) also proposed two types of Bayesian
residual for binary regression analysis. The authors stress that since these resid-
uals are functions of the parameters, the precision of the knowledge about the
parameters is reflected in the precision of the residuals. Spiegelhalter et al. (2002)
derived a metric for the effective number of parameters in a model. They noted
that the contribution of each observation turns out to be its leverage, defined as
the relative influence of each observation on its fitted value. Therefore, the authors
suggested the posterior mean deviance as a Bayesian of fit or adequacy. Moreover,
Spiegelhalter et al. (2002) noted that the influence of each observation in param-
eter estimates can be assessed by means of a Bayesian deviance residual against
leverages plot.

Therefore, this paper sets out not only to present a simple, yet effective,
Bayesian alternative to otherwise complex classical estimation procedures for the
multiplicative binomial, double binomial and beta-binomial regression models, but
also to consider Bayesian diagnostic metrics for model assessment under these
three overdispersed binomial regression models. Bayesian parameter estimation is
validated using simulation results, which are also used to assess the effectiveness
of different Bayesian techniques for model diagnostic. Moreover, we present the
analysis of a low-iron teratology study data to illustrate the considered Bayesian
estimation and diagnostic procedures.

The paper is organized as follows. In Section 2, we review Altham’s multiplica-
tive binomial model, Efron’s double binomial model and Skellam’s beta-binomial
model. In Section 3, we present the proposed Bayesian methodology for estima-
tion and diagnostic for binomial overdispersion with the multiplicative binomial,
the double binomial and the beta-binomial as the sampling distribution. In Sec-
tion 4, results based on simulated data sets are presented to assess the quality of
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Bayesian estimates and to investigate the effectiveness of the Bayesian model di-
agnostic techniques addressed. We also present a discussion regarding the use of
posterior predictive checks to detect overdispersion and a comparison between the
results obtained with the logit and probit link functions when dealing with overdis-
persed binomial data. In Section 5, a low-iron teratology data set by Shepard et al.
(1980) is analyzed using the proposed Bayesian methodology. Finally, in Section 6,
we give a few brief concluding remarks.

2 Generalizations of the binomial model

Consider Y a response variable denoting the sum of n binary random variables
(r.v.’s), U1, . . . ,Un, and x = (x1, . . . , xq)

′ a vector of q covariates. Let p be the
probability of success and γ the dispersion parameter of the binary variables.
Thus, it is possible to specify regression models, p(x1;β) and γ (x2;α), where
β = (β1, . . . , βq1) and α = (α1, . . . , αq2) are unknown vectors of parameters to be
estimated, with x1 and x2 being subsets of the covariate vector, x. Let η1 = x′

1β
and η2 = x′

2α be the linear predictors of p and γ . We note that the linear predictors
of p and γ may or may not contain an intercept parameter which would be denoted
by β0 and α0, with x0 = 1. In this paper, we consider the complementary log-log,
logit and probit link functions for p and the log link function for γ . The link func-
tions for p will be generically denoted by g−1(·) and the log link considered for γ

will be denoted by h−1(·).
The multiplicative binomial distribution (Altham, 1978), denoted by MB(n,

p, γ ), is given by

P(Y = y|p,γ ) =
(
n

y

)
py(1 − p)n−yγ y(n−y)

(2.1)

×
[

n∑
j=0

(
n

j

)
pj (1 − p)n−j γ j (n−j)

]−1

,

where n ∈ N, p ∈ (0,1), γ > 0, and y = 0, . . . , n.
The expectation and variance of Y , Y ∼ MB(n,p, γ ), are

E(Y ) = np
κn−1(p, γ )

κn(p, γ )
(2.2)

and

Var(Y ) = np

[
κn−1(p, γ )

κn(p, γ )
(2.3)

− p
nκ2

n−1(p, γ ) − (n − 1)κn−2(p, γ )κn(p, γ )

κ2
n(p, γ )

]
,
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where κn−a(p, γ ) = ∑n−a
j=0

(n−a
j

)
pj (1 − p)n−a−j γ (n−a−j)(j+a).

Consider Y ∼ Bin(n,p)/n, n ∈ N, p ∈ (0,1), a rescaled binomial r.v. Then, the
double binomial distribution (Efron, 1986) may be written as

P̃ (Y = y|p,γ ) = c(p, γ,n)γ 1/2pnyγ (1 − p)nγ (1−y)

(2.4)
× yny(1−γ )(1 − y)n(1−y)(1−γ ),

where γ > 0, and c(p, γ,n) = 1 + (1/12n)((1 − γ )/γ )(1 − 1/p(1 − p)) is the
approximation for the normalizing constant. Efron (1986) showed that as the n

increases c(p, γ,n) ≈ 1, so that (2.4) can by approximated by

P(Y = y|p,γ ) = γ 1/2pnyγ (1 − p)nγ (1−y)yny(1−γ )(1 − y)n(1−y)(1−γ ), (2.5)

which is the unnormalized form of the double binomial distribution. As discussed
in Lee and Nelder (2000), (2.5) works quite well for moderate overdispersed data
but can be poor for extremely overdispersed data when p is small. We shall denote
a double binomial r.v. by DB(n,p, γ ).

It can be shown (see Efron, 1986) that the mean and variance of a double bino-
mial r.v. can be approximated by

E(Y ) = p, (2.6)

and

Var(Y ) = p(1 − p)

nγ
. (2.7)

The beta-binomial distribution, first proposed by Skellam (1948), was de-
rived considering Y ∼ Bin(n,p), n ∈ N, p ∈ (0,1) and assuming that the p ∼
Beta(a, b), a, b > 0. Then,

P(Y = y|a, b) =
(
n

y

)
B(a + x, b + n − x)

B(a, b)
,

is the beta-binomial distribution, where B(a, b) = ∫ 1
0 ya−1(1 − y)b−1 dy is the

beta function.
Letting, p = a(a + b)−1 and γ = (a + b)−1, γ > 0, we have that a = pγ −1

and b = (1 − p)γ −1. Thus, the beta-binomial can be reparameterized as

P(Y = y|p,γ ) =
(
n

y

)
B(pγ −1 + y, (1 − p)γ −1 + n − y)

B(pγ −1, (1 − p)γ −1)
. (2.8)

The expectation and variance of a beta-binomial r.v., denoted by BB(n,p, γ ),
are given by

E(Y ) = np, (2.9)
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and

Var(Y ) = np(1 − p)

[
1 + (n − 1)

(
γ

1 + γ

)]
, (2.10)

respectively.
Since p and γ in (2.8) are reparametrization of parameters a and b, they are not

the same as in the multiplicative binomial model (2.1) and double binomial model
(2.4).

Suppose Y1, . . . , Ym are independent r.v.’s, i = 1, . . . ,m. Let y = (y1, . . . , ym)′
be a vector of observed values of Y = (Y1, . . . , Ym)′, with n = (n1, . . . , nm)′, p =
(p1, . . . , pm)′, and γ = (γ1, . . . , γm)′, where pi = g−1(η1i ) = g−1(x′

1iβ) and γi =
h−1(η2i ) = h−1(x′

2iα), i = 1, . . . ,m. Given the data set D = (m,n,y,x) and θ =
(β,α) the vector of unknown parameters to be estimated, then:

L(θ |D) =
m∏

i=1

{(
ni

yi

)(
g−1(η1i )

)yi (1 − g−1(η1i )
)ni−yi (

h−1(η2i )
)yi(ni−yi)

×
[

ni∑
j=0

(
ni

j

)(
g−1(η1i )

)j (
1 − g−1(η1i )

)ni−j

× (
h−1(η2i )

)j (ni−j)

]−1}
,

is the likelihood function obtained assuming Yi ∼ MB(ni,pi, γi), i = 1, . . . ,m.

L(θ |D) =
m∏

i=1

{(
h−1(η2i )

)1/2(
g−1(η1i )

)niyi(h
−1(η2i ))(1 − g−1(η1i )

)ni(h
−1(η2i ))(1−yi)

× y
niyi(1−h−1(η2i ))

i (1 − yi)
ni(1−yi)(1−h−1(η2i ))

}
,

is the likelihood function where each Yi follows a DB(ni,pi, γi), i = 1, . . . ,m.

L(θ |D) =
m∏

i=1

(
ni

yi

)
B

(
g−1(η1i )

(
h−1(η2i )

)−1 + yi,

(
1 − g−1(η1i )

)(
h−1(η2i )

)−1 + ni − yi

)
/B

(
g−1(η1i )

(
h−1(η2i )

)−1
,
(
1 − g−1(η1i )

)(
h−1(η2i )

)−1)
,

is the likelihood function for Yi ∼ BB(ni,pi, γi), i = 1, . . . ,m.

3 Bayesian analysis

Consider a data set D = (m,n,y,x) and let P(Y|θ) be the sampling distribution
of y, with θ = (β,α) its vector of indexing parameters. The Bayesian analysis will
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be carried out assuming independence between the parameters and a non infor-
mative normal prior, π(θ), for θ , θ ∼ Nq1+q2(0,�), where � = diag(σ1, . . . , σq1 ,
τ1, . . . , τq2) and σ1, . . . , σq1, τ1, . . . , τq2 are fixed known hyperparameters.

The posterior distributions are given by

π(θ |D)

∝ exp

{
−1

2

[ q1∑
k=1

β2
K

σk

+
q2∑

t=1

α2
t

τt

]}

×
m∏

i=1

{(
ni

yi

)(
g−1(η1i )

)yi (1 − g−1(η1i )
)ni−yi (

h−1(η2i )
)yi(ni−yi)

×
[

ni∑
j=0

(
ni

j

)(
g−1(η1i )

)j (
1 − g−1(η1i )

)ni−j (
h−1(η2i )

)j (ni−j)

]−1}
,

π(θ |D)

∝ exp

{
−1

2

[ q1∑
k=1

β2
K

σk

+
q2∑

t=1

α2
t

τt

]}

×
m∏

i=1

{(
h−1(η2i )

)1/2(
g−1(η1i )

)niyi(h
−1(η2i ))

× (
1 − g−1(η1i )

)ni(h
−1(η2i ))(1−yi)

× y
niyi(1−h−1(η2i ))

i (1 − yi)
ni(1−yi)(1−h−1(η2i ))

}
,

and

π(θ |D) ∝ exp

{
−1

2

[ q1∑
k=1

β2
K

σk

+
q2∑

t=1

α2
t

τt

]}

×
m∏

i=1

(
ni

yi

)
B

(
g−1(η1i )(h

−1(
η2i

)
)−1 + yi,

(
1 − g−1(η1i )

)(
h−1(η2i )

)−1 + ni − yi

)
/B

(
g−1(η1i )

(
h−1(η2i )

)−1
,
(
1 − g−1(η1i )

)(
h−1(η2i )

)−1)
,

for the multiplicative binomial, double binomial and beta-binomial regression
models, respectively.

We note that the posterior distributions and the full conditionals (not shown) of
each model are not analytically tractable. Bayesian inference will be performed
using Markov chain Monte Carlo methods (MCMC) such as Metropolis within
Gibbs algorithm (Robert and Casella, 2004).
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3.1 Conditional predictive ordinate

The conditional predictive ordinate (CPO) (Gelfand et al., 1992), defined as the
predictive density of the ith case given the data without the ith case (D(−i)), for
i = 1, . . . ,m, is given by

CPOi =
[∫

	

1

P(yi |θ)
π(θ |D)dθ

]−1

. (3.1)

The CPO is interpreted as the posterior probability of observing the ith obser-
vation when the model is fitted to D(−i). The larger the value of the CPOi , the
better the model fits yi . On the other hand, small values of CPOi indicate that the
ith observation may be an outlier.

If a MCMC sample of size r of the posterior distribution, π(θ |D), is available,
then the predicted value, ỹ, of an observation y may be computed by a Monte
Carlo approximation of (3.1). An algorithm derived by Pires and Diniz (2012) to
determine the predicted value ỹi of yi is described in Appendix A.1.

3.2 Posterior predictive checks

Posterior predictive checks (Gelman et al., 2000) for goodness of fit assessment
are performed by generating replicated data sets, yrep, from the posterior predictive
distribution and comparing them to the observed data set by means of discrepancy
variables, T (·), which can be any function of data and model parameters. In this
paper we consider the following discrepancy variables: the mean and variance of
the response variable, and the model deviance. Once a MCMC sample of size r of
π(θ |D) is obtained, the discrepancy variable may be computed by the procedure
described in Appendix A.2.

Discrepancy variables can be shown graphically, as a histogram, or summarized
by a posterior predictive p-value (Gelman et al., 2003), which is estimated as

p̂-value = #(T (yrep) ≥ T (y))

r
. (3.2)

If the discrepancy variable does not depend on model parameters, the graphi-
cal representation consists of a histogram of the values of the discrepancy variable
computed for each replication of the response variable. It is common to add a verti-
cal line to this histogram representing the value obtained for this same discrepancy
variable computed with the observed data. If the model agrees with the data, then
the vertical line will be next to the histogram’s peak.

If the discrepancy variable depends on the model parameters, then we shall com-
pute the difference between the value of discrepancy obtained for the observed
data and its value obtained for the replicated data. These differences are graphi-
cally shown in a histogram which should contain the zero so that the model is in
agreement with the data.
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The posterior predictive p-value is interpreted as the probability of observing
data as extreme as that which is actually observed, conditional on the model (Lynch
and Western, 2004). If the posterior predictive p-value is close to 0 or 1, it may
suggest that the observed data has an extreme discrepancy variable and the model
may be inappropriate.

3.3 Bayesian residuals and influence measures

We consider three types of Bayesian residuals to check for model adequacy, out-
liers, and influent observations: standardized residuals based on the CPO (Pires and
Diniz, 2012); standardized residuals based on the posterior distribution of model
parameters (Albert and Chib, 1993, 1995); and standardized Bayesian deviance
residuals (Spiegelhalter et al., 2002), which may be used to detect outliers and as
an influence measure of the observations in parameter fitting.

As influence diagnostics metrics, we consider: leverages (Spiegelhalter et al.,
2002), which represent the relative influence of each observation on its fitted value;
and the Kullback–Leibler divergence calibration based on the CPO (Peng and Dey,
1995; Cho et al., 2009).

If a model is well-fitted to a data set, then the points in a residuals vs. predicted
values plot are expected to be randomly distributed around zero. Moreover, an ob-
servation may be considered as an outlier if its residual is distant from zero (or if
it is large). Since we are considering standardized residuals, they represent how
much predicted values deviate from real values. Thus, we can set limits for the
residuals based on the amount of deviation that we are willing to tolerate between
the real value and the predicted value. In this paper, we shall consider an observa-
tion as an outlier if its standardized residual is larger than 3 or smaller than −3.

The standardized residual based on the CPO, for i = 1, . . . ,m, is written as

r
pred
i = yi − ỹi√

Var(Yi |D, θ̂)

,

where yi is the observed value for the ith response, ỹi its predicted value ob-
tained by the CPO procedure described in Appendix A.1. We consider the poste-
rior mean as the Bayesian estimate, θ̂ , of the parameter vector θ . Expressions for
Var(Yi |D, θ̂) are given by (2.3), (2.7) and (2.10) for each of the considered models.

The standardized residual based on the posterior distribution of model parame-
ters, for i = 1, . . . ,m, is given by

r
post
i = yi − E(Yi |D, θ)√

Var(Yi |D, θ)
. (3.3)

An algorithm to compute a sample of (3.3), based on a MCMC sample of size
r of π(θ |D), is described in Appendix A.3. Expressions for E(Yi |D, θ) are given
by (2.2), (2.6) and (2.9) and expressions for Var(Yi |D, θ) are given by (2.3), (2.7)
and (2.10).
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The standardized Bayesian deviance residual, for i = 1, . . . ,m, is

rdev
i = sgn(yi − E(Yi |θ̂))

√
Di(θ̂) + p̂Di√

Var(Yi |D, θ̂)

,

where

Di(θ̂) = −2 logP(Yi |θ̂) (3.4)

is the contribution of the ith observation for the overall deviance,

p̂Di
= −2

{
1

r

r∑
j=1

[
log

π(θ j |Di)

π(θ j )

]
− log

π(θ̂ |Di)

π(θ̂)

}
(3.5)

is the Monte Carlo approximation of the relative influence of each observation on
its fitted value (the leverage of each observation), based on a sample of size r of
the posterior distribution. π(θ) is the prior distribution of θ and θ̂ is its Bayesian
estimate, that is, the posterior mean of θ . E(Yi |D, θ̂) is given by (2.2), (2.6) or
(2.9), and Var(Yi |D, θ̂) is given by (2.3), (2.7) or (2.10).

According to Spiegelhalter et al. (2002), adding curves of the form x2 + y = c

to the plot of deviance residuals against leverages allow us to identify the contri-
bution c of the ith observation to the overall deviance information criterion value.
Therefore, leverages can be used to assess the influence of observations in param-
eter estimates and the closer the value of (3.5) is to one, the more influential the
observation is on its fitted value. Based on the simulation results discussed in Sec-
tion 4.2, we shall consider an observation as an influential case if its leverage is
greater than 0.8.

The Kullback–Leibler (KL) divergence calibration for influence diagnostic
based on the CPO uses a Bayesian perspective to case deletion diagnostic and
evaluates the influence of a given observation in parameter estimates.

Following Peng and Dey (1995) and Cho et al. (2009), the calibration, for i =
1, . . . ,m, is written as

pi = 0.5
{
1 +

√
1 − exp

[−2K̂
(
π(θ |D),π(θ |D(−i))

)]}
, (3.6)

where K̂(π(θ |D),π(θ |D(−i))) = log{1
r

∑r
j=1

1
P(yi |θj )

} + 1
r

∑r
j=1 logP(yi |θ j ) is

the Monte Carlo approximation of the KL divergence between the posterior distri-
bution with the complete data and the posterior distribution with the ith observa-
tion deleted based on a MCMC sample of size r of π(θ |D).

According to Cho et al. (2009), if pi 	 0.5 then the ith case is an influential
outlier, since its deletion changes the posterior distribution as much as describing
an observed event as having probability pi when the correct probability is 0.5.
Based on the simulation results discussed in Section 4.2, we shall consider an
observation as an influential case if its calibration is greater than 0.9.
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3.4 Bayesian model selection

The metric known as sum of log-CPO and written as

log-CPO =
m∑

i=1

log(CPOi ), (3.7)

is an estimator of the logarithm of the marginal likelihood and can be used as
model selection criterion. The model to be selected is the one providing the larger
value of (3.7) (Carlin and Louis, 2009).

Model selection can also be accomplished using the deviance information cri-
terion (DIC) (Spiegelhalter et al., 2002), which is given by

DIC = D̄ + pD, (3.8)

where D̄ = ∑m
i=1 Di(θ̂) + pDi

and pD = ∑m
i=1 pDi

, with Di(θ̂) given in (3.4) and
pDi

replaced by its Monte Carlo approximation (3.5). The model to be selected is
the one which provides the smaller value of (3.8).

We also consider the Bayes factor (Kass and Raftery, 1995) for model selection.
Given two models M0 and M1 with sampling distributions P0(D|θ) and P1(D|θ)

and prior distribution π0(θ) and π1(θ), respectively, the Bayes factor in support of
model M0 compared with model M1 can be approximated by

BF = π(D|M0)

π(D|M1)
, (3.9)

where, based on a MCMC sample of size r of π(θ |D), π(D|Mk) is approximated
by 1

r

∑r
j=1 LMK

(θ j |D) (Aitkin, 1991), with LMK
(θ j |D) denoting the likelihood

function considering model Mk , k = 0,1.

4 Results based on simulated data sets

4.1 Model fit

Although results based on simulation studies cannot be generalized, they can be re-
garded as an internal control of the considered methodology. Thus, in this section,
we present results based on simulation studies to assess the quality of Bayesian
estimates for each proposed model. Our main aim is to assess the quality of esti-
mates and study their frequentist properties. This simulation study was conducted
based on data sets generated using the Bayesian parameter estimates obtained from
the application example, namely, the low-iron rat teratology data to be analyzed in
Section 5. The teratology data features m = 58 observations from pregnant rats
where ni is the litter size, yi is the number of dead fetuses in each litter and xi is a
covariate accounting for the hemoglobin level of the rat, i = 1, . . . ,m.

Let η1i = β0 +β1xi and η2i = α1ni be the linear predictors of pi and γi , respec-
tively, with ni the number of dead fetuses and xi the hemoglobin level of the rats
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Table 1 Parameter estimates obtained for the low-iron
rat teratology data under each regression model

Parameter estimate

Model β0 β1 α1

MBC 0.84 −0.19 −0.01
MBL 1.63 −0.26 −0.01
MBP 0.96 −0.15 −0.01

DBC 1.64 −0.31 −0.09
DBL 2.58 −0.37 −0.10
DBP 1.42 −0.20 −0.10

DBC approx. 2.23 −0.42 −0.12
DBL approx. 3.84 −0.59 −0.12
DBP approx. 2.09 −0.31 −0.13

BBC 2.00 −0.37 −0.07
BBL 3.25 −0.48 −0.07
BBP 1.74 −0.25 −0.06

both taken from the teratology data set, for i = 1, . . . ,m and m = 58. Assume a
N3(0,104I3) prior distribution for the unknown parameter vector θ = (β0, β1, γ1).
Then, each observation yi is simulated from a MB(ni,pi, γi), DB(ni,pi, γi),
and BB(ni,pi, γi), where pi = g−1(η1i ) = g−1(β0 + β1xi) and γi = h−1(η2i ) =
h−1(α1ni). Since the generated data is set to mimic the application data, the re-
sponses are simulated with the real value of parameters β0, β1 and γ1 set at their
Bayesian estimate, given by the posterior mean, obtained fitting each considered
regression models to the low-iron rat teratology data.

Table 1 shows the Bayesian parameter estimates of θ = (β0, β1, γ1) for all con-
sidered models fitted to the teratology data set. Models are coded as follows: MBC,
MBL, and MBP stand for the multiplicative binomial regression model with com-
plementary log-log, logit and probit link for p, respectively; DBC, DBL, and DBP
stand for the normalized double binomial regression model with complementary
log-log, logit and probit link for p, respectively; DBC approx., DBL approx., and
DBP approx. stand for the unnormalized double binomial regression model with
complementary log-log, logit and probit link for p, respectively; and BBC, BBL,
and BBP stand for the beta-binomial regression model with complementary log-
log, logit and probit link for p, respectively.

A total of 100 samples were computed for each model. MCMC samples of
the posterior distributions were obtained using a Gibbs–Metropolis type algorithm
with candidates generated by random walk from a multivariate normal distribution
with covariance matrix given by minus the Hessian matrix evaluated at the max-
imum likelihood estimator of θ . Convergence was checked using Geweke’s crite-
rion (Geweke, 1992). The Gibbs–Metropolis algorithm for each model was written
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in R software (R Core Team, 2013). Chain sizes were 100,000 with burn-in periods
of 20,000 and a thinning interval of size 200 for all models. Rejection rates were:
0.55 for the multiplicative binomial with complementary log-log, logit and probit;
0.54 for both the normalized and unnormalized double binomial regression mod-
els with complementary log-log, logit and probit; and 0.55 for the beta-binomial
regression models with complementary log-log, logit and probit link for p.

For each model, the results summarized in Table 2 are the following: the row
called Mean refers to the mean of the posterior means obtained for each simulated
sample; the Bias-m row presents the mean of the bias of the posterior means; the
MSE-m row provides the mean of the mean square error (MSE) computed for
all posterior means; the row named Median refers to the median of the posterior
medians obtained for each simulated sample; the Bias-md row presents the median
of the bias of the posterior medians; the MSE-md row provides the median of the
MSE computed for all posterior medians; the IQ-CP and HPD-CP rows provide the
estimated coverage probability of 95% interquantile and HPD credibility intervals,
respectively.

The results in Table 2 show that for the multiplicative binomial regression
model, the Bayesian estimation procedure provided quite precise estimates for
the unknown parameters β0, β1, and γ1. For all three parameters, bias mean and
MSE mean are very small. We notice that the posterior mean and posterior me-
dian are quite similar and that both estimate the real parameters values quite pre-
cisely. Moreover, from Table 2, we notice that the estimated coverage probability
approaches the nominal expected of 95%.

As mentioned in Section 2, from the frequentist perspective, working with the
unnormalized form of (2.5) may lead to a more convenient implementation of the
inference procedures. On the other hand, from the Bayesian perspective there is
no computational or methodological gain in considering the unnormalized double
binomial distribution, since both forms of the probability function can be treated
conversely. Moreover, a simulation conducted using (2.5) revealed that the bias
mean and MSE mean of β0, β1 and α1 are much larger than those observed for
these same parameters when using the normalized form of the distribution (2.4).
Moreover, considering (2.5), model parameter estimates are not as accurate as the
ones obtained in the normalized form of the double binomial distribution. It can
also be observed that the estimated coverage probabilities are far from the expected
nominal one. Thus, we proceed with the analysis using (2.4) and consider the re-
sults shown in Table 2 for the normalized double binomial regression model, which
shows that the posterior mean and median are very close, providing similar results,
and parameter estimates are accurate with both the mean bias and MSE mean quite
small. Furthermore, the normalized form of the double binomial model provides
coverage probabilities close to the expected 95%.

For the beta-binomial regression model, the Bayesian estimation procedure
(summarized in Table 2) provided quite precise estimates for the unknown pa-
rameters β0, β1, and γ1. For all three parameters, bias mean and MSE mean are
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Table 2 Summarized simulation results of the regression models considered

Link for p Complementary log-log Logit Probit
Link for γ Log Log Log

Parameter β0 β1 α1 β0 β1 α1 β0 β1 α1

Multiplicative binomial
Real value 0.84 −0.19 −0.01 1.63 −0.26 −0.01 0.96 −0.15 −0.01
Mean 0.95 −0.21 −0.01 1.80 −0.28 −0.01 1.04 −0.16 −0.01
Bias-m 0.11 −0.02 0.00 0.18 −0.03 0.00 0.08 −0.01 0.00
MSE-m 0.12 0.00 0.00 0.25 0.01 0.00 0.07 0.00 0.00
Median 0.89 −0.21 −0.01 1.73 −0.27 −0.01 0.99 −0.16 −0.01
Bias-md 0.05 −0.01 0.00 0.10 −0.02 0.00 0.03 −0.01 0.00
MSE-md 0.08 0.00 0.00 0.13 0.00 0.00 0.04 0.00 0.00
IQ-CP 0.88 0.91 0.92 0.91 0.92 0.92 0.94 0.94 0.92
HPD-CP 0.89 0.92 0.92 0.89 0.90 0.93 0.94 0.94 0.91

Normalized double binomial
Real value 1.64 −0.31 −0.09 2.58 −0.37 −0.10 1.42 −0.20 −0.10
Mean 1.52 −0.29 −0.09 2.42 −0.35 −0.09 1.31 −0.18 −0.10
Bias-m −0.12 0.02 0.00 −0.16 0.02 0.00 −0.11 0.02 0.00
MSE-m 0.15 0.00 0.00 0.31 0.01 0.00 0.10 0.00 0.00
Median 1.50 −0.29 −0.09 2.46 −0.35 −0.09 1.34 −0.19 −0.10
Bias-md −0.14 0.02 0.00 −0.11 0.02 0.00 −0.09 0.01 0.00
MSE-md 0.11 0.00 0.00 0.23 0.00 0.00 0.08 0.00 0.00
IQ-CP 0.91 0.93 0.95 0.95 0.94 0.97 0.94 0.95 0.97
HPD-CP 0.91 0.93 0.95 0.95 0.93 0.96 0.94 0.94 0.96

Unnormalized double binomial
Real value 2.23 −0.42 −0.12 3.84 −0.59 −0.12 2.09 −0.31 −0.13
Mean 1.86 −0.36 −0.10 3.31 −0.51 −0.10 1.77 −0.27 −0.11
Bias-m −0.37 0.06 0.02 −0.53 0.09 0.02 −0.31 0.05 0.02
MSE-m 0.32 0.01 0.00 0.82 0.02 0.00 0.25 0.01 0.00
Median 1.84 −0.35 −0.10 3.25 −0.50 −0.10 1.78 −0.26 −0.11
Bias-md −0.39 0.07 0.02 −0.59 0.09 0.02 −0.31 0.05 0.02
MSE-md 0.24 0.01 0.00 0.64 0.02 0.00 0.18 0.00 0.00
IQ-CP 0.72 0.77 0.86 0.78 0.76 0.87 0.78 0.74 0.89
HPD-CP 0.73 0.75 0.85 0.79 0.72 0.84 0.76 0.69 0.86

Beta-binomial
Real value 2.00 −0.37 −0.07 3.25 −0.48 −0.07 1.74 −0.25 −0.06
Mean 2.08 −0.39 −0.08 3.38 −0.50 −0.07 1.74 −0.25 −0.06
Bias-m 0.07 −0.02 −0.01 0.13 −0.02 0.00 0.00 0.00 0.00
MSE-m 0.23 0.01 0.00 0.65 0.01 0.00 0.15 0.00 0.00
Median 2.07 −0.38 −0.08 3.34 −0.49 −0.07 1.73 −0.25 −0.06
Bias-md 0.06 −0.01 −0.01 0.09 −0.02 0.00 −0.02 0.00 0.00
MSE-md 0.16 0.00 0.00 0.42 0.01 0.00 0.12 0.00 0.00
IQ-CP 0.93 0.93 0.94 0.92 0.93 0.92 0.98 0.94 0.92
HPD-CP 0.92 0.93 0.95 0.91 0.92 0.95 0.99 0.94 0.91
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very small. It can be observed that the posterior mean and posterior median are
quite similar and that both estimate the real parameters values quite precisely. The
estimated coverage probability approaches the nominal expected of 95%.

4.2 Model diagnostic

For model diagnostic, we take one sample of each model and compute the
Bayesian residuals and metrics described before. The main idea is to assess the
effectiveness of the different model diagnostics considered and to see if they be-
have as would be expected when the true model is fitted to the observed data set.
Since the observed results for each link function were similar for each model, we
have chosen to show only one case of the multiplicative binomial, double binomial
and beta-binomial regression models considered in this paper. Thus, we present the
results obtained for the multiplicative binomial regression model with complemen-
tary log-log link function, the results of the double binomial regression model with
probit link function and the results of the beta-binomial regression model with logit
link function. It can be noted that all diagnostic metrics were computed to several
simulated data sets for each regression model and the same pattern of behavior
presented next was observed.

Posterior predictive checks were computed for the discrepancies described in
Section 3.2. The estimated posterior predictive p-values were: 0.53, 0.44, and
0.54 for the multiplicative binomial regression model with complementary log-
log link function; 0.50, 0.47, and 0.60 for the double binomial regression model
with probit link function; 0.60, 0.52, and 0.37 for the beta-binomial regression
model with logit link function. It can be observed that no extreme posterior pre-
dictive p-values were observed, which suggest that the pattern presented by the
observed data is not different from the pattern of replications of the data, there-
fore indicating that the model fits well to the data. This is consistent with Figures
1(a), (b), 2(a), (b) and 3(a), (b) where the dashed vertical line, indicating the value
of the discrepancy variable for the observed data, and the histogram, showing the
values of the discrepancy variable for the replicated data, are in agreement. The
histograms in Figures 1(c), 2(c), and 3(c) contain the value zero, once again indi-
cating agreement between the data and the replicated data. Therefore, it is possible
to say that the model is well fitted to the data based on the mean, variance and
deviance discrepancies.

For the multiplicative binomial regression model, it can be seen that the stan-
dardized Bayesian deviance residuals (Figure 1(e)) behave quite well and, as ex-
pected, these residuals are around zero. On the other hand, the standardized resid-
uals based on the CPO and the standardized residuals based on the posterior dis-
tribution of parameters are not around zero and an almost linear pattern can be
observed (Figures 1(d) and (f)). As a consequence of the poor performance of
Bayesian deviance residuals, the points in the Bayesian residuals against leverages
plots (Figure 2(g)) do not cluster around zero as would be expected for simulated
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Figure 1 Simulated data: diagnostics for the multiplicative binomial regression model with com-
plementary log-log link for p and log link for γ : posterior predictive check for the mean (a), for the
variance (b), and for the model deviance (c); standardized residuals based on the CPO (d); stan-
dardized Bayesian deviance residuals (e); standardized residuals based on the posterior distribution
of parameters (f); Bayesian deviance residuals against leverages (g); leverage (h); calibration (i).

data with no perturbation. However, inspection of the leverages and calibration
metrics (Figures 1(h), (i)), clearly show that no influential outliers are present in
the data sets.

In the double binomial regression model, standardized residuals based on the
CPO (Figure 2(d)) do not behave as expected for simulated data sets and it is clear
that they are not around zero (Figure 2(d)). On the other hand, the standardized
Bayesian deviance residuals and standardized residuals based on the posterior dis-
tribution of parameters (Figures 2(e) and (f)) behave as expected and are clustered
around zero (Figure 2(f)). It can also be observed that inspection of the leverages
and calibration metrics (Figures 2(h) and (i)) do not reveal influential outliers.
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Figure 2 Simulated data: diagnostics for the double binomial regression model with probit link for
p and log link for γ : posterior predictive check for the mean (a), for the variance (b), and for the
model deviance (c); standardized residuals based on the CPO (d); standardized Bayesian deviance
residuals (e); standardized residuals based on the posterior distribution of parameters (f); Bayesian
deviance residuals against leverages (g); leverage (h); calibration (i).

From Figure 3(d), it can be seen that the standardized residuals based on the
CPO are not randomly distributed around zero. The standardized Bayesian de-
viance residuals (Figure 3(e)) and the residuals based on the posterior distribution
of parameters (Figure 3(f)) are randomly distributed around zero as would be ex-
pected for simulated data. Nevertheless, residuals based on the posterior distribu-
tion of parameters show a greater dispersion than the Bayesian deviance residuals.
Since the residuals based on the posterior distribution of parameters for the beta-
binomial models tend to be quite large when compared to the Bayesian deviance
residuals for these same models, we believe that caution should be taken when in-
terpreting these residuals and a large value should not be considered as an outlier
unless its Bayesian deviance residual is too indicated as an outlier.
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Figure 3 Simulated data: diagnostics for the beta-binomial regression model with logit link for
p and log link for γ : posterior predictive check for the mean (a), for the variance (b), and for the
model deviance (c); standardized residuals based on the CPO (d); standardized Bayesian deviance
residuals (e); standardized residuals based on the posterior distribution of parameters (f); Bayesian
deviance residuals against leverages (g); leverage (h); calibration (i).

4.3 Detecting overdispersion through posterior predictive checks

To illustrate how posterior predictive checks can be used to detect overdispersion
in a data set while performing a goodness of fit test, a beta-binomial data set with
complementary log-log link for p and log link for γ was generated in the settings
described in Section 4. Then, the usual binomial regression model with comple-
mentary log-log link was fitted to this simulated data using the Bayesian method-
ology described in Section 3. Next, we computed the posterior predictive checks
discussed in Section 3.2. This same procedure was repeated to a few data sets and
for the other regression models discussed in this paper as well and similar results
were obtained.
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Figure 4 Simulated data: posterior predictive checks for the usual binomial regression model with
complementary log-log link for p: posterior predictive check for the mean (a), for the variance (b),
and for the model deviance (c).

Figure 4(a) reveals that the mean of the replicated data sets obtained by the
fitted model are in agreement with the mean of the simulated data, which would
be expected since both models have the same mean. This is also supported by
the estimated posterior predictive p-value of 0.45 obtained for the discrepancy
based on the mean. However, Figure 4(b) shows that the variance of the replicated
data sets do not coincide with the variance of the simulated data and the estimated
posterior predictive p-value was zero, which suggests that the pattern presented by
the replicated data is different from the one observed for the simulated data thus,
indicating lack of fit. Moreover, it can be seem that variance in the replicated data
is considerably smaller than the variance of the simulated data, thus indicating
overdispersion. Similar conclusions can be taken from the discrepancy based on
the model deviance, whose histogram in Figure 4(c) do not contain the zero and are
quite large. The estimated posterior predictive p-value was zero, which indicates
lack of fit.

4.4 Comparison between the logit and probit link under overdispersed
binomial models

It was pointed out by one referee that for usual binomial data, Chambers and Cox
(1967) showed that both the logit and probit link functions provide quite similar
results. Therefore, we have conducted a simulation study to compare the results
provided by these two links when applied to overdispersed binomial data.

The simulation study consisted on generating data sets considering the logit and
probit link combined with each of the three models for overdispersed binomial
data, for example, the multiplicative binomial, the double binomial and the beta-
binomial model. After the data was generated, both models were fitted to it and
model selection criteria were used to select among them. The comparison was
performed for models within the same class. Since the model selection criteria
considered are known to perform well, the idea of this procedure was to see if the
true model would be preferred for most of the data sets and, if so, we would be
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Table 3 Comparison between the logit and probit link: proportion of samples for which the true
model was selected

Bayes factor
H0 : true model

Simulated <3 3 to 20 20 to 150 >150 log-CPO DIC

MBL 0.59 0.02 0.00 0.39 0.42 0.48
MBP 0.47 0.01 0.00 0.52 0.52 0.57
DBL 0.37 0.01 0.00 0.62 0.60 0.60
DBP 0.48 0.00 0.00 0.52 0.51 0.53
BBL 0.48 0.00 0.00 0.52 0.57 0.53
BBP 0.33 0.00 0.01 0.66 0.60 0.62

able to conclude that the link provided different results. On the other hand, if the
model selection criteria would fail to select the true model most of the time, then
we would be able to conclude that their no evidence that the two link functions
provided different results. We considered the model selection criteria described in
Section 3.4.

Results based on 100 samples simulated in the same settings described in Sec-
tion 4.1 are shown in Table 3, where MBL and MBP stand for the multiplicative
binomial regression models with logit and probit link, DBL and DBP represent the
double binomial regression models with logit and probit link, and BBL and BBP
are the beta-binomial regression models with logit and probit link.

From Table 3 it can be observed that both the sum of log-CPO and DIC provided
similar results. Furthermore, the highest proportion of samples for which the true
model was selected is 0.62, and therefore this two model selection criteria indi-
cates that the two links are similar. Moreover, the proportion of samples for which
the Bayes factor (Table 3) showed very little evidence against the null hypothesis
is quite high with the smallest being above 30%, thus indicating no difference be-
tween the results provided by the two links. Therefore, we conclude that the results
provided by the logit and probit link may be regarded as non different since all the
model selection criteria used did not show the true model as the preferred one.

5 Low-iron rat teratology data

Teratology studies are concerned with the understanding of abnormalities of phys-
iological development. In a teratology study, it is usual to expose pregnant animals
to environmental agents and check the fetuses for abnormalities. In the low-iron rat
teratology data, the aim is to study the effects of iron deficient diets in rats’ litters.
Iron deficiency is known to be one of the most usual nutritional problems and is
more frequent among pregnant females (Cook et al., 1994). The original low-iron
rat teratology data set is presented in Shepard et al. (1980). In Moore and Tsiatis
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Table 4 Low-iron rat teratology data

Group x n y Group x n y Group x n y

1 4.1 10 1 1 4.8 14 5 2 8.9 4 0
1 3.2 11 4 1 6.7 10 10 2 11.1 1 0
1 4.7 12 9 1 5.2 12 10 2 9 12 0
1 3.5 4 4 1 4.3 13 8 3 11.2 8 0
1 3.2 10 10 1 3.9 10 10 3 11.5 11 1
1 5.9 11 9 1 6.3 14 3 3 12.6 14 0
1 4.7 9 9 1 4.4 13 13 3 9.5 14 1
1 4.7 11 11 1 5.2 4 3 3 9.8 11 0
1 3.5 10 10 1 3.9 8 8 4 16.6 3 0
1 4.8 10 7 1 7.7 13 5 4 14.5 13 0
1 4.3 12 12 1 5 12 12 4 15.4 9 2
1 4.1 10 9 2 8.6 10 1 4 14.5 17 2
1 3.2 8 8 2 11.1 3 1 4 14.6 15 0
1 6.3 11 9 2 7.2 13 1 4 16.5 2 0
1 4.3 6 4 2 8.8 12 0 4 14.8 14 1
1 3.1 9 7 2 9.3 14 4 4 13.6 8 0
1 3.6 14 14 2 9.3 9 2 4 14.5 6 0
1 4.1 12 7 2 8.5 13 2 4 12.4 17 0
1 4.8 11 9 2 9.4 16 1
1 4.7 13 8 2 6.9 11 0

(1991), the data set is used to illustrate a method of moments estimation procedure
with a variance correction factor when there is presence of extra binomial varia-
tion. The data is also presented in Agresti (2002) (page 152, Table 4.5) to illustrate
the presence of overdispersion in binomial data.

In the low-iron rat teratology data set (Table 4), m = 58 female rats were di-
vided into four groups and given iron-deficient diets. Group 1 received a placebo
injection, group 2 received iron-supplement injections on days 7 and 10, group 3
received injections on days 0 and 7, and group 4 received iron-injections weekly.
The rats were made pregnant and sacrificed 3 weeks later, and the total number
of fetuses, ni , the number of dead fetuses, yi , in each litter i = 1, . . . ,m, and a
covariate, xi , accounting for the hemoglobin level of the rats were computed. The
number of dead fetuses, yi , in each litter of size ni may be treated as a binomial
data, nevertheless as argued in Agresti (2002), in teratology experiments genetic
variability and unobserved covariates may cause the probability of death to vary
from litter to litter within a particular treatment group, leading to extra-binomial
variability.

We consider two models for the teratology data set: the hemoglobin model
which is given by η1i = β0 + β1x1i as the linear predictor of pi and η2i = α1ni

as the linear predictor of γi , i = 1, . . . ,m; and the treatment model which is given
by η1i = β0 + β2t2i + β3t3i + β4t4i as the linear predictor of pi and η2i = α1ni as
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the linear predictor of γi , i = 1, . . . ,m, with t2, t3, and t4 being the dummy vari-
ables of groups 2, 3, and 4 respectively. Thus, both the hemoglobin level covariate
and the means for each treatment group are used to model the probability of suc-
cess of the responses. We notice that these choices of linear predictors for p and γ
are not final, as other regression structures could possibly be considered. We also
point out that this teratology data set has been widely studied and different statis-
tical model formulation have been proposed for it (e.g. Moore and Tsiatis, 1991;
Agresti, 2002). Moreover, according to Moore and Tsiatis (1991), the choice of a
specific model depends on the biological questions of interest.

For the hemoglobin model, we assume a non informative normal prior N3(0,

104I3) for the unknown parameter vector θ = (β0, β1, α1). Similarly, for the treat-
ment model, a non informative normal prior N5(0,104I5) is assumed for the un-
known parameter vector θ = (β0, β2, β3, β4, α1). In both cases, MCMC samples of
the posterior distributions were obtained using a Gibbs–Metropolis type algorithm
with candidates generated by random walk from a multivariate normal distribution
with covariance matrix given by minus the Hessian matrix evaluated at the max-
imum likelihood estimator of θ . For each model, chain sizes were set to 100,000
with burn-in periods of 20,000 and a thinning interval of size 200. Rejection rates
were 0.55 for the multiplicative binomial, double binomial and beta-binomial re-
gression models fitted with the hemoglobin linear predictor for p and 0.70 for
the multiplicative binomial, double binomial and beta-binomial regression models
fitted with the treatment linear predictor for p. Rejection rates of usual binomial
regression models were 0.45 and 0.62 with the hemoglobin linear predictor and
treatment linear predictor, respectively. Convergence was checked using Geweke’s
criterion (Geweke, 1992).

Table 5 shows values of DIC and log-CPO obtained for the multiplicative bino-
mial, double binomial, and beta-binomial regression models with complementary
log-log, logit, and probit links for p, and log link for γ and linear predictors as
defined for the hemoglobin model. We also present DIC and log-CPO values for
usual binomial regression models. It can be seen that, based on these two criteria,
the model to be selected is the beta-binomial hemoglobin regression model with
complementary log-log link function for p. The Bayes factor model selection cri-
teria presented in Table 6 also shows the beta-binomial hemoglobin model with
complementary log-log link for p as the most favorable model.

In Table 5, values of pD show the effective number of parameters to be in agree-
ment with the effective number of parameters expected for each hemoglobin model
fitted to the teratology data.

We also computed estimated posterior predictive p-values (3.2) for discrepan-
cies based on the mean and variance of the response variable and model deviance
for each regression model. The obtained values are shown in Table 5. For multi-
plicative binomial regression models MBC, MBL and MBP the computed p̂-value
for the discrepancy based on model deviance are all equal to zero. Double bino-
mial regression models DBC, DBL and DBP show considerably small values of
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Table 5 Low-iron rat teratology data—hemoglobin model: DIC, log-CPO, effective number of pa-
rameters (pD) and estimated posterior predictive p-value obtained of candidate models

p̂-value

Model DIC log-CPO pD Mean Variance Deviance

MBC 232.06 −117.92 3.07 0.48 0.35 0
MBL 232.84 −118.28 3.12 0.5 0.4 0
MBP 233.45 −118.45 3.15 0.53 0.42 0

DBC 224.18 −112.60 2.86 0.81 0.02 0.73
DBL 228.50 −114.29 3.03 0.81 0.01 0.77
DBP 231.37 −115.59 2.96 0.86 0.01 0.85

BBC 201.63 −101.04 3.20 0.7 0.55 0.45
BBL 204.20 −102.41 3.08 0.74 0.52 0.46
BBP 207.20 −104.02 3.30 0.75 0.56 0.54

BINC 280.21 −143.75 2.15 0.48 0 0
BINL 281.45 −143.94 2.12 0.55 0 0
BINP 292.23 −149.97 2.02 0.66 0 0

Table 6 Low-iron rat teratology data—hemoglobin model: Bayes factor values of candidate models

H1\H0 MBC MBL MBP DBC DBL DBP BBC BBL BBP BINC BINL BINP

MBC – 1.38 1.95 0.02 0.18 0.77 0.00 0.00 0.00 >150 >150 >150
MBL 0.72 – 1.41 0.02 0.13 0.55 0.00 0.00 0.00 >150 >150 >150
MBP 0.51 0.71 – 0.01 0.09 0.39 0.00 0.00 0.00 >150 >150 >150
DBC 43.56 60.27 85.01 – 7.71 33.39 0.00 0.00 0.00 >150 >150 >150
DBL 5.65 7.82 11.03 0.13 – 4.33 0.00 0.00 0.00 >150 >150 >150
DBP 1.30 1.81 2.55 0.03 0.23 – 0.00 0.00 0.00 >150 >150 >150
BBC >150 >150 >150 >150 >150 >150 – 4.11 14.97 >150 >150 >150
BBL >150 >150 >150 >150 >150 >150 0.24 – 3.65 >150 >150 >150
BBP >150 >150 >150 >150 >150 >150 0.07 0.27 – >150 >150 >150
BINC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 1.96 >150
BINL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 – >150
BINP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

p̂-value for the discrepancy based on the variance of the responses. The usual bi-
nomial regression models, BINC, BINL and BINP present extreme small values
of p̂-value for both the variance discrepancy and the model deviance discrepancy.
On the other hand, for the beta-binomial models BBC, BBL and BBP no extreme
values of p̂-value for the mean, variance and deviance discrepancy are observed.
Extreme p̂-values indicate that the pattern of the observed data is different of the
pattern of the replicated data, i.e., the pattern of the observed data is not likely to be
seen under the assumed model. Therefore, based on estimated posterior predictive
p-values, it could be argued that the beta-binomial regression models seem to be
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Table 7 Low-iron rat teratology data—hemoglobin model: posterior model summaries for the beta-
binomial regression model with complementary log-log link for p and log link for γ

Model Parameter Mean Median Std. dev. 95% C.I. 95% HPD

β0 2.00 2.02 0.12 1.31 2.62 1.34 2.65
BBC β1 −0.37 −0.37 0.00 −0.47 −0.25 −0.47 −0.25

α1 −0.07 −0.07 0.00 −0.13 −0.01 −0.13 −0.01

a more plausible choice for the data set, as no extreme p̂-values were observed for
these models, which indicates that the pattern of the observed data is more likely
to occur under these models.

Based on the considered model selection criteria, on the pD values and on the
estimated posterior predictive p-values, we present the posterior model fit sum-
maries for the beta-binomial hemoglobin model with complementary log-log link
for p and log link for γ in Table 7.

Bayesian diagnostic analysis for the selected hemoglobin model is shown in
Figure 5. The posterior predictive check histogram in Figures 5(a)–(c) show the
discrepancies based on the mean, variance and deviance as indicating that the beta-
binomial hemoglobin regression model with complementary log-log link for pi ,
log link for γi and linear predictors η1i = β0 + β1xi and η2i = α1ni , i = 1, . . . ,m,
provides a good fit for the low-iron rat teratology data. The vertical dashed line
in Figures 5(a) and (b) indicate that the mean and variance of the observed data
coincide with the peak of the mean and variance histogram obtained for the data
replicated from the fitted model. The histogram for the model deviance in Fig-
ure 5(c) also reveals that the replicated data is in agreement with the observed
data since the value zero is contained in it. Estimated posterior predictive (Table 5)
p-values for the discrepancies were 0.70, 0.55 and 0.45 for mean, variance and
model deviance, respectively. Thus, posterior predictive checks suggest that the
beta-binomial hemoglobin regression model with complementary log-log link for
p and log link for γ provides a good fit for the low-iron rat teratology data.

The standardized Bayesian deviance residuals shown in Figure 5(d) reveal ob-
servation 51 as an outlier. On the other hand, standardized residuals based on
the posterior distribution of parameters (Figure 5(e)) suggests observation 2 as an
outlier. Nevertheless, neither the leverages (Figure 5(g)) nor the calibration (Fig-
ure 5(h)) uncover these observations as being influential. Moreover, both residuals
are randomly clustered on zero indicating that the model is well fitted to the data.

Figure 6 presents the standardized deviance residuals and the standardized
residuals based on the posterior distribution against the hemoglobin level covari-
ate. From Figures 6(a) and (b), we notice that there is no pattern and the residuals
are clustered around zero. Thus, there is no evidence that a high order term for the
hemoglobin level covariate should be introduced in the model.

Figure 7(a) presents the estimated probability of death p̂i in each litter against
the observed hemoglobin level of the mothers. It can be seen that, as the rat’s
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Figure 5 Low-iron rat teratology data—hemoglobin model: diagnostics for the beta-binomial re-
gression model with complementary log-log link for p and log link for γ : posterior predictive check
for the mean (a), for the variance (b), and for the model deviance (c); standardized Bayesian de-
viance residuals (d); standardized residuals based on the posterior distribution of parameters (e);
Bayesian deviance residuals against leverages (f); leverage (g); calibration (h).

hemoglobin level increases, the estimated probability of death fetuses decreases.
In addition, the hemoglobin level seems to be related to the iron deficient diet.
Figure 7(b) shows the rats in the placebo group (group 1) as the ones with lower
hemoglobin levels, while rats in the control group (group 4), whose iron intake
was normal, are the ones with higher levels of hemoglobin.

Table 8 shows the values of DIC and log-CPO obtained for the multiplicative
binomial, double binomial, beta-binomial, and usual binomial regression models
with complementary log-log, logit, and probit links for p, and log link for γ and
linear predictors as defined for the treatment model. Based on these two criteria,
the selected model is the beta-binomial treatment regression model with logit link
function for p. The Bayes factor model selection criteria presented in Table 9
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Figure 6 Low-iron rat teratology data—hemoglobin model: diagnostics for the beta-binomial re-
gression model with complementary log-log link for p and log link for γ : standardized Bayesian
deviance residuals against hemoglobin level (a); standardized residuals based on the posterior dis-
tribution of parameters against hemoglobin level (b).

Figure 7 Low-iron rat teratology data—hemoglobin model: estimated probability of death against
hemoglobin level (a); hemoglobin level against treatment group (b).

Table 8 Low-iron rat teratology data—treatment model: DIC, log-CPO, effective number of pa-
rameters (pD) and estimated posterior predictive p-value obtained of candidate models

p̂-value

Model DIC log-CPO pD Mean Variance Deviance

MBC 230.95 −118.82 4.84 0.51 0.49 0
MBL 231.29 −118.90 5.06 0.51 0.5 0
MBP 230.58 −118.02 4.83 0.55 0.54 0

DBC 211.53 −105.44 4.69 0.79 0.2 0.53
DBL 211.66 −105.37 4.75 0.84 0.17 0.52
DBP 211.12 −104.97 4.47 0.83 0.17 0.59

BBC 197.35 −99.04 4.89 0.78 0.7 0.44
BBL 197.28 −98.82 4.90 0.8 0.74 0.44
BBP 197.81 −99.01 5.21 0.8 0.77 0.44

BINC 253.09 −129.67 3.99 0.47 0.08 0
BINL 253.75 −130.49 4.33 0.5 0.1 0
BINP 253.17 −129.17 4.09 0.52 0.12 0
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Table 9 Low-iron rat teratology data—treatment model: Bayes factor values of candidate models

H1\H0 MBC MBL MBP DBC DBL DBP BBC BBL BBP BINC BINL BINP

MBC – 0.94 0.86 0.00 0.00 0.00 0.00 0.00 0.00 >150 >150 >150
MBL 1.07 – 0.92 0.00 0.00 0.00 0.00 0.00 0.00 >150 >150 >150
MBP 1.16 1.09 – 0.00 0.00 0.00 0.00 0.00 0.00 >150 >150 >150
DBC >150 >150 >150 – 1.04 1.00 0.00 0.00 0.00 >150 >150 >150
DBL >150 >150 >150 0.96 – 0.96 0.00 0.00 0.00 >150 >150 >150
DBP >150 >150 >150 1.00 1.04 – 0.00 0.00 0.00 >150 >150 >150
BBC >150 >150 >150 >150 >150 >150 – 1.04 1.07 >150 >150 >150
BBL >150 >150 >150 >150 >150 >150 0.96 – 1.04 >150 >150 >150
BBP >150 >150 >150 >150 >150 >150 0.93 0.97 – >150 >150 >150
BINC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 1.15 1.04
BINL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 – 0.91
BINP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 1.10 –

also shows the beta-binomial model with logit link for p as the most favorable
model. Moreover, values of pD presented in Table 8 show the effective number of
parameters to be in agreement with the effective number of parameters expected
for each treatment model fitted to the teratology data.

Estimate posterior predictive p-values (Table 8) obtained for treatment models
are quite similar to those obtained for hemoglobin models. Computed p̂-value for
the discrepancy based on model deviance are all equal to zero for multiplicative
binomial models, whereas double binomial regression models show small values
of p̂-value for the discrepancy based on the variance of the responses, and the usual
binomial regression models present extreme small values of p̂-value for both the
variance discrepancy and the model deviance discrepancy. On the other hand, for
the beta-binomial models no extreme values of p̂-value for the mean, variance and
deviance discrepancy are observed.

Based on the considered model selection criteria, on the pD values and on the
estimated posterior predictive p-values, we present the posterior model fit sum-
maries for the beta-binomial treatment model with logit link for p and log link for
γ in Table 10.

Bayesian diagnostic analysis for the selected treatment model is shown in Fig-
ure 8. The posterior predictive check histogram in Figures 8(a)–(c) show the dis-
crepancies based on the mean, variance and deviance as indicating that the beta-
binomial treatment regression model with logit link for pi , log link for γi and linear
predictors η1i = β0 +β2t2i +β3t3i +β4t4i and η2i = α1ni , i = 1, . . . ,m, provides a
good fit for the low-iron rat teratology data. The vertical dashed line in Figures 8(a)
and (b) indicate that the mean and variance of the observed data coincide with the
peak of the mean and variance histogram obtained for the data replicated from the
fitted model. The histogram for the model deviance in Figure 8(c) also reveals that
the replicated data is in agreement with the observed data since the value zero is



634 C. C. M. Paraíba, C. A. R. Diniz and R. M. Pires

Table 10 Low-iron rat teratology data—treatment model: posterior model summaries for the beta-
binomial regression model with logit link for p and log link for γ

Model Parameter Mean Median Std. dev. 95% C.I. 95% HPD

β0 1.27 1.27 0.06 0.79 1.73 0.82 1.74
β2 −3.06 −3.06 0.25 −4.06 −2.12 −4.02 −2.11

BBL β3 −4.01 −3.94 0.81 −5.84 −2.56 −5.76 −2.49
β4 −3.95 −3.93 0.49 −5.44 −2.69 −5.45 −2.69
α1 −0.09 −0.09 0.00 −0.15 −0.04 −0.15 −0.04

contained in it. The estimated posterior predictive p-values (Table 8) for the dis-
crepancies were 0.8, 0.74 and 0.44; therefore, posterior predictive checks suggest
that the beta-binomial treatment regression model with logit link for p and log link
for γ provides a good fit for the low-iron rat teratology data.

Both the standardized Bayesian deviance residuals and the standardized resid-
uals based on the posterior distribution of parameters, shown in Figures 8(d) and
(e), respectively, reveal no observation as an outlier. Both residuals are randomly
clustered on zero indicating that the model provides a good fit for the data. More-
over, no observation is shown as influent by the leverages (Figure 8(g)) or by the
calibration metric (Figure 8(h)).

Figure 9 presents the standardized deviance residuals and the standardized
residuals based on the posterior distribution against treatment group. From both
Figures 9(a) and (b) no patterns are observed, therefore indicating no evidence of
departure from the linear assumption.

Figure 10 presents the estimated probability of death p̂i in each litter against
treatment group. It can be seen that the estimated probability of death is greater in
groups with low iron supplement.

6 Conclusions

In Section 4.1 we presented results based on simulated data sets for each regres-
sion model considered. It could be seen that the Bayesian methodology worked
quite well, providing accurate estimates for the parameters. We also would like to
stress that, contrary to frequentist methods, Bayesian inference procedures do not
need to be modified or adapted in the presence of a normalizing constant which,
for instance, enables us to consider the normalized probability distribution of the
double binomial model. As a consequence of considering such a normalized form,
parameter estimates of the double binomial regression models are considerably
improved.

In Section 4.2, application of different diagnostic techniques provided a guide
or indicative of which ones may be considered in practical situations where the
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Figure 8 Low-iron rat teratology data—treatment model: diagnostics for the beta-binomial regres-
sion model with logit link for p and log link for γ : posterior predictive check for the mean (a), for
the variance (b), and for the model deviance (c); standardized Bayesian deviance residuals (d); stan-
dardized residuals based on the posterior distribution of parameters (e); Bayesian deviance residuals
against leverages (f); leverage (g); calibration (h).

multiplicative, the double binomial or the beta-binomial regression models are fit-
ted to the data. Since it is usual to consider more than one metric or graphical
display for model assessment, we have tried to approach as many methods as fea-
sible though it is possible that some other interesting ideas for model check and
diagnostic may have been overlooked. From the results presented in that section,
there are indications that residuals based on the CPO and residuals based on the
posterior distribution of parameters do not seem to be accurate when applied to
the multiplicative binomial regression models, the residuals based on the CPO
and Bayesian deviance residuals do not seem accurate when applied to the double
binomial regression models, and the residuals based on the CPO do not seem ap-
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Figure 9 Low-iron rat teratology data—treatment model: diagnostics for the beta-binomial re-
gression model with logit link for p and log link for γ : standardized Bayesian deviance residuals
against hemoglobin level (a); standardized residuals based on the posterior distribution of parame-
ters against hemoglobin level (b).

Figure 10 Low-iron rat teratology data—treatment model: estimated probability of death against
treatment group.

propriate for the beta-binomial regression model. Even so, we note that the reason
why these problems occurred should be investigated further.

In Section 5, both the hemoglobin level covariate and the means for each diet
group were used to model the probability of dead fetuses. The analysis presented
indicated that the probability of death of fetuses can be related to the mother’s
hemoglobin level and to the diet group, thus indicating that a iron-deficient diet
has a negative effect on the litters. Once more, we highlight that the choice of
linear predictors for p and γ are not final and other regression structures could
possibly be considered. Moreover, both models tested were shown to be good fits
for the low-iron teratology data and to choose a specific model we would have to
rely on the biological questions of interest.

In summary, we have illustrated Bayesian estimation and Bayesian diagnos-
tic for the multiplicative binomial, double binomial and beta-binomial regression
models. The proposed methodology aims to explore techniques of Bayesian infer-
ence and diagnostics developed by several authors and to draw attention to the fact
that a more detailed analysis of residuals is crucial for a plausible model specifica-
tion. Moreover, considering these models for overdispersed binomial data analysis
provide an alternative approach that would be useful in practical problems.
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Appendix: Algorithms

A.1 Algorithm to compute predicted values based on the CPO

Given a MCMC sample of size r of π(θ |D):

1. For each θ j , j = 1, . . . , r , compute pij = g−1(x′
1iβj ) and γij = h−1(x′

2iβj ).
2. For each ỹi in {0, . . . , ni}, i = 1, . . . ,m, compute the Monte Carlo estimate of

CPOi by ĈPOi = [1
r

∑r
j=1

1
P(Yi |pij ,γij )

]−1.

3. Set as the predicted value of yi the value ỹi in {0, . . . , ni} which maximizes
ĈPOi , i = 1, . . . ,m.

A.2 Algorithm to compute posterior predictive checks

Given a MCMC sample of size r of π(θ |D):

1. For each θ j , j = 1, . . . , r , sample yrep
j from P(Y |θ j ).

2. Compute the discrepancy variable, T (y), for the observed data.
3. For each yrep

j , j = 1, . . . , r , compute the discrepancy variable T (yrep
j ).

A.3 Algorithm to compute a sample of the residuals based on the posterior
distribution of parameters

Given a MCMC sample of size r of π(θ |D):

1. For each θj , j = 1, . . . , r , compute pij = g−1(x′
1iβj ) and γij = h−1(x′

2iαj ),
i = 1, . . . ,m.

2. For i = 1, . . . ,m, compute (3.3) to obtain a sample of size r of the residuals.
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